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ABSTRACT Brain-computer interfaces (BCIs) can serve as a means for stroke rehabilitation, but low
BCI performance can decrease agency (users’ perceived control), frustrate users and thereby hamper
rehabilitation. In such rehabilitative tasks BCIs can implement fabricated input (preprogrammed positive
feedback) that improve agency and frustration. Two substudies with healthy subjects and stroke patients
investigated this potential through completion of a game and a simple task with: 1) 16 healthy subjects using
motor imagery-based online BCI and 2) 13 stroke patients using a surrogate BCI system based on eye-blink
detection through an eye-tracker to have a highly reliable input signal. Substudy 1 measured perceived
control and frustration in four conditions: 1) unaltered BCI control, 2) 30% guaranteed positive feedback
from fabricated input 3) 50% guaranteed negative feedback, and 4) 50% guaranteed negative feedback
and 30% guaranteed positive feedback. In substudy 2, stroke patients had 50% control over outcomes and
four conditions added from 0% to 50% positive feedback. In both substudies, positive feedback improved
participants’ perceived control and reduced frustration with increasing improvements when the amount of
positive fabricated input increased. The stroke patients did not react as much to the fabricated input as the
healthy participants. Fabricated input can be concealed in both online and surrogate BCIs which can be
used to improve perceived control and frustration in a game-based interaction and simple task. This suggests
that BCI designers can exercise artistic freedom to create engaging motor imagery-based interactions of
narrative-based games or simpler gamified interactions to facilitate improved training efforts.

INDEX TERMS Brain–computer interface, stroke rehabilitation, motor imagination, agency, frustration,
fabricated input, gamification, motivation, surrogate BCI, research instrument.

I. INTRODUCTION
Stroke patients undergo expensive rehabilitation for months
to regain lost motor control with mixed results [1]. There-
fore, different new techniques have been proposed such as
Brain-Computer Interfaces (BCIs) relying on motor imagery
training to restore movement [2]–[5]. The lack of inherent
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proprioceptive feedback makes BCIs difficult to operate such
that patients may experience a loss of control of the BCI
during training. The resulting frustration further reduces BCI
performance creating a vicious cycle and reduces motiva-
tion for subsequent training [6]. BCI research has sought
to improve performance of BCIs through novel hardware or
signal processing algorithms increasing users’ BCI perfor-
mance (i.e. true positive rate or classification accuracy) [7].
Alternatively, recent studies reduced frustration by creating
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an illusions of control through fabricated input, which con-
sists of injections of preprogrammed positive feedback,
when the BCI does not recognize valid user input attempts
[8], [9].Most studies investigated fabricated input by employ-
ing surrogate BCI in which users were led to believe they
provided input through BCI, while their input was captured
through a reliable input device to gain access to the ground
truth of input attempts that are otherwise unavailable in
BCI [9], [10]. Hougaard et al. [8] equipped users with an
electroencephalography (EEG) recording headband and con-
veyed to the users they were controlling a BCI with eyeblinks,
but simultaneously captured the user input through an eye-
tracker. So far, fabricated input has only been studied with
surrogate BCIs and it is unclear how agency and frustration
are affected in real BCI (motor imagery) or when rated by
stroke patients. The paper contributes evidence that positive
feedback linearly moderates people’s frustration and per-
ceived control in both contexts (BCI, stroke patients), includ-
ing positive feedback from fabricated input and is structured
as follows.

Section II includes 1) the relevant background on BCI
and its connection with inducing plasticity for stroke reha-
bilitation, 2) motivates the need for fabricated input to
curb frustration, and 3) synthesizes the extant knowledge
of fabricated input by discussing its design constraints and
details the scientific gap, which the following two substudies
address. The methods and results for substudy 1 (online BCI
with healthy subjects) are presented in Section III and IV
and in section V and VI for substudy 2 (employing a sur-
rogate BCI as a research instrument with stroke patients).
Sections VII and VIII provide a cross-study discussion and
the conclusions, respectively.

II. BACKGROUND
A BCI system enables users to control external devices and
applications using voluntarily produced brain activity [11].
BCIs often record the electrical activity from the scalp (EEG)
to pick up specific control signals from the brain that can
be evoked either internally such as sensorimotor rhythms
and slow cortical potentials or externally such as P300 or
steady state visually evoked potentials [11]. BCIs pre-process
recorded EEG data to maximize the signal-to-noise ratio
to isolate or maximize the control signal of interest. They
derive specific features that characterize the control signal to
classify them into a number of different classes whichmaps to
commands in different applications. BCIs have been used as
a means for communication and control for individuals with
severe motor impairments [12], but more recently for appli-
cations such as passive brain monitoring and game control
[13], [14]. Another major application of BCIs that has
evolved over the past 10 years is the induction of neural
plasticity [5] - the presumed underlying factor of motor learn-
ing [15], and motor recovery of stroke patients [16].

BCIs for stroke rehabilitation detect movement-related
cortical activity from the affected brain regions and in
response trigger a movement of the affected limb by using

a rehabilitation robot, exoskeleton, or electrical stimula-
tion of the muscles. The induced limb movement gener-
ates somatosensory feedback back to the brain. Feedback
returning with a short temporal delay after the intention
to move (resembling the normal motor control loop) ful-
fills the requirements for inducing Hebbian-associated neu-
ral plasticity [5]. The movement-related activity can be
evoked through motor imagination (MI) [17] and detected
through sensorimotor rhythms or movement-related cortical
potentials [18], [19].

Several studies have shown that these control signals
can be detected from single-trial EEG in non-disabled and
stroke individuals with input recognition rates roughly around
70-80%, but with higher input recognition rates for
non-disabled individuals compared to stroke patients
[20], [21]. BCI-controlled rehabilitation robots and electri-
cal stimulation can effectively improve motor function in
stroke patients [2], [4], [22], [23]. However, the experiments
have often been performed under controlled conditions with
BCI experienced researchers. Several factors can impede the
adoption of this technology in clinical practice and potentially
as a home-based rehabilitation tool [24]–[26]. These include
the mounting of headsets/caps for recording EEG, lengthy
calibrations, poor usability including variable BCI perfor-
mance, which may be low for several users. Up to 10-30%
of users have been labelled BCI illiterate because they could
not operate a BCI with sufficient performance (>70%) [27].
It should be noted that this accuracy is for communication and
control applications, but not for stroke rehabilitation in which
lower accuracy levels can still induce neural plasticity [28].

Control of MI-based BCI systems have been improved and
made more robust using various signal processing techniques
for improving the signal-to-noise ratio, feature investiga-
tions, feature selection, and machine learning techniques see
e.g. [20], [21], [29]–[37], but the control of an MI-based
BCI could also be improved through proper training proto-
cols adhering to universal learning principles, instructional
design, and feedback [38], [39]. However, it may take time to
learn to perform MI which may be abstract and new to many
patients. Different psychological factors have been reported
to be associated with BCI performance. Fear of failure for
controlling the BCI has been associated with decreased BCI
performance in healthy individuals as well as in individuals
with stroke or amyotrophic lateral sclerosis [6], [40]–[42].
Incompetence fear is a component of motivation together
with mastery confidence and challenge [43]. Several stud-
ies have reported that motivation and BCI performance are
associated, (e.g. [6], [40], [44]). Furthermore, factors such
as concentration, attention, control beliefs, sense of owner-
ship, and emotions (positive and negative) affect BCI perfor-
mance [43], [45]–[47].

Two other major factors that are associated with BCI
performance are frustration and sense of agency. Decreases
in frustration have consistently been associated with higher
BCI performance [8], [10], [44], [47], and higher BCI per-
formance with increased agency [8], [10], [44], [45], [48].
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But in cases in which people could experience high agency
(from continuous feedback) decoupled from the resulting
task outcomes, frustration was independent from perceived
agency but depended solely on positive task outcomes (neg-
atively correlated) [48]. These factors are important to con-
sider when using a BCI-controlled rehabilitation robot for
stroke rehabilitation since they are likely to influence the
patients’ attitude towards the technology and commitment
to the rehabilitation training [49], [50]. Thus, the frustra-
tion and sense of agency could affect the amount of time
the patient wants to spend on the training with the device,
which will determine the potential rehabilitative outcome,
higher training intensity should lead to better functional out-
comes. Even given proper hardware and software setups,
training protocols and environments [51], good BCI per-
formance cannot be guaranteed. Positively biased feedback
improved BCI performance for users with BCI recognition
<65% while users with higher recognition rates saw their
performance declinewhen exposed to such unwarranted feed-
back [52]. A study by Gonzalez-Franco et al. confirmed
this penalty of unwarranted positive feedback for high per-
formers [53] leading to weaker sensorimotor rhythm patterns
in subsequent attempts than appropriate negative feedback
and thereby decreasing BCI performance. A recent study
investigating biased feedback for various personality types
found interactions between the bias (positive and negative)
and workload, anxiety, and self-control that affect BCI per-
formance suggesting that biased feedback work better/worse
for some user types [42]. However, for stroke rehabilitation
good control of the BCI may not be needed for inducing
neural plasticity but rather, to avoid frustration, a high level
of perceived control [5], which is correlated with the actual
level of control [10], [48]. The notion of perceived control
resembles the sense of agency. Studies have investigated the
effect of different levels of BCI performance on the level
of frustration and perceived control but relied on surrogate
BCI input mimicking BCI performance through keyboard
input [9], [10]. This approach provided access to the ground
truth, and success rates could be accurately controlled. How-
ever, no EEG has been recorded, nor was it conveyed to the
participants that they were trying to control a BCI as this was
not the aim of the studies. Another approach to simulate a
BCI has been followed by using steady state visual evoked
potentials where EEG was recorded, but no actual decoding
of the EEG was performed, to control success rates [44].

A recent study developed a research instrument mimicking
a BCI system, i.e. a surrogate BCI, providing access to the
ground truth and allowing for controlling the success rate
of the system [8]. An EEG recording headset was mounted
on the forehead and conveyed to participants that the sys-
tem was recognizing specific eye blink patterns from the
brain activity. However, instead of using the EEG, an eye
tracker was used to recognize the blinks (input) with close
to 100% accuracy, i.e. it served as a surrogate BCI research
instrument. While not BCI input, this allowed for injecting
fabricated input in a BCI-like system to generate different

levels of control and modulate the sense of agency and level
of frustration with higher modulation precision than possible
with online BCI. Special attention must be paid to the design
of the fabricated input. To maximize the sense of agency the
fabricated input and feedback need to abide by three central
principles [50], [54]:

1) temporal congruency - priority principle: minimizing
delay between input attempt and feedback

2) spatial congruency - consistency principle: the map-
ping of feedback to the nature of the input attempt, and

3) be concealed - exclusivity principle: the genuine input
attempt seems to be the only plausible cause of the
outcome.

Temporal congruency and concealment may be difficult to
implement in a true BCI controlled via motor imagery, which
provide no access to the ground truth because BCIs may
produce false positives and false negatives in addition to true
positives from user attempts. The action of a BCI should
follow shortly after the intention since long delays can violate
the third principle of the user being the sole cause of the
effect. The maximum length of permissible delay is unknown
but agency can start decreasing even after short delays in the
order of 50-300 milliseconds when providing proprioceptive
feedback (e.g. from a button press [55]). In a BCI context,
the perceived agency decreased with larger temporal delays
but remained high even with two second delays [56]. Thus,
fabricated input should work best in a synchronous BCI with
pre-defined, binary inputs. Another characteristic of fabri-
cated input to consider is its temporal placement during the
input time window. In the context of MI-based BCI for stroke
rehabilitation, Hougaard et al. [8] proposed to 1) avoid plac-
ing fabricated input at the beginning of input windows to give
users time to attempt input and 2) not deliver it consistently
at the same time (e.g. the end of the window) but rather
place it randomly (see the original paper on input fabrica-
tion [8] for a more thorough discussion on its characteristics).
In stroke rehabilitation, a synchronous BCI with binary input
(movement intention versus nomovement intention) arranged
by input windows, creates a context with high probability
of users attempting to produce a recognizable movement
intention. The input window provides designers a limited time
window to inject the fabricated input where this potentially
allows for fulfilling the first and third principle of agency.
The third principle of agency could be further maximized
through instructing the user to keep trying to activate the BCI
throughout the input window. The second principle of spatial
congruency can be obtained through 1) visual feedback of
a rehabilitation robot, 2) an exoskeleton assisting the move-
ment or 3) through virtual reality. However, it could also be a
possibility that this principle can be violated so the feedback
is more abstract which opens possibilities for enriching the
rehabilitation scenario with game contexts and experiences
to conceal monotonous repetitive training.

In summary, frustration can reduce patients’ ability to
generate BCI recognizable MI attempts and their desire to
continue BCI training. But previous studies have only used
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FIGURE 1. Game Screenshots. In the stress ball condition (left), the player must provide input to make the ball squeeze. In the kiwi runner (right),
the player must provide input while the kiwi crosses the trampoline, to jump over the obstacle.

surrogate BCI methods with healthy subjects as evidence for
the efficacy of fabricated input to increase agency and reduce
frustration in both game and non-game contexts. It is not
clear whether the benefits of fabricated input apply equally or
potentially even more in A) real BCI systems in which users
can be less sure about their attempts of triggering actions
and for B) stroke patients, who due to their conditions might
have lower expectations and different experiences of reduced
agency. Two studies tested these aspects between game and
non-game contexts. The contribution of this paper is an inves-
tigation of agency and frustration with a real online BCI and
with the relevant user group, which is people with a stroke;
this has not been attempted in the literature.

III. METHODS: SUBSTUDY 1
The study closely followed the design of previously tested
interactions [8] to allow for within-subject comparison of two
interactions - a simple task (a stress ball, Figure 1, left), and
a game-based task with a narrative (kiwi runner) (Figure 1,
right). Healthy subjects controlled the interactions through
MI-based online BCI. On successful inputs the participants
squeezed the stress ball resulting in a squeeze animation with
positive audio feedback or blinking red with negative audio
feedback on failed attempts (Figure 1, left). In the kiwi runner
interaction, the participants controlled a kiwi jumping over
obstacles to reach a nest to protect its eggs from a bird of
prey (Figure 1, right). Prior to the study, subjects provided
their informed consent prior to the experiment which was
approved by the local ethical committee (N-20130081), and
was in accordance with the Helsinki Declaration.

A. MEASUREMENT OF REAL AND FABRICATED INPUT
The BCI applications utilized an urn model to random-
ize trials and achieve the target feedback rates, with three
possible outcomes: 1) activate on user input (acceptance),
2) fabricated input, or 3) ignore user input (rejection). Acti-
vation from user- or fabricated input closed the input window
and delivered positive feedback, i.e. ball squeezed or the kiwi
jumped. Ignoring user input delivered negative feedback at
the end of the input window, (e.g. the ball blinked red or the

kiwi walked through the obstacle). For fabricated input the
system selected a random point to end the input window
between 1.1 sec and 4.9 sec, and delivered positive feedback,
as if the participants had activated it. If the participants failed
to perform recognizable MI, the urn would count this as a
rejection, to get as close to the designated activation rate as
possible. The output of the BCI classifier from OpenViBE
was sent to Unity for controlling the two interactions. Two
different algorithms were used for the output of the BCI
classifier to identify an MI event in the two interactions.
In the stress ball interaction, an 8-sample ring buffer was used
in which eight consecutive outputs from the classifier (that
provided an output 16 times per second) had to be above the
subject-dependent activation threshold, which made it more
difficult to activate the BCI. In the kiwi runner interaction,
it was only required that one sample was above the subject-
dependent threshold. Regardless of the algorithm, both games
controlled the amount of positive and negative feedback users
received through the urn model.

We controlled the amount of positive feedback, which
appeared temporally congruent with the participants’ input
based on the method used in [8]. In each condition, par-
ticipants played 20 trials in four conditions which manipu-
lated negative and positive feedback as depicted in Figure 3:
0-100%, 30-100% (30% fabricated input), 0-50% (control
limited), and 30-80% (control limited, 30% fabricated input).
The conditions had a variable continuum of control, as it
is not possible to guarantee an exact level of control of the
BCI, for example in cases where users tried to create MI, but
did not succeed. However, conditions with fabricated input
guaranteed at least 30% positive feedback during the trials.

To assist referencing the different conditions between par-
ticipants and facilitators we color-coded the stress ball and
kiwi trampolines. The assignment of colors to the conditions
was randomized across participants.

B. EXPERIMENTAL PROCEDURE
The experimental procedure is visualized in Figure 2. Ini-
tially, the participants were informed about the exper-
iment and familiarized with the experimental setup,
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FIGURE 2. Experimental procedure consisted of 1) mounting the EEG cap, 2) calibration, 3) playing four randomized conditions in each game followed
by 4) a debrief interview.

FIGURE 3. In both games (kiwi, ball), each condition had
20 trials (squares) which were preset with specific behaviours and
shuffled. Trials which contained a fabricated input guaranteed a positive
outcome (green square). The control limiter (red square) guaranteed low
input recognition, unless the BCI already provided low input recognition,
in which case control limiting was removed.

tasks/interaction, and how to perform MI. The participants
received approximately five minutes of MI practice before
the experiment started. Next, an EEG cap was mounted on
the participants’ head and lead through a calibration process
of the BCI system by a BCI researcher with more than ten
years of experience. For calibrating the BCI, the participants
performed 30 imaginary palmar grasps (kinesthetic MI) with
their right hand. They maintained the imaginary movement
for four seconds. Also, 30 time periods with idle activity was
recorded, which also lasted four seconds. The participants
were visually cued with a red arrow pointing to the right,
indicating a palmar grasp with the right hand, for four sec-
onds, and with the text ‘‘REST’’ when the idle activity was
recorded. Amodified version of the ‘‘Motor Imagery BCI’’ in
OpenViBE (an open source platform for BCI development)
was used where the left hand MI was replaced with the rest
condition [57]. During the recording of the calibration data

and use of the online BCI, the participants were instructed to
sit as still as possible and avoid both blinking and activating
facial muscles. After the BCI calibration, the participants
played the two interactions in randomized order. There were
four runs of each of the interactions in which different
levels of fabricated input were mixed with the output of the
BCI. The order of the runs was also randomized, but the
interactions were not mixed. After each run the participants
filled in a questionnaire. They could see their ratings from
the previous runs as a reference. The interaction followed a
typical synchronous BCI paradigm with a cue phase (prepare
to perform MI) lasting 2 seconds, followed by a 5-second
input window where the participants were instructed to per-
form MI until it was detected, and lastly a rest period of
5 seconds depending on when the MI event was detected in
the time window or when the fabricated input was injected
(see Figure 1).

After each condition, participants used 7-point Likert scale
items to rate their perceived control (‘‘I felt I was in control of
when the kiwi jumped/ball squeezed.’’ from strongly disagree
(1) to strongly agree (7)) and frustration (‘‘Howmuch frustra-
tion did you feel in this condition?’’ from strongly absent (1)
to strongly pronounced(7)). The questions were identical to
those used in previous studies of frustration [8], and perceived
control [54]. To allow for numerical comparisons, we main-
tained the Likert item format used in [8] for both questions.

C. ONLINE BRAIN-COMPUTER INTERFACE
Continuous EEG data were recorded from F3, F4, C3, Cz,
C4, P3, and P4 according to the International 10-20 Sys-
tem. The EEG was referenced and grounded to CPz and
AFz, respectively. The EEG was recorded with a cap with
sintered Ag/AgCl electrodes (OpenBCI, USA) and sampled
with 250 Hz using a Cyton Biosensing Board (OpenBCI,
USA). The signals were transmitted through Bluetooth to
a computer on which OpenViBE processed the data using
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TABLE 1. Participant demographics (MI Experience denoted with *), mean self-reported measures (perceived control, frustration), MI conversion rate (%
of MI events within input windows which resulted in positive outcomes) and mean positive feedback (combined % feedback from MI and fabricated
input).

the pre-defined ‘‘Motor Imagery BCI’’ scenario [57]. The
continuous EEG was first filtered between 8-30 Hz with a 5th

order Butterworth bandpass filter and then with a common
spatial pattern filter to maximize the difference in spectral
power between the two classes (MI and idle activity). The
logarithmic band powerwas used as input for a linear discrim-
inant analysis classifier [58]. The coefficients of the com-
mon spatial pattern filter and the decision boundary of the
classifier were determined based on the calibration data. The
calibration data were divided into windows with a width of
one second which was shifted 1/16 second over the 4-second
imaginary movement from the calibration data based on the
standard settings in the ‘‘Motor Imagery BCI’’ scenario in
OpenViBE. The linear discriminant analysis classifier was
calibrated using 5-fold cross-validation. The output of the
classifier provided an output between 0 and 1. A subject-
dependent threshold was set for the output of the classi-
fier to decide whether it was an MI event or idle activity.
Lastly, a short test of the online BCI was performed with the
subject-dependent threshold set to balance the true positive
rate and number of false positive detections. The starting
value for the threshold was based on the classification accu-
racies for the calibration data, and it could be increased or
decreased to allow the balance between the true positive rate
and number of false positive detections. During the interac-
tion, the output of the classifier was sent to Unity through a
transmission control protocol (TCP) connection for control-
ling the game.When the classifier output passed the threshold
within an input window, an MI event it would be counted
towards the total MI rate. If an MI event led to positive
feedback, it would be counted towards the MI conversion rate
listed in Table 1.

D. DATA ANALYSIS
The BCI games collected continuous data from the BCI
interactions and event data from the BCI games which were

assembled and post-processed with R Studio. Game events
were compared to condition setups to identify potential con-
ditions which did not conform to the experimental design.
Afterwards, the quantitative data were analyzed using linear
mixed models from the lme4 package [59] and multi-model
variance inference from the MuMIn package [60] in terms
of conditional (R2c) and marginal R-squared (R2m). We used
linear mixed models to analyze the relationship between the
variables listed in Table 2 and described in the table caption,
following methods described by Winter [61]. Linear mixed
models compare a model of variables, to a null model. In the
null model, we used by-participant intercepts, to predict rat-
ings of perceived control and frustration. Visual inspection
did not reveal deviations from normality or homoscedasticity.
Likelihood ratio tests were used to obtain p-values, by com-
paring each effect within a full model to models without the
effect in question. Tests were considered significant when
p was less than 0.05. Qualitative data from post-experiment
interviews were transcribed into quotes for an inductive the-
matic analysis. All of the qualitative data were coded into
meaningful groups using open coding analysis [62], where
the groups of data were used to define specific themes.

E. PARTICIPANTS
Sixteen non-disabled participants were recruited for the
experiment, nine females and seven males with a mean age
of 26 years (range: 23-33 years). The experiment took place
in an ordinary office environment with no shielding of elec-
tromagnetic interference. While some participants have had
EEG recorded before, only two participants were familiar
with performing MI (P8, P10). P6 disconnected during two
conditions in the stress ball (100% +30% and 50%) and
therefore experienced very low feedback and MI activations.
Due to human error, P11 received six additional fabricated
outcomes for a total of 26 trials in the nominally 0-50%
condition. In addition, P12 tried a condition (50%) twice in
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TABLE 2. Significant likelihood ratio test outcomes of predicting perceived control and frustration from 8 variables: MI rate, fabrication rate, gender,
game, condition, BCI experience, condition order and positive feedback rate. The table reports AIC (Akaike information criterion), BIC (Bayesian
information criterion), ML (maximum likelihood), χ2 (significance), R2

m (marginal variance) and R2
c (conditional variance).

the kiwi runner. The conditions (P11 and P12) were excluded
from the subsequent analyses. The demographics of each
participant and the recorded MI rates are listed in Table 1.

IV. RESULTS: SUBSTUDY 1
A likelihood ratio test of linear mixed models [63] with ran-
dom intercepts for participants showed that positive feedback
rate (from either fabrication or successful inputs) positively
affected perceived control (χ2

= 47.89, p < 0.001). Par-
ticipants’ experienced more control when fabricated input
induced higher positive feedback rates. The relationship of
feedback rate to perceived control and frustration is visu-
alized in Figure 5. The rate of positive feedback explained
most variance (55% R2m) of all significant fixed effects listed
in table 2. The MI rate measured the number of recognized
MI attempts (true positives). MI rate predicted perceived
control significantly, but explained much less of the variance
in the data compared to the rate of positive feedback. People
rated perceived control more according to the feedback they
received, than the MI rate they achieved before applying
our feedback manipulations. Differences between conditions
were significant in isolation but they were not significant
when compared in a model with positive feedback predict-
ing perceived control The extent which conditions manipu-
lated positive feedback across participants, is visualized in
Figure 4. Gender and interaction type (kiwi vs. stress ball)
did not significantly affect perceived control. BCI experience
was tested as a random effect, but was not significant.

Frustration ratings were inversely predicted by positive
feedback rate (see table 2). Participants rated frustration sig-
nificantly lower for the kiwi than the stress ball, but partici-
pants also experienced higher mean positive feedback when
playing the kiwi game (M = 0.674 vs. M = 0.560). Differ-
ences in interaction were significant in isolation, but were
not significant compared to a model with positive feedback

predicting frustration. People had between 11% - 91% control
of the input attempts on average (M = 60%). The stress ball
provided only 5 of 16 participants consistent control (P2, P3,
P10, P12, P13) in all four conditions (less than 25% variance
in recognition rate), while kiwi provided 11 of 16 participants
consistent control.

A. INDIVIDUAL-LEVEL ANALYSIS
Due to the nature of the experiment with online BCI, par-
ticipants’ individual experiences of control are not possi-
ble to capture in group-level analysis. To demonstrate the
experience variation, we performed individual-level analysis
to identify how different participant subgroups’ experience
of MI Rate and feedback variance affected their ratings
(see Figure 6). Participants with less than 40% mean MI
rate (Group 1, Figure 6), had less than 40% mean positive
feedback and high frustration levels as expected (red line,
M = 0.64). Due to their low MI rate, the 0-50% condition
and 0-100% condition provided the same experience. The
injected 30% fabricated input (dark grey bars) made up 52%
of the positive feedback this group received on average (light
grey bars). The majority of participants in the high MI per-
formance group (group 2 in Figure 6) carried out MI without
problems and would have received 75% feedback or higher in
all four conditions, if we had not limited the feedback to 50%
in some conditions. The mean frustration levels (red lines)
were much lower (M = 0.17) as expected and the condi-
tions which limited positive feedback (0-50% and 30-80%)
conditions ended up with lowest ratings. Participants with
high feedback variance (group 3, Figure 6) were exposed to
feedback across the full scale. In contrast to participants with
low feedback rates, visual inspection of participant ratings
show a stronger inverse correlation between Frustration and
Perceived Control in this group - when perceived control
is low, frustration becomes high and vice versa. The group
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FIGURE 4. Participants 1-16 (x-axis) went through four conditions (0-100%, 30-100%, 0-50%, 30-50%) which moderated
their feedback rate (y-axis). The conditions 30-100% and 30-80% included fabricated input which guaranteed a baseline
30% positive feedback, as indicated by the shift of the lower black line.

FIGURE 5. Regression plots depicting feedback rate from the kiwi and stress ball combined on the x-axis to user ratings of
perceived control (upper) and frustration (lower) on the y-axis (jittered). Vertical black lines depict upper and lower bounds
of positive feedback provided in the condition. The condition (black line and markers) is compared to all data points (grey
line and markers).

demonstrates how giving participants access to a broad range
of low to high feedback rates, makes participants able to
reliably discriminate the experiences from each other.

In the qualitative post-experiment interview, five partici-
pants (P3, P6, P7, P11, and P15) revealed that they tried other
strategies than MI after experiencing successive failures, for
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FIGURE 6. Individual play-throughs grouped by 1) low MI recognition (mean below 40%), 2) high MI recognition (mean above 75%) and 3) high
variance between conditions (more than 50%). Light grey bars indicate the feedback level. Dark grey bars indicate how much feedback was fabricated
input. The red line indicates frustration and the black perceived control ratings. The x-axis plots MI rates achieved.

example imagining stretching fingers, swearing at the blue
kiwi bird in their head while clenching their hand, or clench-
ing the stomach: ‘‘I clenched my stomach at two times, where
the yellow ball got squeezed both times, and then I thought
I should stop doing that [as it felt like cheating]’’ (P15).
Six participants (P2, P4, P7, P9, P12, and P16) felt that
activation of the squeeze/jumpwas random or uncontrollable:
‘‘it was a bit frustrating. When my strategy worked, I thought
I could use the same strategy again, but then it didn’t work.’’
(P4). Three participants (P3, P8, and P12) felt that ‘‘the
stress ball helped recall contraction, which made it easier
to control.’’ Three participants (P2, P9, and P16) got the
feeling of ‘‘the ball sometimes squeezed before I even started
thinking’’ (P2), which invoked a feeling of ‘‘did I even do
this?’’ (P9), whereas P12 had the same feeling but with a
different explanation: ‘‘some algorithms were more sensitive
than others, while some did not even respond.’’ We discuss
the results of this substudy jointly with those of substudy 2.

V. METHODS: SUBSTUDY 2
Substudy 2 studied fabricated input in a hospital set-
ting with stroke patients using a similar surrogate BCI
hardware setup, experimental procedure and interaction by
Hougaard et al. [8] to allow for comparison. The study pro-
vided patients control of two games (kiwi, ball) through a

surrogate BCI system - a system, which resembled BCI in
appearance and input behavior, but recognized input through
blink recognition. The blink recognition gave ground truth
access to user input attempts and was practicable for exper-
imental designs in a rehabilitation setting because of mini-
mal setup time and reduced complexity (no MI training) to
reduce the risk of physical and mental fatigue of the patients.
Similar to substudy 1, this within-subject study asked patients
to rate perceived control and frustration in four conditions
for two interaction types (kiwi and ball). The participants
provided their informed consent prior to the experiment. The
experiment was approved by the local ethical committee
(N-20130081), and was in accordance with the Helsinki
Declaration.

A. EXPERIMENTAL PROCEDURE
The study explored how stroke victims, in a within-subject
experiment design, rated perceived control and frustration
while controlling two surrogate BCI games using blinks cap-
tured by an eye-tracker (Tobii EyeX2). A therapist fetched
each patient from their room, and was not further involved in
the study. The participants were equipped with a MyndPlay
band and were explained that they controlled the game by
blinking in a specific way, similar to a previous study [8]. The
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participants played four conditions in the kiwi runner and the
stress ball games in randomized order.

We manipulated user input for the purpose of creating a
controlled experiment. In each game, the participants played
four conditions: 50% real control, 50% real control +15%
fabricated input, 50% real control +30% fabricated input,
and 50% real control +50% fabricated input. Similar to
substudy 1, real control was measured as % of input events
(eye blinks) within an input window which led to posi-
tive feedback. Fabricated input was measured as the % of
system-injected input events, which led to positive feedback.
The conditions were visually distinguished by a random
color, to make it easy for participants to recall and talk about
them.

The questionnaire was identical to the questionnaire used
in substudy 1. The facilitator helped reading the questionnaire
to assist the patients and offered to fill in the questionnaire
answers based on patients’ verbal answers.

In each condition, players had 20 trials. The BCI games
were designed to follow an interaction paradigm similar to
substudy 1 (see Figure 1), but used a eye-blinks as the input
modality.

B. SURROGATE BRAIN-COMPUTER INTERFACE
Both BCI games utilized the same urn model to roll
between three possible outcomes. The three possible out-
comes were: 1) activate on user input (acceptance), 2) ignore
user input (rejection) or 3) fabricated input. Acceptance out-
comes ended the input window and delivered positive feed-
back, for example making the kiwi jump or the ball squeeze.
Ignoring the user input delivered negative feedback at the end
of the input window, for example the kiwi walked through
an obstacle slowing it down, and the ball blinked red. For
fabricated input the system selected a random point to end the
input window and deliver positive feedback, as if the user had
activated it. If the user failed to perform a blink throughout
the input window, the urn counted it as a rejected outcome
and saved the drawn decision.

C. DATA ANALYSIS
The collected data included notes taken during the study,
audiovisual recordings of the participants’ game-screen, their
face when performing the blinks, and answered questions in
the debrief interview. Data from the input device and the BCI
games were logged locally. We followed a similar approach
as in substudy 1 in terms of data processing for quantitative
and qualitative analysis, except that recognized attempts were
now calculated from blink recognition.

D. PARTICIPANTS
Thirteen stroke patients were recruited for a within-subject
experiment of all four conditions, five females and eight
males with a mean age of 65 years (range: 34-87 years).
The participants were recruited from the neurorehabilitation
center (Neuroenhed Nord) in Brønderslev, Denmark. Three
of the participants had experience with BCI (P1, P4, P12).

Table 5 lists the demographics and achieved input rates of
all participants. Due to moving out of the eye-tracking range,
three participants (P2-P4) missed inputs within a window and
experienced only 40% control in terms of accepted blinks
(one condition for P2 and P4, two conditions for P3) leading
to lower positive feedback than designed. In addition, P4
remained out of the eye tracking range for a whole condition,
resulting in 0% control in the 50% + 30% fab. input con-
dition. We checked all analyses without the conditions, but
found no differences in terms of the results, so the conditions
were included in analysis.

VI. RESULTS: SUBSTUDY 2
A likelihood ratio test of linear mixed models with random
intercepts by participant showed that positive feedback sig-
nificantly increased perceived control and reduced frustration
(see Table 3 and 5). Positive feedback and fabrication rates
separately explained equal amounts of R2m and R2c variance in
perceived control and frustration (relationship to fabrication
rate visualized in Figure 7). Delays between blinks and fab-
ricated feedback ranged from 0 to 4.4 seconds (see Table 5)
but affected neither perceived control. Mean delay affected
frustration significantly, but was not significant, when tested
against a model which included positive feedback. Interac-
tion type (kiwi vs. stress ball) and play order did not affect
self-reports.

TABLE 3. The experimental conditions with added fabrication rates to a
baseline of 50% successful task outcomes and the means of the
participants’ normalized frustration and perceived control ratings.

An intra-rater reliability analysis (ICC3, [64]) showed poor
agreement [65] between participant ratings for perceived con-
trol (kappa = 0.26, p< 0.001) and frustration (kappa = 0.24,
p < 0.001), which is lower than in a previous study using the
same surrogate BCI [8].

Results from the thematic analysis of the debrief interviews
revealed that all but four participants (P1, P10, P12, and P13)
felt that the game was at fault for most of their experienced
rejections. Two participants (P4 and P11) blamed it on the
game cheating them, showing a lack of trust towards the
game. One participant blamed the game because of feeling
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FIGURE 7. Perceived Control and Frustration means (substudy 2), jittered for better visibility and their
distribution (violin plots) by fabrication rate (the conditions) added to a 50% of actual control. Error
bars denote 95% confidence intervals.

protective towards their functionality in the brain. As P11
explained ‘‘my nurse told me that my brain functions com-
pletely normal even though I’ve had a stroke, which convinces
me that the game is cheating me’’. Not trusting the game
influenced the frustration of two participants (P7 and P11):
‘‘I am not that frustrated, because I just think to myself that
it’s the games’ fault’’ (P7). A couple of participants (P4 and
P5) had a perceived learning curve when playing first with
+0% fabricated input, and then with +50% fabricated input
after, ‘‘I have figured it out! Slow blinks work.’’ (P5). This has
a connection to uncertainty of strategy as well, where several
participants (P1, P2, P4, P5, and P9) were trying to figure out
how to play the game, ‘‘Do I need to press [my eyelids] harder
for it [the game] to react?’’ (P2) and ‘‘Is it true that I need to
blink more with my left eye?’’ (P5). These comments mostly
came after consecutive rejections, which made participants
question their blinking approach.

VII. DISCUSSION
Fabricated input increased perceived control and lowered
frustration in an online BCI study with healthy participants
(substudy 1) and in a surrogate BCI study with stroke patients
(substudy 2). Both substudies showed a strong negative
Spearman correlation (r=-0.78 for substudy 1 and r=-0.62
for substudy 2) between perceived control and frustration
(see Figure 8). This provided evidence that system-generated
fabricated input can be useful in 1) surrogate studies with
healthy and stroke participants, 2) surrogate and online BCI
studies with healthy participants, and 3) in interactions both
without (stress ball) andwith a larger narrative frame inwhich
progress to a larger goal was at stake (rescuing the kiwi’s
babies). In both studies, participants perceived their control
based on positive feedback, rather than underlying control
indications (MI rate, blink rate). Positive feedback rates pre-
dicted both perceived control and frustration linearly in line
with previous work using binary, discrete feedback [8] unlike

when feedback gets generated continuously and perceived
control becomes independent from experiencing discrete,
positive feedback events [66].

A. ONLINE VS. SURROGATE BCI
The online BCI study yielded similar ratings for perceived
control and frustration compared to a previous surrogate BCI
study [8] (see the intercepts (α) and slopes (β) for both
variables in Table 6). While Hougaard et al.’s found that
the variable delay from fabricated input reduced perceived
control over stress ball squeezes in healthy participants [8]
results from neither substudy showed delay-related penalties
in perceived control or frustration. The random placement
of fabricated events during the later parts of the input win-
dow did not significantly affect the experience for stroke
patients and online BCI users. The reduced perceived control
in that study [8] could be due to a violation of temporal
congruency [54]. For the participants to be able to penalize
a potential delay, they need to have access to ground truth
to register the delay. While online BCIs introduce a constant
delay from the used algorithm, which theoretically might
appear variable, as users do not know whether and when
their MI attempts passes the necessary thresholds, they do
not provide access to the ground truth due to lack of sensory
feedback. The surrogate BCI studies both past and presented
here, concealed the ground truth by asking participants to
blink in a specific way to make it more difficult for them to
be aware if they succeeded.

In future studies, it would be interesting to investigate
if similar ratings of perceived control and frustration can
be obtained when using participants that are skilled in per-
forming MI and may be more aware if and when they
have performed it correctly. In this study only two par-
ticipants were familiar with MI, although everyone per-
formed a short MI familiarization session prior to the BCI
calibration.
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TABLE 4. Participant demographics and means averaged across the four conditions of frustration (Likert scale), perceived control (Likert scale), blink
conversion rate (% of registered blinks within input windows which resulted in positive outcomes), blink recognition (% of unaltered trials which had
registered blinks) and delay (mean delay between blink and positive feedback across all trials).

TABLE 5. Significant likelihood ratio test outcomes of predicting perceived control and frustration from 8 variables: blink rate, fabrication rate, delay,
gender, game, condition, condition order and positive feedback rate. The table reports AIC (Akaike information criterion), BIC (Bayesian information
criterion), ML (maximum likelihood), χ2 (significance), R2

m (marginal variance) and R2
c (conditional variance). Significant variables were modeled with

positive feedback as fixed effects, but no combinations were significant.

TABLE 6. Cross-study comparison of normalized results from substudy 1 and 2 predicting agency and frustration with results from Hougaard et al. [8].

B. PERCEIVED CONTROL AND FRUSTRATION IN
STROKE PATIENTS
Stroke patients in substudy 2 reported having more control
over the kiwi and stress balls and were less frustrated than

healthy participants with the same number of successful out-
comes in a study using eye-blink surrogate input [8] (see
Table 6). The differences were mostly due to stroke patients
having higher baselines (intercepts) of perceived control (and
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lower frustration) than healthy participants. In return, the
ratings of stroke patients did not change as much as those
of healthy participants [8] when positive feedback increased
(see Table 6).

Stroke patients did not penalize delays between intention
and system output as much as the healthy participants in
the surrogate BCI. Due to their age, the stroke patients may
have lower expectations to the technology due to their pre-
sumable reduced exposure to computer interaction in general
compared to the healthy participants in in Hougaard et al.’s
study [8]. However, this is just a speculation that has not been
tested.

Moreover, potential cognitive impairments such as spa-
tial neglect, and deficits in magnitude estimation, self-
awareness or abstraction ability can confound the validity of
self-reported measurements from stroke patients [67]. Stroke
patients may face low self-awareness [68] and therefore may
not want to articulate any frustration that they actually feel
in fear of acknowledging their own deficit. Physiological
measures such as galvanic skin response could potentially
complement the self-reported measures.

In substudy 2, an intra-rater reliability analysis (ICC3, [64])
across kiwi and stress ball showed poor agreement [65] in
ratings for perceived control (kappa = 0.26, p < 0.001) and
frustration (kappa= 0.24, p< 0.001) than in a previous study
using the same surrogate BCI approach and interactions [8].
Comments from some of the stroke patients indicated that
special attention to wording and explanation is necessary to
avoid measuring ill-defined constructs.

P11 was not frustrated over a bird not jumping inside a
game, as they mentioned, ‘‘It is not frustrating at all. The
bird can decide for itself if it wants to listen or not’’. The
number of stroke participants was fairly small for the findings
to be representative for the entire stroke population, which
is very heterogeneous. Future studies should investigate how
fabricated input modulates perceived control and frustration
in patients with varying cognitive impairments.

C. STUDY LIMITATIONS
Both studies increased the external and ecological validity
over previous work [8] but yielded lower experimental con-
trol. In substudy 1, we used online BCI instead of surro-
gate BCI in a study with healthy subjects. This introduced
variable input and blocked analytical access to the ground
truth. Although we could measure MI rate from the partic-
ipants, it could have contained false positives and negatives
and thereby not accurately reflecting intentional user input
attempts. Hence it might be reasonable to expect how the
MI rate only explain a low amount of variance (28% R2m)
in users’ ratings of perceived control. From an experimen-
tal design point of view, the benefits of using surrogate
BCI includes allowing for known-groups validation [69] for
example by measuring a well-known construct such as 100%
control known beforehand to be distinct. The participants,
many without prior MI experience, described trying vari-
ous other approaches when they realized MI did not work

consistently, including focusing on the fingertips or clenching
their stomach; this could reduce the actual MI recognition
rate. The low rater reliability could potentially be improved
by including reference conditions with 100% or 0% control as
anchoring points for the Likert scale ratings of the perceived
control and frustration (e.g. see Hougaard et al. [8]). In real-
life rehabilitation scenarios, high levels of input fabrication
could be counter-productive and degrade rehabilitation out-
comes if they hindered learning of MI and produced weaker
sensory-motor rhythm patterns [52], [53]. But motor cortical
activity through MI is an integral part of inducing neural
plasticity [3], [28], [70]–[72], and fabricated input would
only serve to improve the patient’s agency and frustration to
maintain sufficient engagement and motivation in the reha-
bilitation. Lastly, the use of fabricated input is likely most
relevant for BCI applications within neurorehabilitation for
inducing plasticity or binary input tasks in synchronous BCIs
with pre-defined input windows. Because it would not be
possible to predict what type of fabricated input would be
relevant, and when to inject it, in BCI applications for com-
munication and control purposes such as wheelchair control,
cursor movement, and speller devices.

D. IMPLICATIONS
This study showed that fabricated input can be used to
improve perceived control and frustration in online and sur-
rogate BCI use in healthy participants and stroke patients,
and that it can be concealed without being noticed by the
user. This simplifies the implementation of fabricated input
in systems with time-bounded input windows (five seconds
in our studies) as designers do not need to worry much
about delays between randomly system-injected inputs and
the most recent unrecognized MI attempts. Especially in BCI
systems in which 1) processing and aggregation delays can
be quite high (0.5 seconds in substudy 1), 2) participants
are meant to maintain imaginary movements until recog-
nition, and 3) triggering MI-BCI lacks proprioceptive and
somatosensory feedback.

The fabricated input could be implemented in task realistic
training, for example for grip strength with a stress ball and in
a game context with a narrative. The results from the studies
did not indicate group-level differences in perceived control
or frustration based on the game or simple task, but partici-
pants indicated individual preferences during interviews. This
provides evidence that in these interactions participants eval-
uated frustration in relation to their ability to affect change
rather than the bigger goal or that the provided narrative
framing was not strong enough to affect their frustration.

In both surrogate BCI and online BCI, most participants
preferred the kiwi game to the stress ball (8/13), but the MI
contractions felt more natural when squeezing the ball than
making the kiwi jump. Designers can integrate fabricated
input in BCI-based training to reduce frustration and main-
taining patients’ engagement for patients with low BCI per-
formance (<65% recognition rate) as for patients with higher
performance fabricated input might lead to a reduction in
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FIGURE 8. Perceived control to frustration for substudy 1 (left) and substudy 2 (right).

their ability to perform MI [38], [52], [53]. Other avenues to
increase BCI users agency include leveraging realistic feed-
back rather than abstract representations [73] and continuous
instead of discrete feedback depending on the preferences of
the learner [48]. These concepts can be combined with fabri-
cated input to dynamically modulate perceived agency and to
some degree frustration depending on the user’s performance.
This could for example be different games and potentially
introducing multiplayer experiences with other patients to
motivate them to train more.

VIII. CONCLUSION
Fabricated input can be implemented in online MI-based
BCIs and in surrogate BCI studies to reduce frustration and
increase perceived control of healthy and stroke participants.
Stroke patients reacted not as much to the variations in fab-
ricated input as healthy participants which could be due to
differences in expectations to the technology/interaction. For
discrete, binary input the rate of positive feedback linearly
moderates both the perceived agency and frustration. From
an experimental point of view, surrogate BCIs are useful since
they provide access to ground truth and reduce the effect of
confounding factors to isolate the factor(s) under investiga-
tion. Lastly, fabricated input work, at least for binary input,
both in game and non-game contexts, allowing developers
to promote patient training by concealing monotonous and
repetitive training regimes through game contexts. Future
studies should investigate the reasons for these differences
with larger patient groups and varying cognitive impairments.
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