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Abstract 8 

Objective: Closed-loop prosthesis interfaces, which combine electromyography (EMG)-based control with 9 

supplementary feedback, represent a promising direction for developing the next generation of bionic limbs. 10 

However, we still lack an understanding of how users utilize these interfaces and how to evaluate competing 11 

solutions. In this study, we used the framework of speed-accuracy trade-off functions (SAF) to understand, 12 

evaluate, and compare the performance of two closed-loop user-prosthesis interfaces. 13 

Approach: Ten able-bodied participants and an amputee performed a force-matching task in a functional box-14 

and-block setup at three different speeds. All participants were subjected to both interfaces in a crossover study 15 

design with a one-week washout period. Importantly, both interfaces used (identical) direct proportional 16 

control but differed in the feedback provided to the participant (EMG feedback vs. Force feedback). Therefore, 17 

we estimated the SAFs afforded by the two interfaces and sought to understand how the participants planned 18 

and executed the task under the various conditions. 19 

Main results: We found that execution speed significantly influenced performance, and that EMG feedback 20 

afforded better overall performance, especially at medium speeds. Notably, we found that there was a 21 

difference in the SAF between the two interfaces, with EMG feedback enabling participants to attain higher 22 

accuracies faster than Force feedback. Furthermore, both interfaces enabled participants to develop flexible 23 

control policies, while EMG feedback also afforded participants the ability to generate smoother, more 24 

repeatable EMG commands. 25 

Significance: Overall, the results indicate that the performance of closed-loop prosthesis interfaces depends 26 

critically on the feedback approach and execution speed. This study showed that the SAF framework could be 27 

used to reveal the differences between feedback approaches, which might not have been detected if the 28 

assessment was performed at a single speed. Therefore, we argue that it is important to consider the speed-29 

accuracy trade-offs to rigorously evaluate and compare user-prosthesis interfaces.  30 

  31 
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Introduction 32 

Myoelectric interfaces that leverage electromyographic (EMG) signals recorded non-invasively from the 33 

residual muscles of amputees enable the control of advanced upper limb prosthetic devices. These interfaces 34 

have been combined with supplementary feedback using noninvasive vibrotactile or electrotactile stimulation 35 

and principles of sensory substitution to provide users with useful information regarding the state of the 36 

prosthesis. Together, these approaches promise to address the key challenge of closing the user-prosthesis loop 37 

to create the next generation of non-invasive interfaces aimed at improving the reliability and intuitiveness of 38 

prosthesis control [1], [2].  39 

A key limitation in the development of such closed-loop interfaces is the lack of a more basic understanding 40 

of the role of supplementary feedback in user–prosthesis interaction [3]. Researchers in this field have used 41 

tools and concepts from human motor learning and control to better understand how subjects integrate 42 

supplementary feedback to plan and control their devices. Consequently, supplementary feedback has been 43 

shown to aid in learning internal models of the prosthesis [4], [5], improve state estimation [6], and improve 44 

psychosocial aspects of subjective experience [7], [8]. This knowledge has been successfully applied to design 45 

better interfaces and evaluate existing solutions [9]. Despite these promising recent developments, an 46 

understanding of motor control in the context of prosthesis use is still in its infancy.  47 

In a recent study, the authors showed how subjects could take advantage of supplementary feedback to develop 48 

flexible prosthesis control policies and exhibit a speed-accuracy trade-off [10]. The speed–accuracy trade-off 49 

is a ubiquitous behavioral phenomenon observed in several species and across several tasks, from foraging to 50 

tool use [11]. The speed-accuracy tradeoff function (SAF) has been used as an instrument to understand both 51 

perceptual and motor ability and has a wide reception in the field of human-machine interfaces, building on 52 

seminal work by Fitts [12]. Various tasks inspired by this experimental paradigm have been applied to 53 

myoelectric control [13]–[20]. In classical Fitts’ style pointing tasks, participants are required to move a cursor 54 

to a target location specified by the target width and distance, and their movement time is recorded. Therefore, 55 

these experiments determine speed (movement time) as a function of task difficulty, while accuracy in such 56 

tasks is given and corresponds to “asymptotic” performance. Alternatively, one could hold task difficulty 57 

constant and measure how accuracy changes when the same task is performed at different speeds, a framework 58 

that has been successfully used to understand motor skills [21]–[23].   59 

A SAF so measured can be characterized by its intercept, rate, and asymptote without making any assumptions 60 

on the functional form of the trade-off, barring monotonicity [24] (see Figure 1). The intercept characterizes 61 

the minimum time required to have any chance of success and the rate provides information about how rapidly 62 

the trade-off between speed and accuracy can be achieved, and the asymptote characterizes a performance 63 

ceiling when one performs the task slowly and carefully. Therefore, SAF has been proposed as a preferred 64 
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metric for measuring and understanding a participant’s overall performance and motor ability [22], [24]. 65 

However, no current user-prosthesis interface has been analyzed using this methodology.  66 

A common practice in the field to evaluate the effectiveness of interfaces involves measuring the performance 67 

in a given task at a ‘comfortable pace’. We argue that such an evaluation, which corresponds to sampling the 68 

SAF at a single point, is an insufficient indicator of the range of performance afforded by the (closed-loop) 69 

interfaces. Moreover, a comparison of competing interfaces is compromised when the comparison is based on 70 

a single point on SAF. Such a comparison is limited in scope (a single point vs. a full SAF), and it could even 71 

entail comparing different points while assuming they are the same (i.e., a ‘comfortable pace’ might differ 72 

across subjects, tasks, and interfaces). On the other hand, determining the SAF allows a comprehensive 73 

characterization of performance and can provide unique insights that can be used to make informed choices. 74 

For example, consider the two hypothetical interfaces shown in Figure 1. Sampling the two interfaces at 75 

different points of their respective SAFs leads to different conclusions regarding which interface affords better 76 

performance. Moreover, a user who emphasizes speed may be better off with interface A; however, relaxing 77 

this requirement suggests that interface B is a better choice, the information that is only available through the 78 

SAF. Such a comprehensive assessment becomes even more pressing as there are several promising user-79 

prosthesis interfaces that use different combinations of control (e.g., direct proportional, pattern recognition, 80 

regression, etc. [25]) and feedback interfaces (e.g., force, aperture, and proprioceptive feedback using different 81 

modalities [26], [27]). Narrowing down the focus to closed-loop control of grasping force, arguably the critical 82 

function of hand prostheses, several feedback interfaces have been proposed in the literature [3], [26], [28]. 83 

 

Figure 1: Speed-Accuracy Trade-off. A cartoon depicting the concept of speed-accuracy trade-offs as 

characterized by (1) intercept, (2) rate and (3) asymptotic performance, for two different hypothetical 

interfaces.  
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However, comparisons of these interfaces are difficult because the performance is sampled at a single, and 84 

possibly different, point along the SAF. 85 

In this experiment, we empirically studied the SAF in closed-loop myoelectric control, using the prosthesis 86 

force-matching paradigm in a functional task – the box and blocks test – to (1) show how SAF can be used to 87 

evaluate (closed-loop) prosthesis interfaces and (2) thereby understand how they affect users’ ability to control 88 

the prosthesis. Specifically, we compared two interfaces that both use direct proportional control to modulate 89 

prosthesis velocity but differ in the feedback they provide to the participant – EMG feedback [29]–[31] vs. 90 

force feedback (see Table A1 in [3]). We used a prosthesis force-matching paradigm to understand how well 91 

the two interfaces enabled participants to achieve the same target force at three different speeds, ordinally 92 

defined as fast, medium, and slow (see Methods: Experimental Design). Because the difficulty of the task and 93 

the control interface are fixed, the performance differences that arise from this experiment are a consequence 94 

of the feedback approach. After sampling the SAF at the three distinct speed requirements, we investigated 95 

how the SAF differs for the two interfaces and analyzed how the participants’ control policies change across 96 

both interfaces and speeds. Finally, using a case study of a single amputee, we investigated whether the results 97 

could be extended to amputees.  98 

Methods  99 

Participants 100 

Ten healthy, able-bodied participants (seven men and three women with a mean age of 28 ± 2 years) and one 101 

transradial amputee (female, 49 years old, 10 years since traumatic amputation of the non-dominant hand, 102 

limited daily use of a single DoF myoelectric prosthesis) were recruited. All the participants signed an informed 103 

consent form before the start of the experiment. The experimental protocol was approved by the Research 104 

Ethics Committee of the Nordjylland Region (approval number N-20190036). 105 

Experimental Setup 106 

The experimental setup is shown in Figure 2A. The able-bodied participants donned an orthotic wrist 107 

immobilization splint to produce near-isometric wrist flexion and extension, and a prosthetic device 108 

(Michelangelo hand, OttoBock, DE) was attached to the splint, with the arm placed in a neutral position. A 109 

custom-fit socket was created for the amputee. Two dry EMG electrodes with embedded amplifiers (13E200, 110 

Otto Bock, DE) were placed over the wrist flexors and extensors of the right forearm, located by palpating and 111 

visually observing muscle contractions. Five vibrotactors (C-2, Engineering Acoustics Inc.) were positioned 112 

equidistantly around a cross-section of the upper arm, and an elastic band was used to keep them in place. A 113 

standard Box and Blocks setup was used for the experimental task. Task instructions were displayed on a 114 

computer screen placed at a comfortable viewing angle and distance. The prosthesis was connected to a 115 
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standard laptop PC through a Bluetooth link, whereas the vibrotactors were connected through a USB port. 116 

The control loop for the experiment was implemented in MATLAB Simulink using a toolbox for testing 117 

human-in-the-loop control systems [32] and operated on the host PC in real time at 100 Hz using the Simulink 118 

Desktop Real Time toolbox.  119 

EMG Control 120 

Participants used near-isometric wrist flexion and proportional control to generate velocity commands to close 121 

the prosthesis. Opening the prosthesis was triggered by a strong contraction (see below) of the wrist extensors, 122 

instead of proportional control, as fine control of the opening was not relevant for the study. Two electrodes, 123 

placed on the flexors and extensors, as explained above, were used to record the root mean square of the 124 

windowed (100 ms) EMG signal at 100 Hz through the embedded prosthesis controller. The signals were 125 

subsequently filtered digitally using a second-order Butterworth low-pass filter with a 0.5 Hz cutoff. The EMG 126 

 

Figure 2: Experimental setup and protocol. (A) Sketch of the experimental setup showing 1. Two dry 

EMG electrodes placed on the forearm, 2. Vibrotactor array for delivering feedback placed on the upper 

arm and 3. The Michelangelo prothesis. (B) Vibrotactor array arrangement and coding scheme used for the 

feedback interfaces. Bars indicate how the normalized EMG and Force range was discretized to provide 

feedback. (C) Experimental protocol indicating the design (AB-BA crossover), trial structure, and force 

and speed targets. 
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envelope from each electrode was normalized to 50% of the maximum voluntary contraction (MVC). For 127 

flexor EMG, this corresponded to the maximum closing velocity of the prosthesis. Piecewise linear mapping 128 

between the EMG amplitude (normalized scale) and closing velocity (normalized scale) was used to design 129 

the proportional controller to compensate for the higher variability in the EMG signal at higher amplitudes 130 

(stronger contractions). The breakpoints for the mapping were defined as follows: EMG = {0.025, 0.1, 0.27, 131 

0.47, 0.69, 0.95, 1}, velocity = {0, 0.25, 0.42, 0.59, 0.76, 0.9, 1}. Thereby, prosthesis only responded when 132 

the flexor signal was above the “dead zone” (i.e., greater than 0.025). For the extensor, however, participants 133 

simply needed to reach 0.4 on a normalized range (corresponding to 20% MVC) to trigger the hand opening. 134 

Note that both EMG amplitude and prosthesis velocity breakpoints exist on the normalized scale (to 50% MVC 135 

and maximum prosthesis closing velocity respectively) and are therefore unitless. 136 

Vibrotactile Feedback Interfaces 137 

In this study, we compared two feedback interfaces: EMG and force feedback. Both interfaces were identical 138 

in terms of hardware and encoding (described below) and differed only in the variable that was provided as 139 

feedback – participants’ own EMG command vs. prosthesis force. Five vibrotactors were placed 140 

circumferentially and equidistantly on the upper arm around a cross-section containing the biceps. An elastic 141 

band was used to maintain the tactors in place. A spatial encoding scheme consisting of six discrete levels of 142 

the feedback variable (EMG command or grasping force) was used for both interfaces. The first five levels 143 

were indicated by activating one of the tactors from the array, while the sixth level was conveyed by activating 144 

all tactors simultaneously (Figure 2B). If the vibrotactors evoked an unpleasant or poorly localized sensation, 145 

their position was adjusted until the participants could easily distinguish between all six stimulation patterns 146 

(levels). The vibration frequency for all tactors was set to 200 Hz, and the stimulation pattern was updated at 147 

50 Hz. 148 

EMG Feedback 149 

In this interface, the participants were provided with feedback about the EMG signal that they generated using 150 

their flexor muscles to control the closing velocity of the prosthesis. Six discrete levels were defined using the 151 

breakpoints of the piecewise linear mapping described in the section “Methods: EMG Control.” Therefore, as 152 

soon as the participants started contracting their wrist flexors, they received feedback about the EMG level (1-153 

6) they were generating, thereby enabling them to modulate predictively to the target level. The breakpoints 154 

of the piecewise mapping were designed such that if the participants reached a particular level of EMG (with 155 

the object contact established and stable), they would have applied the same level of force on the object. For 156 

instance, if a participant generated and maintained EMG level 2, the prosthesis would close around the object 157 

and exert level 2 of the grasping force (force level boundaries defined in the next section). This was possible 158 

thanks to the proportional operation of the myoelectric prostheses, in which the generated EMG (myoelectric 159 

command) was proportional to the closing velocity which in turn is proportional to the grasping force. 160 
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Force Feedback 161 

The force applied to the blocks was measured using a sensor embedded in the prosthesis. The measured force, 162 

sampled at 100 Hz by the embedded controller, was normalized and divided into six discrete ranges (levels) 163 

with boundaries at {0.05, 0.31, 0.45, 0.58, 0.73, 0.9, and 1} on a normalized scale (0, no force; 1, maximum 164 

force). With this feedback interface, participants received feedback on the level of force (1-6) applied to the 165 

object. In contrast to EMG feedback, where vibrotactile stimulation was delivered as soon as the myoelectric 166 

signal crossed the threshold of the dead zone (e.g., when the prosthesis started closing), in the case of force 167 

feedback, stimulation was delivered only after contact was established with the object. 168 

Experimental Design 169 

The experiment was designed as an AB-BA crossover trial over two sessions with a one-week washout period 170 

between the sessions (Figure 2C). Half of the participants started with EMG feedback in Session 1 and 171 

switched to Force feedback in Session 2, whereas the other half did the opposite. A crossover design was 172 

selected to control inter-group variability. In each session, the participants were instructed to perform the box 173 

and blocks test with two additional constraints, that is, in each trial, they were required to (1) apply a specified 174 

level of force on the object (two levels of force were chosen as target forces – levels 4 and 5, see [10]) and (2) 175 

reach the target force within a specific time window. Therefore, we determined the speed-accuracy trade-off 176 

in a prosthesis force-matching task. 177 

To adequately sample the SAF, participants were required to perform the task under three speed conditions: 178 

slow, medium, and fast, where each condition specified the time window for task completion. During the Slow 179 

condition, trials had to be completed within 4 – 8s, while for the Medium and Fast conditions, the speed/time 180 

requirements were 2 – 4s and 1 – 2s, respectively. Time windows were defined to capture the relevant domains 181 

of the SAF curve. Previous studies suggest that participants in a fast routine-grasping task spend approximately 182 

2s to achieve the required force, while they attained close to 100% accuracy at around the 6s mark [10]. We 183 

used a time-band methodology to derive the SAF [24]. Although there exist several methodologies to obtain 184 

the SAF [11], [24], we believe that this approach reduces inter-subject variability in learning feedback control. 185 

This would not have been the case in, for example, a deadline-based methodology, where participants may 186 

have had no incentive to perform the task at a slower speed if they were satisfied with their accuracy while 187 

using faster speeds. 188 

The amputee followed the same protocol as the able-bodied participants, starting with Force feedback in 189 

Session 1 but returned 3 weeks later (as opposed to one week) to perform the task with EMG feedback. 190 
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Experimental Protocol 191 

Initially, all equipment (EMG electrodes, vibrotactors, wrist immobilization splint, and prosthesis) was placed 192 

on the participant. Brief calibration and familiarization were then followed in both sessions. During the EMG 193 

calibration phase, three 5-second-long maximum voluntary contractions (MVC) for both the flexors and 194 

extensors were recorded to calibrate the control interface. The MVC measurements were recorded in the same 195 

posture that the participants used to perform the box and blocks task (similar to [33]) to address the effect of 196 

arm posture and prosthesis weight on the recorded EMG. Next, the participants were familiarized with the 197 

interface and guided to explore how their flexor EMG signal affected the prosthesis closing velocity and how 198 

their extensor EMG signal triggered the hand opening. Finally, they were familiarized with the vibrotactile 199 

stimulation patterns (common across both feedback interfaces) by performing a spatial discrimination task in 200 

which they were presented with two sets of 18 stimulation patterns (three repetitions × six levels, Figure 2B) 201 

and asked to identify them. The experiment proceeded after ensuring that the participants achieved at least 202 

95% success in the discrimination task, which normally took less than five minutes. 203 

After familiarization with the control and feedback, the participants performed 30 trials (10 per speed 204 

condition) of the modified box and blocks test to practice the time-constrained force-matching task. Each trial 205 

began by displaying the force and speed targets. The participants then had to modulate their muscle contraction 206 

and use the feedback interface to complete the trial successfully. Once the participant felt that they successfully 207 

reached (or overshot) the target, they were instructed to extend their wrist to trigger hand opening. Immediately 208 

after the trial ended, the participants received knowledge of the performance, which indicated whether they 209 

achieved, overshot, or undershot the target force and speed. During the practice trials, participants were 210 

instructed on how to modulate their muscle contraction to control the closing velocity of the prosthesis. They 211 

were also instructed on how to avoid eccentric behavior; for example, in the slow condition, they were told not 212 

to hold their contraction at a low level until 4 s and then quickly correct upwards, thus inadvertently making a 213 

fast/medium condition trial.  214 

After the initial practice trials, the participants performed 90 training and 90 test trials, with a break after every 215 

30 trials. In each block of the 30 trials, the target speeds (slow, medium, and fast) remained the same for 10 216 

trials, while the target forces (4, 5) were presented five times each in random order. In addition, during the first 217 

60 training trials, the speed targets were presented in a specific order: slow, medium, and fast, whereas during 218 

the remaining trials, this was also randomized. 219 

Outcome Measures 220 

During each trial, the EMG commands and force measurements were recorded and processed to obtain the 221 

primary outcome measures of the reach time and trial success. The reach time was measured from when the 222 

participant started generating the EMG input (above the dead zone) to the point at which the maximum force 223 
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was reached during the trial. A successful trial was one in which the reach time satisfied the speed requirement 224 

(1 – 2s for fast, 2 – 4s for medium, and 4 – 8s for slow speed), and the reached force was within the 225 

corresponding force interval (target level). The trials were aggregated per speed condition to obtain the 226 

percentage success rate (S). Subsequently, we computed the rate of trade-off in the success rate (ΔS per second) 227 

during fast-to-medium and medium-to-slow conditions to evaluate how quickly the participants traded speed 228 

for accuracy. For each participant, we computed the trade-off rate as the difference in success rates (ΔS) 229 

between successive speed conditions divided by the difference in the corresponding reach times. For example, 230 

the rate of trade-off for participant p for the fast-to-medium transition was computed as (𝑆𝑝|𝑚𝑒𝑑– 𝑆𝑝|𝑓𝑎𝑠𝑡)/( 231 

𝑇𝑝|𝑚𝑒𝑑  – 𝑇𝑝|𝑓𝑎𝑠𝑡), where 𝑆𝑝|𝑐𝑜𝑛𝑑 is the success rate and 𝑇𝑝|𝑐𝑜𝑛𝑑 is the average reach time in the condition cond.  232 

Furthermore, to understand how the participants planned and executed the task under different speed and 233 

feedback conditions, we computed three behavioral metrics. First, we calculated the number of force 234 

 

Figure 3: Representative Trials. Six representative trials (EMG commands in solid black, prosthesis force 

in dark gray) as performed by the amputee using the two different interfaces, at the three required speeds 

for target force Level 5. Faint dotted vertical and horizontal lines indicate time restrictions and force target 

bounds respectively. Green area depicts how trial success is determined as a combination of reaching the 

target force (accuracy) during the required time (speed). 
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corrections that the participants made in each trial by counting the number of distinct plateaus (longer than 235 

250ms) in the force trajectory [10]. For example, during the slow condition with EMG feedback, the amputee 236 

made four force corrections during the trial shown in Figure 3. Then, we analyzed the generated EMG 237 

commands to understand whether one feedback type could enable the participants to generate (1) smoother 238 

and (2) more repeatable EMG commands. To evaluate smoothness, we calculated the integrated squared jerk 239 

of each trajectory, normalized to the reach time. To measure the repeatability, we computed the trial-by-trial 240 

variability of the generated EMG commands. We first normalized all EMG trajectories to 200 time points 241 

between the start of the trial and the reach time, and then measured the standard deviation at each of the 200 242 

time points. As the final measure of variability, we computed the median of the standard deviations across the 243 

time points, because the distribution of the standard deviations was often skewed. 244 

Statistical Analysis 245 

Statistical analyses were performed on the outcomes obtained from the 90 test trials. 3-factor mixed model 246 

ANOVAs were fitted each for success rate, rate of trade-off, and the behavioral metrics as the outcome, with 247 

two within-subjects factors – feedback interface and speed condition – and one between-subjects factor 248 

“order”, which denotes the order in which the participants were exposed to the feedback interfaces. We 249 

interpreted the main effect of order as an interaction between the feedback interface and session, while the 250 

interaction effect between order and feedback interface was interpreted as the main effect of session, as is 251 

common in crossover designs [34]. The assumptions of normality, homogeneity of variance, and sphericity 252 

were verified using Shapiro–Wilk’s, Levene’s, and Mauchly’s tests, respectively.  253 

Post-hoc analyses for differences in success rates between the two feedback interfaces at a given speed 254 

condition and between speeds for a given feedback interface were performed using pairwise t-tests adjusted 255 

using the Holm-Bonferroni method. The threshold for statistical significance was set at p < 0.05. The mean ± 256 

standard deviation of the outcomes per group of interest are reported throughout the paper unless noted 257 

otherwise.  258 

Results 259 

Representative Trials 260 

Figure 3 shows representative trials of the amputee in all target speeds, with level 5 as the force target. Firstly, 261 

we can notice that both feedback types allowed the participant to flexibly control the prosthesis at different 262 

speeds and still succeed in the task, i.e., reaching the target grasping force within the given time window. Then, 263 

we can notice that the participant was slightly faster when using Force feedback than EMG feedback 264 

(especially noticeable in the slow trials), a feature that also holds across participants (see Figure 4A). Secondly, 265 

we can observe a difference in the “quality” of the generated EMG commands across the feedback conditions. 266 
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While the EMG commands produced during the fast condition are largely similar between the feedback types, 267 

the EMG signal generated during both medium and slow trials is smoother during EMG feedback as opposed 268 

to Force feedback, where the EMG commands exhibit distinct “jumps”.   269 

Speed-Accuracy Trade-offs  270 

The participants’ speed–accuracy trade-off curves showed a general tendency to be monotonic (14 out of 22, 271 

Figure 4A), and when they were not monotonic, they were only off because of a few trials (1 – 3 trials), whereas 272 

the mean SAFs across participants were monotonic for both feedback interfaces. Next, we fit a 3-factor 273 

ANOVA by treating the speed condition as categorical to analyze the effect of the feedback interface and speed 274 

condition on the success rate. We observed a significant effect of the feedback interface (p=0.006) and speed 275 

condition (p=2.3x10-6) on the success rate as well as a significant effect of the session (feedback interface × 276 

feedback order interaction effect, p=0.003). 277 

We then analyzed whether the feedback interface affected the performance under each speed condition. In the 278 

Fast condition, we did not observe a significant effect of the feedback interface (EMG: 75.8 ± 9.4%, Force: 279 

71.1 ± 7.4% see Figure 4B), while in the Medium condition, we observed that participants performed 280 

significantly better using EMG feedback than Force feedback (EMG: 86.3 ± 8%, Force: 74.6 ± 12.2%, p-281 

adj=0.022). In the Slow condition (asymptotic performance), as expected, we observed that the interface had 282 

no significant effect on performance (EMG: 89.2 ± 4.8%, Force: 88 ± 10.2%). Taken together, we see that 283 

 

Figure 4: Speed-Accuracy trade-offs in prosthesis force control. (A) Individual speed-accuracy trade-

off curves are plotted for each participant (faint lines), group means (bold lines) and the amputee (dashed 

lines and stars). Black circle indicates the time (X-intercept) when success is zero. (B) Same as A, but box 

plots show success rates of all participants during each of the ordinal target speeds (left). Box plots showing 

rate of trade-off (% per s) across the target speed transitions (right). Colored stars represent results of the 

amputee, black diamonds represent outliers. 
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while the feedback interface had a significant effect on the success rate overall, it was the Medium speed 284 

condition from which this difference originated. Furthermore, EMG feedback enabled participants to reach 285 

asymptotic performance sooner, with participants significantly improving their performance between the Fast 286 

and Medium conditions (p-adj=0.03) but not between the Medium and Slow conditions. On the contrary, 287 

participants exhibited significant improvement between the Medium and Slow conditions (p-adj=0.004) while 288 

using Force feedback. The two feedback types are therefore characterized by SAFs that are qualitatively 289 

different while still allowing similar asymptotic performance.  290 

Therefore, we analyzed whether the observed rate of trade-off in success rate (% per s) for the Fast to Medium 291 

and Medium to Slow transitions was significantly different between EMG and Force feedback (see Figure 4B, 292 

right). The mean rate of trade-off for EMG feedback during Fast to Medium was indeed higher than that of 293 

Force feedback (EMG: 6.6 ± 6.3%, Force: 2.7 ± 6.1% per second) and the opposite for Medium to Slow 294 

transition (EMG: 1.3 ± 2.8%, Force: 5.1 ± 3.5% per second). However, the differences were not statistically 295 

significant.  296 

The performance of the amputee followed the trends of able-bodied participants (Figure 4, stars). While the 297 

asymptotic performance was nearly identical (EMG: 76.6%, Force: 73.3%), the amputee participant achieved 298 

higher success rates with EMG feedback in both the Fast and Medium conditions, with the largest difference 299 

in the latter (Medium condition; EMG: 76.6%, Force: 53.3%).   300 

 

Figure 5: Behavioral metrics for both interfaces, across participants. (A) Average number of force 

corrections (distinct force plateaus) per trial. (B) Smoothness of EMG trajectories (commands) generated 

by the participants, computed as integrated squared jerk of the normalized EMG amplitude. (C) Trial-by-

trial variability of EMG commands generated by the participants. Stars represent results of the amputee, 

black diamonds represent outliers. 
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Behavioral Analyses  301 

We also sought to understand the behavioral differences between the feedback types, that is, how the different 302 

interfaces allowed participants to plan and execute movements (Figure 5). First, we investigated whether the 303 

participants developed different strategies for different speed targets. We found that both the feedback interface 304 

(p=0.005) and speed condition (p<1e-15) had a significant effect on the number of corrections made by the 305 

participants (Figure 5A), and the feedback and session exhibited significant interaction (p=0.02). Therefore, 306 

the participants were able to flexibly modify their control policies by using the available feedback, especially 307 

during the Medium (EMG: 2.2 ± 0.3, Force: 1.8 ± 0.5 corrections per trial) and Slow conditions (EMG: 3 ± 308 

0.4, Force: 2.8 ± 0.3 corr. p/trial) compared to the Fast condition (EMG: 0.5 ± 0.3, Force: 0.2 ± 0.2 corr. p/trial).  309 

Next, we analyzed the generated EMG commands by measuring smoothness and trial-by-trial variability 310 

(Figure 5B, C). We found that the feedback interface had a significant effect on both metrics (p=0.03 for 311 

smoothness; p=0.002 for trial-by-trial variability). That is, EMG feedback enabled the participants to make 312 

smoother and more repeatable commands than Force feedback. Additionally, the speed condition had a 313 

significant effect on both metrics (p=0.01 for smoothness, p=0.0006 for variability), whereas the session 314 

significantly influenced trial-by-trial variability (p=0.001).  315 

The behavior of the amputee followed the results of the able-bodied participants. However, the smoothness of 316 

EMG commands with EMG feedback was worse than that with Force feedback in the Slow condition. 317 

Discussion 318 

Speed and accuracy are critical factors in the context of human-machine interfaces. Investigating speed-319 

accuracy trade-off functions provides a thorough understanding of task performance and motor ability but has 320 

not been applied to study user-prosthesis interfaces. Here, we empirically derived the SAF using a prosthesis 321 

force-matching paradigm in a functional box-and-blocks task for two different closed-loop interfaces, which 322 

only differed in the feedback provided to the participants – EMG feedback vs. Force feedback. As expected, 323 

the speed at which participants performed the force-matching task imposed a trade-off with accuracy, 324 

regardless of the feedback type. However, the SAF was different for the two interfaces, as EMG feedback 325 

substantially outperformed Force feedback in the Medium speed condition, thereby enabling participants to 326 

reach asymptotic performance sooner. In addition, we found that the EMG feedback enabled smoother and 327 

more repeatable EMG commands. Therefore, the results demonstrate that the SAF methodology can provide 328 

crucial insights into both the evaluation and understanding of closed-loop interfaces for prosthesis control in 329 

functionally relevant task settings. 330 
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SAF to Evaluate Closed-Loop Interfaces 331 

The evaluation and comparison of user-prosthesis interfaces are challenging and multifaceted. Despite the 332 

rapid development of promising control and feedback interfaces [25], [26], their comparison has received less 333 

attention, barring a few exceptions [30], [35]. While it is a difficult undertaking owing to various reasons such 334 

as incomparable experimental setups and tasks, here we showed that it is additionally compounded by 335 

measuring the performance only at a single speed (sampling at a single point on the SAF). For example, if we 336 

had only measured performance in the Fast condition in this study, we would infer that both interfaces enable 337 

similar performance, whereas they are significantly different when used at Medium speed. Therefore, we argue 338 

that it is valuable to compare interfaces at more than a single point on the SAF, particularly because the shape 339 

of the SAF afforded by different interfaces is unknown. 340 

Here, we used the SAF framework to rigorously compare the two closed-loop interfaces in a functional force-341 

matching task. By enforcing task execution at different speeds, we elicited a range of success rates that were 342 

significantly affected by the feedback interface. We expected that EMG feedback would enable better success 343 

rates during the Fast condition because it promotes predictive control [29], [30], but this was not the case. We 344 

believe that this is likely because of two reasons. First, the Fast condition might have been too restrictive, with 345 

a short 2 s window, for the participants to exploit the EMG feedback effectively for online adjustment of 346 

control commands. Second, the task included only two force levels and the participants received training before 347 

performing the test trials. The training might have enabled participants to acquire a reliable internal model and 348 

achieve good performance when using Force feedback, despite the short time window (which precluded the 349 

use of force feedback to drive the corrections). However, we noticed a large difference in the success rates 350 

between the two interfaces in the Medium condition. Therefore, the results demonstrate that the expected 351 

advantage of EMG feedback over Force feedback occurs in this range of movement speeds, where the former 352 

allows users to predictively modulate their contractions to reach the target level, as opposed to jumping 353 

‘reactively’ between levels. Finally, the feedback interfaces resulted in similarly high performance in the Slow 354 

condition, as the participants had enough time to reach the goal by focusing on either of the two feedback 355 

signals. Therefore, the present study demonstrates that SAF allows the identification of the time interval in 356 

which feedback (Force or EMG) becomes an important factor for the effectiveness of the control loop.  357 

Taken together, we found that the asymptotic performance for both interfaces was similar, but EMG feedback 358 

allowed participants to approach asymptotic performance sooner. Note that this important characterization of 359 

the two feedback types is derived from the trade-off itself, and cannot be obtained if the performance is 360 

assessed at a single point. More generally, SAF provides a way to estimate the expected completion time to 361 

guarantee a given (e.g., 90%) performance in a task, and therefore, can be a relevant instrument for meta-362 

analytic comparison of interfaces across studies. Moreover, we believe that determining the SAF will be 363 

advantageous for person-based approaches to designing prosthesis interfaces [36], for example, by determining 364 
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the appropriate user-prosthesis interface for the amputee based on their inherent speed preferences (see Figure 365 

1). Therefore, in the present study, we provided a holistic comparison of the performance afforded by two 366 

established interfaces in a functional task, thereby adding a novel approach to a pool of methods that have been 367 

recently developed to assess the performance as well as the behavior of users of closed-loop prostheses [15], 368 

[37].  369 

SAF to Understand Closed-Loop Interfaces 370 

Closed-loop user-prosthesis interfaces are a promising technology that is likely to be translated into clinical 371 

applications, but currently still face several conceptual and implementational barriers [1], [28], [38]. A key 372 

prerequisite for designing better closed-loop interfaces is to understand the complex interplay between the 373 

feedforward and feedback control processes of the users and how different interfaces facilitate it [3], [6], [10]. 374 

We believe that studying the SAF, as described here, is an effective instrument to approach this point, as it 375 

enables an understanding of how users interact and exploit different interfaces to achieve specific (time-bound) 376 

goals.  377 

In addition to measuring performance, we used the SAF to understand how participants planned and executed 378 

movements in a functional prosthesis task. We found that both closed-loop interfaces enabled the participants 379 

to develop flexible control policies. That is, they were able to incorporate feedback to varying extents to guide 380 

their behavior under different speed conditions, as reflected in the number of force corrections they made. On 381 

average, participants made more corrections during the EMG feedback condition. This is likely due to the 382 

nature of EMG feedback, which allows participants to better control their EMG commands both during closing 383 

(to generate a lower initial force) as well as after contact (to make gradual force increments). The EMG 384 

commands generated when the participants used EMG feedback were also smoother than when they used Force 385 

feedback (Figure 5B), enabling them to generate smaller force increments when increasing the force from the 386 

initial to the target force level (hence, more corrections overall). Interestingly, this further suggests that, even 387 

though participants received discretized feedback, they could exploit EMG feedback to modulate their 388 

contractions to generate an overall smooth control input. On the other hand, Force feedback enforces 389 

participants to wait until feedback onset and produce fewer (larger) corrections due to jerkier commands. 390 

Combined with the low trial-by-trial variability across speed conditions, EMG feedback effectively reduced 391 

the uncertainty in generating prosthesis commands, which is a central aim of implementing supplementary 392 

feedback [6], [36]. Therefore, our results add to the body of evidence that underscores the promise of some 393 

form of predictive feedback regarding users’ own intentions [5], [29], [30].  394 

Together, the flexibility, smoothness, and repeatability measures, which are hallmarks of skilled behavior, help 395 

us understand how participants incorporate supplementary feedback in their control policies. Investigating the 396 

SAF provides a suitable framework for such an analysis. Finally, we found that all outcome measures had 397 

similar trends in the experiment with the amputee, despite the slightly lower performance. We believe that this 398 
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is an encouraging result, albeit expected, because motor planning and execution should remain comparable 399 

across able-bodied participants and amputees [3], [39], [40]. While the amputee had more experience using 400 

direct proportional control, we believe the simplicity of both control and feedback interfaces ensured that all 401 

participants experienced and interacted with the interfaces similarly. It remains to be seen if this trend persists 402 

with interfaces which require more complex muscle contractions (e.g., pattern recognition). 403 

Limitations and Outlook 404 

A limitation of the current study is that we always required participants to make ‘strong’ contractions (30-45% 405 

MVC) to reach the target forces. However, the trade-offs (SAF) may be influenced by the force users want to 406 

generate. Another limitation is that, while we performed a single-session study to establish the conceptual 407 

framework of SAF, the shape of the SAF may change across days; in this case, the SAF for both interfaces 408 

may become identical after practice, but this remains to be investigated. 409 

Measuring SAF can be an instrument for the assessment of prosthesis control with general applicability. Future 410 

studies should therefore be conducted to investigate how the control interface (direct control, pattern 411 

recognition, etc.) of the user-prosthesis loop affects the SAF relative to the effects of the feedback interface, 412 

as explored here. In addition, this approach can be used to compare feedback interfaces that differ only in their 413 

encoding schemes (e.g., discrete vs. continuous) while the feedback variable remains the same. The intercept 414 

(see Figure 1), which characterizes the minimum time required to have any chance of success, did not play a 415 

role in our current setup, because the control interface was always the same (direct proportional control). 416 

However, when one wishes to compare interfaces that allow different maximum velocities (e.g., owing to 417 

different sensitivities for the proportional controller), or when one is required to change grips by co-418 

contractions, it becomes crucial to understand the intercept as well. Finally, this framework can be extended 419 

to multidimensional task spaces, for example, to characterize the trade-offs in prehension (posture matching 420 

with prostheses) combined with force matching to create better interfaces for current state-of-the-art 421 

commercial prostheses. 422 

Conclusion 423 

In this study, we empirically derived the SAF for prosthesis force control using a functional box-and-blocks 424 

task. We demonstrated that two closed-loop myoelectric interfaces that differed only in the variable provided 425 

as feedback to the participants – EMG vs. Force– exhibited different SAFs. EMG feedback afforded better 426 

performance throughout, but especially at medium speeds, and enabled the participants to develop stronger 427 

feedback control. We argue that the methodological advancement provided here is a valuable step forward in 428 

evaluating and understanding (closed-loop) user-prosthesis interfaces. 429 
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