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Abstract
The particle density (ρs) is a fundamental physical property needed for calculating the

soil porosity and phase distributions. While ρs is often estimated using soil organic

matter (SOM) content and particle size distribution, the specific densities of each

soil component remain unclear in a subarctic agricultural setting. This study aimed to

evaluate the ρs of soils from Southwest Greenland using a three-compartment model

(3CM) based on the mixing ratio of SOM derived from loss-on-ignition, mineral par-

ticles <20 μm (FC), and mineral particles ≥20 μm (CC). We further evaluated the

accuracy of the 3CM against pedotransfer functions (PTFs) and visible near-infrared

(vis–NIR) spectroscopic models. A total of 324 soil samples from 16 Green-

landic agricultural fields were investigated, covering a wide range in SOM content

(0.021–0.602 kg kg–1) and clay content (0.020–0.185 kg kg–1). Despite their

high SOM content, the Greenlandic soils exhibited relatively high ρs (1.936–

3.044 Mg m–3), which together with a large SOM/organic carbon ratio of 2.16

indicated a high SOM density of 1.493 Mg m–3. The 3CM fit on all soils indicated

FC and CC densities of 3.047 and 2.713 Mg m–3, respectively, while a subset of

soils (n = 203) from the same geological setting resulted in FC and CC densities of

2.738 and 2.731 Mg m–3. Prediction accuracy of the 3CM (RMSE = 0.067 Mg m–3)

was similar to PTFs (RMSE = 0.068–0.070 Mg m–3) and better than vis–NIR

spectroscopic models (RMSE = 0.091 Mg m–3).

Abbreviations: 3CM, three-compartment model; CC, content of coarse silt and sand; CL, clay content; FC, fines content; IG, Igaliku; LOI550,
loss-on-ignition at 550 ˚C; OC, organic carbon content; QA, Qassiarsuk; RMSE, root mean square error; SI, South Igaliku; SMS, soil mineral substance;
SOM, soil organic matter; SWL, structural water loss; UP, Upernaviarsuk; vis–NIR, visible near-infrared; ρs, particle density.
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1 INTRODUCTION

Climate change disproportionally affects the Arctic regions,
which are warming at two to three times the global aver-
age rate (Serreze & Barry, 2011; Smith et al., 2019). While
the rapid warming has profound environmental and socioe-
conomic ramifications (Nuttall, 2018), the warming climate
also prolongs the growing season in Southwest Greenland
(Christensen et al., 2016; Westergaard-Nielsen et al., 2015).
The shift in climatic conditions also imposes a need to
adapt the existing farming activity, which dates back more
than a millennium in Southwest Greenland (Dugmore et al.,
2007). Little is known about the present and future state of
the subarctic agricultural soils in Southwest Greenland, but
knowledge of the most fundamental soil properties is needed
to support the agricultural activities on these highly organic
soils (Caviezel et al., 2017).

The soil particle density (ρs) is a fundamental physical
property, which is defined as the mass per unit of volume for
the solid particles. Knowledge of the ρs is needed for deter-
mining volumetric phase distributions, which in turn is used
for evaluating, for example, the mechanical and thermal prop-
erties of soil (Ochsner et al., 2001; Soane, 1990), as well as
the diffusive and convective transport of liquids and gases
(Deepagoda et al., 2011; Moldrup et al., 2000; Šimůnek et al.,
2008). However, due to the laborious and time-consuming
measurement procedure, ρs is often not measured during rou-
tine soil inventories (McBride et al., 2011). Consequently, the
ρs has often been ascribed the value of quartz (2.65 Mg m−3),
which may result in significant errors due to ρs varying con-
siderably across soil types, geography, and even within the
same field (Ball et al., 2000; Weber et al., 2020).

A range of compartment models have successfully been
developed to predict the ρs from the mass proportions of
soil organic matter (SOM) and the mineral matrix (Adams,
1973; McBride et al., 2012; Rühlmann et al., 2006), and
recent studies have further expanded on these compartment
models to include effects of the particle size distribution
(Ruehlmann, 2020; Schjønning et al., 2017), mineral com-
position (Ruehlmann & Körschens, 2020), and even SOM
quality (Ruehlmann, 2020). Despite being presented in multi-
ple forms and various degrees of complexity, the majority of
compartment models for ρs can be reduced to a weighted mean
of the particle densities for each soil component following
McBride et al. (2012):

1
ρ𝑠

=
𝑛∑
𝑖=1

(
𝑚𝑖

ρ𝑖

)
(1)

where ρs is the average particle density of the soil (Mg
m−3), mi is the mass proportion of the ith soil compo-
nent (kg kg−1), and ρi is the density of the soil component
(Mg m−3).

Core Ideas
∙ The particle density of South Greenlandic soils

ranged from 1.94 to 3.04 Mg m−3.
∙ Soil organic matter and soil fines content (<20 μm)

were primary drivers of particle density.
∙ A three-compartment model was developed for

particle density from soil organic matter, fines
content, and soils particles >20 μm.

∙ The three-compartment model accuracy was sim-
ilar (RMSE = 0.068 Mg m−3) to pedotransfer
functions and better than spectroscopic models.

∙ Organic C-based compartment models require
careful consideration of the soil organic mat-
ter/organic C content ratio.

The main advantage of compartment models is that they
provide density estimates for each soil component if the mass
proportions are accurately partitioned. Quantifying the SOM,
and thereby accurately partitioning the mineral and organic
components, is not straightforward because SOM estimations
based on loss-on-ignition (LOI) are affected by structural
water loss (SWL) from the mineral matrix during ignition
(Jensen et al., 2018; Sun et al., 2009). Moreover, estimations
of SOM based on organic carbon content (OC) depend on the
SOM/OC conversion factor, which may vary considerably as
a result of SOM composition (Pribyl, 2010). While the orig-
inal compartment model by Adams (1973) was based on a
LOI approach, recent work has predominantly used the latter
approach by estimating the SOM content based on standard-
ized or theoretical conversion factors (Manage et al., 2019;
Ruehlmann, 2020; Ruehlmann & Körschens, 2020; Schjøn-
ning et al., 2017). The application of unsupervised conversion
factors may ultimately result in erroneous particle densities of
the modelled subcomponents. For instance, using a SOM/OC
conversion factor that is too low will result in underestimating
the gravimetric SOM content, which will worsen the change in
ρs per percentage SOM and thus reduce the perceived density
of the SOM fraction. Weber et al. (2020) recently reported a
SOM density of 1.41 Mg m−3 for 170 Greenlandic soils when
using a conversion factor of 1.724, which is at the high end of
the typical range of 1.0−1.5 Mg m−3 reported in the literature
(Redding & Devito, 2006). However, a later study by Weber
et al. (2021) reported a SOM/OC conversion factor of 2.17
for 145 Greenlandic soils from the same area, which indicates
that the actual SOM density may have been severely underes-
timated. The application of unsupervised conversion factors
can be disadvantageous, especially for poorly described soils
such as the subarctic Greenlandic agricultural soils. It should
be noted that ρs models based on OC instead of SOM
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circumvents the use of conversion factors entirely, however,
such models cannot provide density estimates of individual
soil components. Another method, which can be used to pre-
dict the ρs is visible-near-infrared spectroscopy (vis–NIRS).
This method is a fast and cheap alternative to classical pedo-
transfer functions, as a single vis–NIR spectrum can be used to
predict numerous soil properties simultaneously (Ben-Dor &
Banin, 1995; Chang et al., 2001; Stenberg et al., 2010). The
ability to use vis–NIR to predict a wide range of soil prop-
erties can be attributed to direct spectral responses from soil
moisture, clay minerals, SOM quality and quantity, and elec-
tronic transitions of iron oxides (hydration water, hygroscopic
water, and/or free water) (Ben-Dor, 2002). Thus, predictions
of soil properties that are not spectrally active rely on inter-
correlations to spectrally active soil properties. The vis–NIRS
has successfully been used to predict both SOM (Kuang &
Mouazen, 2011; Viscarra Rossel & Behrens, 2010) and tex-
ture (Hermansen et al., 2017; Islam et al., 2003). These are
soil properties with direct spectral signatures, but vis–NIRS
was also successfully used to predict the ρs of 179 Danish and
German soils by Manage et al. (2019), who concluded that
the prediction of ρs was favorable for soils exhibiting a large
range in SOM contents (0.002–0.67 kg kg−1). Further, vis–
NIR has been used to predict ρs of 220 soils from Kurdistan,
for which the OC ranged from 0.003 to 0.091 kg kg−1 and the
predominant soil textural classes were clay, clay loam, and silt
loam (Davari et al., 2021). The ρs was predicted with accept-
able accuracy (RMSE of 0.05 Mg m−3) in the study of Davari
et al. (2021), and the ability to predict ρs from vis–NIR spectra
was attributed to spectral responses from clay.

Despite the availability of compartment models, their appli-
cability for cultivated subarctic soils has not been evaluated
yet with supervised conversion factors. Thus, the primary
aim of this study was to evaluate the ρs of a wide range of
subarctic agricultural soils from Southwest Greenland using
LOI-based compartment models, which include the effects of
structural water loss on SOM determination. The secondary
aim of the study was to compare the predictive power of the
compartment models to the best performing vis–NIR models
and simple linear PTFs.

We hypothesize that these subarctic soils will exhibit a rel-
atively high SOM density compared with the typical range
reported in the literature and that vis–NIR spectroscopy can
be used as a rapid and cost-effective alternative due to the
extensive range in SOM of the Greenlandic soils.

2 MATERIALS AND METHODS

2.1 Study sites

The study included 324 soil samples originating from 16
pasture and cultivated fields dispersed across the Igalikup
Kangerlua and Tunulliarfik fjord systems in Southwest Green-

land (Figure 1b), which lies in the marginal ice-free border
between the Labrador Sea and the Greenland ice sheet
(Figure 1a).

This mountainous agricultural landscape has been des-
ignated a UNESCO world heritage site due to its rich
agricultural history that dates back to the Norse Landnám
about 985 AD. As seen in Figure 1b, the investigated fields
are clustered around four agricultural areas of Qassiarsuk
(QA, 61˚09′ N 45˚30′ W), Igaliku (IG, 61˚00′ N, 45˚26′ W),
Sdr. Igaliku (SI, 60˚53′ N, 45˚16′ W), and Upernaviarsuk
(UP, 60˚44′57.3″ N, 45˚53′24.4″ W).

The study area is situated within the Palaeoproterozoic
Ketilidian Julianehåb batholith (ca. 1800 Ma), an igneous
complex dominated by granitic and granodioritic rocks
(Garde et al., 2002). The geology is, however, much more
complicated in the QA area, where rift magmatism in the
Mesoproterozoic resulted in the sandstone and basalt domi-
nated Eriksfjord Formation (Upton, 2013; Upton et al., 2003)
being interlayered with lavas, pyroclastic rocks, and intrusions
of alkaline silicate rocks and carbonatites (Andersen, 2008).
Overall, the investigated fields can be roughly separated into
glaciofluvial deposits of granitic origin (IG and UP), Aeo-
lian deposits of granitic origin (SI), and soils of complex
volcano-sedimentary origin (QA).

The study area is located to the South of the discontinu-
ous permafrost zone (Daanen et al., 2011), and the climate is
subarctic as the mean temperature in July is 10.3 ˚C in the
inner parts of the fjords. Depending on the proximity to the
ocean, the mean annual temperature and precipitation range
between 0.6 and 0.9 ˚C and 615 and 858 mm, respectively
(Hanna & Cappelen, 2002), and the mean number of grow-
ing days (≥5 ˚C) is approximately 146 in the inner part of the
fjords (Caviezel et al., 2017).

The vegetation of the fields consisted of perennial grass
mixtures including, inter alia, colonial bentgrass (Agrostis
tenuis L.), Kentucky bluegrass (Poa pratensis L.), perennial
ryegrass (Lolium perenne L.), red fescue (Festuca rubra L.),
timothy (Phleum pratense L.), and wild unsown grass species.

2.2 Soil sampling and analysis

Bulk soil samples of approximately 2 kg were extracted from
the upper 5 cm of soil immediately below the turf layer. The
depth of the turf layer ranged between 5 and 10 cm, resulting
in an effective sampling depth of 5–15 cm. The soil samples
were subsequently stored at 2 ˚C before being air-dried at
20 ˚C and dry-sieved with a screen size of 2 mm. The
OC content was measured directly by high-temperature dry
combustion using an ELTRA Helios C-Analyzer (ELTRA
GmbH), as all soils tested negative for carbonates using a
10% HCl aqueous solution. Soil texture was measured by
a combination of wet-sieving and the pipette method after
the removal of the SOM (Gee & Or, 2002), and the ρs was
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F I G U R E 1 (a) Map showing the broader location of the study area in Southwest Greenland. (b) Geological map showing the geological setting
and individual field locations within the four regions Qassiarsuk (QA), Igaliku (IG) South Igaliku (SI), and Upernaviarsuk (UP). Pink hues denote
granitic rocks associated with the Julianehåb batholith, yellow denotes sandstone, and blue-green hues in QA denote a mix of basaltic intrusives,
carbonatite, and ultramafic rocks. White/blue stripes denote undifferentiated moraine. GIS map from Kokfelt et al. (2019)

determined in duplicate using the water pycnometer method
(Blake & Hartge, 1986). Briefly, 20 g of oven-dry soil (110
˚C for 24 h) was mixed thoroughly with 20 ˚C demineral-
ized water in a 150-ml pycnometer. To ensure the removal
of entrapped air, the pycnometer was slowly heated on a hot
plate until the sample had boiled for 5 min. The pycnometer
was subsequently cooled to 20 ˚C and subjected to a partial
vacuum of approximately 100 mm Hg in a desiccator for 1
h. Loss-on-ignition was determined by oven-drying 6 g of
air-dry soil for 24 h at 105 ˚C and subsequently igniting the
samples at 550 ˚C for 12 h in a half-full Nabertherm L 40/11
muffle furnace (Nabertherm GmbH). The loss-on-ignition at
550˚C (LOI550) was reported as the mass loss per unit of
oven-dry soil (Hoogsteen et al., 2015).

To circumvent the potential biases of using a fixed
SOM/OC conversion factor, we calculated the SOM as

SOM = LOI550 − SWL (2)

where SOM is the soil organic matter (kg kg−1), LOI550 is the
loss-on-ignition at 550 ˚C (kg kg−1), and SWL is the structural
water loss from the mineral matrix during ignition (kg kg−1).

Briefly, the SWL was estimated by approximating the min-
eral modal abundances, that is, the mass fraction, in each
particle size class based on the semi-quantitative mineralogi-
cal composition reported for adjacent fields in QA and IG by
Rutherford (1995). When the mineral modal abundances are
known, the SWL associated with each particle size class can
be calculated as:

SWLFraction = 𝑚Fraction ×
∑
𝑛

SWLMineral × 𝑚Mineral (3)

where SWLFraction is the SWL associated with each particle
size class, mFraction is gravimetric content of the particle size
class, SWLMineral is the SWL associated with each mineral
type, and mMineral is the gravimetric content of each mineral
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in each particle size class. The SWLMineral were set equal
to the values reported by Sun et al. (2009) (Supplemental
Table S1).

2.3 Derivation of the three-compartment
model

As seen in Equation 1, the specific volume (ρs
−1; m3 Mg−1)

increases linearly with the volume occupied by all soil com-
ponents in the mix, which results in a curvilinear relationship
of these mixing models with respect to ρs.

Partitioning the soil into a mineral and organic compart-
ment can be achieved by:

SMS = 1 − SOM (4)

where SMS is the total soil mineral substance (kg kg−1).
We extended the traditional two-compartment model by fur-
ther separating the SMS into a mineral fines compartment
(FC; <20 μm) and coarse silt and sand compartment (CC;
≥20 μm):

SMS = FC + CC (5)

Rearranging Equation 1 and inserting Equations 4 and 5
yielded a three-compartment (3CM) model:

ρs =

1
/[(

ρSOM−1 + SOM
)
+
(
ρFines−1 × FC

)
+
(
ρCoarse−1 × CC

)]

(6)

where ρSOM, ρFines, and ρCoarse are the densities of SOM, FC,
and CC compartments, respectively. The ρSOM was derived
from a linear fit between the soil specific volume (ρS

−1) and
the SOM content, which yields a two-compartment model
with SOM and SMS following Equation 1. For this linear
function, the ρSOM

−1 was derived at SOM equal to 1 kg−1.
The 3CM was fitted to the full dataset and a reduced dataset,
including only the soils from IG, SI, UP. Further, the ρFines
and ρCoarse were fitting parameters in this function.

2.4 Vis–NIR measurements

Visible–NIR spectra were measured on approximately 50 g
air-dry soil using a vis–NIR spectrometer (NIRS DS2500,
FOSS) in a climate-controlled laboratory with an average tem-
perature and relative humidity of 23 ˚C and 48%, respectively.
The spectrometer automatically performs seven measure-
ments through the quartz window of a rotating sample cup
and reports the average vis–NIR spectra. Lastly, the resulting
reflectance spectra were transformed to absorbance:

Abs =
[
log

( 1
𝑅

)]
(7)

where R is the reflectance at a given wavelength.

2.5 Data analyses and statistics

For qualitative analysis of the measured vis–NIR spectra,
the Automatic Weighed Least Squares algorithm was applied
for baseline-correction. Further, different spectral preprocess-
ing techniques were tested to optimize model performance.
These spectral preprocessing techniques included standard
normal variate followed by detrending (Barnes et al., 1989)
Savitzky–Golay first and second derivatives (Savitzky &
Golay, 1964) as well as gap-segment first and second deriva-
tives (Norris, 2001). The vis–NIR calibration model was made
using partial least squares (PLS) regression (SIMPLS algo-
rithm, (de Jong, 1993), and leave-one-out cross-validation
was performed to evaluate the model performance. The best
combination of spectral preprocessing and calibration model
was determined by the root mean square error of the cross-
validation (RMSECV) and r2. The optimal number of factors
(NF) was selected where RMSECV stopped improving sig-
nificantly (Gowen et al., 2011). The regression coefficients
of the resulting calibration models were evaluated to identify
the wavelengths of particular importance and subsequently
cross-checked with the absorption bands for possible soil
components. All multivariate data analysis was performed
using the PLS toolbox v. 8.6.2 (Eigenvector Research Inc.)
in Matlab.

Pearson’s linear correlation coefficient, r, was used to
evaluate the correlation between two parameters, and the
goodness of fit was evaluated by the coefficient of determi-
nation, r2, and adjusted coefficient of determination, r2

adj,
for linear regressions and multiple linear regressions, respec-
tively. Multiple linear regressions were made with R-project
software package v. 4.1.1 (R Core Team, 2021) to create pedo-
transfer functions that correlate soil texture and SOM to ρs.
Nonlinear optimization of the 3CM was performed with R
using the nls-function, and model performance was evaluated
using the root mean square error.

3 RESULTS AND DISCUSSION

3.1 Soil particle size distribution and
organic matter contents

The investigated soils covered a wide range in particle
size distributions with a total range in clay, fine silt, and
coarse sand of 0.020−0.185 kg kg−1, 0.017−0.239 kg kg−1,
and 0.015−0.706 kg kg−1, respectively (Table 1). Despite
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T A B L E 1 Summary of the soil properties for the 234 soils in this study, including soil texture, soil organic matter (SOM), soil organic carbon
(OC), particle density (ρs), and loss-on-ignition at 550 ˚C (LOI550)

Region Fields Samples Statistic CL Fsi Csi Fsa Csa LOI550 SOMa OC ρs

kg kg−1 Mg m−3

QA 7 121 Mean 0.072 0.110 0.206 0.293 0.156 0.168 0.163 0.077 2.500

Min. 0.033 0.060 0.064 0.134 0.015 0.046 0.042 0.017 1.936

Max. 0.168 0.192 0.330 0.426 0.610 0.609 0.602 0.273 3.044

σ 0.022 0.021 0.061 0.074 0.118 0.116 0.116 0.054 0.204

IG 4 114 Mean 0.074 0.123 0.191 0.305 0.174 0.142 0.134 0.067 2.469

Min. 0.027 0.064 0.105 0.135 0.050 0.037 0.021 0.014 2.034

Max. 0.185 0.239 0.271 0.420 0.412 0.406 0.397 0.195 2.680

σ 0.037 0.045 0.041 0.071 0.060 0.065 0.065 0.031 0.112

SI 3 40 Mean 0.030 0.035 0.189 0.474 0.224 0.052 0.048 0.023 2.639

Min. 0.020 0.017 0.140 0.347 0.133 0.026 0.022 0.009 2.564

Max. 0.051 0.065 0.252 0.579 0.398 0.096 0.091 0.046 2.699

σ 0.008 0.008 0.022 0.059 0.058 0.019 0.018 0.009 0.038

UP 2 49 Mean 0.053 0.092 0.157 0.172 0.414 0.119 0.112 0.057 2.483

Min. 0.026 0.056 0.073 0.094 0.212 0.036 0.031 0.020 2.283

Max. 0.085 0.229 0.266 0.334 0.706 0.252 0.242 0.125 2.636

σ 0.017 0.040 0.045 0.047 0.093 0.058 0.057 0.027 0.097

All 16 324 Mean 0.065 0.103 0.191 0.301 0.210 0.137 0.131 0.064 2.504

Min. 0.020 0.017 0.064 0.094 0.015 0.026 0.021 0.009 1.936

Max. 0.185 0.239 0.330 0.579 0.706 0.609 0.602 0.273 3.044

σ 0.030 0.043 0.051 0.104 0.127 0.092 0.091 0.043 0.156

Note. QA, Qassiarsuk; IG, Igaliku; SI, South Igaliku; UP, Upernaviarsuk; CL, clay (<2 μm); Fsi, fine silt (2–20 μm); Csi, coarse silt (20–60 μm); Fsa, fine sand (60–200 μm);
Csa, coarse sand (0.2–2 mm); σ, standard deviation. The particle size classes are expressed in kg kg−1 oven-dry soil, which includes SOM.
aThe SOM was determined using LOI550 and subtracting the theoretical structural water loss during ignition (see Supplemental Tables S1 and S2).

the extremely hydrophobic nature of the Greenlandic soils
(Weber et al., 2021), the soils did not exhibit issues related to
inadequate wetting and floating organic substrate within the
pycnometer, which has led some authors to suggest ethanol
solutions and nonpolar liquids for organic soils (Blake &
Hartge, 1986; Redding & Devito, 2006). While the high-
organic soils took slightly longer to saturate, the samples
behaved identically approximately halfway through the heat-
ing procedure, which indicates that the high-organic soils
required more work to saturate. Nevertheless, the replicabil-
ity was high across all OC contents, with a maximum range
between duplicate measurements of 0.012 Mg m−3.

The two regions with the highest number of samples, that
is, QA and IG, exhibited relatively similar mean values and
standard deviations across all particle sizes. Comparatively,
the Aeolian sands of SI were dominated by fine sand and con-
tained low amounts of clay and fine silt, while the coarse sand
fraction dominated UP soils. The theoretical structural water
loss (SWL) associated with the clay and silt fraction was cal-
culated to range between 0.032 and 0.075 kg kg−1 and 0.003
and 0.007 kg kg−1, respectively, and the SWL from the sand
fraction was estimated to be 0.002 kg kg−1 (Supplemental
Table S2). The theoretical SWL agreed well with the findings

of Jensen et al. (2018), who reported SWL of clay, silt, and
sand of 0.021 kg kg−1, 0.005 kg kg−1, and 0.0008 kg kg−1,
respectively, in a Danish agricultural field. Further, Hoog-
steen et al. (2015) reported a SWL of 0.075 kg kg−1 for clay
in a set of Dutch clay soils, matching the upper limit for the
Greenlandic soils. Nevertheless, SWL had little effect on the
calculated SOM values (Supplemental Figures S1 and S2), as
the LOI at 550 ˚C was substantial for these highly organic soils
(Figure 1a). Consequently, the SOM ranged between 0.021 kg
kg−1 and 0.602 kg kg−1 for all soils, with the SI soils having
the lowest SOM content with a mean of 0.048 kg kg−1.

The obtained SOM contents were strongly linearly corre-
lated (r2 = .97) with the OC content. The linear regression had
a small positive intercept, which was insignificant (Figure 2a).
The regression slope coefficient was 0.462, which indicates
a gravimetric C content in SOM of 46.2% and a SOM/OC
conversion factor of 2.16. The obtained regression coefficient
from the Greenlandic soils was in the lower end of the range
of 0.41−0.73, or SOM/OC of 1.4−2.4, reported by Pribyl
(2010). The study of Pribyl (2010) also proposed an upper
limit for the SOM/OC conversion factor of 2.5 for young
soils with poorly decomposed SOM, consisting predomi-
nately of compounds with low C concentrations, for example,
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F I G U R E 2 (a) Organic carbon content (OC) as a function of soil organic matter (SOM) for the investigated soils. (b) Soil organic matter as a
function of clay (CL) content for the investigated soils with CL/SOM ratios of 1:4.6 (solid) and 1:0.46 (dashed) lines, which corresponds to a CL/OC
ratios of 1 and 10, respectively

carbohydrates. The obtained SOM/OC conversion factor of
2.16, although smaller than 2.5, is still significantly larger than
the often used factor of 1.724. This may thus reflect a poorly
decomposed SOM pool due to the cold climate impeding the
microbial decomposition of the SOM. This mechanism is well
documented in Cryosols, where poor decomposition of SOM
results in carbohydrate-rich and easily decomposable SOM
in a particulate form close to the active layer (Ernakovich
et al., 2015; Kögel-Knabner & Amelung, 2021; Mueller et al.,
2015). Additionally, the investigated soils are highly saturated
in SOM, exhibiting CL/OC ratios < < 10 (Figure 2b), which
indicates a high content of noncomplexed SOM (Dexter et al.,
2008) and supports the impression of a poorly decomposed
SOM pool. Furthermore, high SOM/OC ratios have previ-
ously been reported for subarctic soil. For example, Azevedo
et al. (2021) reported a ratio of 2.24 for 23 soils from Abisko
in northern Sweden.

3.2 Particle density

The measured ρs ranged from 3.044 to 1.936 Mg m−3, with
the majority of the samples exhibiting a curvilinear relation-
ship between ρs and SOM when plotted as individual soils
(Figure 3a). The QA soils generally exhibited higher and
more variable ρs compared with the other regions, especially
at low SOM contents, which may be attributed to the var-
ied geological setting in the region. Overall, the Greenlandic
soils consistently exhibited higher ρs across the entire SOM
range compared with the model developed by Rühlmann et al.
(2006) on 163 soils from the United States, India, and northern
Europe, which predicted ρs range of 2.608−1.794 Mg m−3.
The higher ρs of the Greenlandic soils is attributed to a higher
density of the SMS (ρSMS) and especially SOM (ρSOM).

The field-average ρs decreased linearly with SOM
(r2 = .89) across all the investigated fields (Figure 3b). A

positive correlation (r = .33) was evident between FC and ρs
for the QA soils (Figure 3d), while no clear correlations were
found between FC and both the field average ρs (Figure 3e)
and region-wide ρs (Figure 3d) for the IG, IS, and UP soils.
An apparent discrepancy was found between the two biggest
fields, that is, IG-4 and QA-2, where the ρs of the IG-4 was
strongly correlated with SOM (r2= .98; Figure 3c), and the
QA-2 with FC (r2= .59; Figure 3f).

3.3 Vis–NIR spectra

The raw vis–NIR spectra were affected by both FC and SOM
content. This can be seen, that is, as a gradient in absorbance
throughout the visible range according to both SOM and FC
content (Figure 4a), with the samples having the highest SOM
and FC content also exhibiting the highest absorbance.

Soil organic matter as well as minerals containing iron
oxides absorb light throughout the visible range (Stenberg
et al., 2010). The effects of FC and SOM content on spectra
in the near-infrared range were enhanced after the applica-
tion of a baseline filter (Figure 4b). All soils exhibited a peak
around 1,400 nm (OH stretch) and 1,900 nm (OH stretch and
HOH bend), which are some of the most characteristic absorp-
tions features of soil moisture throughout the vis–NIR spectral
range (Clark et al., 1990; Hunt, 1977; Stenberg et al., 2010;
Viscarra Rossel & Behrens, 2010). A shift in this peak loca-
tion for the 1,400 nm absorption feature can be observed when
comparing the two soils exhibiting the highest SOM content
(1,450 nm) to the two soil samples exhibiting the highest
contents of FC (1,414 nm). The two soil samples contain-
ing the highest amounts of SOM (0.536 and 0.277 kg kg−1)
exhibit a peak in absorbance at 1,729 nm, which is a spectral
signature associated with the CH bond in organic matter (Vis-
carra Rossel & Behrens, 2010). Further, all soils in Figure 4
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F I G U R E 3 (a) Particle density (ρs) vs. soil organic matter (SOM), (b) field-average ρs vs. field-average SOM, (c) ρs vs. SOM for a large OM
gradient exhibited by field IG-4 (blue circle) and a large gradient in fines content (FC; <20 μm) exhibited by field QA-2 (red square), (d) ρs vs. FC
for all soil samples, (e) field-average ρs vs. field-average FC, (f) ρs vs. FC for IG-4 and QA-2 with linear regression for QA-2 (dashed). The solid line
in “a” represents the relationship between ρs and SOM found by Rühlmann et al. (2006)

F I G U R E 4 Selected visible near-infrared (vis–NIR) spectra where three represent a soil organic matter (SOM) gradient within field QA-1
from 0.089 to 0.536 kg−1 (red gradient), and three representing a gradient in fines content from 0.199 to 0.365 kg−1 within field IG-4. The spectra are
illustrated as (a) raw spectra and (b) baseline-corrected spectra (algorithm: Automatic Weighted Least Squares)
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F I G U R E 5 Soil specific volume as a function of soil organic
matter content (SOM) with linear regressions for all soils (dashed line)
and the reduced dataset (solid line). The linear regressions were
extrapolated to SOM = 1 kg−1 to find the specific volume of SOM

exhibited small peaks around 2,310 and 2,350 nm, which
may be caused by organic constituents (Stenberg et al., 2010)
or absorptions features from Fe/Mg-OH (Fang et al., 2018;
Hunt, 1977).

3.4 Three-compartment model

The specific volume (1/ρs) and SOM exhibited a strongly lin-
ear (r2 = .97) relationship for the IG, SI, and UP soils, which
indicated a constant ρs of the SOM of 1.49 Mg m−3 for this
reduced dataset (Figure 5). Including the QA soils markedly
decreased the r2 to .86 and resulted in a ρSOM of 1.57 Mg m−3,
which likely was an artifact due to the variation in mineral
densities in the QA soils.

The obtained ρSOM values were higher than the 1.41 Mg
m−3 Weber et al. (2020) reported for 170 Greenlandic soils
that were included in the present study. This increase in ρSOM
is a direct result of the partitioning of the SOM and SMS frac-
tions, where Weber et al. (2020) used an OC/SOM ratio of
0.58, which is significantly higher than the OC/SOM ratio
of 0.462 found in the present study. This highlights the pit-
falls of directly comparing or ascribing a physical meaning
to the fitting parameters, for example, ρSOM when different
and unsupervised conversion factors are used for modeling the
OC-ρs relationship. Additionally, no evidence was found that
the OC/SOM ratio and ρSOM varied across the SOM range,
which contrasts the work by Ruehlmann (2020), who hypoth-
esized that both would increase. Nevertheless, the predicted
ρSOM was in the high end (1.49 Mg m−3) or above (1.57 Mg
m−3) the suggested range of 1.34−1.52 Mg m−3, which was

obtained using the LOI-based approach on boreal wetland
surface soils (Redding & Devito, 2006), boreal forest soils
(Redding et al., 2005), temperate rainforest (Adams, 1973),
and pure Finnish sphagnum peat (Heiskanen, 1992).

Due to the divergent behavior of the QA soils, it was
decided to use the ρSOM of 1.49 Mg m−3 to parameterize the
3CM on both the full and reduced datasets. The 3CM resulted
in a moderately good fit of the full dataset with an RMSE
of 0.067 Mg m−3 (Figure 6a), and the fitted densities of the
FC and CC (ρFines and ρCoarse) were 3.05 and 2.71 Mg m−3,
respectively.

Overall, the 1:1 line generally bisected the data resulting
in overprediction for the IG and UP soils, while the ρs were
underpredicted for the majority of the QA soils. The regional
differences in model predictions were likely due to different
clay mineralogy and higher ρFines for the QA soils, which is
indicated by the positive correlations between FC and ρs in
Figure 3d and 3f . The high ρFines thus resulted in inflated
predictions for the non-QA soils with the largest FC (IG and
UP), while the SI soils were well predicted due to their low
FC content.

The 3CM excellently fitted the reduced dataset with an
RMSE of 0.019 Mg m−3 (Figure 6b). The fitted ρFines and
ρCoarse, were 2.74 and 2.73 Mg m−3, respectively, which
corroborates the discrepancy in ρFines discussed above. The
obtained ρCoarse of 2.73 agrees well with the average mineral
density of 2.73 Mg m−3, which Weber et al. (2020) obtained
from a subset of the investigated soils. The fitted ρFines of 2.74
Mg m−3 for the reduced dataset is close to the clay densi-
ties of 2.86 and 2.761 Mg m−3 reported for large international
datasets by Schjønning et al. (2017) and Ruehlmann (2020),
respectively. The RMSE of 0.019 Mg m−3 was low compared
with the range of 0.035-0.11 Mg m−3, which was reported in
two studies that applied two-compartment models on Cana-
dian soil inventories with a similar range in ρs (McBride et al.,
2011; McBride et al., 2012). However, it should be noted that
the superior model performance likely results from relatively
less confounding factors, for example, soil depth, vegetation,
climate, management, soil age, and geological setting, which
is relatively homogeneous for the investigated soils when the
QA soils are excluded.

3.5 Pedotransfer functions

The simple PTFs using SOM and FC resulted in a decrease
in the goodness of fit compared with the three-compartment
models (Figure 7). The RMSE for the full dataset increased
by 0.003 to 0.070 Mg m−3 with an adjusted r2

adj of .80. The
effects of both SOM and FC in the regression were statistically
significant (p < .0001).

The clay-based PTF exhibited similar intercepts and SOM
coefficients compared with the FC-based PTFs, but the
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F I G U R E 6 Predicted vs. measured particle densities for the three-compartment model (Equation 6) fitted to (a) the full dataset and (b) the
reduced dataset

F I G U R E 7 Predicted vs. measured for pedotransfer functions for particle density (ρs) derived by multiple linear regressions between ρs, soil
organic matter (SOM), and either (a) fines content (FC) or (b) clay content (CL) on the full dataset. (c) Best performing pedotransfer function for the
reduced dataset

regression coefficients for clay were markedly higher than the
regression coefficients obtained for FC (Figure 7b). The over-
all performance of the clay-based PTFs were slightly higher
with an RMSE of 0.068 Mg m−3 and an adjusted r2

adj of .81
for the full dataset. The best performing PTF on the reduced
dataset was based on only SOM, as the FC and CL did not
significantly contribute to ρs (Figure 7b).

3.6 Vis–NIR models

The best performing PLS regression models were obtained
using Gap Segment first derivative (segment size: 9 and a
gap size: 25) as preprocessing technique. The segment size
denotes the number of points across which the spectrum is
smoothened, and the gap denotes the gap size in between the

two segments (Norris, 2001). The optimal number of factors
was 5 and 8 for the full and reduced dataset, respectively
(Figure 8).

The vis–NIR calibration models exhibited a similar trend to
the pedotransfer functions, that is, markedly better predictions
of ρs when the QA soils were removed from the dataset. The
calibration model on the full dataset resulted in an RMSECV
of 0.091 Mg m−3, and the reduced calibration model resulted
in a respectable RMSECV of 0.030 Mg m−3, which corre-
sponds to a relative increase compared with the 3CM of 36
and 58%, respectively. The RMSE of the vis–NIR calibration
model on the full dataset is comparable with the RMSECV
of 0.10 Mg m−3 obtained in a calibration model for 179
Danish and German topsoils by Manage et al. (2019). Their
range in ρs was, however, significantly higher (1.60−2.66 Mg
m−3), resulting in an r2 of .87. Manage et al. (2019) posited
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F I G U R E 8 Predicted vs. measured particle densities for the visible near-infrared (vis–NIR) models on (a) the full dataset, and (b) the reduced
dataset

F I G U R E 9 Regression coefficients for visible near-infrared (vis–NIR) models using (a) the full data and (b) the reduced dataset

that the high accuracy obtained in their model was attributed
to their extensive range in SOC (0.001−0.451 kg kg−1),
which they supported by only achieving an r2 of .62 for 83
mineral topsoils with a SOC range of 0.001−0.06 kg kg−1.
Conversely, clay content was suggested to be the most impor-
tant chromophore for ρs prediction by Davari et al. (2021),
who obtained an RMSECV of 0.05 Mg m−3 (r2 of .62) in a cal-
ibration model for 220 Kurdistan topsoils with a ρs range of
2.38–2.65 Mg m−3. Since the full dataset in the present study
exhibits a relatively large OC range (0.009−0.273 kg kg−1)
and a moderate clay range (0.020−0.185 kg kg−1), the poor
performance is likely caused by high variability in the min-
eralogy and/or the presence of dense sesquioxides of the QA
soils, for which the vis–NIR model is unable to account. The
vis–NIR calibration model on the reduced dataset resulted
in an r2 of .94, which is markedly higher than the other

efforts reported in the literature. The high accuracy obtained
on the reduced dataset is likely due to the soils being from the
same geological setting and the lack of confounding factors
mentioned in the previous section. The overall performance
of the vis–NIR models indicates that vis–NIR spectroscopy
may serve as a fast and cost-effective alternative to the tra-
ditional approaches of estimating ρs, especially in soils with
homogenous parent material.

The regression coefficients from a vis–NIR model can be
indicative of which spectral absorption bands are important
for predicting a specific independent variable (Haaland &
Thomas, 1988). The model on the full dataset (Figure 9a)
exhibited peaks around 469 and 600, which is comparable
to the model on the reduced dataset (Figure 9b), for which
regression coefficient peaks were found at 465 and 623 in the
visible range.
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These peaks might be related to electronic transitions
of iron oxides, for example, hematite (444 and 650 nm) or
goethite (480, 488, and 650 nm) (Scheinost et al., 1998).
Comparably, the study of Davari et al. (2021) found the
wavelengths around 453 and 608 nm to be correlated to
ρs. The model on the full dataset exhibit a peak around
854 nm, which could be related to either iron oxides or
organic constituents (CH-bond) (Viscarra Rossel & Behrens,
2010; Viscarra Rossel et al., 2006). Both models exhibited
peaks due to soil moisture around 1,400 (OH stretch) and
1,900 nm (OH stretch and HOH bend). Several of the
regression coefficient peaks are located in spectral regions
associated with overtones of the CH stretch (peaks for model
on the full dataset: 1,713, 2,259, and 2,319 nm; peaks for
model on the reduced dataset: 1,718, 2,301, and 2,322 nm)
(Viscarra Rossel & Behrens, 2010). Especially the peak
around 2,320 nm is very distinct in both models and could
also be related to the combination of Mg-OH bend and OH
stretch near 2,300 nm (Viscarra Rossel et al., 2006).

3.7 Model limitations

The ρs models developed herein are based on Greenlandic
soils that have a unique pedogenetic process compared with
soils in other parts of the world. Consequently, the clay
mineralogy is likely to be different from soils from other
warmer parts of the world, and the clay contents are quite low
(<0.20 kg kg−1). Furthermore, the organic matter from these
fields originate from grass-based materials that are poorly
decomposed under subartic environments. The models are
thus optimally applicable to areas that exhibit similar geolog-
ical properties and soil physical and chemical characteristics.

4 CONCLUSIONS

This study investigated the particle density (ρs) of soils from
the QA, IG, SI, and UP regions, which cover a large part of
the agricultural area in Southwest Greenland. A physically
based three-compartment model was developed on the mixing
ratios SOM, mineral FC (<20 μm), and the CC (≥20 μm), and
the model performance was subsequently compared with sim-
ple linear pedotransfer functions and vis–NIR spectroscopic
models.

The soils exhibited relatively high ρs ranging from 1.936
to 3.044 Mg m−3, with the QA region exhibiting a particu-
larly high variation in ρs values due to its complex geological
setting. The study showed that SOM and FC were the main
controls for these subarctic soils and that the SOM exhibited a
high OC/SOM ratio of 2.16. Further, no indication was found
that the OC/SOM ratio and the density of SOM varied as a
function of SOM content.

All of the three prediction approaches exhibited a signif-
icant reduction in model performance when including the
QA region, as neither the applied soil data nor the vis–NIR
spectra were able to account for the high variability in the
mineralogy and/or the presence of dense sesquioxides of these
soils. Nevertheless, all three approaches produced adequate
results for most uses, especially when used on a dataset with
homogeneous parent material.

This study highlights the pitfalls of applying unsupervised
SOM conversion factors when ascribing a physical mean-
ing to the fitted densities of the subcomponents, especially
when dealing with soil data with a limited range of each
subcomponent.
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