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Analyzing visual imagery for emergency
drone landing on unknown environments

Oghuz Bektash1 , Jacob Juul Naundrup1 and
Anders la Cour-Harbo2

Abstract
Autonomous landing is a fundamental aspect of drone operations which is being focused upon by the industry, with ever-

increasing demands on safety. As the drones are likely to become indispensable vehicles in near future, they are expected

to succeed in automatically recognizing a landing spot from the nearby points, maneuvering toward it, and ultimately, per-

forming a safe landing. Accordingly, this paper investigates the idea of vision-based location detection on the ground for an

automated emergency response system which can continuously monitor the environment and spot safe places when

needed. A convolutional neural network which learns from image-based feature representation at multiple scales is intro-

duced. The model takes the ground images, assign significance to various aspects in them and recognize the landing spots.

The results provided support for the model, with accurate classification of ground image according to their visual content.

They also demonstrate the feasibility of computationally inexpensive implementation of the model on a small computer

that can be easily embedded on a drone.

Keywords
Drone safety, unmanned aircraft, emergency landing, automated response, landing recognition, convolutional neural

networks, autonomous landing
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Introduction
Regulation for drones are becoming increasingly character-
ized by technology-facilitated applications as the drone use
is rapidly expanding to serve in various applications of agri-
culture, scientific research, surveillance, search and rescue,
infrastructure inspection and management, environmental
monitoring and law enforcement.1 Computational advance-
ments and prodigious amount of condition monitoring data
can be the key drivers of the future drone regulations, while
the need for autonomous landing processes and growing
acceptance of contemporary complex computer systems are
also noted. Administrative authorities have been imposing
restricting drone regulations with an attempt to secure safe
and sustainable operations to assure public safety and
privacy on condition that less restricted drone operations
are available.2,3 As these unmanned aircraft system regula-
tions urge sustainable and secure drone operations to
protect the people’s safety, one can reasonably assume that
the modern drones will have to be individually safe, allowing
both legislation and end-users to provide drone reliability.

Previous research in the unmanned aircraft system
(UAS) literature has introduced several frameworks such

as computer vision aided positioning system,4 autonomous
tracking and landing control on an autonomous vehicle,5

marker recognition on a landing pad,6 vision analysis for
automatic landing,7 autonomous flight system with
marker recognition,8 or even illegal landfill detection.9

Akbari et al.10 reviewed applications related to drones and
image recognition, and categorized them into various
groups such as remote sensing, autonomous navigation
and the sensed environment applications. As pointed out
by them, the field still need to develop image recognition
information for uncharted applications.

A major point of improvement between the drone safety
and computational product development is the involvement
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of analyzing visual landing location with fully connected
multi-layer perceptrons. Particularly, convolutional neural
networks (CNN) have received much attention in analyzing
large-scale imagery which has recently become possible
due to the advancing technologies.11–15 In particular,
there is a significant potential in the advance of CNN
based visual recognition for drones, which can serve detect-
ing locations of interest that can facilitate a landing, or even
a crash, without any human injury or fatality. With CNN
models becoming more of a commodity in the vision recog-
nition,15 they could let better compliance standards of drone
activities by tracking safe landing locations and providing
an easier development for operational process. It is there-
fore increasingly evident that these models will continue
to be a critical component of drone situations, especially
where the critical in-flight anomalies are experienced.

Drones have some characteristic safety drawbacks that
are relatively existent in most UAS systems. Therefore,
they need to be designed with a level of situational aware-
ness and the “sense and avoid” capabilities that match those
of manned aerial systems.16 However, drones are usually
under real-time human control with no on-board pilot and
operated from a remote terminal. Therefore, their size
result in a lower weight and a smaller extent than a peer
manned aircraft, allowing only smaller embedded systems
to be run. This means that, in spite of having a smaller
on-board system computer, they must be able to respond
with appropriate avoidance maneuvers to maintain
safety16 and to deal with risk perceptions that are generally
elevated by ever increasing societal acceptance in company
with the complex human behavior with machine interface
and operational roles.17

For image recognition and visual recognition for
autonomous drone landing, the unmanned systems in
smaller sizes can only tolerate a small computer mounted
on the vehicle which is also expected to track the health
state and guidance for landing.18,19 When there is a safety-
critical condition, it is expected from this computer to
determine the best course of action for the aircraft to min-
imize the probability of fatalities. This means a significant
challenge for automated location recognition framework.
Considering this issue in particular with CNN based
visual recognition, the literature has not yet been clarified
on the development of resource intensive application and
its interface with the accompanying safety duties.
Consequently, there is an incomplete picture of the way
novel imagery landing location frameworks are developed.
Against this background, the main purpose of this study is
to investigate the role of CNN based visual landing recog-
nition while considering the distinctive drone properties
(see Figure 1). The study also aims to determine safety
factors that may be associated with with the automatic loca-
tion spotting.

To further understanding, this research has the following
objectives:

• To find good landing spots that can facilitate an emer-
gency landing or even a crash without casualties.

• To analyze a class of input image taken during an
ongoing flight and output a class, or simply a probability
of classes, that best describes whether the location is
suitable for emergency landing.

• To develop a conceptual framework of a machine vision
approach for detecting areas by outlining theoretical
underpinnings and analyzing related research and con-
struction schemes.

• To test the proposed model empirically by grabbing
images from the camera mounted on drone (SafeEYE
lab Bektash et al.18), which are monitored from
various test flights where the primary focus was to
provide images of a variety of terrains.

Because of the limited existence of on-flight pictures on
previous research settings,18 this study chose to further
advance the autonomous location spotting framework
with novel imagery with detailed surface scenes and
examine whether CNN structure containing more visual
information provide a strategic advantage for safety
related operations. This means that this work has a further
potential to become a safety enabler for a wide variety of
drone applications.

The rest of the article is structured as follows: First, the
extant literature on autonomous drone landing, vision rec-
ognition and convolutional neural networks are reviewed
with an attempt to represent the theoretical core of the
paper. This is followed by an introduction of the research
methodology with procedures used in the work. A case
study is then offered to analyze as the research is expected
to read-through to particular context introduced in the meth-
odology section earlier. The results of the research are then
summarized with the findings of the study in the form of
descriptive statistics. Finally, in the conclusion section,
implications, limitations, and directions for future studies
are laid out.

Background and Related Work
Recognition and detection of defined objects on captured
scene images have been well-known challenges, even sup-
posing that the literature have brought many solutions to
existing problems. The growth of image recognition algo-
rithms is a determining factor to overcome these issues. A
number of works have been introduced to make picture pro-
cessing studies possible on drone systems. Current strat-
egies have used various designs such as using markers,8

features classifiers and detectors,20,7 and both static21 and
dynamic picture recognition.22 Further works of autono-
mous drone landing can be regarded as a multifaceted con-
struct consisting of various dimensions. Those of using
image processing algorithms such as above-mentioned
ones typically aims to find a spot to safely and securely
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land the drone. However, they should be accompanied with
other autonomous actions such as malfunction detection
and guidance for landing.18 The explicit analyses of
visual interpretation and image classification along with
their relationship to these autonomous actions help
provide evidence showing that the location recognition is
feasible to optimize and can provide safety to considerably
increased complexity of drone operations.

Definitions of on-board vision landing systems focused
on landing on a known area rather than the strategies in
unfamiliar and imprecise conditions. In that respect, Kong
et al.23 enounced the UAS landing on controlled zones as
a well-studied research area by outlining the common use
of motion algorithms and the requirement for structured
landing settings. While fixed-wing UAS autonomous
landing on a known area is commonly practiced on a
runway,24–26 drone and rotary-wing UAS studies concen-
trate on marker based tracking methods for landing.23

Traditionally, a helipad of a known shape is used for
target detection. Drones automatically updates landing
target parameters based on visual markers and follow a
path to the helipad. For instance, Saripalli et al.27 provided
the foundation for vision-based landing target detection on
real-time which leads the act to a board behavior based con-
troller to follow a path to a helipad of with a H-shaped
marker. In order to achieve autonomy in such a scheme,
on-board sensors might have needed to cope with UAS’s
processing power which was generally limited due to low
weight capacity. To deal with this, Wenzel et al.28 proposed
a tracking approach that uses commodity consumer hard-
ware. More recently, some researches appear to agree that
image frames can be processed by a marker processing
framework which includes various stages such as image
rectification, conversion into a binary image and vision
aided landmark recognition.29,30 Similarly, Sudevan

et al.31 fused speeded up robust features detector and fast
approximate nearest neighbor method for landing on a sta-
tionary target. Additionally, Saavedra-Ruiz et al.32 pre-
sented a monocular visual system, using a software-
in-the-loop for autonomous landing on a predefined
landing pad and Cabrera-Ponce and Martínez-Carranza33

used a flag posed on a pole to locate the landing platform
nearby.

Even though marker recognition procedures can perform
automatic aircraft landing stationary target, further pro-
cesses are needed to achieve accurate landing on a
moving platform. Besides, advancing technologies made
possible successive waves of new sensors: from basic
signal providers to complex camera systems. To process
these multi-sensor information, Yang et al.34 came up
with a practical framework in which data from various
sensors of rotary-wing UAS is analyzed for reliable naviga-
tion information as the aircraft approaches to the landing
deck on a moving marine vehicle. Considering multi-sensor
information, more complex data need a systematical algo-
rithm rather than the traditional data-processing methods
used before. Correspondingly, to fuse data from multiple
sensors with an attempt to provide the reliable information
for navigation, Yang et al.34 developed an extended Kalman
filter using a series of measurements observed over time.
This method can provide unknown variable estimations
which are in general more precise than the ones with a
single measurement alone.

Landing on mobile marine vehicle is also supported by
additional findings of Venugopalan et al.5 who proposed
an autonomously control algorithm to land on a pad
placed over an autonomous kayak, Polvara et al.35 who
aims to address the landing pad as the deck of a ship and
Weaver et al.36 who create a scaled-down model of ship
landing of an UAS onto a mobile unmanned surface

Figure 1. Graphical Abstract of Drone Image Processing.
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vehicle. These studies had a more or less explicit perspec-
tive on harsh condition landing prevalent in the marine
environments as a result of winds and currents causing
the stationary landing target to rock and drift. In a like
manner, autonomous landing on unknown vehicle positions
is extended to the implementation of autonomous approach
on a car moving.37 Although the vehicles in which these
studies are conducted are mobile and operate in unknown
positions, the aircraft still navigates to a known deck or
landing pad rather than unstructured and unknown harsh
3D surroundings. This gap is common not only for these
schemes, but also the most of other methodologies using
a known marker or shape.

In response to this gap, Johnson et al.38 tackled the
concept of soft-landing capability in unknown and hazard-
ous terrain, arguing that it will allow exploration of previ-
ously inaccessible environments with strong scientific
importance. Scherer et al.39 also critiqued the inability of
UAS to identify and verify landing zones and approach
paths by using not only plane fitting but also various
factors such as wind direction, terrain and skid interaction,
rotor and tail clearance, and approach, abort and ground
paths. While their algorithm could incorporate these
factors to fulfill autonomous landing at unprepared sites,
their framework and results were based on a full-scale heli-
copter which selects its own landing sites. For small-scale
micro air vehicles, especially those capable of operating
outside line-of-sight, findings by De Croon et al.40 high-
lights the significance of optic-flow based slope estimation
for relatively fast maneuvers.

The models up to here allowed successful estimation of
landing location; however, extracting local and
position-invariant features has a potential role in
unknown environments. Nguyen et al.41 found this to be
true in their study which included a convolutional neural
network to extract trained features from captured images.
However, their algorithm was based on estimating a
marker’s location with visible light camera sensor rather
than to process field images for emergency landing. A
similar work based on deep reinforcement learning, a hier-
archy of Deep Q-Network, is used for landmark detection
by not only managing with low-resolution landmark
images from a mounted camera and also providing
higher performance than human pilots in some condi-
tions.42 A later work of image recognition technology in
emergencies by Yang et al.43 critiqued the drone naviga-
tion methods relying on global positioning system
signals and introduced a landing procedure that can esti-
mate drone’s position by creating a grid map of the envir-
onment to decide on the most suitable landing location via
a filtering algorithm. Rojas-Perez et al.44 implemented
CNNs for automatic detection zone for UAS in urban
environments with a public dataset and synthetic data. In
a further work, Osuna-Coutiño and Martinez-Carranza45

extended the use of the CNN-based approach processing

a single image seeking to interpret areas where the human-
made structures are observed. Lopez-Campos and
Martinez-Carranza46 advanced the synthetic data applica-
tion by generating photogrammetric aerial-images from
photo-realistic scenes.

It is increasingly evident that the innovations on image
processing will continue to be a critical strategy for autono-
mous emergency landing. One can also expect that these
vision-based interactions will also become a key criterion
for supporting elements of safety and can collaborate with
them. Recent works has begun to safety challenges and
focused on third-party risk associated with UAS operations
such as the people on the ground with no involvement in the
operation.47,48 Similar efforts were devoted by Lum and
Waggoner49 to remove the threats to human safety from
mid-air collisions, as well as the ground strikes. To
enable the tracking of fatality rates caused by crashes
over time, Melnyk et al.50 used historical data which
gives key insights to enable operational safety in civilian
airspace. While initial considerations relating to third
party risks were around airports such as crash, individual
risks, and societal concerns,51 later studies tackled the
risk management of unmanned flights over inhabited and
populated areas.52,53 Despite these works, little is known
about the image processing for automated landing of
larger drones (> 7 kg) in unstructured environments.
Consequently, there is an incomplete picture of the way
image characteristics are accurately analyzed under these
conditions. That is why, this research attempts to identify
key development stages of the image processing and ties
them to safe landing and recovery of larger drones.
Essentially, the research responds to the call for a novel
approach about the information processing and distributed
communication nodes in location recognition and draws
inspiration from ever increasing regulations which have
stressed the need for designing individually reliable
drones that will enable end-users to ensure safe, sustainable,
and secure operations.

Methodology
This section provides information on the proposed research
method and CNN procedures for the application of image
detection. The method is a series of layers which helps
extracting the image features and respond to the final
fully connected network for classification. The layers are
described in the following subsections.

CNN architecture
The first layer of a CNN, also known as the input layer,
consist of artificial input neurons that bring the initial
imagery data into the network structure for the subsequent
layers. These initial data were available from a database
of 10,000’s of images captured from the SafeEYE lab that
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has been mounted, integrated, and flown in a number of test
flights on a DJI Matrice 600 drone18 (see Figure 2). There
were a number of test flights that had been conducted
with the SafeEYE, primarily to collect data and to test the
machine vision approach for the detecting areas of interest
for landing or a crash without any human injury or fatality.
Most prominently, three campaigns with a total of approxi-
mately 12 hours of flight were conducted in two sites in
Denmark, an emergency responder training facility at
Rørdal, Aalborg and a military training compound Brikby
consisting of about 30 empty houses, located at Oksbøl
Barracks. Both sites are in Denmark. These areas were
also used to accomplish the task of flight tests with Home
Guard personnel acting as city residents. Having both
rural and urban ground textures while legally being an
urban area was the reason why these sites were selected.
Besides, the military field had an airspace restriction
zone, which allowed the drone to capture images up to an
altitude of 150 m.

To perform in such a large-scale image processing, this
study proposes the use of a feed-forward neural network
type in which the neurons are able to reply to some sur-
roundings in the coverage range. Original structure (the
LeNet architecture - LeNet5 - 1990s) was first introduced
by LeCun and pioneered the CNNs which propelled the
field of Deep Learning.11 The methodology uses a slightly
modified version of the LeNet architecture and classifies the
input images into two categories: “landing fields” and “not
landing fields”. The reason is that the structure is straight-
forward, relatively small in terms of memory footprint
and could even run on a single-board computer, making it
ideal for the use of SafeEYE lab.

A CNN usually receives an order 3 tensor input image
with rows, columns, and channels which then sequentially
proceed a series of processing steps, commonly known as

layers.54 The abstract description of the CNN architecture
can be given as:

x1 → w1 → x2 → w2 → · · · → xL−1 → wL−1 → xL

→ wL → z (1)

This processing goes through up to the point that all layers
(L) are completed, which outputs z.54 Accordingly, the
in-flight frames from the SafeEYE lab are split into
smaller ones with a resolution of 180 × 180 × 3, for
height, width and RBG. When the framework was applied
to analyzing visual imagery, the layer formed of these
frames served as a tensor with shape (images) × (height)
× (width) × (depth). The output layer for training was
chosen by visual inspection of input images and it deter-
mined green background like grass fields as a suitable
landing site where there were limited obstacles on the
frame. Such images had little or no variations such as differ-
ent colors, shadows, rocks, trees, houses, tracks, etc.
Between the input and output layer, there are multiple
layers of the CNN: an initial convolution to polling fol-
lowed by a second set on the same order, then an activation
to a fully-connected layer, a second activation function to
an another fully-connected layer and at the end, a soft
max classifier (see Figure 3).

In ⇒ Conv ⇒ Act ⇒ Pool ⇒ Conv ⇒ Act ⇒ Pool

⇒ FC ⇒ Act ⇒ FC (2)

Convolution
The first building block in the framework is a convolution
operation in which the feature detectors serves as CNN’s
filters. In this stage, a fairly simple 2D convolution oper-
ation begins with a kernel, a matrix of weights. Then, this
slide over the input on 2D space, as seen on Figure 4 .
This allows a element-wise matrix multiplication with the
corresponding input section, and then summing up the
matrix into a single production (Figure 4, dark square)
which will be placed in another 2D feature matrix (the
green grid).

In mathematical aspect, the convolution over a 2D input
image ‘‘I ′′ and 2D kernel ‘‘K” is given as I ∗ K, denoting
the operator with the symbol of ∗.55

G[m, n] = (I ∗ K)[m, n]
=

∑

j

∑

k

I[m− j, n− k]K[j, k], (3)

where the result matrix indices are given by m and n for the
rows and columns. All neurons in this layer were not only
connected to a particular spot in the input volume, but to a
full depth (see Figure 5).56

Figure 2. SafeEYE lab is mounted on a DJI M600 drone. The

white box at the bottom is SafeEYE lab, with an extra IMU on top

(orange). Behind SafeEYE lab is a standard X5 camera. The

payload radio is mounted on the top of the aircraft. The image is

from Oksbøl on December 4, 2019.
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Non Linearity - ReLU Layer
An additional operation called Rectified Linear Unit, or
shortly ReLU, was added after every convolution step in
the framework. ReLU, an essential unit of the CNN
process, is a non-linear operation and its output is given as:

f (x) = x+ = max(0, x), (4)

This is applied per pixel and replaces all negative ones in
the feature map by zero. ReLU is an outperforming activa-
tion functions comparing to others and widely acknowl-
edged in the literature.57

Pooling - Sub Sampling
In the next part, a pooling layer (also called sub-sampling or
down-sampling) is used for the dimensionality reduction of
feature maps while retaining the most useful information.
This layer progressively reduces the tensor size and network
computation, and therefore it can control over-fitting.

The nexus in this research is 2Dmax pooling in which the
largest element is taken from the spatial neighborhood as:

fX,Y (M) = max
i,j

M2X+i,2Y+j (5)

where each operation is over 4 numbers with a stride of 2
sub-samples, discarding 75% of the content.

After executing the previous steps twice
(“Conv ⇒ Act ⇒ Pool ⇒ Conv ⇒ Act ⇒ Pool ”), the
remaining pooled feature map is flattened into a single
column and inserted into a ANN classification layer in the fol-
lowing step.

Fully Connected Layer- ANN Classification
Here is where the convolutional layers and a traditional
Multi Layer Perceptron meet as the latter is included in
the form of a “Fully Connected” layer. As the neurons
from the previous layer are connected to all on the next
layer, the framework at this point takes a more complex
and advanced turn (see Figure 6). The basic unit in this
computational model is the single-input neuron, also often
called a node or unit, structure that is defined by definite
functional operations of input (x), weight (w), bias (b)
Lippmann58. To find the output, the neuron first takes the
weighted sum of the input and weights and a bias term is
added to this sum. The output is then passed through the
activation function (f ) to determine whether the neuron
fires, and outputs a value.55 The activation function

Figure 3. Architecture of LeNet, image modified from LeCun et al.11

Figure 4. An example of the convolution operation: the blue

grid is the input feature map where the kernel is the glared area.

Figure 5. A sample volume in the Convolutional layer.
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performs like a gateway that controls that the sum value is
greater than a critical number. These are expressed as:

f (net), where net =
∑n

i=1

wixi + b (6)

A fully connected neural network layer is formed by com-
bining multiple of these units which simply associate input
elements to an output, while in aggregate do complex com-
putations. The multilayer perceptron arrange these units
into a set of layers with some number of identical units so
that it can learn non – linear functions. Units in a layer

are connected to the next ones in the following layer, as
seen in regular (non-convolutional) ANNs.

Softmax function
A softmax activation function is used in the output layer.
This classifier is a generalization of the binary form of
Logistic Regression and it takes a vector of arbitrary
scores and normalizes it into a probability distribution.59

In mathematical terms, the unit softmax function is
defined as:

Figure 6. Artificial Neural Network Classification Structure.

Figure 7. A flight plan at a military training area in Oksbøl. Some images from the flight is shown in Figure 8.

Bektash et al. 7



Softmax(x)i =
exp(xi)∑
j exp(xj)

(7)

where the standard exponential function to each point xi of
the vector x is normalized into a vector of probabilities with
a relative scale.

Case Study and Testing
The proposed image classification framework is applied
with an up-close and detailed examination of autono-
mous drone landing in unknown environments. The
goal is to provide a justification for the methods and to
test whether the detection method is computationally

Figure 8. Ground images taken from the SafeEYE lab during the flight path shown in Figure 7. They are taken when the aircraft is

following the right-most north-south leg.

Figure 9. Frames showing examples of (columns 1-3) notlanding locations, and (columns 4-6) landing locations.
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efficient enough to be installed on a small embedded
computer.

Image acquisition
A large set of images have been collected with SafeEYE lab
during a series of test flights. In all flights, SafeEYE lab
(NanoPyH5 CPU: H5, Quad-core 64-bit high-performance
Cortex A53 - a low powered system) mounted on a DJI
M600 drone and flown at altitudes from 30 to 150 m
over a variety of terrain. During flight, images are captured
every few seconds with the SafeEYE lab camera and stored
in raw format. All flight followed predetermine flight paths
to ensure that the same ground features would be in images
at varying altitudes, and to be able to reproduce the flights,
if necessary. One example of a flight path is shown in
Figure 7, and a couple of examples of the view from
SafeEYE lab are shown in Figure 8.

The data collected from these campaigns provides suffi-
cient ground images with various features from multiple
attitudes and flight trajectories, vibration measures, and
on-the-fly estimations.

All test flights were recorded on video and a few are
made publicly available on the https://www.youtube.com/
channel/UCwIUbrNZCwBuWZ4rRBUq3LAUAS-ability
YouTube channel.60 The videos starting with the date, i.e.
“19.12.04”, and flight number “FL00x” refers to the flight
tests as mentioned above.

Image Assessment
In Figure 8, sample images used for the classification algo-
rithms are given. These examples are of a quality suitable
for recognizing objects on ground and extracting the neces-
sary features for image processing and classification. The
imagery data set is a collection of such images taken from
the camera mounted on SafeEye lab during the test
flights. The raw images are then split up in smaller frames
as shown in Figure 9. This is done to manually classify
images according to the objects included in them and also
to form an input data to the CNN structure. The frames
has a resolution of 180 × 180 × 3, for height, width and
RBG as it was deemed as a sufficient size for a landing loca-
tion. The frames are then be classified in two categories and
labeled as landing and notlanding locations.

Both the output layer formation for training and the cri-
teria for deciding whether a landing site is suitable are based
on a visual inspection by a human expert. In general, the
frames covered with limited color variations and green
areas like grass fields are clustered as landing site
whereas the ones with noise such as rocks, different
colors, shadows, trees, houses, tracks etc. are categorized
as not landing sites. Samples of both clusters are shown
in Figure 9.

The goal of this data set is to classify areas of interest that
can facilitate a landing or a crash without our human injury
or fatality. The total number of images for landing evalu-
ation is given in Tables 1 and tab:CNNLayerFormation.
A common split of 75%/25% is used for partiting the data
into training and test sets which are large enough to yield
statistically meaningful results. Both sets are representative
of data as a whole without having significantly different
characteristics. The goal is to train the CNN model so
that it can generalize well to new data. That is to say, the
model does not over-fit the available data and it can do
approximately as well on the test set as like the training set.

The overall training process of the methods provided in
the previous section is summarized as follows:

Table 1. Input data categories

Category notLandingField LandingField

Label 0 1

Count 9491 6786

Training Rate 75 75

Test Rate 25 25

Table 2. CNN Layer Formation

Level Layer Type Input Size Convolution Kernel Size Pooling Filter Size Output Size

Input Image - Input – 28×28×1
1st Layer Convolution 28×28×1 5×5 28×28×20

Activation Function 28×28×20 28×28×20
2nd Layer Pooling 28×28×20 2×2 14×14×20
3rd Layer Convolution 14×14×20 5×5 14×14×50

Activation Function 14×14×50 14×14×50
4th Layer Pooling 14×14×50 2×2 7×7×50
5th Layer Fully-Connected 7×7×50 500

Activation Function 500 500

6th Layer Fully-Connected 500 10

Soft Max Classifier 10 10

Output Classification - Output 10 2
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• The network takes training images captured by SafeEYE
camera as input.

• The filters and feature maps are initialized and applied to
these images in the first convolutional layer.

• The network goes through the Rectified Linear Unit with
an attempt to break up the image linearity.

• Then, the max pooling operation down-samples each
feature map by calculating the largest value in each
patch, so that it can highlight the most salient features
and form pooled feature maps.

• A second set of convolutional layer is applied to the
pooled feature maps.

• The second set of pooled feature maps are flattened and
inserted into the artificial neural network classification
function.

• Softmax function is used as the last activation function
to normalize the output.

These steps train the network with ground images. During
this process, many iterations are required to update the net-
work’s parameters such as weights and feature maps so that
the algorithm can reach an optimal performance point
where the classification is accurate enough. To optimize
these parameters, the Adam algorithm is implemented.61

This is a stochastic gradient-based optimization method,
based on adaptive estimations of lower-order moments.61

The method allows straightforward implementation with
little memory requirement and computational efficiency,
and it is compatible with the complex cases that are large
with regard to data and parameters.61

Results
The experimental findings in this section evaluate the
imagery data collected for the work in the form of descrip-
tive statistics. The section presents plots and graphs as well
as the outcomes of relevant inferential statistical analyses.
In the light of calculated scores and model performance,
the structure is revised and altered. The results are reported
in sufficient detail so that one can see what improvements

Figure 10. Illustration of the learning curves which are

calculated by the metrics of the training loss (train_loss), training

accuracy (train_acc), validation loss (val_loss), and validation

accuracy over time (val_loss). These results are found with the

initial settings introduced in the methodology section.

Figure 11. An sample of how a thinned net production by applying dropout to a standard network

Figure 12. Results of the LeNet classifier with a dropout layer.
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Figure 13. Results from the keras classifier after the dropout layer is applied. Top text shows whether the frame can be considered,

and the percentage of confidence in the classification.

Figure 14. Refreshed learning curves of the classifier training after the data set is expanded

Bektash et al. 11



were conducted and why, and to justify the proposed con-
figurations. For processing times, the embedded computer
(NanoPyH5 CPU: Allwinner H5, Quad-core 64-bit high-
performance Cortex A53) could classify the flight snapshot
(78 frames) into the two categories within 3 seconds.

Training CNN with the proposed settings
Results in this section demonstrates the applicability of the
proposed default settings in the methodology section. Here,
the study also compares the results of the initial data set
with those of the further ground images. These results go
beyond previous assumptions, showing that additional
alterations, settings and data are necessary to provide an
efficient ground image classification for autonomous
landing.

The initial implementation of the model was with the
image data set from the test flight at Rørdal in Aalborg,
Denmark. A portion of the training data is separated into
a validation data set to evaluate the model performance
on this independent portion during each epoch.

The metrics of the training loss (train_loss), training
accuracy (train_acc), validation loss (val_loss), and valid-
ation accuracy over time (val_loss) are used to judge the
performance of the model. Accuracy calculates the percent-
age of the predictions that match with actual labels. The loss
function is the “binary_crossentropy” which computes the
cross-entropy loss between actual labels and predictions.
The results of these metrics over time can be seen in
Figure 10 in which the training part could fit the parameters
of the model and produce improving results by iterations,
but the validation part fails to provide an unbiased evalu-
ation of a model fit while tuning parameters. Accordingly
the following key findings emerge:

• The model is over-fitted, due to the gap between training
and validation loss. The validation part cannot provide
same decreasing results after the model has “passed” the
training set so the training evaluation is biased to its data.

• Trained network corresponds too closely to the training
images and makes an overly complex explanation the
idiosyncrasies in the training data.

Figure 15. Results of the percentage of confidence in the classification from the image classifier after the model trained with the

dropout layer and updated images from the new test flights.
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• The model over-memorizes the training samples and
therefore fail to fit the test data

• The network cannot generalize to the test samples so that
it cannot involve infer and apply the training findings to
test split.

Thus, over-fitting becomes a critical problem in the pro-
posed neural network with a large number of parameters
and complex co-adaptations on training data. Even though
it might be acceptable to have a gap between the training
loss and validation loss curves, the validation loss should
not be constantly increasing as witnessed in Figure 10.
Using a dropout layer is an efficient way of addressing
this problem Srivastava et al.62. The term refers to randomly
“dropping out” units, both hidden and visible ones along
with their connections, from the neural network during
training process.62,63 Figure 11 illustrates how the units
are temporarily removed from the network, along with
incoming and outgoing links.

Accordingly, the proposed method can form a different
architecture by randomly setting neuron input units to 0
with a frequency of rate at each step while others are

scaled up by 1/(1− rate). Adding such a dropout layer
allows a computationally inexpensive and effective regular-
ization process along with a reduced over-fitting and an
improved generalization error (see Figure 12 ). The classi-
fication accuracy increased as seen in the examples on
Figure 13. The gap between training and validation loss
was reduced and the classifier was able to correctly classify
all the frames in Figure 13.

As seen by these classification results, the proposed
method performed well at deciding on correct landing and
non-landing locations. A further point to note is that the
model with the dropout layer is a rather small model and
could classify these initial frames in a reasonable time
which is desired for the SafeEYE lab as it will not fill up
the memory on the embedded computer.

Results with Additional Data
Even though there was a significant reduction in the gap
between training and validation loss due to the new
dropout layer placed between the two fully connected

Figure 16. Further results from the classifier with a new cluster to display the classification accuracy
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layers at the end of the neural network, the gap between
them was still present after around 200 epochs.

The results were still not desirable but hinted two things.
First, the data scarcity could have been a major bottleneck
for the image recognition model to reach desired classifica-
tion levels after around 200 epochs. Second, the model per-
formance relied heavily on the size of available data and
SafeEYE required more test flights. After the database
was updated with new images from two additional flight
tests, see section , the network training was re-run with an
identical setup and the results were refreshed.

The results of the later experiment found clear support
for both using a dropout layer and increasing the data
source. Figure 14 illustrates the performance of classifica-
tion which delivered significantly better results than
Figure 10 due to the proposed alterations. This yielded
increasingly well assortment on both landing and non-
landing fields because both training and validation loss
did not deviate from each other as the previous models.
The reason for this was understandably due to the diversity
of data and higher variations in frames.

The frames in Figure 15 illustrate the overall results from
the classification of frames from the military training com-
pound. The model performs well at selecting frames where
it is not suitable to land. The promising finding was that the
framework could detect the noise in the frames accurately
and could classify the notlandingField frames when there

are any form of objects, structures, trees or natural obstacles
at the image.

The applicability of these new results can also be seen on
the for landing locations on Figure 15. The model gave
clearly well results to correctly find the grass fields as
landing location, even if there were sometimes lower clas-
sification score as seen in the top middle frame. However,
this could be due to the fact that the image was slightly dis-
torted from the fish eye effect of the camera, or alternatively
it was due to the slight discoloration in the ground texture.

Despite the general success for the classification, incon-
sistent results might be obtained for certain cases. Areas
with small objects or variations had edges associated with
them. Safer fields, on the other hand, were free from
these edges. However, some frames with indistinct edges
posed some problems when carrying out the classification.
To highlight these frames, the results of classification accur-
acy were split into three different legend colors: green for >
70% LandingField classification accuracy, blue for < 70%
LandingField classification accuracy and red for
NotLandingField.

As seen on Figure 16, the model was able to correctly
classify the first row where the drone can land and the
second row where it cannot. However, the third row is
more challenging, especially for the last frame which
seems a safe place to land but labelled as otherwise. This
might be a minor drawback of the variance in the data

Figure 17. Illustration of the learning curves on the orthophotos data set.
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present in the real world. In the convolutional layer, the
model loses some information about the frame composition,
and also position, and transmits incomplete knowledge
further layers which might not be able to classify correctly.
When the objects are under different angles, backgrounds,
or lighting status, the model may not find accurate features
and other information signs to classify the frame as
intended. This might be the reason why the frame on the
right corner of Figure 16 provided misclassification. On
the other hand, the white variation could be rocks or any
other obstacles in landscape level and it would be hard to
say whether the model fails in classification in this
example. Additionally, the convolutional networks could
successfully recognize the landing images in terms of
autonomous landing safety.

Summary of findings
Imagery differences can occur in different forms and be
observed in interaction with various factors in different
domains. To validate whether the framework could
perform in such cases, an alternative data set of ground

images created from orthophotos64 is also used as a bench-
mark to measure how the model performs with other images
collected at different settings. This can confirm the reliabil-
ity of the results by a comparison between the control
frames and the original SafeEYE recordings. SDFE64 pro-
vides these open aerial photograph data which are orthorec-
tified and geometrically corrected such that the scale is
uniform. The data follow a given map projection. Like
the aerial photographs taken during a drone flight, the
orthophotos can be used in image analysis tasks in emer-
gency drone landing, since they are accurate representation
of unknown enviromental surfaces. The results of the model
trained on the orthophotos (see Figure 17) lead to similar
conclusion where there is a low training and validation
loss, and a high training and validation accuracy.

As before, it was able to correctly classify the locations
as can be seen on the first and second rows of Figure 18.
The frames on the bottom row, on the other hand, involve
different objects that cannot be found on the drone captured
data set such as unpaved road surface and small geological
formations on the field. The model had the capability to
rank these frames with a lower score and it proved that it

Figure 18. Results of the image classifier on the orthophotos frames.
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does not lack the consideration of spatial relationships
while processing the ground images. As the primary goal
in an emergency situation is to land (or crash in the worst
case) of the drone in a desired location, such ranking can
be of use while selecting the best frame location.

Conclusion
This work investigated the potential role of convolutional
neural network based image classification for drone emer-
gency landing. It is an original study that demonstrates
the practicality of vision-based location detection on the
unknown ground. CNN model allowed to encode certain
image properties into the network architecture so that the
forward function was more efficient to implement with
reduced number of parameters. The results clearly revealed
that the model was able to successfully classify landing
environments and suggest relevant captions. This is in
line with contemporary drone studies in the autonomous
flight context postulating that artificial intelligence can per-
ceive drone environment and take related actions for safer
operations. Some limitations might be related to splitting
the drone captured images into frames and applying the
model to these frames. Although the classification perform-
ance was deemed acceptable, a planning through a dynamic
environment might have a further positive effect on landing
location classification. The confidence in the results can be
strengthened with semantic-segmentation or visual
scene-understanding algorithms that can operate in real-
time on low-power drones. It would then be possible to
make efficient use of scarce ground imagery available on
embedded drone systems, compared to fully fledged
workstations.
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