
Aalborg Universitet

Distributed Reinforcement Learning for Flexible and Efficient UAV Swarm Control

Venturini, Federico; Mason, Federico; Pase, Francesco; Chiariotti, Federico; Testolin, Alberto;
Zanella, Andrea; Zorzi, Michele
Published in:
IEEE Transactions on Cognitive Communications and Networking

DOI (link to publication from Publisher):
10.1109/TCCN.2021.3063170

Publication date:
2021

Document Version
Accepted author manuscript, peer reviewed version

Link to publication from Aalborg University

Citation for published version (APA):
Venturini, F., Mason, F., Pase, F., Chiariotti, F., Testolin, A., Zanella, A., & Zorzi, M. (2021). Distributed
Reinforcement Learning for Flexible and Efficient UAV Swarm Control. IEEE Transactions on Cognitive
Communications and Networking, 7(3), 955-969. https://doi.org/10.1109/TCCN.2021.3063170

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 - Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 - You may not further distribute the material or use it for any profit-making activity or commercial gain
 - You may freely distribute the URL identifying the publication in the public portal -
Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: July 17, 2025

https://doi.org/10.1109/TCCN.2021.3063170
https://vbn.aau.dk/en/publications/5bdf1921-f97f-47ed-9217-9693828506ee
https://doi.org/10.1109/TCCN.2021.3063170

2332-7731 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCCN.2021.3063170, IEEE
Transactions on Cognitive Communications and Networking

1

Distributed Reinforcement Learning for Flexible
and Efficient UAV Swarm Control

Federico Venturini∗, Federico Mason∗, Francesco Pase∗,
Federico Chiariotti], Alberto Testolin∗†, Andrea Zanella∗, Michele Zorzi∗
∗Department of Information Engineering, University of Padova - Via Gradenigo, 6/b, Padova, Italy

] Department of Electronic Systems, Aalborg University - Fredrik Bajers Vej 7C, Aalborg, Denmark
†Department of General Psychology, University of Padova - Via Venezia, 8, Padova, Italy

∗†{venturini, masonfed, pasefrance, testolin, zanella, zorzi}@dei.unipd.it,]fchi@es.aau.dk

Abstract—Over the past few years, the use of swarms of
Unmanned Aerial Vehicles (UAVs) in monitoring and remote
area surveillance applications has become widespread thanks
to the price reduction and the increased capabilities of drones.
The drones in the swarm need to cooperatively explore an
unknown area, in order to identify and monitor interesting
targets, while minimizing their movements. In this work, we
propose a distributed Reinforcement Learning (RL) approach
that scales to larger swarms without modifications. The proposed
framework relies on the possibility for the UAVs to exchange
some information through a communication channel, in order to
achieve context-awareness and implicitly coordinate the swarm’s
actions. Our experiments show that the proposed method can
yield effective strategies, which are robust to communication
channel impairments, and that can easily deal with non-uniform
distributions of targets and obstacles. Moreover, when agents are
trained in a specific scenario, they can adapt to a new one with
minimal additional training. We also show that our approach
achieves better performance compared to a computationally
intensive look-ahead heuristic.

Index Terms—Artificial intelligence, distributed decision mak-
ing, mobile robots, neural network applications.

I. INTRODUCTION

The high data rate achievable with modern wireless commu-
nications and the increasing computational power of embedded
systems, along with the sharp price reduction of commercial
Unmanned Aerial Vehicles (UAVs), have enabled the use of
swarms of drones for Smart City services [1]. Thanks to their
size, flexibility and flight ability, these swarms represent a new
solution for a plethora of different applications, such as remote
surveillance, distributed sensing, wireless coverage extension
and object tracking [2].

Over the past few years, researchers have proposed several
UAV-based systems [3], but achieving an efficient distributed
control is a complex problem, whose solution is often task-
dependent. In this context, it is important to properly define the
different sub-tasks of surveillance, monitoring, mapping and
tracking [4]. In this work, we assume that targets are static,
but occupy random positions in the monitored area. Moving
UAVs are equipped with sensors that can detect targets within
a limited sensing range, and a radio interface that makes it
possible to share position information and sensing data. The
UAVs need to coordinate to explore the area and find the
targets without colliding with each other or with obstacles.

The problem of identifying fixed targets arises in several
practical situations, ranging from the generation of real-time

flood maps [5] to the detailed tracking of weeds in agri-
culture [6], but an efficient initial exploration is of interest
even for larger classes of problems, e.g., considering moving
targets. One such example is wildfire monitoring in dry
regions [7], which can be effective as long as the UAVs move
faster than the spread of the fires.

The dynamic nature of these problems, in which actions can
have long-term consequences and affect the future evolution of
the environment in complex ways, makes them a natural appli-
cation area for Reinforcement Learning (RL) techniques [8].
However, due to the curse of dimensionality, a centralized
approach to the problem (i.e., using a single controller) is
feasible only for very small swarms. In order to design a scal-
able system, Multi-Agent Reinforcement Learning (MARL)
techniques need to be used, but the non-stationarity of the
environment [9] complicates the system design and the agent
training. This additional complexity makes MARL an open
research field, and the different degrees of centralization and
communication between agents make the configuration of the
learning system an interesting problem to investigate.

In this work, we consider a MARL framework for explo-
ration and surveillance. Our aim is to find a flexible Machine
Learning (ML) strategy to explore and monitor a certain area
with a swarm of UAVs that can exchange information within
a certain coverage range. Performance is determined by the
ability of the drones to find and reach the targets, which are
located in unknown positions.

In our framework, the observations of other agents are
shared through a radio channel and used to make decisions and
to avoid collisions, thus encouraging cooperation. We define
a Deep Q-Network (DQN) algorithm and demonstrate its
efficiency with limited training, comparing it to a benchmark
look-ahead heuristic and showing that our approach can better
explore the environment and reach the targets faster. We also
perform a transfer learning experiment, showing that agents
trained on a certain map can learn to adapt to a completely new
scenario much faster than restarting the training from scratch.

We adopted a general model, using a grid-world represen-
tation and making a limited number of assumptions on the
nature of the task. Nonetheless, we show that our system can
be implemented in several different scenarios. In particular, the
map is not entirely visible to the UAVs, there are obstacles,
and targets are in unknown positions (often clustered together,
making clusters rarer and thus harder to find). These features

Authorized licensed use limited to: Aalborg Universitetsbibliotek. Downloaded on March 11,2021 at 07:39:52 UTC from IEEE Xplore. Restrictions apply.

2332-7731 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCCN.2021.3063170, IEEE
Transactions on Cognitive Communications and Networking

2

make MARL highly complex, especially when considering
limited communication capabilities: to the best of our knowl-
edge, our work is the first to apply it in such challenging
conditions.

Our approach to solve the problem is to model the state
as a series of correlated maps, which contain different infor-
mation on the environment, making the learning framework
extendable to even more complicated scenarios.

The contributions of this paper can be summarized as
follows:
• We formulate a Networked Distributed Partially Observ-

able Markov Decision Process (ND-POMDP) framework
for swarm management in a complex environment and
propose a MARL architecture to address such a problem;

• We show that the proposed system can outperform com-
putationally heavy heuristics and transfer its knowledge
to different scenarios with limited retraining;

• We analyze the effect of bigger changes in the environ-
ment, such as changing the size of the map or the number
of drones, and show that transfer learning is still effective;

• We show that the system is robust to channel impair-
ments, and can perform very well even in realistic sce-
narios that differ from the more abstract models used in
the training phase.

A preliminary version of this paper was presented at ACM
DroNet 2020 [10]; this version has a significantly updated
system model, considering different map sizes and the pres-
ence of obstacles as well as a different MARL solution, and
more extensive results on the performance of our approach.
Moreover, we have added the analysis of the impact of the
communication channel on the system’s performance, and
tested the proposed solution in a map obtained from real data.

The rest of the paper is divided as follows: first, Sec. II
analyzes the related work in the field. The system model and
MARL algorithm are presented in Sec. III. The experimental
setup is reported in Sec. IV, while the experimental results,
including transfer learning experiments, are reported in Sec. V.
Finally, Sec. VI concludes the paper and presents some pos-
sible avenues of future work.

II. RELATED WORK

An extensive taxonomy of multi-agent solutions was pre-
sented in [11]. The general approaches adopted to solve the
MARL problem can be cast into one of these four frameworks:
(1) a single agent architecture that interacts with multiple
copies of itself, generating emergent behaviors; (2) commu-
nication between agents of the same type with improved
coordination; (3) cooperation between agents with different
specialized goals achieving coordinated behavior; and (4)
modeling other agents’ behaviors and planning a response
[12].

The authors in [13] study the first of these four approaches
and use the tabular Q-learning algorithm to guide drones
to survey an unknown area, showing that even the simplest
MARL algorithm can improve the overall system rewards.
Similarly, in [14] and [15] the MARL framework is applied to
a more complex problem in which a UAV network is adopted

to provide flexible wireless communication. However, in these
works the MARL algorithm is used to optimize resource
allocation instead of guiding drones, so that a coordinated
exploration strategy is missing.

An interesting research direction for MARL is pioneered in
[16], which uses Deep Neural Networks (DNNs) to represent
and learn more complex Q-functions [17]. At first, the authors
study the performance of one network trained for all agents,
which then share the same parameters during the execution
phase (this is also our approach). A second proposed system
uses the Differentiable Inter-Agent Learning (DIAL) frame-
work, in which agents learn meaningful real-valued messages
to be exchanged in order to improve cooperation: this allows
for faster training, but the model is limited to a very small
number of agents.

Other works use RL in the practical scenarios discussed
above: in [5], the authors adopt a MARL approach to con-
trol a flood-finding swarm of UAVs. However, the model
only considers a swarm with a fixed number of drones, and
the experimental results are not compared to state-of-the-
art heuristics. In [6], a reinforced random walk model is
exploited to map weeds in an agricultural setting, taking noisy
acquisition into account and solving the issue with collective
observations. Random walks are then biased based on the
positions of the already discovered targets, which have to be
properly mapped, along with the distances from other drones
in the network. In this case, the authors considered swarms of
variable sizes, but the random walk needs to be manually tuned
for each setting. Another recent study [7] considers wildfire
spread monitoring, checking how the fire evolves and spreads
in the map from a known starting point. The authors define
the problem as a Decentralized Partially Observable Markov
Decision Process (Dec-POMDP) [18] and carry out several
experiments, as well as comparisons against a greedy heuristic
(similar to the look-head method we studied in this work). A
target-tracking application for disaster scenarios, with a model
similar to our own but applied to a single drone, is described
in [19]. Finally, [20] considers a MARL system with realistic
communication, where a swarm of drones needs to get data
from an Internet of Things (IoT) sensor network. This is a
much simpler problem, as the position of the targets is known
in advance, and the MARL framework only needs to optimize
the trajectories.

The MARL approaches can also fit models in which UAV
connectivity is important: in [21], a framework including RL
and game theory is used to plan the path of two drones that
need to save energy and minimize the interference to the
ground network while maintaining a cellular connection. Fur-
thermore, in [22] the authors design a centralized RL system
to maximize coverage for a swarm of aerial base stations
serving mobile users on the ground. A similar approach is
taken in [23], which redefines the problem in terms of Quality
of Experience (QoE) maximization for the users. For a fuller
communication-oriented perspective on the use of RL for UAV
networks, we refer the reader to [24].

These works have similar objectives to our own, but either
go back to the single-agent setting or have restrictive assump-
tions: as an example, [7] considers well-known fire patterns,

Authorized licensed use limited to: Aalborg Universitetsbibliotek. Downloaded on March 11,2021 at 07:39:52 UTC from IEEE Xplore. Restrictions apply.

2332-7731 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCCN.2021.3063170, IEEE
Transactions on Cognitive Communications and Networking

3

Symbol Description Symbol Description

M Coordinate set O Observation space of the system ND-POMDP
M Map grid size Φ Matrix of cell values
K Number of targets X Matrix of UAV positions
zk Coordinates of the k-th target Ω Matrix of obstacle positions
σ Standard dev. of the target Gaussian functions Φ̂ Observed cell value matrix
φ(·) Cell value function Ω̂ Observed obstacle position matrix
U Set of UAVs Xu Observed UAV position matrix for u
U Number of UAVs (cardinality of U) F Observation window size (in number of cells)

dsparse Minimum target distance in the sparse scenario ψ Penalty for collisions
ω(·) Obstacle location function θ Penalty for moving to forbidden areas
η Fraction of the map occupied by obstacles ρ Obstacle value
ζ Field of View of each UAV νu(xu,au) Invalid move indicator function for UAV u

hmin Minimum obstacle size (in number of cells) χu(X,A) Collision indicator function for UAV u
hmax Maximum obstacle size (in number of cells) ru(s,a) Reward for UAV u
`i Lower left corner coordinates of the i-th obstacle π Observation-action policy
Hi Set of cells occupied by the i-th obstacle Ru,t(π) Long-term reward for u using policy π
hi Size of the i-th obstacle γ Exponential discount factor
N Episode duration (steps) et Experience sample
S State space of the system ND-POMDP α Learning rate
V(s) Valid move space for state s Bsize Size of a learning batch
A Action set Q(ou, au) Q-value estimate of R
au Action for UAV u nq Model update period steps)

TABLE I: Notation definitions.

which can be extensively learned, with a known starting point.
In our case, the initial positions of the targets and of the UAVs
are not the same across different episodes, making the model
more general and complicating the learning task. Furthermore,
unlike previous efforts in the literature, we exploit the transfer
learning paradigm, showing how our model can easily adapt to
scenarios with obstacles, realistic maps, and different swarm
sizes. To the best of our knowledge, our work presents the most
complex environment to date, in which a single architecture
can deal with different map and swarm sizes, different numbers
of targets to track, and the presence of obstacles.

III. SYSTEM MODEL

In the following, we first present the environment in which
the UAVs operate. We give a full list of the notation used in
Table I as a reference to the reader.

A. Environment

The system environment consists of a square grid of size
M × M . Each cell of the grid (we will refer to a cell or
a location interchangeably in the following) is identified by
its coordinates m ∈ M, where M = X × Y , and X = Y =
{0, ...,M−1}. We place a set of K targets on the map, which
represent the objectives of the UAV surveillance application.
The position of the k-th target is denoted as zk = (xk, yk).

We then generate a set of K bivariate Gaussian functions
over the grid, which represent the visibility of a target to the
UAVs, with the same covariance matrix Σ =

(
σ2 0
0 σ2

)
. The

mean zk = (zk,1, zk,2) corresponds to the coordinates of the
target. Note that the Gaussian functions do not represent actual
distributions, but rather the full view of the UAVs, which can
see a target from afar. The value of σ can be interpreted as the
distance at which a target can be identified, as larger values
of σ mean that the target is visible from further away.

Each cell can then be associated with a weight φ(m), which
represents the value of the location, which increases with the

proximity to a target, and is given by the maximum of the
Gaussian functions in that point, normalized in such a way
that the target locations have values equal to 1:

φ(m) = max
k∈{0,...,K−1}

e−
1
2 ((m−zk)TΣ(m−zk)). (1)

If φ(m) is smaller than 0.01, it is set to 0, as the UAVs cannot
see any target from that location. Under these conditions, the
most valuable cells coincide with the center of each Gaussian
function, which represents one of the targets in the considered
scenario. While the environment is static, the UAVs move
within the map with the aim of positioning themselves over
the targets as fast as possible. We denote the set of UAVs by
U , and by U its cardinality.

In this work, we consider two different distributions for the
targets, named sparse and cluster, which are characterized by
different correlations among the target positions. In both cases,
the first target is randomly placed on the grid following a 2D
uniform distribution: z0 can take any value in M with equal
probability. The other targets are then placed sequentially,
according to the following rules. In the sparse scenario, the
position zi of the i-th target is randomly chosen in the set
Msparse

i = {m ∈ M : ||m − zj ||2 > dsparse, ∀j < i}, with
probability mass distribution

Psparse(zi = m) =
||m− z0||2
κsparse
i

. (2)

where κsparse
i =

∑
m∈Msparse

i
||m − z0||2 is a normalization

factor. Hence, the other targets tend to be distributed far from
the first, with a minimum distance dsparse between each other.

In the cluster scenario, instead, the i-th target can take any
position in the setMcluster

i = {m ∈M : ||m−zj ||2 > 1, ∀j <
i} with probability mass distribution

Pcluster(zi = m) =
1

(1 + ||m− z0||2)κcluster
i

. (3)

where κcluster
i =

∑
m∈Mcluster

i

1
(1+||m−z0||2) is the normalization

factor. In this case, the targets tend to cluster around the first

Authorized licensed use limited to: Aalborg Universitetsbibliotek. Downloaded on March 11,2021 at 07:39:52 UTC from IEEE Xplore. Restrictions apply.

2332-7731 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCCN.2021.3063170, IEEE
Transactions on Cognitive Communications and Networking

4

0 5 10 15
0

5

10

15

0 5 10 15
0

5

10

15

Fig. 1: Two examples of the sparse (left) and cluster (right) target
distributions.

one, but cannot occupy adjacent cells, since the minimum
distance must be greater than 1.

An example of the two target placements is shown in Fig. 1.
These two distributions represent two plausible configurations
of targets in tracking applications: in wildlife monitoring, some
species of animals might tend to herd together, while more
territorial ones will have a sparser distribution on the map.
The same goes for a battlefield scenario, in which groups
of soldiers might act together as a tight formation, while
guerrilla-style fighting will involve a much sparser distribution
of forces.

In a more complex version of the scenario, the map does
not just have targets that the UAVs need to find and reach,
but obstacles as well: in an urban scenario, these might be
tall buildings or designated no-fly zones, while in a natural
scenario they might correspond to natural obstacles such as
boulders or tall trees. We define a function ω(m), which
is equal to 1 if the cell corresponds to an obstacle and 0
otherwise. Then, we denote by η the portion of the map
occupied by obstacles:

η =
∑

m∈M

ω(m)

M2
. (4)

Cells inside an obstacle are considered impassable, like the
map borders, and the UAVs that try to move on an obstacle
will remain in the same cell.

For the training of our algorithm, we assumed that obstacles
are rectangular and randomly scattered in the area. The i-th
obstacle is determined by its dimensions hi and by the position
of its lower left corner `i. We formally define the obstacle as
the set Hi:

Hi =
{
m = (m1,m2) ∈M :

m1 ∈ {`i,1, . . . , `i,1 + hi,1 − 1},
m2 ∈ {`i,2, . . . , `i,2 + hi,2 − 1}

}
.

(5)

Obstacles are generated sequentially, like the targets, and for
each obstacle i the dimensions hi are drawn uniformly from
the set {hmin, hmax} × {hmin, hmax}. The lower left corner
position `i is then drawn from a uniform distribution in the
set Mobs

i , the subset of the map defined as:

Mobs
i =

{
` ∈M : Hi ⊂M, ||n, zk||2 > 1,

∀n ∈ Hi, k ∈ {0, . . . ,K − 1},
d(Hi,Hj) ≥ 2,∀j < i

}
,

(6)

where d(Hi,Hj) = minmi∈Hi,mj∈Hj ||mi − mj ||2 is the
distance between the obstacles i and j. The three constraints
force the obstacle to be entirely inside the map, not to be
directly adjacent to any of the targets, and not to touch other
obstacles. The choice of these constraints was motivated by
the necessity to guarantee the existence of a clear path to the
targets from any point in the map.

We consider multiple episodes of N steps: in each episode,
the targets, UAVs, and obstacles are redistributed in the map,
and the swarm must locate the targets in as few steps as
possible. We consider discrete time slots, so that each drone
can move by a single cell at each time step. Furthermore, we
assume that a UAV has a limited Field of View (FoV), i.e., it
can only know the value of the cells within a radius ζ. This
framework allows us to represent many different applications
and scenarios by changing the size of the grid, the number
of drones, targets and obstacles, the FoV range ζ and the
target visibility parameter σ. It can also be easily extended
to dynamic targets.

At the beginning of each episode, each UAV only knows the
values of the cells within the swarm’s FoV. The drones assume
that all unexplored points of the map are associated with the
maximum φ(m). Then, each UAV moves independently at
each time step n: as the swarm explores the environment, each
drone discovers the values of the map locations that it has
covered, and updates its information according to φ(m). We
highlight that the knowledge about the map is instantly shared,
which means that each drone receives the observations that
all the other drones have acquired. This is always true during
training, whereas in some testing episodes we also experiment
the scenarios in which unreliable communications affect the
shared messages. The objective of the swarm for each episode
is to position each of its UAVs above a target as quickly as
possible.

B. Communication model

We consider the swarm to only have partial observations:
as the size of the map might be too large for the swarm to
effectively coordinate over it, we consider each UAV to have
up-to-date knowledge only inside the F ×F square with it at
the center, with F ≤M . If the distance between the UAV and
the edge of the map is lower than F , the square will consider
the edge of the map as the edge of the visible region, and the
UAV will no longer be at its center, in order to avoid modeling
the area outside the map. This assumption allows us to model
communication constraints in the problem, as UAVs need to
share the observed parts of the map with the other components
of the swarm; however, F should not be confused with the FoV
ζ, as the former represents the size of the portion of the map
that each UAV considers when deciding its next action, while
the latter represents the size of the portion of the map that
the UAV can sense directly at each moment. In our case, we
always have F ≥ ζ.

C. ND-POMDP formulation

The described scenario is modeled as an ND-POMDP [25],
i.e., a Markov Decision Process (MDP) where the system state

Authorized licensed use limited to: Aalborg Universitetsbibliotek. Downloaded on March 11,2021 at 07:39:52 UTC from IEEE Xplore. Restrictions apply.

2332-7731 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCCN.2021.3063170, IEEE
Transactions on Cognitive Communications and Networking

5

in not directly observable and is influenced by the actions of
multiple agents, whose behavior is not centrally coordinated.
Indeed, the swarm only has limited knowledge of the map, and
the UAVs can take actions independently and have independent
rewards. We observe that ND-POMDP is a particular class of
Decentralized POMPD (Dec-POMDP) for which not all agents
interact with each other [26]. Convergence to the optimal
solution for this kind of problem has been proven for classical
reinforcement methods [27], although not for deep models:
as most works in the literature, we will use a benchmark to
evaluate the performance of our scheme. Formally, an ND-
POMDP is identified by a 5-tuple, composed of a state space
S, an agent space U , a joint action space A, an observation
space O, and a reward map r : S ×A → RU , where U = |U|.

The complete system state s is given by five matrices: a
matrix for the current position of the UAVs, one matrix each
for the map of the already discovered targets and obstacles,
and one matrix each for the full map of targets and obstacles.
The positions of the UAVs are contained in the 2×U matrix
X, while the features of the map are represented by the two
M ×M matrices Φ and Ω, which contain the value φ(m) of
each cell and the function ω(m) representing the location of
the obstacles. Clearly, the maps with the full view of targets
and obstacles are not initially known by the UAVs, which will
then need to explore the area.

Furthermore, the UAVs do not know the features of cells
that have not been explored: the observed features of the map
are contained in the F × F observed value matrix Φ̂, whose
elements are equal to φ(m) if the cell has been explored and 1
otherwise, and the F ×F observed obstacle matrix Ω̂, whose
elements are equal to ω(m) if the cell has been explored and
0 otherwise. The observation ou ∈ O that is available to drone
u is then given by Xu, Φ̂u, and Ω̂u, defined as the F × F
subsets of X, Φ̂ and Ω̂ centered in xu.

In our case, each UAV can either stay over the same cell
or move to one of the four adjacent cells. However, obstacles
are impassable in our environment definition, and the UAVs
cannot move outside the map, so UAVs will simply stand in
place if they attempt an action that violates the constraints.
We define the action space A = {(0, 0), (0, 1), (1, 0), (0,−1),
(−1, 0)}U . An action for the swarm is then a vector a ∈ A,
which contains the individual UAVs’ actions, denoted as au
for drone u. We first define function ν(xu,au), which is 1 if
the action is valid, i.e., it does not lead the UAV to fly outside
the map or into an obstacle, and zero otherwise:

ν(xu,au) =

{
1, if xu + au ∈M∧ ω(xu + au) = 0;

0, otherwise.
(7)

The position of each drone is then updated in the following
way:

xu(t+ 1) = xu(t) + au(t)ν(xu(t),au(t)). (8)

Fig. 2 shows an example of the system state at the beginning
and in an advanced stage of an episode, with two drones and
four targets located in a 20 × 20 map with no obstacles (in
this case, we set F = M = 20). In particular, the drones’
positions are shown on the left (in yellow), the observed value

0 5 10 15
0

5

10

15

0 5 10 15
0

5

10

15

0 5 10 15
0

5

10

15

0 5 10 15
0

5

10

15

0 5 10 15
0

5

10

15

0 5 10 15
0

5

10

15

Fig. 2: Drone positions (left), known map (center), real map (right).
Beginning (above) and end (below) of an episode.

map is in the center, and the real value map is on the right. In
the figure, darker cells are associated with lower values and
brighter cells are associated with higher values. In the figure, if
the communication range equals or exceeds the map side, i.e.,
F ≥M , the observed state o for all UAVs would correspond
to the maps on the left and in the center. On the contrary,
if F < M , the observation for each UAV would include a
different portion of the map. It is easy to see how the swarm
gains knowledge during the episode, as the drones explore the
map and look for targets. In this case, the UAVs found two
targets relatively quickly, and a significant portion of the grid
remained unexplored.

We give reward 1 to a UAV if it is directly above a target,
reward −θ if it tries to go outside the map or to position itself
over an obstacle, reward −ψ if it is in the same cell as another
drone, and reward 0 in any other case. The UAVs will quickly
learn to avoid actions that would take them outside the map or
make them crash into obstacles, so the exact value of θ does
not affect the final performance, but the value of ψ affects
the distance that the drones try to keep from each other: if ψ
is low, the drones will get close to each other if the targets
are very close. Naturally, if there is a collision risk when the
drones are in the same cell, the value of ψ should be high.
The reward depends on X, as well as on the action vector a.

Indicating with xu and au the position and action of drone
u, we now define the collision variable χu(X,A) as

χu(X,A) = max
v∈(U\u)

δ
(
xu + au(t)ν(xu,au)

− xv − av(t)ν(xv,av)
)
.

(9)

where δ(x) denotes a function that takes value 1 if the vector
x = 0, and zero otherwise. In short, χu(X,A) has value 1
if one or more drones move to the same cell as drone u, and
0 otherwise. The collision variable depends on the moves of
other agents, so the problem is distributed. The reward function
for UAV u in state s if the swarm takes the joint action vector

Authorized licensed use limited to: Aalborg Universitetsbibliotek. Downloaded on March 11,2021 at 07:39:52 UTC from IEEE Xplore. Restrictions apply.

2332-7731 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCCN.2021.3063170, IEEE
Transactions on Cognitive Communications and Networking

6

A, denoted as ru(s,A), is given by:

ru(s,A) =− θ(1− ν(xu,au))− ψχu(X,A)

+ (1− χu(X,A))
K−1∑
k=0

δ(xu + au − zk).
(10)

In our model, the state transitions and the system observa-
tions are both deterministic; therefore, both the state evolution
and the observation are not affected by random events, but
only by the agents’ decisions. We define a policy π(au|ou)
as the conditioned probability for user u to take action au
given an observation ou ∈ O. Under these assumptions, the
goal of each drone u is to find the policy π∗ that maximizes
the cumulative expected future discounted reward Ru(π) =

E
[∑+∞

τ=0 γ
τru,τ |ou, π

]
, where γ ∈ [0, 1) is a discount factor.

D. Distributed Deep Q-Learning

In this subsection, we will describe our Distributed Deep
Q-Learning (DDQL) approach to solve the problem defined
above. For the sake of readability, in the following we omit
the u subscript to indicate the agent whenever possible. Each
agent leverages a DQN, i.e., a Neural Network (NN) that takes
as input the last observation ot and returns the Q-values of the
possible actions that can be taken, i.e., Q(ot,a), ∀a ∈ A. In
Q-learning, the function Q(o,a) is an estimate of the expected
long-term reward R that will be achieved by choosing a as the
next action and then following the learned policy. In our case,
we maintain a single DQN during the training phase, whose
values are shared by all the agents. In this work, we follow the
approach from [17] and leverage a replay memory to store the
agent experience et = (ot, at, rt, ot+1). Whenever the agent
carries out a training step, a batch of Bsize elements is picked
from the replay memory, allowing to separate the algorithm
training from the experience acquisition. The replay memory
is shared between the agents during a training phase, and a
new batch is used to train the agent at every step. We highlight
that, in our system, all agents are the same (single DQN), and
they need to generalize the problem from a limited number
of states. As it would be impossible for a single UAV to
experience even just a non-negligible fraction of possible states
in the training, shared replay is a critical factor in the network’s
generalization ability. In particular, the experience replay is
extremely valuable since it allows the system to improve the
variety of the training samples by getting experience from the
states seen by different agents. In other scenarios, it may not
be convenient to exploit a shared memory, especially when the
agents have to learn different tasks.

Following the DQN example from [17], we exploit the dou-
ble Q-learning technique to remove biases from the Q-value
estimation and speed up the algorithm’s convergence [28]. This
means that, during the training, we maintain a target network,
whose output Qt(o, a) is used to evaluate actions, and an
update network, whose output Qu(o, a) is used to select the
policy. In particular, the bootstrap Q-value is computed as

Qnew(ot, at) = rt + γmax
a

Qt(ot+1, a). (11)

Fig. 3: Architecture of the DQN.

The value Qnew(ot, at) is then used to perform backpropaga-
tion on the update network with a learning rate set automat-
ically by the Rectified Adam (RAdam) optimizer [29], and
every nq training steps the update network parameters are
copied to the target network.

In our model, the observed state of the system for each
agent can be represented by four F ×F matrices, representing
the agent position, the locations of the other agents, the value
of explored cells, and the position of known obstacles. To
simplify the state space, we consider matrices Φ̂ and Ω̂ jointly,
by feeding the NN with the matrix Φ̂−ρΩ̂, where ρ is a scalar
parameter used to facilitate learning. Therefore, our system
approximates the function Q(o, a) by a Convolutional Neural
Network (CNN), whose architecture is described in Fig. 3. In
particular, we consider a CNN exploiting three convolutional
layers followed by two fully-connected layers. The dimension
of the last layer is identical to the number of actions, so that
each output element can be associated to a different action
a ∈ A.

Hence, each agent provides training samples for the shared
replay memory, which are then used in (11), so that the
CNN output can converge to the Q-values Q(o, a), ∀ a ∈ A.
We implement the well-known ε-greedy and softmax policies
to allow the agents to explore the action space during the
training phase, which is carried out by simulating a sequence
of episodes.

E. Computational complexity

We now discuss the computational complexity to perform
one inference procedure with the neural network. We first
analyze the complexity of fully-connected layers. We denote
by Nk the number of neurons in the general k-th layer. To go
from layer i to layer i+ 1, we need to compute the value of
Ni+1 nodes, each of which takes Ni multiplications followed
by Ni additions and one non linear function, thus involving
Ni+1(2Ni + 1) operations.

We can then compute the complexity of one convolutional
layer, as done in [30], when neither batch normalization nor
pooling layers are present. We denote with (Iw, Ih, Id) the
shape of the input block. At layer i, we then have Ki filters
with kernels dimension (Wi, Hi), stride Si (we use the same
value along the two axes), and padding Pi. The shape of the

Authorized licensed use limited to: Aalborg Universitetsbibliotek. Downloaded on March 11,2021 at 07:39:52 UTC from IEEE Xplore. Restrictions apply.

2332-7731 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCCN.2021.3063170, IEEE
Transactions on Cognitive Communications and Networking

7

resulting output block will be (Iw+2Pi−Wi

Si
+ 1, Ih+2Pi−Hi

Si
+

1,Ki). The computation of each block’s neuron here in-
volves Wi × Hi × Id multiplications followed by the same
number of additions (sum all elements plus the bias) and
one non-linearity. The total number of calculations is then
(Iw+2Pi−Wi

Si
+ 1)× (Ih+2Pi−Hi

Si
+ 1)×Ki × (2WiHiId + 1).

If we consider the specific architecture of our NN reported
in Fig. 3, the actual number of basic computations (mul-
tiplications, additions and non-linearities) are, respectively,
440 000, 3 704 980 and 628 180 for the three convolutional
layers. The following fully-connected layers require 125 504
and 645 computations, thus the total number of operations for
one decision is 4 899 309.

This computational complexity allows UAVs to take deci-
sions in real time, as even embedded processors can deal with
much more complex architectures in less than 100 ms [31].
As the physical speed of the UAVs and the much more
complex vision algorithms required to identify targets are the
main limiting factors for the swarm, the ND-POMDP will be
performed at a relatively slow pace, with timesteps in the order
of several seconds.

IV. SIMULATION SETTINGS

In this section, we describe the simulations by which we
evaluated the performance of the designed system. All the
results are derived through a Monte Carlo approach, where
multiple independent simulations are carried out to obtain
reliable statistical data. In particular, the algorithms’ training
is executed by carrying out a total of Ne episodes for each
studied scenario (sparse or cluster), where each episode is
given by N t

s steps. Training episodes are far longer than test
episodes, which have length Np

s , since the agents need to
explore the map fully.

Before training, we initialize the replay memory by execut-
ing Nm

e = 1000 episodes of N t
s steps each, to allow agents

to immediately start the learning procedure. If the episodes
are too long, a lot of samples in which large portions of the
map are already explored are added to the memory replay,
and the agents will not learn properly how to move at the
beginning of the episode, when the map is not explored. On
the other hand, short episodes have the opposite problem,
as the UAVs never learn to behave in the final parts of the
episodes. A prioritized memory replay can solve this problem,
but requires additional parameters. We then opted for adapting
the episode length in the training phase. The even training
episodes have 50 steps each, while the odd episodes have
150 steps. This alternating size prevents the replay memory
from being too skewed towards situations in which the map
is almost completely explored or unexplored.

Moreover, we apply transfer learning to allow the agents
trained in the sparse environment to quickly adapt to the
cluster scenarios (or vice-versa); to this goal, additional Nt
training episodes are carried out. Finally, the performance
of the proposed strategy is tested in a total of Np = 500
episodes for the DDQL system. The exploration rate ε follows
2 different approaches, namely, ε-greedy and softmax. In the
former, a random action is chosen with probability ε, while

the best action, i.e., the action with the highest Q-value, is
chosen with probability 1-ε. The value of ε decreases to 0 at
the end of the training, since no more exploration is needed.
In the latter, at each time step the probability of each action
pi is computed as the output of a softmax density function
taking the Q-values as input. In this case, the temperature T
decreases during the training, reducing the randomness during
the selection of the actions:

pi =
e

qi
T∑A

j=1 e
qj
T

, (12)

where A = 5 is the number of actions that each drone can
take. The training and testing processes are independently
performed 5 times to verify the robustness of the DDQL
scheme. The complete simulation settings are reported in Tab
II.

To assess the performance of our DDQL scheme, we com-
pare it with a heuristic strategy inspired by Model Predictive
Control (MPC), by which drones can explore the map and
reach the targets. Such a strategy is named look-ahead and is
used as a benchmark for our analysis. The look-ahead strategy
tries all possible combinations of future actions and looks at
the possible future rewards, as its name suggests. In order to
define it, we first define the look-ahead reward r(`)

u (X,a) as:

r(`)
u (X,a) =

{
φ̂(xu+au)
ξ(xu+au) if ν(xu,au) = 1;

−∞ otherwise,
(13)

where ξ(x) is the number of UAVs located in x. The look-
ahead strategy never goes outside the map or on obstacles.
To decide its next action, each drone u tries to maximize
its expected cumulative reward over the following n` steps,
assuming that none of the other drones move. In practice, the
look-ahead strategy makes each drone select the action a∗ that
maximizes

max
A∈Ãn`

n`−1∑
i=0

r(`)
u

X +
i−1∑
j=0

Aj ,ai

 , (14)

where Ãn` is the set of ordered sequences A of action vectors
A0, A1, ..., An`−1, so that â0

u = a∗ and aiv = (0, 0), ∀
i ∈ {0, ..., n − 1}, v 6= u, i.e., the set of possible move
sequences of u while the other UAVs are static. If several
action sequences have the same expected reward, the look-
ahead strategy will choose one of them randomly. At the
beginning of an episode, each drone u assumes that all the map
values φ(m) outside its FoV are equal to 1; therefore, look-
ahead forces u to continuously explore the map. However,
as soon as it finds a target, u will hover over the target
center. The target is then eliminated from the other agents’
value maps, as it is already covered by a UAV. We highlight
that the performance of look-ahead mainly depends on the n`
parameter: as it increases, drones can make more foresighted
decisions, but at a greater computational cost. In addition,
the number of targets in the map also plays a key role
in determining the computational performance: when more
targets are present, we have to check whether other agents are
on a target more often, in order to remove it from the map of

Authorized licensed use limited to: Aalborg Universitetsbibliotek. Downloaded on March 11,2021 at 07:39:52 UTC from IEEE Xplore. Restrictions apply.

2332-7731 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCCN.2021.3063170, IEEE
Transactions on Cognitive Communications and Networking

8

Parameter Value Description

M {20, 24, 30, 40, 50} Map size
F 20 Observed map size
U {2, 3} Number of UAVs
K 4 Number of targets
σ2 1 Targets variance
ζ 3 Field of View
η {0,0.1} Obstacle frequency

dsparse 8 Minimum target distance (sparse scenario)
θ 1 Obstacle/outside penalty
ψ 0.8 Collision penalty
ρ 0.2 Obstacle value
γ 0.9 Discount factor
α Chosen by RAdam Learning rate
Ne {250, 750, 1000, 3000} Training episodes
Nt

s {50, 150} Steps per training episode
Np

s 40 Steps per test episode
Nt {125, 250, 375, 750} Transfer learning episodes
Np 100 (LA), 500 (DDQL) Test episodes
Ptx 20 dBm Communication power
N0 -76 dBm Noise floor
h 40 m UAV height
Rc 2/3 Coding rate

TABLE II: Simulation settings.

available targets. As the look-ahead strategy is computationally
expensive, Np for it was set to 100.

Finally, we also consider a scenario with a realistic com-
munication model, in which the broadcast messages sent by
each UAV at every step might be lost due to the wireless
channel impairments. We used the path loss and shadowing
model from [32], based on actual measurements from air-to-
air communications, and considering a Rayleigh fading model
with an error correction code with rate 2/3. As the simulation
results will show, the physical size of the cells in the map is
a critical parameter when UAVs communicate directly with
each other (and not through the network infrastructure on the
ground). In particular, increasing the size of the cells will im-
pair the performance because of communication range issues:
the model has an error probability of 50% at approximately
110 m, corresponding to 11 cells if a cell side is 10 m and 5
cells if the side is 20 m.

V. SIMULATION RESULTS

In what follows, we evaluate the performance of our ap-
proach in various scenarios with different characteristics.

A. Training analysis

We first consider a scenario with 2 UAVs and 4 targets in
a 20 × 20 map. In particular, we perform multiple training
phases of different duration; the longer training includes 3000
episodes, for a total of 300,000 training samples, which
ensures that all our algorithms achieve convergence. The look-
ahead approach is abbreviated as LA(4), as we set n` = 4.
This already had a significant computational cost, and in
our simulation each look-ahead decision takes approximately
15 times longer than running a trained DDQL agent. We
do not consider n` > 4, since the computational cost of
such a technique becomes excessive with limited performance
gains: without coordination among the UAVs, which requires
a prediction of the movements of other drones in the swarm,
there is a limit on the performance of the swarm even with

0 300 600 900 1200 1500 1800 2100 2400 2700 3000
0

20

40

60

80

100

ε-greedy Softmax LA(4)

Training episodes

Su
cc

es
sf

ul
 e

pi
so

de
s

[%
]

Fig. 4: Success probability over the training phase in the cluster
scenario with 2 UAVs.

an infinite horizon. In some brief tests (which had to be on
maps of a limited size due to the computational complexity
of LA with a longer horizon), we noticed that LA(8) and
even LA(12) show limited gains over LA(4), as the biggest
factor in determining the speed at which the UAVs find the
target becomes the coordination of the swarm once the horizon
reaches 3 or 4 steps.

Fig. 4 shows the success probability in the cluster scenario
as a function of the training set size and of the considered
exploration profile and approach. DDQL combined with the
softmax approach catches up with LA(4) in less than 900
training episodes, converging to a success probability between
0.65 and 0.7. The ε-greedy approach has a lower final perfor-
mance and requires more time to converge with respect to the
softmax profile. The error bars show the best and worst results
over 5 test phases, showing that the performance improves
as the UAVs gain more experience. The performance boost
over the look-ahead approach is due to the DDQL scheme’s
ability to exploit the correlation among the target positions,
quickly finding the other targets after the first one has been
spotted. Instead, in the sparse scenario, the final performance
of DDQL is similar to that of LA(4), as Fig. 5 shows. In

Authorized licensed use limited to: Aalborg Universitetsbibliotek. Downloaded on March 11,2021 at 07:39:52 UTC from IEEE Xplore. Restrictions apply.

2332-7731 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCCN.2021.3063170, IEEE
Transactions on Cognitive Communications and Networking

9

0 300 600 900 1200 1500 1800 2100 2400 2700 3000
0

20

40

60

80

100

ε-greedy Softmax LA(4)

Training episodes

Su
cc

es
sf

ul
 e

pi
so

de
s

[%
]

Fig. 5: Success probability over the training phase in the sparse
scenario with 2 UAVs.

general, both DDQL and LA(4) have more success than in
the cluster scenario, as finding the scattered targets is easier
than finding clusters in the limited duration of an episode.

B. Success rate over time

The next set of results refer to the performance of the
strategy learned by the proposed framework. Fig. 6 reports
the probability of one or both drones reaching the target
as a function of the number of steps. Therefore, the figure
shows the trade-off between the time needed by UAVs to
accomplishing their task and the success rate. In the cluster
scenario (Fig. 6a), DDQL is much faster than LA, but its
performance peaks out, and after 40 steps the probability of
the UAVs reaching their targets does not change significantly.
Indeed, we observed that, in certain cases, when a drone
reaches the target, but the other one is far from any feature
of the map, the latter can end up staying in place, as its Q-
values for that scenario are not precise and all actions have
a similar (low) value. This almost never happens before the
first UAV reaches its target, since the change in the system
state due to the movement of one UAV is generally enough
to make the other UAV move. This is not a problem for
LA, whose success rate keeps increasing with time; in the
sparse scenario (Fig. 6b), LA even ends up reaching more
targets than DDQL after 50 steps. The solution we found
to avoid this roadblock is simply to maintain a low softmax
temperature τ = 0.1 even during the test phase: the bar chart
shows that the DDQL Soft system is slightly slower than the
greedy DDQL at the beginning, but it can avoid getting stuck.
This randomization allows the agent to get out of loops, as
sometimes a random sub-optimal action will change the state
and allow it to reconsider, while the greedy system will keep
performing the same action and remain in the same state. LA
essentially does the same, randomizing its action when it is
unsure which one is the best.

Fig. 7 shows one such situation: as one UAV has reached
its target, while the other is far from any identified target, its
Q-values will be very similar to each other, and some of the
time it will stay motionless or move in small loops, as its state
never changes. The fact that most of the map is still unexplored
increases the probability of the UAV getting stuck, as it will

10 20 30 40 50 60
Number of steps

0

20

40

60

80

100

Fr
eq

ue
nc

y
[%

]

DDQL (2)
DDQL (1)
DDQL (0)

DDQL Soft (2)
DDQL Soft (1)
DDQL Soft (0)

LA (2)
LA (1)
LA (0)

(a) Cluster scenario

10 20 30 40 50 60
Number of steps

0

20

40

60

80

100
Fr

eq
ue

nc
y

[%
]

DDQL (2)
DDQL (1)
DDQL (0)

DDQL Soft (2)
DDQL Soft (1)
DDQL Soft (0)

LA (2)
LA (1)
LA (0)

(b) Sparse scenario

Fig. 6: The bars indicate the probability mass distribution of the
number of UAVs that successfully accomplish their task (i.e., hover
upon a target) by the end of the episode, when varying the duration
of the episode. Each group of bars refers to the performance achieved
by DDQL (with and without softmax) and by LA, in the Cluster (a)
and Sparse (b) scenarios, with a total of 4 targets and 2 UAVs.

0 5 10 15
0

5

10

15

0 5 10 15
0

5

10

15

0 5 10 15
0

5

10

15

Fig. 7: Example of an episode where the second UAV is not able to
reach the cluster

have limited information and its Q-values will be very similar.
In the following, all the results are referred to the DDQL Soft
system with τ = 0.1 unless otherwise stated.

Authorized licensed use limited to: Aalborg Universitetsbibliotek. Downloaded on March 11,2021 at 07:39:52 UTC from IEEE Xplore. Restrictions apply.

2332-7731 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCCN.2021.3063170, IEEE
Transactions on Cognitive Communications and Networking

10

10 20 30 40 50 60
0

0.2

0.4

0.6

0.8

DDQL (Cluster 750) DDQL (Sparse+TL375)

DDQL (Sparse+TL750) DDQL (Cluster 3000)

DDQL (Sparse 3000) LA(4)

Number of steps

Pr
ob

ab
ili

ty

Fig. 8: CDF of the episode duration for different algorithms in the
cluster scenario with 2 UAVs.

10 20 30 40 50 60
0

0.2

0.4

0.6

0.8

DDQL (Cluster 3000) DDQL (Cluster+TL375)

DDQL (Cluster+TL750) DDQL (Sparse 750)

DDQL (Sparse 3000) LA(4)

Number of steps

CD
F

Fig. 9: CDF of the episode duration for different algorithms in the
sparse scenario with 2 UAVs.

C. Adaptability and transfer learning

Here we investigate the adaptability of the proposed DDQL
scheme, and the potential of the transfer learning paradigm.
The latter involves the execution of an additional training
phase in a different scenario than the one seen during the initial
training. To this end, we consider a common target scenario,
i.e., cluster (or sparse), and compare the results achieved when
using strategies learned in the other domain, i.e., sparse (or
cluster). More specifically, we consider the following cases:
• "Cluster Ne": training on Ne episodes in the cluster

scenario;
• "Sparse Ne ": training on Ne episodes in the sparse

scenario;
• "Cluster+TL Nt": pre-training on Ne = 3000 episodes in

the cluster scenario, followed by an additional training of
Nt episodes in the target scenario.

• "Sparse+TL Nt": pre-training on Ne = 3000 episodes in
the sparse scenario, followed by an additional training of
Nt episodes in the target scenario.

Fig. 8 shows the Cumulative Distribution Function (CDF)
of the episode duration, defined as the time until all the drones
reach targets or the testing episode limit (here fixed to 60 steps)
is reached. We also report the results for LA with four steps,
LA(4), as a benchmark. Each point is hence the probability
that all drones have accomplished their task by a given number
of steps.

We observe that, as expected, the Cluster strategy achieves
the highest success probability with a limited number of

10 20 30 40 50 60
0

0.2

0.4

0.6

0.8

DDQL (Cluster 750) DDQL (Sparse+TL375)
DDQL (Sparse+TL750) DDQL (Cluster 3000)
DDQL (Sparse 3000) LA(4)

Number of steps

Pr
ob

ab
ili

ty

Fig. 10: CDF of the episode duration for different algorithms in the
cluster scenario with 3 UAVs.

10 20 30 40 50 60
0

0.2

0.4

0.6

0.8

DDQL (Sparse 750) DDQL (Sparse 3000)

DDQL (Cluster 3000) DDQL (Cluster + TL375)

DDQL (Cluster + TL750) LA(4)

Number of steps

Pr
ob

ab
ili

ty

Fig. 11: CDF of the episode duration for different algorithms in the
sparse scenario with 3 UAVs.

steps. LA(4) can equal its performance only when the episode
duration reaches the limit of 60 steps (i.e., in less than 30%
of the cases). Instead, 750 episodes of training in the cluster
scenario are not sufficient to outperform LA(4), but actually
enough to outperform a model trained in the sparse scenario.
However, a short retraining of such model in the correct
(cluster) scenario allows the algorithm to get a significant
performance boost, outperforming LA(4) and getting very
close to the performance of the Cluster 3000 model, which
is fully trained in the correct scenario and with more than
twice the number of episodes.

We repeated the experiment by swapping the role of the
sparse and cluster scenarios, and changing the number of
episodes during the training phase, as reflected in the legend of
Fig. 9, which reports the results. As in the previous case, LA(4)
meets the performance of DDQL only for episodes of 60 steps,
i.e., in less than 15% of the cases. Transfer learning is again
very effective, as a 750 episode re-training significantly boosts
the baseline performance compared to starting from scratch.
We highlight that, in general, the number of steps necessary to
reach the targets is comparatively lower than in the previous
scenario since, as already discussed, it is easier for UAVs to
find targets in the sparse scenario.

Fig. 10 and Fig. 11 show the results for a scenario with
3 UAVs: in both cases, transfer learning is effective, but the
performance is lower in the sparse scenario than in the cluster
one. In this case, the risk of getting stuck is increased and

Authorized licensed use limited to: Aalborg Universitetsbibliotek. Downloaded on March 11,2021 at 07:39:52 UTC from IEEE Xplore. Restrictions apply.

2332-7731 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCCN.2021.3063170, IEEE
Transactions on Cognitive Communications and Networking

11

0 5 10 15
0

5

10

15

0 5 10 15
0

5

10

15

0 5 10 15
0

5

10

15

0 5 10 15
0

5

10

15

0 5 10 15
0

5

10

15

0 5 10 15
0

5

10

15

Fig. 12: Drone positions (left), known map (center), real map (right).
Beginning (above) and end (below) of an episode with obstacles.

10 20 30 40 50 60
0

0.2

0.4

0.6

0.8

LA (4) Obstacle 4D
Obstacle 3D Obstacle 2D
Obstacle 2D soft Obstacle 3D soft
Obstacle 4D soft

Number of steps

Pr
ob

ab
ili

ty

(a) 2 UAVs.

10 20 30 40 50 60
0

0.2

0.4

0.6

0.8

LA (4) Obstacle 2D
Obstacle 3D Obstacle 4D
Obstacle 2D soft Obstacle 3D soft
Obstacle 4D soft

Number of steps

Pr
ob

ab
ili

ty

(b) 3 UAVs.

Fig. 13: CDF of the episode duration for different algorithms in the
obstacle scenario.

the algorithm needs more training to perform effectively in all
maps.

D. Obstacles

In what follows, we consider a modified version of the
cluster scenario, where some obstacles are added to the map.
In particular, we empirically set the percentage of the map
occupied by obstacles to 10%, searching for a balance between
increased system complexity and the realism of the scenario.

20 25 30 35 40 45 50 55
0

0.2

0.4

0.6

0.8

1

DDQL 1 cluster LA 1 cluster

DDQL 2 clusters LA 2 clusters

DDQL 3 clusters LA 3 clusters

DDQL 4 clusters LA 4 clusters

Size of the map

Su
cc

es
s

pr
ob

ab
ili

ty

(a) 2 UAVs.

20 25 30 35 40 45 50 55
0

0.2

0.4

0.6

0.8

1

DDQL 1 cluster LA 1 cluster
DDQL 2 clusters LA 2 clusters
DDQL 3 clusters LA 3 clusters
DDQL 4 clusters LA 4 clusters

Size of the map
Su

cc
es

 p
ro

ba
bi

lit
y

(b) 3 UAVs.

Fig. 14: Success probability as a function of the map size and the
number of clusters.

An example of the system state representation with obstacles
is shown in Fig. 12 at the beginning and at the end of an
episode. The obstacles are marked in green.

Fig. 13a shows the performance of the LA approach and
DDQL in the case of 2 UAVs and 4 targets. The DDQL
solution has been trained for scenarios with 2, 3 and 4 UAVs
(labeled in the plots as 2D, 3D, and 4D, respectively), and then
tested in the scenario with 2 and 3 UAVs, with and without
the use of the softmax approach in the testing phase. In both
cases, it is clear that the models trained with more UAVs are
able to outperform those with fewer UAVs in both considered
scenarios. Furthermore, as for the case without obstacles, the
use of the softmax policy during the testing phase increases
the performance, especially when the episodes are longer, as
it keeps the UAVs from getting stuck. In the scenario with 3
UAVs in Fig. 13b, the performance is generally lower, meaning
that the swarm needs more training. However, DDQL is able
to outperform the LA approach in both cases, reaching targets
significantly faster in the scenario with 3 drones.

E. Transfer learning on bigger maps with larger swarms and
communication impairments

We then show how well DDQL is able to generalize to
bigger maps in the testing phase. For this reason, the algorithm
has been trained on a map with M = 24, maintaining F = 20,
and the testing phase included bigger maps and different num-
bers of clusters. All the results shown in the following figures

Authorized licensed use limited to: Aalborg Universitetsbibliotek. Downloaded on March 11,2021 at 07:39:52 UTC from IEEE Xplore. Restrictions apply.

2332-7731 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCCN.2021.3063170, IEEE
Transactions on Cognitive Communications and Networking

12

20 25 30 35 40 45 50 55
0

0.2

0.4

0.6

0.8

1

DDQL 1 cluster LA 1 cluster
DDQL 2 clusters LA 2 clusters
DDQL 3 clusters LA 3 clusters
DDQL 4 clusters LA 4 clusters

Size of the map

Su
cc

es
s

pr
ob

ab
ili

ty

(a) 2 UAVs.

20 25 30 35 40 45 50 55
0

0.2

0.4

0.6

0.8

1

DDQL 1 cluster LA 1 cluster
DDQL 2 clusters LA 2 clusters
DDQL 3 clusters LA 3 clusters
DDQL 4 clusters LA 4 clusters

Size of the map

Su
cc

es
s

pr
ob

ab
ili

ty

(b) 3 UAVs.

Fig. 15: Success probability as a function of the map size and the
number of clusters with obstacles.

are obtained with 100-step episodes: the longer duration is
needed to allow the agents to reach the targets even in bigger
maps. For similar reasons, the scenarios with more clusters are
studied to maintain a similar proportion of surface occupied
by targets even in the bigger maps. Fig. 14a and Fig. 14b show
how the performance varies as a function of the size of the
environment and the number of clusters present in the map.
In both cases, DDQL shows a good adaptability, getting better
performance than LA in all cases, with a bigger gain in bigger
maps. In Fig. 15a and Fig. 15b, the same scenarios are studied
with the addition of the obstacles in the map, covering about
10% of the size of the map. In this case, DDQL will need some
retraining to reach LA’s performance on smaller maps, while
the performance is similar when the map is bigger. However,
we recall that DDQL also has a significant advantage in terms
of computational cost, so it is preferable if performance is
similar.

It is also interesting to test the transfer capabilities of the
algorithms in more complex scenarios, including far larger
swarms and imperfect communications: as DDQL relies on in-
formation from other UAVs to find targets and avoid collisions,
a limited communication range can impair its performance
significantly. As Fig. 16a shows, 10 drones moving in a large
map with obstacles (with 16 targets in 4 clusters, as above)
can coordinate effectively with no retraining, outperforming
the LA approach. Performance loss is limited even with com-
munication restrictions if each cell is a square with a 10 m side,

20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

10 drones (ideal comms) 10 drones (10 m cells)
10 drones (20 m cells) 10 drones (no comms)
LA 10 drones

Number of steps

Fr
ac

tio
n

of
 d

ro
ne

s
on

 a
 ta

rg
et

(a) Performance of a swarm of 10 UAVs.

20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

12 drones (ideal comms) 12 drones (10 m cells)
12 drones (20 m cells) 12 drones (no comms)
LA 12 drones

Number of steps
Fr

ac
tio

n
of

 d
ro

ne
s

on
 a

 ta
rg

et

(b) Performance of a swarm of 12 UAVs.

Fig. 16: Effect of imperfect communications on the performance of
DDQL in a large map.

corresponding to a maximum range of about 11 cells with 50%
packet loss at the boundary of the coverage area. Performance
loss with respect to the perfect communication scenario is
limited, confirming the intuitive idea that information from
neighbors inside the visible area is the most critical to find
and reach the targets. If the cell side is doubled, effectively
halving the communication range and introducing significant
errors even for packets between immediate neighbors, the per-
formance drops significantly, and becomes even worse if there
is no communication at all between the UAVs. This would be
true for any cooperative algorithm, as information from other
agents can be used to optimize the exploration of the map, but
we highlight that DDQL has always been trained assuming
ideal communication, and the communication impairments
have been considered only in the test phase. Therefore, the
UAVs might be confused by the lack of information, and
a partial retraining might yield better results as the agents
transfer their experience and learn to deal with the more
limited feedback. On the other hand, the algorithm scales
extremely well to larger swarms, slightly outperforming LA
even with no retraining in the new scenario. The same pattern
holds for the case with 12 drones, which is shown in Fig. 16b.

Finally, we tested an extreme transfer learning scenario, not
only increasing the size of the map and the number of UAVs,
but also switching from the synthetic obstacle distribution
on the map to one derived from a real map. The map of
obstacles was obtained from a city map of the area just east

Authorized licensed use limited to: Aalborg Universitetsbibliotek. Downloaded on March 11,2021 at 07:39:52 UTC from IEEE Xplore. Restrictions apply.

2332-7731 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCCN.2021.3063170, IEEE
Transactions on Cognitive Communications and Networking

13

Fig. 17: Extraction of the map from building height data in a 500 m
by 500 m area in the downtown Chicago Loop neighborhood.

20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

LA 12 drones 12 drones LA 10 drones
10 drones

Number of steps

Fr
ac

tio
n

of
 d

ro
ne

s
on

 a
 ta

rg
et

Fig. 18: Performances on the real map of Chicago

of LaSalle Street Station in downtown Chicago, in the central
Loop neighborhood. As shown in Fig. 17, we obtained the
height profiles of the buildings in the area, considering as
obstacles their parts with a height of over 10 stories (i.e.,
approximately 40 m, the minimum legal hovering altitude for
UAVs). The 500 m by 500 m area was then divided into 2500
square cells with 10 m sides, converting the height profile to
an obstacle map in the grid. 11% of the map was occupied
by obstacles, so the map was approximately as full as the
one used in the training, which had 10% obstacle cover, but
the individual obstacles were larger and concentrated along
South Wabash Avenue and South Dearborn Street. This is an
additional hurdle for DDQL, which was not trained to deal
with obstacles concentrated along streets, which make it more
difficult to find an appropriate path. However, as Fig. 18 shows,
the DDQL system can find targets approximately as fast as
LA, underperforming a little only on higher percentiles. With
a modicum of retraining, DDQL should be able to adapt to the
different structure, exploiting the regularities in city blocks to
avoid obstacles and find targets even more quickly.

In conclusion, we have shown that DDQL is able to find
efficient strategies for the UAVs to reach targets faster than
look-ahead solutions in complex environments. The algorithm
is scalable to larger maps, larger swarms, and limited commu-
nications without any retraining, and can deal with obstacles
and very different target distributions with a limited amount
of retraining. This shows that the solution is powerful and
versatile, adapting easily to new conditions. However, there is
still some margin for improvement, particularly in scenarios in
which almost all the UAVs in the swarm have already reached
a target, while the last stragglers are far from any feature in
the map. This case represents most of the residual failures of
the algorithm, and solving it is an important future objective.

VI. CONCLUSIONS AND FUTURE WORK

In this work, we studied the problem of area monitoring
and surveillance with a swarm of drones. We modeled the
environment with a 2D grid and cast the problem into the
theoretical framework of ND-POMDP. We have examined var-
ious scenarios, including obstacles and maps of different sizes,
and the proposed algorithm outperformed a computationally
intensive look-ahead approach in almost all scenarios.

Important research directions include the introduction of
dynamic targets, which would be an important step to increase
the scenario’s realism, as well as different roles for the drones,
which can be assigned dynamically and would allow us to
examine another interesting aspect of the MARL problem,
increasing the difficulty of coordinating the UAVs’ actions.

ACKNOWLEDGMENTS

This work has been partially supported by the U.S. Army
Research Office (ARO) under Grant no. W911NF1910232,
"Towards Intelligent Tactical Ad hoc Networks (TITAN)" and
by MIUR (Italian Ministry for Education and Research) under
the initiative "Departments of Excellence" (Law 232/2016)".

REFERENCES

[1] N. Hossein Motlagh, T. Taleb, and O. Arouk, “Low-altitude unmanned
aerial vehicles-based Internet of Things services: Comprehensive survey
and future perspectives,” IEEE Internet of Things Journal, vol. 3, no. 6,
pp. 899–922, Sep. 2016.

[2] H. Shakhatreh, A. H. Sawalmeh, A. Al-Fuqaha, Z. Dou, E. Almaita,
I. Khalil, N. S. Othman, A. Khreishah, and M. Guizani, “Unmanned
Aerial Vehicles (UAVs): A survey on civil applications and key research
challenges,” IEEE Access, vol. 7, pp. 48 572–48 634, 2019.

[3] R. Shakeri, M. A. Al-Garadi, A. Badawy, A. Mohamed, T. Khattab,
A. K. Al-Ali, K. A. Harras, and M. Guizani, “Design challenges of multi-
UAV systems in cyber-physical applications: A comprehensive survey
and future directions,” IEEE Communications Surveys and Tutorials,
vol. 21, no. 4, pp. 3340–3385, 4th quarter 2019.

[4] S. J. Chung, A. A. Paranjape, P. Dames, S. Shen, and V. Kumar,
“A survey on aerial swarm robotics,” IEEE Transactions on Robotics,
vol. 34, no. 4, pp. 837–855, Aug. 2018.

[5] D. Baldazo, J. Parras, and S. Zazo, “Decentralized multi-agent deep
reinforcement learning in swarms of drones for flood monitoring,” in
European Signal Processing Conference (EUSIPCO). EURASIP, Sep.
2019.

[6] D. Albani, D. Nardi, and V. Trianni, “Field coverage and weed mapping
by UAV swarms,” in International Conference on Intelligent Robots and
Systems. IEEE, Sep. 2017, pp. 4319–4325.

[7] K. D. Julian and M. J. Kochenderfer, “Distributed wildfire surveillance
with autonomous aircraft using deep reinforcement learning,” Journal of
Guidance, Control, and Dynamics, vol. 42, no. 8, pp. 1768–1778, Aug.
2019.

Authorized licensed use limited to: Aalborg Universitetsbibliotek. Downloaded on March 11,2021 at 07:39:52 UTC from IEEE Xplore. Restrictions apply.

2332-7731 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCCN.2021.3063170, IEEE
Transactions on Cognitive Communications and Networking

14

[8] R. S. Sutton, A. G. Barto et al., Introduction to reinforcement learning.
MIT press Cambridge, Mar. 1998.

[9] P. Hernandez-Leal, M. Kaisers, T. Baarslag, and E. M. de Cote, “A
survey of learning in multiagent environments: Dealing with non-
stationarity,” in 3rd International Workshop on Conflict Resolution in
Decision Making (COREDEMA), Jul. 2017.

[10] F. Venturini, F. Mason, F. Pase, F. Chiariotti, A. Testolin, A. Zanella,
and M. Zorzi, “Distributed reinforcement learning for flexible UAV
swarm control with transfer learning capabilities,” in Proceedings of
the 6th ACM Workshop on Micro Aerial Vehicle Networks, Systems, and
Applications, Jun. 2020.

[11] L. Busoniu, R. Babuška, and B. De Schutter, “Multi-agent Reinforce-
ment Learning: An Overview,” Innovations in Multi-Agent Systems and
Applications, vol. 310, pp. 113–147, Nov. 2010.

[12] P. Hernandez-Leal, B. Kartal, and M. E. Taylor, “A survey and critique of
multiagent deep reinforcement learning,” Autonomous Agents and Multi-
Agent Systems, vol. 33, no. 6, pp. 750–797, Nov. 2019.

[13] R. Zanol, F. Chiariotti, and A. Zanella, “Drone mapping through
multi-agent reinforcement learning,” in Wireless Communications and
Networking Conference (WCNC). IEEE, Apr. 2019, pp. 1–7.

[14] J. Cui, Y. Liu, and A. Nallanathan, “The application of multi-agent
reinforcement learning in UAV networks,” in International Conference
on Communications Workshops (ICC). IEEE, May 2019.

[15] ——, “Multi-agent reinforcement learning-based resource allocation
for UAV networks,” IEEE Transactions on Wireless Communications,
vol. 19, no. 2, pp. 729–743, Feb. 2020.

[16] J. N. Foerster, Y. M. Assael, N. De Freitas, and S. Whiteson, “Learning
to communicate with deep multi-agent reinforcement learning,” in
Advances in Neural Information Processing Systems (NIPS), Dec. 2016,
pp. 2145–2153.

[17] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski,
S. Petersen, C. Beattie, A. Sadik, I. Antonoglou, H. King, D. Kumaran,
D. Wierstra, S. Legg, and D. Hassabis, “Human-level control through
deep reinforcement learning,” Nature, vol. 518, no. 7540, pp. 529–533,
Feb. 2015.

[18] F. A. Oliehoek, C. Amato et al., A concise introduction to decentralized
POMDPs. Springer, Apr. 2016.

[19] C. Wu, B. Ju, Y. Wu, X. Lin, N. Xiong, G. Xu, H. Li, and X. Liang,
“UAV autonomous target search based on deep reinforcement learning
in complex disaster scene,” IEEE Access, vol. 7, pp. 117 227–117 245,
2019.

[20] Y.-H. Hsu and R.-H. Gau, “Reinforcement learning-based collision
avoidance and optimal trajectory planning in UAV communication
networks,” IEEE Transactions on Mobile Computing, Jun. 2020.

[21] U. Challita, W. Saad, and C. Bettstetter, “Deep reinforcement learning
for interference-aware path planning of cellular-connected UAVs,” in
International Conference on Communications (ICC). IEEE, May 2018.

[22] C. H. Liu, Z. Chen, J. Tang, J. Xu, and C. Piao, “Energy-efficient
UAV control for effective and fair communication coverage: A deep
reinforcement learning approach,” IEEE Journal on Selected Areas in
Communications, vol. 36, no. 9, pp. 2059–2070, Aug. 2018.

[23] X. Liu, Y. Liu, and Y. Chen, “Reinforcement learning in multiple-UAV
networks: Deployment and movement design,” IEEE Transactions on
Vehicular Technology, vol. 68, no. 8, pp. 8036–8049, Jun. 2019.

[24] J. Hu, H. Zhang, L. Song, Z. Han, and H. V. Poor, “Reinforcement
learning for a cellular internet of UAVs: protocol design, trajectory
control, and resource management,” IEEE Wireless Communications,
vol. 27, no. 1, pp. 116–123, Feb. 2020.

[25] R. Nair, P. Varakantham, M. Tambe, and M. Yokoo, “Networked
distributed POMDPs: A synthesis of distributed constraint optimization
and POMDPs,” in 19th Conference on Artificial Intelligence, vol. 5.
AAAI, Jul. 2005, pp. 133–139.

[26] A. Kumar, S. Zilberstein, and M. Toussaint, “Scalable multiagent plan-
ning using probabilistic inference,” in International Joint Conference on
Artificial Intelligence (IJCAI). Citeseer, 2011, pp. 2140–2146.

[27] C. Zhang and V. R. Lesser, “Coordinated Multi-Agent Reinforcement
Learning in Networked Distributed POMDPs,” in AAAI, Aug. 2011.

[28] H. Van Hasselt, A. Guez, and D. Silver, “Deep reinforcement learning
with Double Q-learning,” in 30th Conference on Artificial Intelligence.
AAAI, Mar. 2016.

[29] L. Liu, H. Jiang, P. He, W. Chen, X. Liu, J. Gao, and J. Han, “On
the variance of the adaptive learning rate and beyond,” arXiv preprint
arXiv:1908.03265, Aug. 2019.

[30] K. He and J. Sun, “Convolutional neural networks at constrained
time cost,” 2015 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 5353–5360, Jun. 2015.

[31] S. Bianco, R. Cadene, L. Celona, and P. Napoletano, “Benchmark
analysis of representative deep neural network architectures,” IEEE
Access, vol. 6, pp. 64 270–64 277, 2018.

[32] T. Liu, Z. Zhang, H. Jiang, Y. Qian, K. Liu, J. Dang, and L. Wu,
“Measurement-based characterization and modeling for low-altitude
UAV air-to-air channels,” IEEE Access, vol. 7, pp. 98 832–98 840, 2019.

Federico Venturini received the bachelor’s degree
in Information Engineering and the master’s degree
in Telecommunications Engineering from the Uni-
versity of Padova, in 2017 and 2019. His master’s
thesis project was on the application of a deep rein-
forcement learning framework for the coordination
of a swarm of drones. He spent the 2020 as a
researcher working on the extension of his master’s
thesis. His current research interests include Deep
Reinforcement Learning and the application of Ma-
chine Learning algorithms to real world scenarios.

Federico Mason received the bachelor’s and mas-
ter’s degree in telecommunication engineering from
the University of Padua, Italy, in 2016 and 2018,
respectively, where he is currently pursuing the
Ph.D. degree. In 2020 he won a national grant from
the GARR association to investigate new artificial
intelligence solutions to enable the Network Slic-
ing paradigm in future 5G and 6G networks. His
current research interests include the analysis and
development of Reinforcement Learning algorithms
to optimize complex telecommunication systems.

Francesco Pase is currently a PhD student at the
University of Padova, where he received his bach-
elor’s degree in Information Engineering and his
master’s degree in Telecommunications Engineering,
in 2017 and 2019. His master’s thesis project was
on graph representation, and it was developed at
the EPFL and at Learn to Forecast in Switzerland,
Lausanne. He spent the summer 2020 working as
a research intern at InstaDeep UK, London, con-
ducting research on maximum entropy reinforcement
learning. His current research interests are in the

fields of distributed and reinforcement learning, cognitive communications,
wireless networks and graph analysis techniques.

Federico Chiariotti [S’15-M’19] is currently a post-
doctoral researcher at the Department of Electronic
Systems, Aalborg University, Denmark. He received
his Ph.D. in information engineering in 2019 from
the University of Padova, Italy. He received the bach-
elor’s and master’s degrees in telecommunication
engineering (both cum laude) from the University
of Padova, in 2013 and 2015, respectively. In 2017
and 2018, he was a Research Intern with Nokia Bell
Labs, Dublin. He has authored over 30 published
papers on wireless networks and the use of artificial

intelligence techniques to improve their performance. He was a recipient
of the Best Paper Award at several conferences, including the 2020 IEEE
INFOCOM WCNEE Workshop. His current research interests include network
applications of machine learning, transport layer protocols, Smart Cities, bike
sharing system optimization, and Age of Information.

Authorized licensed use limited to: Aalborg Universitetsbibliotek. Downloaded on March 11,2021 at 07:39:52 UTC from IEEE Xplore. Restrictions apply.

2332-7731 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCCN.2021.3063170, IEEE
Transactions on Cognitive Communications and Networking

15

Alberto Testolin received the M.Sc. degree in Com-
puter Science and the Ph.D. degree in Psychological
Sciences from the University of Padova, Italy, in
2011 and 2015, respectively. He is currently assistant
professor with a joint appointment at the Depart-
ment of Information Engineering and Department
of General Psychology at the University of Padova.
He is broadly interested in artificial intelligence,
machine learning and cognitive neuroscience. His
main research interests are statistical learning the-
ory, predictive coding, sensory perception, cognitive

modeling and applications of deep learning to signal processing, networking
and optimization. He is an active member of the IEEE Task Force on Deep
Learning.

Andrea Zanella [S’98-M’01-SM’13] is a Full Pro-
fessor at the Department of Information Engineering
(DEI), University of Padova, Italy. He received the
Laurea degree in Computer Engineering in 1998
from the same University and the PhD in 2001. Dur-
ing 2000, he spent 9 months with Prof. Mario Gerla’s
research team at the University of California, Los
Angeles (UCLA). Andrea Zanella is one of the coor-
dinators of the SIGnals and NETworking (SIGNET)
research lab. His long-established research activities
are in the fields of protocol design, optimization,

and performance evaluation of wired and wireless networks. He has been
serving as Technical Area Editor for the IEEE Internet of Things Journal, and
Associate Editor for the IEEE Transactions on Cognitive Communications
and Networking, IEEE Communications Surveys and Tutorials, and Digital
Communications and Networks.

Michele Zorzi [F’07] received his Laurea and PhD
degrees in electrical engineering from the University
of Padova, Italy, in 1990 and 1994, respectively. Dur-
ing the academic year 1992-1993 he was on leave at
the University of California at San Diego (UCSD).
In 1993 he joined the faculty of the Dipartimento di
Elettronica e Informazione, Politecnico di Milano,
Italy. After spending three years with the Center
for Wireless Communications at UCSD, in 1998 he
joined the School of Engineering of the University
of Ferrara, Italy, where he became a professor in

2000. Since November 2003 he has been on the faculty of the Information
Engineering Department at the University of Padova. His present research
interests include performance evaluation in mobile communications systems,
WSN and Internet of Things, cognitive communications and networking, 5G
mmWave cellular systems, vehicular networks, and underwater communica-
tions and networks. He is the recipient of several awards from the IEEE
Communications Society, including the Best Tutorial Paper Award (2008,
2019), the Education Award (2016), and the Stephen O. Rice Best Paper
Award (2018). He was the Editor in Chief of IEEE Wireless Communications
from 2003 to 2005, of the IEEE Transactions on Communications from 2008
to 2011, and of the IEEE Transactions on Cognitive Communications and
Networking from 2014 to 2018. He served the IEEE Communications Society
as a Member-at-Large of the Board of Governors from 2009 to 2011, as
Director of Education in 2014-15, and as Director of Journals in 2020-21.

Authorized licensed use limited to: Aalborg Universitetsbibliotek. Downloaded on March 11,2021 at 07:39:52 UTC from IEEE Xplore. Restrictions apply.

