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A hierarchical Constrained Bayesian (ConBay) approach to jointly estimate 
water storage and Post-Glacial Rebound from GRACE(-FO) and GNSS data
Ehsan Forootan and Nooshin Mehrnegar

Geodesy Group, Department of Planning, Aalborg University, Aalborg, Denmark

ABSTRACT
Gravity Recovery and Climate Experiment (GRACE) and its Follow-On mission (GRACE-FO) have 
become an indispensable tool in monitoring global mass variations. However, separating GRACE 
(-FO) signals into its individual Terrestrial Water Storage Changes (TWSC) and surface deformation 
contributors, i.e. Post-Glacial Rebound (PGR), is desirable for many hydro-climatic and geophysi-
cal applications. In this study, a hierarchical constrained Bayesian (ConBay) approach is formu-
lated to apply GRACE(-FO) fields and the uplift rate measurements from the Global Navigation 
Satellite System (GNSS) stations to simultaneously estimate the contribution of TWSC and PGR. 
The proposed approach is formulated based on a hierarchical Markov Chain Monte Carlo 
optimisation algorithm within a dynamic multivariate state-space model, while accounting for 
the uncertainties of a priori information and observations. The numerical implementation is 
demonstrated over the Great Lakes area, covering 2003–2017, where the W3RA water balance 
and the ICE-5G(VM2) and ICE-6G-D(VM5a) GIA models are merged with GRACE and GNSS data. 
Validations are performed against independent measurements, which indicate that the average 
root-mean-squares-of-differences between the PGR estimates and independent measurements 
reduced by 72% after merging observations with models through ConBay. The ConBay updates, 
introduced to the long-term trends, as well as the seasonal and inter-annual components, are 
found to be realistic.
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1. Introduction

Over the past decades, climate change, anthropogenic 
modifications and land management activities have 
been affecting the patterns of global rainfall, evapo-
transpiration and stored terrestrial water. They also 
increased the probability of climate disasters, such as 
agricultural losses, water scarcity, and famine. For 
example, increasing and decreasing annual (net-)pre-
cipitation has resulted in several extreme drought and 
flood events across the United States (X. Dong et al., 
2011; Leng et al., 2016; Peterson et al., 2013; Schubert 
et al., 2004), Australia (Forootan et al., 2019; 
Schumacher et al., 2018a; Westra et al., 2016), Middle 
East (Forootan et al., 2014b; Khaki et al., 2018; Voss 
et al., 2013), central Europe (Boergens et al., 2020), 
Canada (Hanesiak et al., 2011) and Amazon (Chen 
et al., 2010a, 2009; Marengo et al., 2011).

Therefore, reliable quantification of the hydrological 
cycle, its key fluxes and stores and its spatiotemporal 
variability is crucial for many applications related to 
hydrometeorology, water resources, and land- 
atmosphere interactions, including flood and drought 
monitoring and prediction (Forootan et al., 2019, 2017; 
Houborg et al., 2012; Li et al., 2019; Long et al., 2013; 
Slater et al., 2015), assessing water resources sustain-
ability (Castellazzi et al., 2016; Forootan et al., 2014b; 

Scanlon et al., 2012), and identifying ecohydrological 
links between climate and vegetation (Singer et al., 
2014).

Various hydrological models and hydro- 
meteorological (drought/flood) monitoring systems 
exist to understand the temporal and spatial changes 
of water storage and water fluxes (Sood & Smakhtin, 
2015). Even though the models aim for an adequate 
representation of the real world, uncertainties exist 
due to insufficient model realism, imperfect climate 
input data, inadequate empirical model parameters, 
and unrepresented feedbacks between model compo-
nents (Rodell et al., 2004).

Today, organisations like the European Space 
Agency (ESA1) and the National Aeronautics and Space 
Administration (NASA2) provide various Earth 
Observation (EO) data that complement in-situ monitor-
ing networks and represent a great potential to track 
changes in global water, carbon, and energy cycles 
(Lindersson et al., 2020). Among available satellite geo-
detic and remote sensing EO techniques, the Gravity 
Recovery And Climate Experiment (GRACE, 2002–2017) 
satellite mission (Tapley et al., 2004a,b) and its Follow- 
On mission (GRACE-FO, 2018 – onward) provide time- 
variable Earth’s gravity fields that contain signals related 
to different processes such as non-steric sea level 
changes, Terrestrial Water Storage Changes (TWSC, i.e. 
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a vertical summation of changes in water storage within 
plant canopies, surface water, snow, soil, and ground-
water), ice sheet melting, and Post-Glacial Rebound 
(PGR), with a spatial resolution of a few 100 km and 
temporal resolution of , 10 days to 1 month in satellite- 
only solutions (Flechtner et al., 2016).

The ability of GRACE(-FO) satellites to detect mass 
changes in the surface and sub-surface, which cannot 
be measured by any other satellite mission, and its 
sensitivity to water storage changes throughout all sea-
sons, provides a unique opportunity to extract possible 
intensification’s of the water cycle (Eicker et al., 2016; 
Kusche et al., 2016) and for drought monitoring at 
global (Forootan et al., 2019; Zhao et al., 2017b) and 
regional scales (Houborg et al., 2012; Schumacher et al., 
2018a; Sinha et al., 2017; Thomas et al., 2014; Zhao et al., 
2017a). Although GRACE(-FO) time-variable fields repre-
sent an accurate superposition of water storage 
changes and large-scale deformation signals, separating 
this integrated signal into its contributors is desirable for 
many geodynamic and hydro-climatic applications.

In recent years, various signal separation approaches, 
such as forward modelling (e.g. Feng et al., 2013; Huang 
et al., 2012; Khandu et al., 2016; Rodell et al., 2009; 
Strassberg et al., 2009; Tiwari et al., 2009; Wang et al., 
2013, 2022), Principal Component Analysis (PCA, Lorenz, 
1956) and its alternatives, e.g. Independent Component 
Analysis (Forootan & Kusche, 2012, 2013), Data 
Assimilation (DA) and simultaneous Calibration/Data 
Assimilation (C/DA, Schumacher, 2016) as well as 
Bayesian techniques (Long et al., 2017; Mehrnegar 
et al., 2020a, 2020b) have been developed to vertically 
separate GRACE(-FO) signals to its compartments. Most 
of these techniques require a priori information on mass 
distribution in each compartment. The point of depar-
ture in these approaches is different due to their strate-
gies to use a priori information and their uncertainties to 
separate GRACE signals (see, also, Awange et al., 2014; 
Boergens et al., 2014; Forootan et al., 2014b; Girotto 
et al., 2016, 2017; Long et al., 2017; Rangelova et al., 
2007; Schumacher et al., 2018a, 2016; Tian et al., 2017; 
Zaitchik et al., 2008).

For the hydrological applications of previous signal 
separation studies, the effect of PGR is often removed 
from GRACE(-FO) data, during the post-processing, as 
a linear trend, using the output of a GIA model (e.g. 
Sasgen et al., 2012; Wahr & Zhong, 2012). However, 
large uncertainties in the present-day global GIA mod-
els exist due to the insufficient input data, e.g. uncer-
tainty of ice loading history (Spada et al., 2011). This is 
also shown by Guo et al. (2012), who found consider-
able regional differences between 14 forward model 
solutions, disagreeing even on the sign of vertical land 
motion in some areas. Therefore, using GIA model out-
puts to remove the effect of PGR from GRACE(-FO) data 
may negatively affect the accuracy of hydrological 

mass estimations in signal separation approaches, for 
example, in regions such as North America, Greenland, 
and Scandinavia.

The loading deformation, due to PGR, is the result of 
the Earth’s response for the redistribution of surface 
mass (Chanard et al., 2014; Craig et al., 2017; Fu & 
Freymueller, 2012), which can be observed by GNSS 
stations (D. Dong et al., 2002). Many studies have 
demonstrated that GNSS and GRACE provide compar-
able signals and the load effect derived from GRACE 
based on the layered elastic earth model can be a first- 
order approximation of the seasonal displacement 
observed by GNSS (Argus et al., 2021; Chanard et al., 
2018; Davis et al., 2004; Kusche & Schrama, 2005; 
Rietbroek et al., 2012; Tregoning et al., 2009; Van Dam 
et al., 2007; Wang et al., 2013). In the light of these 
investigation, few studies made use of both GRACE 
and GNSS to study seasonal water cycles (Argus et al., 
2014a, 2020; Fu et al., 2015; Fu & Freymueller, 2012; Hao 
et al., 2016; Larochelle et al., 2018; Pan et al., 2016). 
These studies, however, did not address the separation 
of GRACE signal to its individual surface and sub-surface 
water storage components.

In this study, we propose a new hierarchical 
‘Constrained Bayesian (ConBay)’ optimisation approach 
for a joint estimation of the land hydrology compart-
ments and PGR rates from GRACE(-FO) field estimates, 
while in-situ GNSS measurements are used to constrain 
the estimated PGR rates from GRACE(-FO) data. In the 
ConBay approach, instead of removing PGR from GRACE 
(-FO) field estimates, during the post-processing, the 
outputs of a GIA model are used as a priori information, 
along with the hydrological model outputs, to simulta-
neously separate land hydrology and PGR from GRACE(- 
FO) data. In many glacial regions of the world, PGR 
signals are ‘contaminated’ by vertical elastic crustal 
deformation, which is induced by present ice mass 
change. Therefore, improvement in the estimation of 
PGR enhances the estimation of the magnitude and 
pattern of the elastic crustal deformation (surface defor-
mation) within the continental regions.

It is worth mentioning here that the Ensemble 
Kalman Filter (EnKF) used for DA and C/DA 
(Schumacher, 2016) can also be classified as 
a Bayesian-based technique because the cost func-
tion for updating the conditionality of unknown state 
parameters on the measurement data is formulated 
based on the Bayes theory (see, e.g. Evensen, 2003; 
Fang et al., 2018; Schumacher, 2016). Schumacher 
(2016) discussed that the statistical information used 
in EnKF-DA is restricted to the covariance matrices of 
the observations and models. Therefore, the observa-
tion error model and the spatial resolution of GRACE 
TWSC have a significant influence on C/DA results. 
Instead of limiting the statistical information in the 
data to the use of their covariances, a sampling of 
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their Probability Density Functions (PDFs) and 
a Bayesian optimisation approach is adopted in 
ConBay that results in more realistic estimations of 
states and their errors. More important, previous DA 
techniques rely on model equations to relate water 
and energy fluxes with water storage changes, and 
therefore, combining information from observations 
(e.g. GRACE(-FO) TWSC) and models is performed in 
a physically justified way. Unlike the previous DA, the 
proposed Bayesian technique in this study is imple-
mented in an offline mode, where we do not need to 
run the models, and we only use the outputs of the 
available hydrological models to merge with the 
observations. The proposed ConBay approach is flex-
ible to account for the uncertainties of observation 
and models and can be applied both globally and 
regionally and for different spatial and temporal 
resolutions, which does not have any influence on 
final results.

Particle Filter (PF) and Particle Smoother (PS) are 
other types of Bayesian approaches (Särkkä, 2013), 
which have been used in some hydrological appli-
cations such as Plaza Guingla et al. (2013); Weerts 
and El Serafy (2006) to assimilate the observations 
into the models. These techniques use a set of 
particles (also called samples) to represent the 
posterior distribution of some stochastic process 
given noisy and/or partial observations. However, 
since the computational cost of PF grows with the 
number of particles, choosing a specific number of 
particles in the design of filters is a key parameter 
for these methods. Therefore, PF and PS might not 
be efficient for high-dimensional fusion tasks, such 
as global hydrological application (e.g. Bain & 
Crisan, 2008; Snyder et al., 2008), while the pro-
posed Bayesian approach in this study provides the 
ability to deal with high-dimensional fusion tasks, 
and its computational load is much lower than PF 
and PS.

In this study, to evaluate the performance of the 
proposed approach its implementation is presented 
within the Great Lakes area, the Unites States (US), 
during 2003 to 2017. The Great Lakes region that is 
located in the northeast of the US is selected as our 
case study, where mass changes due to PGR and 
surface deformations play dominant contributions 
in GRACE(-FO) data. Schumacher et al. (2018b) 
showed that large uncertainties exist between GIA 
models over this region making it a good candidate 
to study the performance of ConBay. Moreover, the 
groundwater storage is a major natural resource and 
links the Great Lakes and watersheds (Hall, 2006), 
whose interactions are not well understood 
(Sophocleous, 2002; Winter et al., 1998). This linkage 
needs to be better quantified before society could 
address some of the important water-resources 

issues in the region. Therefore, separating GRACE(- 
FO) signals into its hydrological and surface defor-
mation compartments is of particular importance.

For this study, monthly GRACE field estimates, on 
0:5� � 0:5� spatial grid points, and the in-situ GNSS ver-
tical load rates (Schumacher et al., 2018b) are used as 
observations, and a priori information of hydrological 
changes is taken from the W3RA water balance model 
(Van Dijk, 2010) and PGR rates are taken from the ICE-5G 
(VM2) GIA model (Peltier, 2004). To evaluate the flexibility 
of the proposed approach to select various a priori infor-
mation and to see how ConBay is sensitive to the use of 
different GIA models, we re-implemented the ConBay to 
merge GRACE and GNSS using ICE-6G-D(VM5a; Argus 
et al., 2014b; Argus et al., 2021; W. Peltier et al., 2018; 
W. R. Peltier et al., 2015) as a priori information of PGR 
rates. The ConBay-derived PGR rates and groundwater 
storage of both implementations (using ICE-5G(VM2) 
and ICE-6G-D(VM5a)) are then compared against inde-
pendent in-situ USGS groundwater level observations 
and independent GNSS measurements (validation data 
sets), which were not used in the optimisation procedure.

To assess the impact of using GNSS to constrain PGR 
on the signal separation results, ConBay is re- 
implemented to merge only GRACE with the hydrolo-
gical and GIA model outputs, while GNSS data were not 
used in the hierarchical level to accept/reject the esti-
mated values of PGR. Therefore, the new implementa-
tion of ConBay, which is called here ’Unconstrained 
Bayesian-DA’, is formulated similar to the MCMC-DA 
(Mehrnegar et al., 2020b). The PGR rates and ground-
water storage changes derived from MCMC-DA 
(Unconstrained Bayesian-DA) and ConBay are then vali-
dated against independent validation data sets.

2. Data and models

2.1. GRACE fields

In this study, we used the release six (RL06) monthly 
GRACE level 2 (L2) products, provided by the Center 
for Space Research (CSR3) covering January 2003 – 
December 2017. The period is restricted to the avail-
ability of GNSS data from Schumacher et al. (2018b). 
The potential coefficients are truncated at the sphe-
rical harmonics of degree and order 90. In order to 
generate monthly Equivalent Water Heights (EWHs 
that contains both TWSC and PGR) from these pro-
ducts, recommended corrections are applied. 
Whereas, the degree 1 coefficients, which are not 
observed by GRACE, are replaced by those from 
Swenson et al. (2008) to account for the movement 
of the mass centre of the Earth. Degree 2 and order 0 
(C20) coefficients are replaced by more reliable esti-
mates of the Satellite Laser Ranging (SLR) solutions 
following Chen et al. (2007).
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The formulation in Wahr et al. (1998) is used to 
convert the L2 potential coefficients to 0:5� � 0:5�

girded EWH fields within the Great Lakes 
(75�W � 92:5�W, 40�N � 50�N), while covering the 
period of 2003–2017. Correlated errors of the poten-
tial coefficients, which are caused by anisotropic spa-
tial sampling of the mission, instrument noise, and 
temporal aliasing from incomplete reduction of short- 
term mass variations (Forootan et al., 2014a), are 
reduced by applying the DDK2 filter (Kusche et al., 
2009), which is comparable to a Gaussian filter of 
340 km. The DDK filter is preferred here to the other 
filtering techniques since the final smoothed solu-
tions are generally in better agreement with the 
TWSC output of global hydrological models (see, e.g. 
Werth et al., 2009). It also considers correlations 
between potential coefficients in a more rigorous 
manner compared to other filter techniques such as 
that of Swenson and Wahr (2006) who only model the 
order-dependent correlations.

For this study, instead of removing PGR, they are 
assumed to be unknown for the ConBay approach. 
Uncertainties of EWHs are computed by implementing 
a collocation error estimation (Awange et al., 2016; 
Ferreira et al., 2016) using EWHs estimates from the 
CSR, Jet Propulsion Laboratory (JPL), and 
GeoForschungsZentrum (GFZ) L2 data.

2.2. W3RA water balance model

The Worldwide Water Resources Assessment (W3RA, 
Van Dijk, 2010)’s monthly averaged model states 
(snow, surface water storage, surface soil water (top 
layer), shallow-rooted soil water, deep-rooted soil 
water storage, and groundwater storage) are used as 
a priori information of TWSC components. For this 
study, the original code4 is modified for the Great 
Lakes area by using daily 0:125� � 0:125� interpolated 
ERA-Interim reanalysis fields (Dee et al., 2011) of pre-
cipitation, albedo, 2-metre wind, as well as minimum 
and maximum temperature5 as forcing data to run the 
model from 1980–2017. In W3RA, each cell is modelled 
independently of its neighbours, but lateral mass 
exchanges are accounted for by implementing 
a routing scheme. More details on the W3RA model 
can be found in Van Dijk (2010). Considering the reso-
lution of GRACE, the original W3RA model outputs 
(0:125� � 0:125�) are averaged on 0:5� � 0:5� grids, 
for the period January 2003 through December 2017.

Model uncertainty is estimated following Renzullo 
et al. (2014) by using the perturbed meteorological 
forcing approach. To this end, an additive error is 
assumed for the short-wave radiation perturbation of 
50 Wm2, a Gaussian multiplicative error of 30% for 
rainfall perturbation, and a Gaussian additive error of 
2 °C as the magnitude of the additive error air tem-
perature perturbations. Estimated model uncertainty is 

used subsequently as the initial value of the variance/ 
covariance matrix of the unknown state parameter 
(see, Section 3.2.1) in the Bayesian inference, which is 
then updated through a forward-filtering and back-
ward smoothing algorithm presented in Section 3.2.2.

Our motivation to select W3RA is its simplicity, 
which makes its computational load manageable for 
scientific applications (see examples of W3RA’s appli-
cations in, e.g. Khaki et al. (2017); Forootan et al. 
(2019)), and its acceptable performance when com-
pared with other commonly used Global haydrological 
or land surface models Schellekens et al. (2017).

2.3. Global Navigation Satellite System (GNSS) 
station data

In this study, in-situ GNSS vertical load rates released 
by Schumacher et al. (2018b) are used to estimate 
PGR rates in combination with GRACE data. This 
data set consists of 4072 in-situ stations over the 
globe (selected based on prior information from the 
GIA forward models to exclude tectonic signals), 
where 343 sites are located within the Great Lakes 
area, as our case study. The data covers the period of 
2003–2017.

Schumacher et al. (2018b) used the post-processed 
time series of the Nevada Geodetic Laboratory (NGL) as 
the starting point for providing an observational esti-
mate of the GIA-related Vertical Land Motion (VLM). 
A fully-automatic post-processing strategy was then 
implemented to deal with outliers and jumps, atmo-
spheric mass loading correction, elastic signal correc-
tion and filtering for stations where other sources of 
VLM are likely to dominate over GIA. To accurately 
account for the elastic response of the Earth’s crust 
over Antarctica and Greenland, they used already cor-
rected estimates that have dealt with the contempor-
ary ice mass loading impact on elastic deformation, 
using high-resolution ice mass balance time-series 
(Khan et al., 2016; Martin-Espanol & Bamber, 2016). 
Moreover, they performed a spatial filtering strategy 
to select stations that are predominantly influenced by 
the long wavelength GIA signal and to exclude stations 
that are affected by local to regional hydrology (such 
as groundwater pumping).

To make the best of these in-situ measurements and 
to match the spatial resolution of GNSS data with 
GRACE EWHs, we applied the Least Squares 
Collocation (LSC) interpolation approach (Moritz, 1978) 
using the point-wise GNSS uplift rates (Figure 1(a)) and 
their uncertainties (Figure 1(b)) to obtain PGR uplift rates 
on a grid with 0.5-degree spatial resolution within North 
America (Figure 1(c)). The interpolated values over the 
Great Lakes area are used in this study, see, Figure 1(d). 
It is worth noting here that before implementing LSC 
technique to interpolate GNSS data on a grid, we 
excluded the observed values for 70 sites from 343 
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sites within the Great Lakes area, see, Figure 1(e). These 
stations are used as an independent validation to eval-
uate the ConBay-derived PGR estimates.

To compare gridded GNSS data with GRACE EWHs, 
PGR rates (uðθ; λÞ) are expanded to a series of spherical 
harmonics coefficients as 

cu
nm ¼

1
4πR2

ðð

S

uðθ; λÞ
R

cosðmλÞ PnmðcosθÞ R2dθdλ ;

su
nm ¼

1
4πR2

ðð

S

uðθ; λÞ
R

sinðmλÞ PnmðcosθÞ R2dθdλ ; (1) 

where cu
nm and su

nm are the associated cosine and sine 
coefficients, respectively, which can be obtained by 
solving a numerical integration (Wang et al., 2006) or 
a least squares approach (Sneeuw, 1994). Here, R is the 
mean equatorial radius, θ and λ are respectively the co- 
latitude and longitude, and Pnm represents the fully- 
normalised associated Legendre polynomials. The for-
mulation in Wahr et al. (1998) is then applied to use 
these coefficients and to compute the EWHs that cor-
respond to the PGR rates.

2.4. Global Isostatic Adjustment (GIA) model

The ICE-5G(VM2) global ice sheet reconstruction 
model output (Peltier, 2004), and -ICE-6G-D(VM5a; 
Argus et al., 2014b; W. Peltier et al., 2018; 
W. R. Peltier et al., 2015), which is one of the most 
recently published models of the GIA process in the 
ICE-NG(VMX) sequence from the University of 

Toronto, are used in this study as the a priori infor-
mation for the PGR uplift rates within the Great 
Lakes area.

The ICE-5G(VM2) is a refined model of the Post-Last 
Glacial Maximum (Post-LGM) Global de-glaciation 
process, that has resulted through correction of the 
flaws in the ICE-4G (Peltier, 1994, 1996). ICE-5G differs 
significantly from the previous version (ICE-4G) at all 
Northern Hemisphere locations that were glaciated at 
Last glacial Maximum. These locations include all of 
northwestern Europe/Eurasia, the British Isles, 
Greenland and the North American continent 
(Peltier, 2004).

The ICE-6G-D(VM5a) model of the GIA process dif-
fers from all previous models in the ICE-NG(VMX) 
sequence in that it has been refined to constrain the 
thickness of local ice cover and the timing of its 
removal using the available Global Positioning 
System (GPS) measurements of vertical crustal motion 
in both Northern and Southern Hemispheres. 
Additional space geodetic constraints have also been 
applied for this model to specify the reference frame 
within which the GPS data are described (W. Peltier 
et al., 2018; W. R. Peltier et al., 2015).

The EWH estimates that correspond to the model- 
derived PGR rates are estimated following the proce-
dure explained in Eq. (1; see, Figure 2(a,b)). The Root 
Mean Square of Differences (RMSD) between the mean 
of 14 GIA models in Guo et al. (2012) and the outputs of 
ICE-5G(VM2) and ICE-6G-D(VM5a) are considered as 
their uncertainties for the application part of this study.

Figure 1. The PGR-related crustal uplift rates derived from in-situ GNSS measurements (Schumacher et al., 2018b) and their 
uncertainties within North America, between 2003–2017, are shown at (a) and (b), respectively. The interpolated values of PGR 
rates derived from (a) and (b), using the LSC technique, are shown within North America and the Great Lakes region in (c) and (d), 
respectively. GNSS measurements which are used in ConBay to constrain the estimation of PGR are shown by green colour points 
in (e), while those of independent validation data set are shown by pink colour points in (e).
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Considerable differences (up to 20 mm/yr in terms 
of EWHs rate) can be seen between ICE-5G(VM2) and 
ICE-6G-D(VM5a) within the Great Lakes area (Figure 2 
(c-a,2-b)), specifically in North of the region. As it is 
expected, the ICE-6G-D(VM5a) GIA model shows more 
agreement (72%) with GNSS measurements, compared 
to the ICE-5G(VM2) GIA model. The reason is that ICE- 
6G-D(VM5a) reconciles virtually all available GPS mea-
surements of vertical motion of the crust (W. Peltier 
et al., 2018; W. R. Peltier et al., 2015). Differences 
between these two models motivated us to use both 
GIA models for the application part of ConBay 
approach, to assess the performance of the proposed 
approach using various a priori information.

2.5. In-situ USGS groundwater level data

In this study, we use the data provided by the US 
Geological Survey (USGS) groundwater network,6 

which contains a record of groundwater levels 
between 1970-now for , 100,000 wells across the 
Conterminous United States (CONUS), which can be 
used as an independent validation data set to evalu-
ate groundwater storage changes derived from 
W3RA model and/or ConBay results. The point-wise 
data for 2003–2017 are downloaded and filtered to 
exclude measurements with large data gaps (tem-
poral gaps > 2 years), and those without meaningful 
variations, i.e. those time series which only contain 
linear and/or non-linear trends, without any other 
oscillations are excluded from data sets. Selected 
groundwater levels (, 763 wells mostly in southeast 
and southwest of the Great Lakes area) are then 
temporally averaged to produce monthly time series 
(see, Figure 3).

In-situ groundwater level data can be converted 
to groundwater storage changes using an 
effective Storage coefficient (Sc), where 
groundwater storage ¼ Sc� groundwater level. 
The USGS groundwater network covers a range of 
unconfined to confined conditions that are impor-
tant to consider in evaluating groundwater level 
records and comparing with modelled ground-
water storage changes. The storage coefficient 
(Sc), required to convert groundwater level to 
groundwater storage, can vary over several orders 
of magnitude from unconfined aquifers (e.g. 
between 0.02 and 0.3) to confined aquifers 
(known as storativity ,0:001; Freeze & Cherry, 
1979). In systems with vertically stacked aquifers, 
it is often difficult to determine whether wells are 
screened in unconfined or confined aquifers, or 
both, which increases the uncertainty of estimating 
groundwater storage from groundwater level data. 
Therefore, different approaches have been intro-
duced to approximate it regionally. For example, 
Rodell et al. (2007) applied an average value of 
0.15 in the Mississippi River basin, and Xiao et al. 
(2015) used a range of 0.02 to 0.6 in the Mid- 
Atlantic Region of the CONUS based on the tech-
nical insights provided by USGS.

In this study, an approximate value of Sc (between 
0.05 and 0.34) is estimated for each well based on the 
STATSGO soil texture class for the location of observed 
data.7 The presented values of Sc for different soil 
texture class are extracted from Richey et al. (2015). 
These values are then used to convert USGS ground-
water level to groundwater storage changes, which 
can be used as an independent validation data set to 
validate groundwater storage changes of ConBay.

Figure 2. The linear rate of EWHs [mm/yr] that correspond to the PGR uplift rates derived from (a) ICE-5G(VM2) GIA model, (b) ICE- 
6G-D(VM2) GIA model, and (c) gridded in-situ GNSS measurements used in ConBay. The differences between EWHs of PGR derived 
from gridded GNSS measurements and those of derived from GIA models are shown in (c-a) and (c-b), respectively.
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An overview of observation and models used in the 
application part of this study is presented in Table 1.

3. Method

ConBay, as an extension of MCMC-DA (Mehrnegar 
et al., 2020b), is formulated based on hierarchical mul-
tivariate state-space models (dynamic system), (I) 
between GRACE(-FO) observations and model outputs 
(both hydrological and GIA model), and (II) between 
GNSS measurements and the updated values of PGR 
derived from GRACE data in (I).

Learning dynamical systems (Thelen & Smith, 1998), 
also known as system identification or time series mod-
elling, aim to create a model or improve an existent 

model based on measured signals (Lennart, 1999). In 
this study, the state-space models, also known as hid-
den Markov (Rabiner, 1989) and latent process models 
(Koller & Friedman, 2009), are used that describe the 
probabilistic dependence between the latent (unob-
served) state variables (e.g. hydrological/GIA model out-
puts) and the observed measurement (e.g. GRACE 
EWHs). The Markov model is a pseudo-randomly sto-
chastic process, which assumes that future states 
depend only on the current state, not on the events 
that occurred before it (it is known as the Markov prop-
erty). This assumption enables reasoning and computa-
tion with the model that would otherwise be intractable 
(Gagniuc, 2017). The presence of a latent state, within 
the state-space model, allows for a succinct 

Figure 3. Geographical coordinates of In-situ USGS groundwater observations to validate groundwater storage changes of this 
study.

Table 1. An overview of observation and models to evaluate the performance of the ConBay approach within the Great Lakes area, 
Covering 2003–2017.

Data Category Variable Spatial resolution
Temporal 
resolution Reference

GRACE Level 2 (CSR 
RL06)

Observation EWHs (TWSC+EWHs of 
PGR)

0:5� � 0:5� Monthly http://www2.csr.utexas.edu

In-situ GNSS 
measurements

Observation EWHs of PGR uplift rates 343 stations, Interpolated Monthly 
interpolated

Schumacher et al. (2018b)

on a 0:5� � 0:5� gird
Snow Surface water

W3RA water balance 
model

Top layer soil water 
Shallow-rooted

(TWSC components) A priori 
information

soil water (0:125� � 0:125�) Monthly Van Dijk (2010)

are averaged on
Deep-rooted soil water 0:5� � 0:5� grids
Groundwater

ICE-5G(VM2) GIA 
model

A priori 
information

EWHs of PGR uplift rates 0:5� � 0:5� Long-term rates, 
Monthly

(Peltier, 2004)

ICE-6G-D(VM2) GIA 
model

A priori 
information

EWHs of PGR uplift rates 0:5� � 0:5� Long-term rates, 
Monthly

(W. Peltier et al., 2018)

In-situ GNSS 
measurements

Validation 
data set

EWHs of PGR uplift rates 73 stations Monthly 
interpolated

Schumacher et al. (2018b)

In-situ USGS 
Groundwater

Validation 
data set

Groundwater Storage 
Changes

343 stations Monthly 
interpolated

https://water.usgs.gov

measurements
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representation of the dynamics in the form of a Markov 
chain. The state contains the information about the 
dynamic system (e.g. hydrological process within the 
Earth system), which is essential to determine future 
forecasts.

Estimation of the unknown state parameters and 
the temporal dependency between them to solve 
the multivariate state-space model between GRACE 
(-FO) and model outputs are realised through 
a combination of a forward-filtering backward- 
smoothing recursion approach (Kitagawa, 1987), 
and a Gibbs sampling (Gelfand & Smith, 1990; 
Smith & Roberts, 1993) algorithm. The central 
hypothesis for these formulations is that the mag-
nitude of changes in water storage components 
depends on the history of hydrological processes. 
However, there is no or little physical knowledge 
about how this dependency varies over time. The 
combination of Gibbs sampling and forward- 
filtering backward-smoothing approach allows 
a simultaneous dynamic estimation of the indivi-
dual water storage compartments and temporal 
dependencies between them. Mehrnegar et al. 
(2020b) demonstrated that, compared to the 
DMDA approach (Mehrnegar et al., 2020a), which 
applies an empirically estimated constant value to 
control the temporal dependency in state-space 
model, a dynamic estimation of the unknown tem-
poral dependency along with the unknown state 
parameters yields more realistic individual water 
storage estimates.

In a multivariate state-space model, when analys-
ing multivariate data, one concerning issue is that 
the relationship between model parameters is 
unknown (or it is extremely difficult to determine). 
For instance, it could be expected that certain para-
meters have a larger effect on the dependent vari-
ables than other parameters. This issue in the 
application of separating TWSC and PGR from 
GRACE(-FO) estimates can be seen explicitly in the 
glacial regions, where PGR has a large effect on 
hydrological estimations. Moreover, PGR manifests 
as a trend in the relatively short era of the GRACE(- 
FO) mission, which needs to be introduced to the 
Bayesian separation framework. These theories can 
be transformed into the Bayesian fusion technique 
with specific inequality/equality constraints on the 
means and regression coefficients. Therefore, in the 
ConBay approach, a Metropolis-Hastings (Chib & 
Greenberg, 1995) algorithm is formulated, in 
a hierarchical level, to use in-situ GNSS measure-
ments and constrain the GIA part by accepting or 
rejecting the updated value of the GIA model sug-
gested by GRACE(-FO) data. The posterior estimated 
values of the state parameters are then used to 
update hydrological and GIA model outputs and 
their uncertainties.

3.1. Multivariate state-space model with 
unknown state equation

The objective of state-space modelling is to compute 
the optimal estimate of the state parameters given the 
observed data, which can be derived as a recursive 
form of the Bayesian rule (Brown et al., 1998; Z. Chen 
et al., 2010b). Multivariate state-space model between 
GRACE(-FO) observations and multiple a priori informa-
tion (e.g. hydrological and GIA model outputs) can be 
represented by the observation and the state equa-
tions (Bernstein, 2005) as 

Yt ¼ ZtΘt þ Xtβt þ εt ; (2) 

½Θtþ1; βtþ1� ¼ ½Θt; βt� þ δt : (3) 

In Eq. (2), Yt ¼ ½y1; y2; . . . ; yP�t represents the vector of 
observation for P spatial grid points, at time 
t ¼ 1; 2; . . . ; T , while Zt and Xt are two separate diag-
onal matrix to store a priori information from two 
different sources, and Θt and βt are the unknown 
state parameters to make a relationship between the 
observation and a priori information.

For the application of ConBay in this study, Yt 

denotes the GRACE(-FO) field estimate, the diagonal 
elements of ZtðP�PÞ contain the hydrological model 
outputs, and the diagonal elements of XtðP�PÞ contains 
EWHs derived from the GIA model for the spatial grid 
point p ¼ 1; 2; . . . ; P at time t. Each of the diagonal 
elements of Zt is a 1� K vector of ½z1;p; z2;p; . . . ; zK;p�t , 
where K is the number of individual water storage 
components, such as snow, canopy, surface water, 
soil water, and groundwater storage changes. Θt is a 
P� 1 vector, where each element itself is a K � 1 
vector containing the unknown state parameters for 
the water storage components, ½θ1;p; θ2;p; . . . ; θK;p�

T
t , 

and βt is a P� 1 vector representing the unknown 
state parameters for the GIA signal, corresponding to 
the spatial grid points p ¼ 1; 2; . . . ; P.

A hierarchical constraint equation is formulated 
here to use the second observation data sets, i.e. 
rates from in-situ GNSS measurements, for controlling 
the sampling of βt derived from Eq. (2) as 

Gt ¼ Xtβt þ γt ; (4) 

where Gt is a P� 1 vector of the observation at spatial 
grid point p ¼ 1; 2; . . . ; P, and γt represents their 
uncertainties. In Eq. (2), (3), and (4), εt , δt , and γt are 
additive innovations (i.e. residuals) corresponding to 
the observation equation, state equation, and the con-
straint equation, respectively. The distribution of εt and 
γt is assumed to be Gaussian with the mean value of 
zero and Vt and Ut to be the error covariance matrices, 
which vary over time. The state residual δt is assumed 
stationary Gaussian distributed and independent from 
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εt and γt , with the mean value of zero and an error 
covariance matrix of Q. Thus, the distribution of the 
additive innovations can be written as 

εt
δt
γt

2

4

3

5,N
0
0
0

2

4

3

5;

Vt 0 0
0 Q 0
0 0 Ut

2

4

3

5

0

@

1

A : (5) 

The uncertainty of the first set of observations (e.g. 
GRACE(-FO) measurements) is reflected in Vt , while 
the uncertainty of the second set of observation (e.g. 
in-situ GNSS measurements) is reflected in Ut . The error 
covariance matrix Q (corresponding to the state inno-
vation δt) defines the temporal dependency between 
various compartments of our a priori information, 
which is unknown, and will be simultaneously esti-
mated with the unknown state parameters Θt and βt 

through the Gibbs sampling algorithm described in 
Section 3.2.

The ConBay algorithm is formulated in the next 
section as a combination of a forward-filtering and 
backward-smoothing approach, Gibbs sampling, and 
Metropolis-Hastings algorithm to estimate the 
unknown state parameters Θt and βt , and the covar-
iance matrix Q, while the generated samples of βt in 
each iteration of Gibbs sampling are not accepted 
automatically as posterior samples; instead they are 
introduced as candidate samples to the hierarchical 
Metropolis-Hastings algorithm to be accepted or 
rejected based on the GNSS measurements. These 
candidate samples are accepted probabilistically 
based on the acceptance probability α (computed in 
Eq. (10)), which is estimated using the posterior prob-
ability distribution of βt conditional on the second set 
of the observations (e.g. GNSS measurement) based on 
the Eq. (4).

3.2. ConBay Algorithm

The multivariate state-space model, defined by Eq. (2) 
and (3), provides the conditional distribution of the 
parameter of interest, i.e. Θt , βt and Q. To solve the 
state-space model, sampling techniques can be 
applied to generate samples from the posterior distri-
bution of (i) time varying state parameters ðΘ1:T ¼

½Θ1;Θ2; . . . ;ΘT �Þ and ðβ1:T ¼ ½β1; β2; . . . ; βT �Þ and (ii) 
the error covariance matrix of δ1:T , i.e. Q, conditional 
on the first set of observation ðY1:TÞ and its error covar-
iance matrix (V1:T ), and the rest of unknown para-
meters, i.e. Q in (i) as well as Θ1:T and β1:T in (ii).

Gibbs sampling (Gelfand & Smith, 1990; Smith & 
Roberts, 1993) is one of the most frequently used MCMC 
techniques to obtain samples from the posterior distribu-
tion. The idea in Gibbs sampling is to generate posterior 
samples by sweeping through each variable (or block of 
variables) to sample from its conditional distribution with 
the remaining variables fixed to their current values. For 
instance, consider the random variables ðX1; X2; . . . ; XDÞ. 

Gibbs sampling is started by setting these variables to 

their initial values Xð0Þ1 ; Xð0Þ2 ; . . . ; Xð0ÞD (often values 

sampled from their prior distribution pðXð0Þd Þ, for 
d ¼ 1; . . . ;D). At iteration ðiÞ, a Markov chain is generated 
by updating X1; X2; . . . ; XD in turn by drawing from the 
full conditional distributions as 

XðiÞd , pðXðiÞd jX
ði� 1Þ
� d Þ, pðXðiÞd jX

ðiÞ
1 ; XðiÞ2 ; . . . ; XðiÞd� 1;

Xði� 1Þ
dþ1 ; . . . ; Xði� 1Þ

D Þ; d ¼ 1; 2; . . . ;D:
(6) 

This process continues until convergence (the sam-
ple values have the same distribution as if they 
were sampled from the proper posterior joint 
distribution).

Essentially, Gibbs sampling reduces the problem 
of sampling X :¼ ðX1; X2; . . . ; XDÞ to the problem of 
conditionally sampling of variables Xd, for 
d ¼ 1; 2; . . . ;D. Since Xd are of lower dimension 
(perhaps even one-dimensional), compared to X , 
they may be easier to sample by conventional 
methods. Therefore, when the conditional distribu-
tion of each variable is known, which is the case 
here, Gibbs sampling is an efficient approach to 
obtain samples from the posterior distribution.

However, generated samples from the posterior dis-
tribution of βt (e.g. state-space parameters correspond-
ing to the GIA effects in this study) in step (i) are not 
accepted automatically as posterior samples and will be 
controlled by the second set of observations Gt (e.g. in- 
situ GNSS measurement) based on Eq. (4). Before gen-
erating samples of covariance matrix Q, a Metropolis- 
Hastings algorithm is formulated in a hierarchical level to 
estimate the acceptance probabilities using the poster-
ior distribution of candidate samples βt conditional on 
the observations Gt . The acceptance probabilities are 
then used to determine the best generated samples of 
βt , which leads to decrease the RMSD between the 
updated value of Xt (i.e. Xtβt) and the observations Gt 

according to Eq. (4). The accepted values of the gener-
ated samples βt are then used to generate the posterior 
samples of Q in step (ii).

The state-space model given by Eq. (2) and (3) is 
linear, and it is assumed that the distribution of the 
observations and the a priori information are Gaussian 
and independent from each other (though their covar-
iances are assumed to be spatially correlated). Therefore, 
the conditional posterior distribution of Θ1:T and β1:T are 
the products of Gaussian Probability Density Functions 
(PDFs), which can be generated using a standard simula-
tion smoother introduced by Carter and Kohn (1994). 
Samples generated from the conditional posterior of Q 
are the product of independent Inverse-Wishart distribu-
tions (Schuurman et al., 2016), which are defined on 
symmetric and positive definite matrices and used gen-
erally as the conjugate prior for the covariance matrix of 
a multivariate normal distribution in the Bayesian 
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inference. The mathematical formulations to estimate 
the posterior distribution of the parameters of interest 
are explained in details in what follows.

Step1:

Define initial states, or prior values, for the unknown 
state parameters Θt and βt , where t ¼ 0, and the prior 
value of the error covariance matrix of additive innova-
tion δt , i.e. QðiÞ, where i denotes the iteration number in 
the Gibbs sampling (it is zero here). Details of initial 
values for the unknown parameters are explained in 
Section 3.2.1, where the prior values for βt are deter-
mined similar to those of Θt .

Step2:
Sample ΘðiÞ1:T , βðiÞ1:T from the posterior PDFs of ΘðiÞ1:T , 

βðiÞ1:T conditional on the observation ðY1:TÞ, its error 
covariance matrix (V1:T ), and the covariance matrix of 
additive innovations δt , which is obtained from the 
previous iteration, i.e. Qði� 1Þ. To simplify the rest of 
the equations, we define Φt ¼ ½Θt; βt�

0, where ½��0

denotes the transpose of the matrix ½��. 

pðΦðiÞ1:T jY1:T ; V1:T ;Qði� 1ÞÞ ¼ pðΦðiÞT jY1:T ; V1:T ;Qði� 1ÞÞ

�T � 1
t¼1 pðΦðiÞt jΦ

ðiÞ
tþ1; Y1:T ; V1:T ;Qði� 1ÞÞ ;

(7) 

where 

pðΦðiÞt jΦ
ðiÞ
tþ1; Y1:T ; V1:T ;Qði� 1ÞÞ , NðΦðiÞtjtþ1;�

ðiÞ
tjtþ1Þ : (8) 

In Eq. (7) and for the rest of the equations, pð�j�Þ is 
used to denote a generic PDF of (a variable such as � ) 
conditional on (another variable such as � ), while N (.) 
indicates a Gaussian PDF, and � (.) is an operator to 
multiply PDF. A Forward-filtering backward-smoothing 
approach, as in Kitagawa (1987), is used to estimate the 
unknown state parameters Φtjtþ1=[Θtjtþ1; βtjtþ1� and 
their error covariance matrices �tjtþ1. Details and the 
corresponding equations are provided in Section 3.2.2. 
The outputs of the forward-filtering backward- 
smoother approach are the generated samples of 

ΘðiÞ1:T and βðiÞ1:T derived from multivariate normal distri-

bution, where each generated samples of ΘðiÞt and βðiÞt 

can be described as a normal distribution with a mean 

value denoted by μð�ÞðiÞ and the covariance matrix of 

�
ðiÞ
� as 

ΘðiÞt , N μðΘtÞ
ðiÞ
;�
ðiÞ
Θt

� �

βðiÞt , N μðβtÞ
ðiÞ
;�
ðiÞ
βt

� � (9) 

Step3:
Estimate the acceptance probability αt to accept/ 

reject generated samples of βðiÞt , where t ¼ 1; . . . ; T , 
based on the constraint equation of Eq. (4). The accep-
tance probability αt is estimated for each spatial grid 

point p ¼ 1; 2; . . . ; P. For each iteration ðiÞ, the accep-

tance functions αðjÞt for j ¼ 1; 2; . . . ; i are estimated to 

compare the posterior distributions of the βðiÞt and βðjÞt 

conditional on the GNSS measurements Gt and its error 
covariance matrix Ut as 

αðjÞt ¼
pðβðjÞt jGt;UtÞ

pðβðiÞt jGt;UtÞ
¼

pðGtjβ
ðjÞ
t ;UtÞpðβ

ðjÞ
t Þ

pðGtjβ
ðiÞ
t ;UtÞpðβ

ðiÞ
t Þ

;

j ¼ 1; 2; . . . ; i:

(10) 

where pðGtjβ
ðjÞ
t ;UtÞ is the likelihood density of 

the second observation data set (Gt) conditional on 

the parameter of interest (βðjÞt ) and the error covariance 

matrix of the residual Ut , and pðβðjÞt Þ denotes the prior 

distribution of βðjÞt . Since the state-space model is for-
mulated with the assumption of Gaussian distribution 
for all the data and model parameters, the likelihood 
density of the observation Gt , as well as the prior 

distribution of βðjÞt are estimated using the normal 
density function as 

pðGtjβ
ðjÞ
t ;UtÞ ¼ 2π�

ðjÞ
X̂t

� �� 1
exp

� Gt � X̂ðjÞt

� �2

2�
ðjÞ
X̂t

0

B
@

1

C
A ;

j ¼ 1; 2; . . . ; i;

(11) 

pðβðjÞt Þ ¼ 2π�
ðjÞ
βt

� �� 1
exp

βðjÞt � μðβðjÞt Þ
� �2

2�
ðjÞ
βt

0

B
@

1

C
A ;

j ¼ 1; 2; . . . ; i;

(12) 

where X̂ðjÞt is the updated value of Xt (GIA model output 
in this study) and is estimated using the mean value of 

generated sample βðjÞt , while �
ðjÞ
X̂t 

denotes the uncer-

tainty of X̂ðjÞt , which is estimated using the error propa-
gation formula as 

X̂ðjÞt ¼ Xt:μðβtÞ
ðjÞ
;

�
ðjÞ
X̂t
¼ Xt�

ðjÞ
βt

X
0

t þ Ut ;
(13) 

where j ¼ 1; 2; . . . ; i. It is worth noting here that 

αðiÞt ¼
pðβðiÞt jGt ;UtÞ

pðβðiÞt jGt ;UtÞ
¼ 1. At iteration ðiÞ, the generated sam-

ple of βðiÞt is accepted as βacceptedðiÞ
t , when 

αðiÞt ¼ minfαð1Þt ; αð2Þt ; . . . ; αðiÞt g, otherwise βacceptedðiÞ
t ¼

βðlÞt if 

αðlÞt ¼ minfαð1Þt ; αð2Þt ; . . . ; αðl� 1Þ
t ; αðlÞt ; αðlþ1Þ

t ; . . . ; αðiÞt g ;

l ¼ 1; 2; . . . ; i � 1 :

(14) 
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The minimum value of αðlÞt indicates that the gener-

ated samples of βðlÞt , and therefore, the update value 

of priori information Xt , i.e. XtβðlÞt , is more fitted to the 
observation Gt (according to the Eq. (4)), compared to 

those of XtβðiÞt . βacceptedðiÞ
1:T derived from this step, along 

with the ΘðiÞ1:T of Step 2 are then used to generate 
samples of the unknown covariance matrix of addi-
tive innovations δt , i.e. Q in Eq. (5), in the next step of 
the Gibbs sampling.

Step4:
Sample QðiÞ from the posterior PDF of QðiÞ condi-

tional on the observed data ðY1:TÞ and its error covar-

iance matrix (V1:T ), and ΦðiÞ1:T ¼ ½Θ
ðiÞ
1:T ; βacceptedðiÞ

1:T �, where 

ΘðiÞ1:T are estimated in step 2, and βacceptedðiÞ
1:T are derived 

from step 3. This sampling is defined by: 

pðQðiÞjY1:T ; V1:T ;ΦðiÞ1:TÞ , IWð�QðiÞ;�νÞ; (15) 

where 

�ν ¼ T þ ν;

�QðiÞ ¼ Qð0Þ þ
PT

t¼1
ðΦðiÞt � ΦðiÞt� 1ÞðΦ

ðiÞ
t � ΦðiÞt� 1Þ

0:
(16) 

In Eq. (15), IW (.) denotes an Inverse-Wishart PDF, �Q is 
the posterior scale matrix, and ν is an initial value that 
is chosen as the degree of freedom to define the con-
jugate prior for Q as the product of independent 
Inverse-Wishart distribution (see, Section 3.2.1), and �ν 
is the posterior value of the degree of freedom. In all 
these equations, T denotes the total number of time 
steps t.

Step5:
Return to step 2 and continue the iteration until 

a breaking criterion is satisfied. Two important issues 
that must be addressed while implementing MCMC 
algorithms are where to start and when to stop the 
algorithm. These two tasks are related to determining 
convergence of the underlying Markov chain to statio-
narity and convergence of Monte Carlo estimators to 
population quantities, respectively. It is known that 
under some standard conditions on the Markov 
chain, for any initial value, the distribution of unknown 
parameters converges to the stationary distribution 
(see, e.g. Meyn & Tweedie, 2012; Robert & Casella, 
2013) as i!1.

Therefore, MCMC algorithms are typically run for 
a large number of iterations (in the hope that conver-
gence to the target posterior will be achieved). In this 
study, a simple graphical method suggested by Brooks 
and Roberts (1998) and Sinharay, (2003) used to deter-
mine the number of iterations and to define the con-
vergence of the sampling algorithm. This is done by 
creating a time-series plot for each of the parameters 
of interest, i.e. Θt and βt in Eq. (2), and Q in Eq. (5), to 
view the path traversed by the chains. From the 
obtained results (figures not shown), it can be found 

that after 10,000 iterations, the Gibbs sampling con-
verged to stationary distributions. However, to 
increase confidence in the process, it is required to 
select more iterations, i.e. N=20,000. Moreover, the 
early M=500 iterations are discarded as the ‘burn-in’ 
period. The reason for this is that after initialising the 
sampling algorithm with a priori values for the 
unknown state parameters Θt and βt , and the covar-
iance of additive innovations Q, samples from early 
iterations may not necessarily be representative of 
the actual posterior distributions.

3.2.1. Specifying Initial Values for Unknown 
Parameters
The first step of Gibbs sampling to solve the state- 
space model, given by Eq. (2) and (3), is to define initial 
states, or prior values for the unknown state para-
meters Θt and βt , where t ¼ 0, and the error covariance 
matrix of additive innovation δt , i.e. QðiÞ, where i 
denotes the number of iteration in the Gibbs sampling 
(it is zero here). As discussed in Section 3.2, since the 
state-space equation is linear, and with assuming that 
the distribution of observations and models, i.e. Yt , Zt , 
and Xt , to be Gaussian and independent from each 

other, the conditional posterior distribution of ΦðiÞ1:T ¼

½ΘðiÞ1:T ; βðiÞ1:T � in Eq. (7) is a product of their (Gaussian) 
PDFs. Therefore, the initial value of Φ0 is Gaussian 
distributed and is defined as 

Φ0 , NðΦ0j0;�0j0Þ ; (17) 

where Nð:Þ represents a Gaussian (normal) distribution, 
and Φ0j0 ¼ ½Θ0j0; β0j0� and �0j0 ¼ ½�Θ0j0 ; 0; 0;�β0j0

� are 
the means and variances of Θ0 and β0. In GRACE(-FO) 
applications, Φ0j0 is chosen to be 1, because in theory 
the summation of individual water storage values Zt 

and EWHs of PGR of Xt must be equal to the GRACE(- 
FO) field estimates Yt in Eq. (2). Uncertainty of a priori 
information (e.g. the uncertainties of simulated indivi-
dual water storage of W3RA (Section 2.2), and the GIA 
model output (Section 2.4) are stored in �0j0, which are 
needed for computing updates by the Gibbs sampling 
in Step 2.

In Eq. (16), Q is the error covariance matrix of 
additive innovation δt in Eq. (3) and defines the 
temporal dependency between water storage states 
Θt at each time point to the previous time steps. 
Considering Eq. (15), the conjugate prior for Q can 
be estimated by an independent Inverse-Wishart 
distribution (IWð:Þ) as 

Qð0Þ , IWðS; νÞ ; (18) 

In Eq. (18), S is a K � K scale matrix, where K is the 
number of unknown state parameters, and ν is the 
degree of freedom Schuurman et al. (2016). S is 
used to position the Inverse-Wishart distribution in 
the parameter space, and ν > K þ 1 set the certainty 
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about the prior information in the scale matrix. In 
this study, ν is set to be K þ 1, which is the mini-
mum value that can be chosen for this parameter 
(Primiceri, 2005). Schuurman et al. (2016) compared 
three Inverse-Wishart prior specifications: (I) a prior 
specification that is based on an identity matrix, and 
is often used as an uninformative prior in practice, 
(II) a data-based prior that uses input from maxi-
mum likelihood estimations, and (III) the default 
conjugate prior proposed by (Kass & Natarajan, 
2006). Their results showed that the data-based 
maximum likelihood prior specification for the cov-
ariance matrix of the random parameters, based on 
estimates of the variances from the data, performed 
the best, compared to the other techniques. They 
also found that when the prior is specified too far 
from zero (e.g. Inverse-Wishart prior with S as an 
identity matrix), this will result in an overestimation 
of the variances. However, specifying the central 
tendencies too close to zero will result in an under-
estimation of the variances, firstly because too 
much weight is shifted towards zero, and secondly 
because an element of the scale matrix set close to 
zero will also have a small variance. Following 
Cogley (2005), Primiceri (2005), and Schuurman 
et al. (2016), the scale matrix S is chosen to be 
a constant fraction of the variance of the initial 
values Θ0 as K2

Q �0j0. Therefore, Eq. (18) is rewrit-
ten as 

Qð0Þ , IWðK2
Q �0j0; 1Þ : (19) 

In Eq. (19), �0j0 is the covariance matrix that is derived 
from the ensemble of W3RA (see, Eq. (17)). Following 
Primiceri (2005), KQ is chosen to be 0:01, which allows 
Θt to be a temporal variable. More details about select-
ing different initial values and their impact on the 
Inverse-Wishart estimation can be found in 
Schuurman et al. (2016). Initial values chosen for Θ0 

and Qð0Þ are then used in Eq. (7) and (16) within Step 2 
and Step 4 of Gibbs sampling, respectively.

3.2.2. Forward-filtering backward-smoothing 
approach
In this section, the forward-filtering backward- 
smoothing approach is described, which is used in 
the second step of the Gibbs sampling (see, Eq. (7)) 
to generate samples of ΦðiÞ1:T ¼ ½Θ

ðiÞ
1:T ; βðiÞ1:T � (unknown 

state parameters in the state-space model given by 
Eq. (2) and (3)) from the PDF of Φ1:T conditional on 
the observed data ðY1:TÞ and its error covariance matrix 
(V1:T ), and the rest of the unknown parameters, i.e. Q. In 
the rest of this section, Φtjt and its variance �tjt , as well 
as Φtjt� 1 and �tjt� 1 are defined as 

Φtjt ¼ EðΦtjY1:t; V1:t;QÞ;
�tjt ¼ VarðΦtjY1:t; V1:t;QÞ;

Φtjt� 1 ¼ EðΦtjY1:t� 1; V1:t� 1;QÞ;
�tjt� 1 ¼ VarðΦtjY1:t� 1; V1:t� 1;QÞ;

(20) 

where t represents the (monthly) time steps between 1 
and T, and Eð�j�Þ and Varð�j�Þ denote the mean value 
and the variance for the normal distribution of ( � ) 
conditional on ( � ).

The forward-filtering backward-smoothing is 
a recursive approach that consists of two steps:

(1) Forward-filtering: It consists of a standard 
Kalman filter procedure as in Carter and Kohn (1994) 
to recursively estimate Φtjt and �tjt , for t = 1,2,.,T, given 
the initial values of Φtjt and �tjt when t = 0 (Φ0j0 and 
�0j0, see, Section 3.2.1). The Kalman filter recursion is 
presented in the following equations as 

Φtjt� 1 ¼ Φt� 1jt� 1;

�tjt� 1 ¼ �t� 1jt� 1 þ Q;
Kt ¼ �tjt� 1Zt0 ðZt�tjt� 1Zt0 þ VtÞ

� 1
;

Φtjt ¼ Φtjt� 1 þ KtðYt � ZtΦtjt� 1Þ;

�tjt ¼ �tjt� 1 � KtZt�tjt� 1:

(21) 

The last elements of the Kalman filter recursion when 
t = T, i.e. ΦTjT and �TjT , are used to generate the 
samples of ΦT in Eq. (22) as 

ΦT ,NðΦTjT ;�TjTÞ; (22) 

where N(.) denotes the normal distribution of ΘT with 
the mean value of ΘTjT and the variance of �TjT .

(2) Backward-smoothing: The outputs of step (1) 
(i.e. Φtjt� 1, �tjt� 1, Φtjt , and �tjt for t = 1,2, . . .,T), and the 
generated sample of ΦT , derived from Eq. (22) are then 
used in Eq. (23) to update Φt� 1jt and �t� 1jt , and gen-
erate samples of Φt� 1, for t ¼ T ; T � 2; . . . ; 1. For 
a generic time t, the updating formulas of the back-
ward recursion smoother can be written as 

Φt� 1jt ¼ Φt� 1jt� 1 þ �t� 1jt� 1�� 1
tjt� 1ðΦt � Φt� 1jt� 1Þ;

�t� 1jt ¼ �t� 1jt� 1 � �t� 1jt� 1�� 1
tjt� 1�t� 1jt� 1;

Φt� 1,NðΘt� 1jt;�t� 1jtÞ:

(23) 

The backward recursion smoother is started from time 
T and continues until time 1. The output of the forward- 
filtering backward-smoother approach is the generated 
samples of Φ1:T , i.e. Θ1:T and β1:T , conditional on the 
observed data ðY1:TÞ and its error covariance matrix 
(V1:T ), and the unknown covariance matrix of the additive 
innovation Q, which is defined as 

pðΦðiÞt jΦ
ðiÞ
tþ1; Y1:T ; V1:T ;Qði� 1ÞÞ in Eq. (7). The generated 

samples of Θ1:T and β1:T are then used in the third and 
forth step of Gibbs sampling to generate samples of the 
unknown covariance matrix of additive innovations, i.e. 
shown by Q in Eq. (15).

ALL EARTH 131



3.3. Updating a priori information and their 
uncertainties by ConBay

At the end of the ConBay algorithm, N � M generated 
samples for Θ1:T and β1:T , are used to estimate the 
posterior value of unknown state parameters �Θ1:T , 
and �β1:T as 

�Θt ¼
1

N� M �N
i¼Mþ1ΘðiÞt ;

�βt ¼
1

N� M �N
i¼Mþ1βacceptedðiÞ

t ; for t ¼ 1; 2; . . . ; T

(24) 

where �Θ1:T , and �β1:T are then used to update the 
a priori information Zt (e.g. hydrological model out-
puts) and Xt (e.g. GIA model output) as 

Ẑt ¼ Zt �Θt;

X̂t ¼ Xt
�βt; for t ¼ 1; 2; . . . ; T:

(25) 

The uncertainties of the ConBay updated signals are 
estimated using the variance of generated samples, i.e. 

�
ðiÞ
Θt 

and �
ðiÞ
βt 

in Eq. (9), which is derived from the 

forward-filtering backward-smoothing approach fol-
lowing the equations in Section 3.2.2. To this aim, the 
posterior value of ��Θt and ��βt 

for t ¼ 1; 2; . . . ; T are 
obtained as 

��Θt ¼
1

N� M �N
i¼Mþ1�

ðiÞ
Θt
;

��βt
¼ 1

N� M �N
i¼Mþ1�

ðiÞ
βt
;

(26) 

The diagonal elements of the error covariance matrix 
of ��Θt contain δ�θ2

k;t corresponding to each compart-
ment of the a priori information Zt , k ¼ 1; ::; K , which 
can be used to estimate the uncertainties of Ẑt through 
an error propagation procedure according to the 
Eq. (27). 

δẑ2
k;p;t ¼ δ�θ2

k;p;t:z
2
k;p;t þ δz2

k;p;t:
�θ2

k;p;t; (27) 

where δẑ2
k;p;t are the uncertainties of the ConBay 

updated values of a priori information (ẑk;p;t) for 
p ¼ 1; . . . ; P, t ¼ 1; 2; . . . ; T and k ¼ 1; 2; . . . ; K . The 
uncertainty of X̂t derived from Eq. (25) is estimated 
similar to that of Ẑt based on Eq. (27). The work-flow 
of the ConBay approach is summarised in Figure 4.

3.3.1. Departure from the unconstrained Bayesian 
formulations
The MCMC-DA (Mehrnegar et al., 2020b) which is for-
mulated based on the state-space model (Eq. (2), (3)) is 
a good candidate of an unconstrained Bayesian 
approach to separate GRACE(-FO) signals without con-
sidering extra information about PGR rates. In fact, 
MCMC-DA and ConBay are the same is the Steps 1, 2, 
4, and 5 of Section 3.2 to estimate unknown state 
parameters and temporal dependency between 
them, while religiously account for the uncertainties 
of the observations and a priori information. Their main 
difference is that the hierarchical Metropolis-Hasting 

algorithm (see Step 3 in Section 3.2) to constrain the 
PGR rates based on GNSS measurements is not imple-
mented in MCMC-DA. Thus, making MCMC-DA an 
unconstrained Bayesian technique. A comparison 
between these two techniques will show how benefi-
cial is the joint application of GRACE and GNSS data in 
signal separation studies.

4. Results

4.1. ConBay application within the great lakes 
area using ICE-5G(VM2) GIA Model

Linear rates of PGR in terms of EWHs are presented in 
Figure 5, where considerable differences (,� 14 mm/ 
yr) are found between the ICE-5G(VM2) GIA model 
outputs (Figure 5(a)) and GNSS measurements (Figure 
5(d)) in the northeast and the northwest. The model 
PGR rates are found to be under-estimated (compared 
with the observations in the northeast, and over- 
estimated in the northwest of the Great Lakes (see, 
Figure 5 (d-a)). In the northeast, the rates of EWHs of 
PGR derived from GNSS measurements are estimated 
around 32 mm/yr, while in northwest these values are 
estimated up to 4 mm/yr. ICE-5G(VM2) GIA model, 
however, simulates these values to be between ,15 
to 20 mm/yr.

The updated values of PGR derived from both 
MCMC-DA (Figure 5(b)) and ConBay (Figure 5 (c)) 
show more agreements with GNSS data, compared to 
the original model outputs. Considerable improve-
ments are seen in Figure 5 (d-b,5-c), where the average 
RMSD between GNSS measurements and GIA model 
output is reduced from 15 to 2 mm/yr in the northeast, 
and from � 17 to � 4 mm/yr in the northwest after 
implementing both MCMC-DA and ConBay.

Comparing MCMC-DA and ConBay in Figure 5 (d-b,5- 
c) shows that using in-situ GNSS measurements to con-
strain the estimation of PGR can reduce the effect of 
uncertainties in the middle of Great Lakes, where differ-
ences between MCMC-DA and in-situ GNSS measure-
ments are found to be 13 mm/yr, in terms of EWHs, 
while those between ConBay and in-situ measurements 
are estimated to be up to 5 mm. It is worth noting that in 
the middle of Great Lakes, shown by the grey patched 
area in Figure 5 (d-b,5-c), the estimated PGR rates, 
derived from both techniques, are over-estimated, com-
pared to the in-situ GNSS measurements. This is likely 
due to the gaps in the GNSS data. Interpretation of the 
results within this area might be done with cautions.

To validate the PGR rates of MCMC-DA and ConBay, 
the GNSS measurements of 70 stations (Figure 5(e)) are 
used, which were excluded from GNSS data before 
implementing the ConBay approach. Validation is 
done in terms of differential values between GNSS 
measurements and GIA model outputs before and 
after implementing MCMC-DA and ConBay (see, 
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Figures 5 (e-a,5-b,5-c), respectively). The averaged 
RMSD between the GIA model and GNSS measure-
ments are estimated to be 7.8 mm/yr, while after 
implementing MCMC-DA and ConBay this value is 
reduced to be 4.8 and 2.3 mm/yr, respectively. The 
results indicate that both methods decrease the uncer-
tainties but that of ConBay is closer to GNSS 
observations.

In order to test whether the implemented mergers 
introduce unwanted anomalies to the a priori informa-
tion, we estimate the Root Mean Square of Errors 
(RMSE) of estimated PGR components, derived from 
MCMC-DA and ConBay, after removing the long-term 
linear rates, see, Figures 6 (a,b), respectively. The 
results indicate that in fact unwanted signals with an 
amplitude of 30 � 50 mm can be seen in the PGR 
estimates of MCMC-DA. However, in ConBay, the con-
straint equation and GNSS data prevent this error and 
the magnitude of unwanted signal is found to be of 
the level of GRACE noise (less than ,15 mm). It shows 
that in an ideal situation, where the input observation 
and models are perfect, without any errors, the uncer-
tainties of the ConBay results shall be close to zero. 
However, due to different reasons, such as imperfect 
model simulations (Rodell et al., 2004) and the errors of 
observations, it would be impossible to update a priori 
information without having any errors.

Before concentrating on the hydrology-related 
results of ConBay, in Figure 7, we provide an overview 
of the variance between GRACE EWHs (contain both 
hydrology and PGR) and modelled EWHs (as 
a summation of W3RA TWSC and EWHs of PGR derived 
from ICE-5G(VM2) GIA model) within the Great Lakes 
area between 2003–2017. Considerable differences are 
found between the measured and modelled EWHs, 
where the linear trends are shown in Figure 7 (a1,)) 

and the annual-amplitudes are presented in Figure 7 
(a2,). For instance, the linear trends fitted to the GRACE 
EWHs in the northeast of the Great Lakes area are 
estimated to be ,32 mm/yr, which are much greater 
than those estimated by models (summation of W3RA 
TWSC and ICE-5G(VM2) EWHs of PGR) with the mean 
value of ,20 mm/yr. Further differences can be seen in 
the northwest, where GRACE shows positive trends up 
to ,10 mm/yr, while the summation of W3RA and GIA 
model shows ,18 mm/yr. In Figure 7 (c1), it can be 
seen that ConBay reduces the differences by 81%

(from 11 mm/yr to 2 mm/yr on average) in the north 
part of the Great Lakes area.

Large differences in terms of annual-amplitude 
between measured (GRACE) and modelled EWHs can 
be seen in the northeast and southwest of Great Lakes, 
where those of GRACE are estimated up to 70 mm and 
those of W3RA are estimated to be greater than 90 mm 
in northeast and less than 50 mm in southwest. 
Differences in the seasonality of measured and mod-
elled water storage changes, can be related to the 
errors in the forcing data and uncertainty in the 
model parameters to control these values (Van Dijk 
et al., 2011). The mean of annual-amplitudes fitted to 
the ConBay EWHs (Figure 7 (c2)) in northeast and 
southwest of Great Lakes are estimated to be ,65 
mm, which is more close to those of GRACE (i.e. ,70 
mm), compared to the original model outputs. To 
evaluate the performance of the ConBay to improve 
the estimation of EWHs, the RMSD between measured 
and modelled EWHs (Figure 7 (e1)) are compared with 
the RMSD between GRACE and ConBay EWHs (Figure 7 
(e2)). The results indicate that the mean value of RMSD 
between measured and modelled EWHs is reduced by 
63% (from ,68 to ,25 mm) within the Great Lakes 
area. Therefore, as expected, merging models with 

Figure 6. RMSE of EWHs of PGR, after remove PGR rates, derived from (a) MCMC-DA approach, i.e. without using GNSS 
measurements to constrain PGR estimates, and (b) ConBay approach that simultaneously uses GRACE and GNSS data for jointly 
estimating water storage and PGR rates.
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GRACE and GNSS measurements through ConBay 
approach improves the seasonal and inter-annual 
components of hydrological signals and reduces biases 
between the modelled and measured EWHs.

Both MCMC-DA and ConBay are implemented in 
this study to simultaneously estimate land hydrology 
and surface deformation signals (PGR uplift rate) within 
the Great Lakes area. Therefore, it is expected that 
using GNSS measurements in ConBay to constrain 
the estimation of PGR rates affect the estimation of 
hydrological signals. To assess this hypothesis, the 
long-term linear trends and annual-amplitudes fitted 
to the groundwater storage changes derived from 
W3RA, MCMC-DA (un-constrained Bayesian approach) 
and ConBay are compared against in-situ USGS 
groundwater observation, as an independent valida-
tion data set in Figure 8. The RMSD and temporal 
correlation coefficients between in-situ USGS measure-
ments and groundwater storage changes of W3RA, 
MCMC-DA and ConBay are used as two different 
metrics to validate our results.

W3RA water balance model simulates groundwater 
depletion in southeast of Great Lakes with the rate of 
� 4mm=yr, on average, and groundwater recharge in 

northeast with the rate of 2:2mm=yr between 2003– 
2017 (Figure 8 (b1)).

After implementing both MCMC-DA and ConBay 
(see, Figures 8 (c1,)), the rate of changes in model- 
derived groundwater storage are reduced by ,52%, 
from � 3:8 to , � 1:8 mm/yr, on average, in south-
east of Great Lakes. USGS groundwater storage also 
shows small negative trends in this region (between 0 
and , � 1 mm/yr), which can be an evidence for the 
improved estimation of groundwater after merging 
model with GRACE and GNSS observations.

The strong annual-amplitudes for groundwater sto-
rage changes are simulated by W3RA water balance 
model within the centre and south of the Great Lakes 
area (up to 60 mm, Figure 8 (b2)), which are reduced by 
,33% after implementing MCMC-DA and ConBay 
(Figure 8 (c2,), respectively). The mean of RMSD 
between USGS observations and W3RA groundwater 
storage (Figure 8 (b3)) is estimated to be 44:21 mm. 
This value is reduced by 26% after merging W3RA and 
GIA model outputs with GRACE observations through 
MCMC-DA approach (Figure 8 (c3)). This improvement, 
in terms of the reduction in RMSD, is estimated to be 
36%, when ConBay in implemented to merge GRACE 
and GNSS with the model outputs.

Positive correlation coefficients with the maximum 
value of ,0:9, mostly in southeast of Great Lakes, and 
the mean of 0:32 are estimated between USGS and 
W3RA groundwater storage in 95% of the validation 
points (723 wells from 763), which are not changed 

considerably after implementing the MCMC-DA (the 
mean value of 0.34) and ConBay (the mean value of 
0.38) approaches.

Considerable differences between MCMC-DA and 
ConBay can be seen in the centre and southwest of 
Great Lakes, where a mixture of strong positive and 
negative trends ( � 6 mm/yr) can be seen in MCMC- 
DA groundwater storage. In these regions, we can 
also see a large RMSD, up to 60 mm, between 
MCMC-DA and in-situ USGS groundwater observa-
tions, which are considerably reduced (by 70%) 
when ConBay is implemented to separate land 
hydrology and PGR from GRACE and GNSS measure-
ments. Therefore, it can be said that using in-situ 
GNSS measurements to constrain the PGR rates not 
only improves the estimation of PGR, but also influ-
ences the estimation of hydrological signals in 
terms of both linear trends and seasonal and inter- 
annual amplitudes.

The reason of finding differences between 
MCMC-DA and ConBay is the strong contribution 
of PGR in the GRACE signal and the known fact 
that these values are uncertain. Therefore, within 
the application of ConBay and MCMC-DA, to opti-
mise updated value of the modelled EWHs at each 
time step, with respect to GRACE data, the 
unknown state parameters corresponding to the 
GIA model output (βt in Eq. (2)) gains the highest 
value of the posterior probability distribution com-
pared to those of hydrological compartments (θt in 
Eq. (2)). Therefore, the largest updates are intro-
duced to the GIA model output in order to reduce 
RMSD between GRACE and model EWHs. As already 
discussed in Figure 6, without using in-situ GNSS 
measurement to constrain the estimation of PGR (as 
is the case in MCMC-DA), the PGR accepts a large 
portion of the update because statistically it will be 
more likely that the biases between a priori infor-
mation and observations will be reduced. This 
update therefore does not care about the physical 
representation of PGR, which should be purely lin-
ear. As a result, the MCMC-DA estimation of PGR 
contains seasonal component and its hydrological 
estimation is negatively affected as the validation in 
Figure 8 represents. In order to visualise differences 
between the estimated parameters from MCMC-DA 
and ConBay, a comparison of posterior values of the 
unknown states θsoilwater

t , θgroundwater
t , and βPGR

t are 
shown in Figure 9. The results correspond to only 
one spatial grid point with the latitude of 44� and 
the longitude of � 90�, for 2003–2017. These para-
meters (and others computed for other grids) can 
be used in Eq. (25) to update soil water storage, 
groundwater storage, and PGR rates, respectively.
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These results indicate that the posterior values of 
βPGR

t from MCMC-DA are higher than those of θsoilwater
t , 

θgroundwater
t . Therefore, in MCMC-DA, the required 

values to update a priori information and to reduce 
RMSD are mostly introduced to the GIA model output, 
while the updated values of soil water and ground-
water storage are negligible. After merging in-situ 
GNSS measurements with GRACE data in ConBay, the 
posterior value of the state parameters θsoilwater

t and 

θgroundwater
t are considerably increased, compared to 

the MCMC-DA results, while the posterior value of 
βPGR

t is decreased. Consequently, soil water and 
groundwater storage changes have gained larger 
updates in ConBay, compared to the MCMC-DA results, 

which can be seen in Figure 8. This shows that intro-
ducing GNSS observations in an extra step controls the 
updates and consequently improves the estimation.

4.2. ConBay application within the Great Lakes 
area using ICE-6G-D(VM5a) GIA model

To demonstrate how selecting different a priori infor-
mation affects the final signal separation results, the 
ICE-5G(VM2) GIA model output is replaced by -D(VM5a; 
Argus et al., 2014b; W. Peltier et al., 2018; W. R. Peltier 
et al., 2015) for the re-implementation of ConBay over 
the Great Lakes area and its results are compared with 
those derived from first implementation, when we 
used the ICE-5G(VM2) GIA model (see, Section 4.1). 

Figure 9. The Posterior values of the unknown state-space parameters Θt and βt corresponding to the soil water storage (θsoilwater
t ), 

groundwater storage (θgroundwater
t ), and PGR uplift rate (βPGR

t ), derived from MCMC-DA (without using GNSS measurements), and 
ConBay, for the period of 2003–2017. The posterior values are shown for a spatial grid point with latitude of 45� and longitude of.

Figure 10. EWHs corresponded to the PGR uplift rates and groundwater storage changes (GWS) derived from ConBay approach, 
using ICE-6G-D(VM5a) GIA model as a priori information. The linear rates ofof EWHs of PGR and GWS are shown in (a1) and (b1), 
and their differences with those of derived from ConBay using ICE-5G(VM2) are shown in (a2) and (b2), respectively. Differential 
values between GNSS measurements (validation points) and PGR rates derived from ConBay are shown in (a3). The values of RMSD 
between USGS and ConBay-derived GWS, in case of using ICE-6G-D(VM5a) GIA model, are shown in (b3).
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The rates of new-derived EWHs of PGR and ground-
water storage changes are shown in Figure 10 (a1,), 
respectively, where their differences with those 
derived from first implementation are shown in 
Figure 10 (,). The obtained results indicate that the 
differences between final signal separation results 
derived from both experiments are negligible (close 
to zero) for more than 90% of region.

Validations against in-situ GNSS measurements and 
USGS groundwater storage changes (see, Figure 10 
(a3,), respectively), confirm that although ICE-6G-D 
(VM5a) shows more agreement with GNSS data com-
pared to the ICE-5G(VM2; see, Figure 2), the RMSD 
between validation points and the ConBay-derived 
PGR and groundwater storage changes are not con-
siderably changed for the new implementation (com-
pare Figure 5 (e-c) and Figure 8 (d3)).

5. Summary and conclusion

In this study, a novel hierarchical Constrained Bayesian 
(ConBay) approach is formulated for a joint estimation 
of the land hydrology and surface deformation by 
merging the GRACE(-FO) and in-situ GNSS measure-
ments, where hydrological and Global Isostatic 
Adjustment (GIA) models are used as a priori 
information.

ConBay is formulated as a combination of forward- 
filtering backward-smoothing recursion approach 
(Kitagawa, 1987), the Gibbs sampling (Gelfand & 
Smith, 1990; Smith & Roberts, 1993), and the 
Metropolis-Hastings algorithm (Chib & Greenberg, 
1995), where the first builds the relationship between 
observations and a priori information, the second 
accounts for unknown temporal dependencies 
between model states, and the latter implements the 
constraint equation. The proposed approach is formu-
lated to account for the full error covariance matrix of 
the observed GRACE(-FO) data, the error estimates of 
GNSS data, and the uncertainty of the hydrological and 
GIA model outputs. Moreover, the proposed approach 
is flexible to implement both globally and regionally 
and for different spatial and temporal resolutions.

As a case study, the Great Lakes area and the period 
of 2003–2017 are chosen to merge GRACE and GNSS 
measurements, while the W3RA water balance model 
and the ICE-5G(VM2) GIA model outputs are used as 
the a priori information for hydrological and surface 
deformation signals. To assess the impact of the con-
straint equation on the signal separation results, 
MCMC-DA (unconstrained Bayesian-DA; Mehrnegar 
et al., 2020b) is performed to separate land hydrology 
and surface deformation from GRACE field estimates, 
where GNSS measurements are not used to constrain 
the estimation of PGR from GRACE data. Moreover, to 
see that how ConBay is sensitive to select different 

a priori information, the ConBay approach is re- 
implemented to merge GRACE and GNSS using ICE- 
6G-D(VM5a), instead of ICE-5G(VM2), as the a priori 
information for the PGR rates. The ConBay approach 
is tested by performing various comparisons between 
PGR rates, EWHs and groundwater storage derived 
from the original model outputs, ConBay, and MCMC- 
DA results. Validations are done against the in-situ US 
Geological Survey (USGS) groundwater storage obser-
vations and independent in-situ GNSS measurements 
which are not used in the optimisation procedure.

The numerical results indicate that after implement-
ing ConBay the RMSD between model-derived EWHs 
and GRACE EWHs reduces by ,63%, on average, and 
the bias between GIA model output and the in-situ 
GNSS observation reduced by ,72% (from 7.8 to 
2.2 mm/yr). MCMC-DA (unconstrained Bayesian-DA) 
results show the same improvement in the estimation 
of EWHs, but the bias between GIA model output and 
in-situ GNSS measurements reduced by 40% (from 7.8 
to 4.7 mm/yr for the rate of equivalent water heights 
corresponding to PGR) after implementing MCMC-DA, 
which is considerably smaller than those of ConBay. 
The estimated values of PGR through MCMC-DA con-
tained an unwanted signal (see, Figure 6), which is not 
physically realistic. ConBay reduces this uncertainty by 
67% (from 42 mm to 14 mm, on average), using the in- 
situ GNSS measurements to constrain the updated 
value of the ICE-5G(VM2) GIA model.

Validation of groundwater estimates, derived from 
MCMC-DA and ConBay, against in-situ USGS ground-
water observations provides an evidence for the 
hypothesis that after using in-situ GNSS measurements 
in the introduced Bayesian signal separation approach, 
the estimation of hydrological signals is improved in 
terms of both linear trend and seasonality. For exam-
ple, we find that the RMSD between USGS observa-
tions and groundwater storage changes are reduced 
from 44.21 mm to 32.65 mm (26% improvement) after 
merging W3RA and GIA model with only GRACE data 
through MCMC-DA approach. This improvement, how-
ever, is greater (around 36%) when GNSS measure-
ments are used in ConBay approach. From the results, 
it can be concluded that using GNSS constraint equa-
tion in ConBay defines an upper and lower boundary 
to update the GIA model output, which allows us to 
introduce more realist updates to the hydrological 
signals, compared to those of MCMC-DA. Therefore, 
using the GNSS constraint equation not only optimises 
the estimation of the land surface deformation, but 
also improves the estimation of the hydrological sig-
nals, in terms of both linear trends and seasonality.

The ConBay-derived PGR rates and groundwater 
storage changes of both implementations (using ICE- 
5G(VM2) and ICE-6G-D(VM5a)) are compared against 
validation data sets and the results indicate that the 
separated hydrological and PGR components from 
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GRACE signal are not considerably changed in these 
two experiments. Therefore, we conclude that the 
ConBay approach is flexible to use different a priori 
information, and the Bayesian optimisation algorithm 
works well to introduce realistic updates to the back-
ground model. We also find that selecting ICE-6G-D 
(VM5a) leads to achieve faster convergences of Gibbs 
sampling (,5000 iterations), compared to those of ICE- 
5G(VM2) (,8000 iterations). Accordingly, it can be said 
that although the final signal separation results are 
independent of selecting the background models, the 
speed of Gibbs sampling convergence is influenced by 
this selection.

Notes

1. https://eo4sd.esa.int/category/themes/climate- 
resilience/

2. https://earthobservatory.nasa.gov/
3. http://www2.csr.utexas.edu/grace/
4. http://wald.anu.edu.au/challenges/water/w3-and- 

ozwald-hydrology-models/
5. https://apps.ecmwf.int/datasets
6. https://water.usgs.gov/ogw/networks.html
7. http://www.soilinfo.psu.edu/
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