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Abstract: Attitude stabilization is a necessary function for a shipboard Marine Satellite
Tracking Antenna (MSTA), which is responsible for making the antenna dish track the
geostationary satellite in the presence of severe ship dynamics. A control scheme based on
Model Predictive Control (MPC) is proposed to stabilize the antenna dish of a MSTA product
and the detailed design procedure is stated from algorithm design to Hardware-in-the-loop (HIL)
simulation. Since the stepper motor is used as the actuator, the MPC is proposed, for the first
time, to handle the problem of velocity acceleration and deceleration of stepper motor, which
can save lots of time on the design of velocity profile. The MPC algorithm is implemented
in FPGA with three different data types. Besides conventional floating-point and fixed-point
data types, a special data type, half-precision floating point, is also explored for the fist time.
The comparison results of them are presented and analysed in terms of FPGA resource usage
and algorithm execution time. The performance of proposed control scheme is validated in HIL
simulation, which is creatively achieved in a low-cost System On Chip (SOC) FPGA. The HIL
simulation results demonstrate that the proposed control scheme in fixed-point MPC can satisfy
the requirements of MSTA product.

Keywords: Attitude stabilization, MSTA, MPC, FPGA, active set method, half-precision
floating point.

1. INTRODUCTION

Marine Satellite Tracking Antenna (MSTA) is an impor-
tant shipboard device for establishing communication be-
tween ships and geostationary satellites. Due to the ship
dynamics caused by ocean wave, an attitude stabilization
system is necessary for MSTA to keep the antenna dish
pointing to the geostationary satellite with high precision.
For the Ka-band MSTA, which is the latest technology
of MSTA and is also the one in our research, the Root
Mean Square (RMS) value of allowable tracking error is
very small, only 0.2 deg. Moreover, the stepper motor is
used as the actuator, whose velocity changing rate cannot
be higher than a certain threshold, otherwise step missing
will happen.

Many research works have been done about the attitude
stabilization system of MSTA. In the paper of Wang et al.
(2011), a Permanent Magnet Synchronous Motor (PMSM)
servo system based on Digital Signal Processing (DSP)
chip and vector control is designed. The DSP and Complex
Programmable Logic Device (CPLD) are the main control
chips, the software and hardware are designed and com-
? This work was supported by Innovation Fund Denmark under the
prooject STAR2 COM (Jnr.060-2013-3).

pleted to realize the digital control of the satellite tracking
antenna. In the paper of Tseng and Teo (1998), fuzzy
logic is used to cope with the uncertainty and nonlinearity
nature of the attitude control of shipboard tracking an-
tenna. The simulations demonstrated the effectiveness of
the design which has been implemented on some antennas.
A fault tolerant control (FTC) system is proposed in
the paper of Soltani et al. (2011) to deal with certain
faults from communication system malfunction or signal
blocking. The FTC system maintains the tracking func-
tionality by employing proper control strategy. A robust
fault diagnosis system is designed to supervise the FTC
system. The employed fault diagnosis solution is able to
estimate the faults for a class of nonlinear systems acting
under external disturbances. In the paper of Ming et al.
(2005), a method for constructing the model of MSTA is
proposed and the model is established by experiments. Ac-
cording to the model, an H-infinity controller is designed
and implemented to the antenna system. These research
works have contributed to the design of attitude control
system of MSTA, but none of them have considered the
constraints in the system. In the attitude stabilization
system of MSTA, the actuator is a stepper motor, whose
rotation acceleration has to be limited to avoid missing



steps. Previously, research works focus on the design of
velocity profile to avoid missing steps but no one had tried
to apply MPC to solve this problem.

Recently, there is an increasing interest in the application
of FPGA on computation acceleration (Tu et al. (2019);
Zhang et al. (2019); Kosan et al. (2018); Lucia et al.
(2018)), mainly due to its special hardware architecture
which is totally different from CPU. The development of
FPGA chips is very quickly in recent five years, which
is mainly pushed by the strong need from deep learning
and machine vision that require much larger computation
capacity than MPC (Rahman et al. (2016); Dundar et al.
(2017)). Many research works has been done about ap-
plying FPGA for accelerating the computation of MPC
(Gulbudak and Santi (2016); Darba et al. (2016); Ramrez
et al. (2014); Damiano et al. (2014); Ma et al. (2014);
Jerez et al. (2014)). The comprehensive reviews of FPGA
application in industrial control system can be found in
the papers of (Monmasson and Cirstea (2007); Monmasson
et al. (2011)). These previous researches have laid a solid
foundation in the application of FPGA on MPC. However,
there still exist some points that can be improved.

In this paper, the MPC algorithm based on active set
method is designed and implemented in FPGA for the
attitude stabilization of MSTA. The contributions of the
present work are four-fold: (1) The MPC algorithm is
applied to handle the velocity change of stepper motors
in MSTA. (2) Half-precision floating-point data type is
firstly proposed for MPC implementation. (3) The HIL
simulation is achieved in a low-cost SOC FPGA chip,
which demonstrates an inexpensive method for HIL simu-
lation. (4) Three parallel fixed-point MPC controllers are
implemented in the low cost SOC FPGA chip and are
executed simultaneously.

The remainder of this paper is organized as follows: In
Section 2, the attitude stabilization system of MSTA is
introduced and the model for MPC design is presented.
The design procedure of MPC algorithm is stated in
Section 3. Then, the designed MPC is implemented in
FPGA in Section 4 and a HIL simulation is made in
Section 5 to verify performace of proposed control scheme.
Lastly, Section 6 gives the conclusion and discusses future
works.

2. CONTROL SYSTEM INTRODUCTION AND
MODELLING

The MSTA under development is a commercial product,
which has three rotational parts, that is, the elevation
part, cross-elevation part and azimuth part. The attitude
stabilization design of each part is independent and the
controller design method of each part is the same. Hence,
only the elevation part is used to show the design proce-
dure of the attitude stabilization system.

2.1 Diagram of the Attitude Stabilization System

The diagram of the attitude stabilization system of the
elevation part of MSTA is shown in Fig. 1.

In Fig. 1, the reference angle is determined by the position
of the geostationary satellite that the MSTA needs to track

Fig. 1. Diagram of the attitude stabilization system of the
elevation part

and can be considered as a constant value in a short period.
There are two closed loops in this attitude stabilization
system, inner loop and outer loop. The inner loop is the
velocity loop, which is responsible to control the rotation
velocity of the elevation part. And the outer loop is the
position loop, which is responsible to control the rotation
angle of the elevation part. The rotation angle and velocity
can be obtained from an attitude sensor. The disturbance
is from the rotation movements of ships caused by ocean
waves.

The position controller is a PI controller. It is the design
of the velocity controller (MPC) that will be focused on
in this paper. The velocity controller is responsible for
compensating most part of the disturbance from ships and
the remaining parts is left to the position controller.

2.2 State Space Model For MPC

In the attitude stabilization system of elevation part, the
stepper motor is the actuator and the elevation part is the
load. For MPC design, the model of stepper motor has to
be obtained first.

In previous formulation of model predictive control, finite
impulse response (FIR) models, step response models, and
transfer function models were favoured. In recent years,
there is growing popularity of designing MPC based on
state-space models (Wang (2009)). The main theoretical
results of MPC related to stability come from a state space
formulation, which can be used for both monovariable and
multivariable processes and can be extended to nonlinear
processes (Camacho and Alba (2007)).

The stepper motor is used in close-loop control system
and its rotation velocity is obtained from a high-precision
gyroscope mounted on the elevation part. By conducting
experimental analysis, it is found that the velocity model
of the stepper motor can be approximated as a second-
order linear system, as shown below,

Gvs(s) =
V (s)

R(s)
=

w2
n

s2 + 2 · ξv · wn · s+ w2
n

(1)

where R(s) is the command rotation velocity and V (s)
is the actual rotation velocity of stepper motor shaft.
wn = 27.3rad/s is the undamped natural frequency and
ξv = 0.022 is the damping ratio, which are obtained by
applying model identification method on sampled experi-
mental data.

The transfer function model in (1) is converted into
continuous-time state-space model, and then discretized
by Euler method to get discrete-time state space model,
as shown in (2).



xd(k + 1) =Ad · xd(k) +Bd · ud(k) (2)

yd(k) =Cd · xd(k)

where ∆t is the sampling interval, k is the current time
step, xd(k) = [x1(k) x2(k)]T where x1(k) is the rotation
velocity and x2(k) is the rotation acceleration. Ad =
exp(Ac ·∆t) ≈ I +Ac ·∆t, where Ac is

Ac =

[
0 1

−w2
n −2 · ξ · wn

]
,

and

Bd =

[
0

w2
n

]
,Cd = [ 1 0 ] .

The model in (2) is changed to make the MPC embed an
integrator. The changed model is called augmented model,
as shown below. The details about augmented model can
be found in the paper of Wang (2009).

x(k + 1) =A · x(k) +B ·∆u(k) (3)

y(k) =C · x(k)

where x(k + 1) =

[
∆x(k + 1)

y(k + 1)

]
, A =

[
Ad oTd
CdAd 1

]
,

x(k) =

[
∆x(k)

y(k)

]
, B =

[
Bd

CdBd

]
, C = [ od 1 ], od =

[ 0 0 ], ∆x(k) = xd(k + 1) − xd(k), ∆u(k) = ud(k + 1) −
ud(k). Note that, ∆u is the change of controlled variable.

Equation (3) is the model that will be used for MPC design
in Section 3.

3. MPC ALGORITHM

The pseudo-code of the MPC algorithm for velocity control
loop in Fig. 1, is stated in Algorithm 1 and the detailed
explanation of each line is given next. It should be note
that this pseudo code is written in Maltab M language
style.

3.1 Definition of MPC Problem

The MPC problem is defined in this section. Firstly, the
following vectors are defined,

Y = [ y(k + 1|k) y(k + 2|k) ... y (k +Np|k)]
T

∆U = [ ∆u(k) ∆u(k + 1) ... ∆u(k +Nc − 1) ]
T

where the elements of Y are the predicted outputs based
on current state x(k). Thus they are also the predicted
rotation velocity of the elevation part of MSTA. The ele-
ments of ∆U are the increment of future control trajectory
that can be obtained by solving convex optimization prob-
lem with constraints. Np is the prediction horizon, and Nc
is the control horizon.

The predicted output variables are,

Y = F · x(k) + Φ ·∆U (4)

where

F =
[
CA CA2 ... CANp

]T
(5)

Algorithm 1: MPC controller algorithm

MPCControllerOneStep (Rs,xd(k),yd(k))

x(k)←
[
xd(k)− xd(k − 1)

yd(k)

]
∆U← (ΦTΦ + R̄)−1ΦT (Rs − F · x(ki))
Ncv ← 0
for i = 1, ..., 2 ·Nc do

if (M(i, :) ·∆U > γ(i)) then
Ncv ← Ncv + 1

end
end
if Ncv > 0 then

K ←M · (−∆U) + γ
for cy = 1, ..., N1 do

for i = 1, ..., Nc do
s1← 0
s2← 0
for j = 1, ..., i− 1 do

s1← s1 +H(i, j) · λ(j)
end
for j = i+ 1, ..., Nc do

s2← s2 +H(i, j) · λp(j)
end
ω(i, 1)← −(1/H(i, i)) · (K(i, 1) + s1 + s2)
λ(i, 1)← max(0, w(i, 1))

end

E2
λ ← (λ− λp)T · (λ− λp)

if E2
λ < Ec then

break;
end
λp ← λ

end

∆U←∆U− (ΦT Φ + R̄)−1 ·MT · λ
end
∆u← L0 ·∆U
u← u+ ∆u
xd(k − 1)← xd(k)
return u
End Of MPCControllerOneStep

Φ =


CB 0 ... 0

CAB CB ... 0

...

CANp−1B CANp−2B ... CANp−NcB

 (6)

Using (4), the cost function of MPC, J , is then defined as,

J = (Rs − Y )T · (Rs − Y ) + ∆U · R̄ ·∆U (7)

where Rs ∈ RNp×1 is the vector of reference values.
R̄ = rw ·INc×Nc

(rw ≥ 0), where rw is the tuning parameter
that determines the desired closed-loop performance.

Using (7), the MPC problem is defined as,

min
∆U

J (8)

subject to : x(k + 1) = A · x(k) +B ·∆u(k) (9)

M ·∆U ≤ γ (10)

where

M =

[
INc×Nc

−INc×Nc

]
,γ =

[
∆Umax

−∆Umin

]
, (11)



∆Umin = INc×1 · ∆umin,∆Umax = INc×1 · ∆umax.
The change rate of the command rotation velocity of
stepper motor has to be constrained in the range of
[∆umin∆umax], whose exact values are explained in Sec-

tion 3.4. Equation (10) is equivalent to ∆Umin ≤ ∆U ≤
∆Umax. This inequality constraint arises from the step-
per motor, whose rotation acceleration has to be limited,
otherwise, the stepper motor would miss some steps.

3.2 Active Set Methods

From (8) to (10), it can be seen that solving the MPC
problem is actually solving quadratic programming (QP)
problem with equality and inequality constraints. The
active set method is one of the methods for solving MPC
problem (Gu et al. (2009); Cannon et al. (2001); Bartlett
et al. (2000); Lau et al. (2009)) and is employed in our
case. The idea of active set methods is to define, at each
step of MPC algorithm, a set of constraints, termed the
working set, that is to be treated as the active set (Wang
(2009)). If the active set is found, the original optimization
problem with inequality constraints can be converted into
an optimization problem with equality constraints. In the
active set methods, finding the active constraints is a
time consuming task, especially when there are many
constraints. Here, the primal-dual method is used to find
the active set. A dual method is applied systematically to
find the inactive constraints, which can then be removed in
the solution. The dual problem is written as below, whose
detailed derivation procedure can be found in the paper of
Wang (2009).

max
λ≥0

(
−1

2
λTHλ− λTK − 1

2
F Td E

−1Fd

)
(12)

where λ is the Lagrange multipliers, also called dual
variables in the optimization literature. And,

H =M ·E−1 ·MT (13)

K = γ +M ·E−1 · Fd (14)

where E = ΦTΦ + rw ·INc×Nc
, Fd = −ΦT (Rs−F ·x(k))

From (12), it can be seen that the dual is also a quadratic
program problem with λ as the decision variable. (12) is
equivalent to,

min
λ≥0

(
1

2
λTHλ+ λTK +

1

2
Fd

TE−1Fd

)
(15)

that is solved by the Hildreth’s quadratic programming
procedure, which is based on an element-by-element
search, therefore, no matrix inversion is required.

The active set method corresponds to Line 10 − 32 in
Algorithm 1.

3.3 Explanation of Algirithm 1

In this section, the Algorithm 1 is explained with details,
from algorithm initialization to the functions of some
important lines.

Before the execution of Algirithm 1, some variables have to
be set and initialized. The following variables are set: Nc =
40, Np = 40, ∆umin = −3 deg/s, ∆umax = 3 deg/s, and
∆t = 0.002. How to get these parameters are explained

in Section 3.4 with details. These parameters, together
with the identified model parameters, ξv = 0.022 and
wn = 27.3 rad/s, are used to calculate F , Φ, M , γ, H, by
(5), (6), (11), and (13), respectively. Then, the following
parameters have to be initialized before execution of
Algorithm 1: u = 0,xd(k − 1) = 0,λ = 02Nc×1,λp =
02Nc×1,L0 = [1 0 ... 0]Nc×1, N1 = 100, Ec = 0.001, where
u is the controller output, xd(k − 1) is the previous state,
λ is the Lagrange multipliers, λp is the previous λ, L0 is
a vector that is used to select the first element of ∆U , N1

is just a constant that determines the number of cycles for
finding λ that satisfies (15), Ec is an error threshold that
determines when the cyclic section should be left. N1 and
Ec are specified by trial and error.

After parameters setting and initialization, the main parts
of Algorithm 1 are explained. There are three inputs in
the algorithm, which are Rs, xd(k) and y(k). Rs is the
reference velocity of the elevation part. xd(k) is the current
state, whose first element is the current rotation velocity
of the elevation part, and whose second element is the
current rotation acceleration of the elevation part. yd(k)
is the model output in (2). xd(k) and yd(k) are used to
get the state variable, x(k) in (3), which can be found in
Line 2. In Line 3, the MPC without inequality constraints
is solved and ∆U is obtained. From Line 4 to 9, the
elements of ∆U are checked one by one to see whether
the inequality constraints are violated. If it is, the active
set method is applied to find the active set which is used
to correct ∆U , shown in Line 31. The whole procedure
of active set method corresponds to Line 10 to 32. Line
33 is used to get the first element of ∆U . As ∆u is the
change of u, Line 34 is used to get the latest u, which is
then returned as the controller output. Then, xd(k− 1) is
updated in Line 35 for next cycle.

3.4 Parameters in MPC algorithm

There are several parameters in MPC algorithm, which
will be discussed here with details.

The first parameter is ∆t, which is sampling interval of
MPC algorithm and determines the value of Np and Nc.
Currently, the setting is, ∆t = 0.002 sec. The bandwidth
of position loop of the attitude control system has to be
above 16Hz. As the rule of thumb, the bandwidth of the
velocity loop is least 5 times larger than that of position
loop, which means the bandwidth of velocity loop should
be above 80 Hz. The sampling frequency of a control loop
is 5 times faster than the bandwidth of the control loop,
which means the sample frequency of the velocity loop
should be above 400Hz. That is why 500 KHz is applied
as the sampling frequency of MPC algorithm.

Other parameters are Np and Nc. They are set to be
the same value in our MPC. Currently, the setting is,
Np = Nc = 40. The reason is that the desired closed-
loop response time of the velocity loop is 80 ms and
∆t = 0.002 sec, the Np is chosen in such a way that makes
Np ·∆t = 80 ms.

Finally, the settings of ∆umin and ∆umax, are explained.
They are the bound of the velocity change of u in every
2 ms. Currently, the settings are ∆umin = −3 deg/s



and ∆umax = 3 deg/s, which are obtained through
experiments.

4. FPGA IMPLEMENTATION

The designed MPC algorithm is firstly verified in simula-
tion environment in Matalb/Simulink. After successfully
doing that, the next step is to implement the MPC algo-
rithm in real hardware. This is a very challenging task,
because, in out case, the sampling rate is only 2ms and
the prediction horizon and control horizon is very large,
Np = Nc = 40.

The FPGA chip is selected to execute MPC mainly be-
cause of its parallel computational capacity. Through the
utilization of more FPGA resources, more parallel compu-
tation can be achieved, which results in less time needed
for the execution of algorithm. For example, assume that
there is one for loop with the iteration times of 100. And
every iteration will cost 1 ms and Ns% of the FPGA
resources. The total time and resources needed for fin-
ishing this for loop would be about 100ms and Ns%,
respectively, when not applying parallel mechanism. By
comparison, those number would be 1ms and 100 · Ns%
when applying fully parallel mechanism. That is the fea-
ture of FPGA and the resources can be used to save time.

4.1 Hardware Setup

The MPC algorithm is implemented on a Xilinx Zynq chip,
xc7z020, which is a low cost SOC FPGA chip which inte-
grates two ARM processors (Cortex-A9 with 866MHz)
and FPGA architectures into a single device. Conse-
quently, they provide higher integration, lower power,
smaller board size, and higher bandwidth communication
between the processor and FPGA. They also include a
rich set of peripherals, on-chip memory, an FPGA-style
logic array, and high speed transceivers. Xc7z020 is called
All Programmable System on Chip (SoC), whose software
and hardware can all be programmed. Moreover, a kind of
high-speed in-chip data bus, Advanced Extensible Inter-
face (AXI), is used to exchange data between ARM cores
and FPGA, whose transmission rate could be at least 800
MByte/sec.

The MPC algorithm coded in C language was imported
into Xilinx Vivado High-Level Synthesis (HLS) software,
which is a software that can convert C code into an
Intellectual Property (IP) block. This IP block is then used
in Vivado software and converted into bitstream together
with other IP blocks. The bitstream is the file that can be
downloaded into FPGA chip.

4.2 MPC Implementation in Different Data Types

The resources in one FPGA chip is fixed and limited.
And every calculation operation would consume certain
amount of resources. However, for the same operation,
the resources consumed by different data types can vary
greatly. That is, the less number of bits occupied by the
data type, the less resources consumed by the operation.
The data types with less bits are preferred, and its limita-
tion is whether the precision and range of this data type
is high enough for algorithm.

Table 1. Fixed-point data types of some vari-
ables

Word
Length (bit)

Fraction
Length(bit)

Signed Range Precision

Rs 17 9 1 [-128,128) 0.0039
xd 16 8 1 [-128,128) 0.0039
yd 17 10 1 [-64,64) 9.7656e-04
∆U 16 9 1 [-64,64) 0.0020
∆u 18 13 1 [-16,16) 1.2207e-04
λ 16 11 0 [0,32) 4.8828e-04
ω 16 9 1 [-64,64) 0.0020

The FPGA in xc7z020 chip supports a broad range of data
types from binary (1 bit) to double precision (64 bit),
which provides great flexibility for optimizing resource
usage while meeting design performance targets. In this
paper, three kinds of data types are explored for the execu-
tion of MPC algorithm. They are single-precision floating-
point data type (32 bit), half-precision floating-point data
type (16 bit) and fixed-point data type (customized bit).
The half-precision floating-point data type is released in
2002 and has 1 sign bit, 5 bits exponent width, and 11
bits mantissa width (10 explicitly stored).

The difficulties in the implementation of MPC algorithm
in FPGA with different data types varies greatly. Among
them, the single-precision floating point version is the
easiest one. After implementing the algorithm in C code,
the algorithm can be implemented in FPGA with help
of Vivado and HLS software. The half-precision floating-
point version can also be easily implemented. The works
needed are only changing the data type from ”float” into
”half” in variable definition in HLS and modifying the
function parameters into array or pointer. Converting the
MPC algorithm from floating point to fixed point is very
difficult for complicated algorithm, such as MPC, because
of the limited tool support. Although the Vivado HLS
software can be used to reduce the needed time, it is
still a challenging task. We need to find the suitable
bit width for each variable in our algorithm, according
to the range and precision needed by that variable, to
avoid overflow and rounding that would seriously affect
controller performance. By using fixed-point data type,
what the benefit you can get is the obvious reduction
of the consumed resources and algorithm execution time.
The fixed-point data types of some important variables in
Algorithm 1 are shown in Tab. 1. The variables in Tab. 1
are only small part of the variables involved in Algorithm
1, where about 50 variables are defined and all of them
have to be converted into fixed-point data type. Many
temporary variables are not listed here to limit the length
of the paper.

The FPGA resource utilizations of MPC implementations
in three different data types are shown in Tab. 2, where
LUT is Lookup Table, FF is Flip Flops, DSP48E is a
digital signal processing logic element included on FPGA,
and BRAM 18K is a configurable memory module for data
storage. The clock cycles and consumed time are also listed
here. It can be clearly seen that, from floating-point data
type to fixed-point data type, the consumed resources and
time are all decreased.

Besides different data types, there are other calculation
optimization mechanisms in FPGA for shorting algorithm



Table 2. FPGA Resources usage and Con-
sumed time

Floating Point Half Floating Point Fixed Point

LUT 34624(65%) 26242(49%) 1952(3%)
FF 22901(21%) 22492(21%) 1528(1%)
DSP48E 203(92%) 54(24%) 11(5%)
BRAM 18K 88(31%) 60(21%) 24(8%)

Clock Cycles 185409 128435 86346
Consumed Time 1.85 ms 1.28ms 0.86ms

execution time, such as pipeline, unroll, array partition,
etc.

5. HARDWARE-IN-THE-LOOP (HIL) SIMULATION

The HIL simulation is performed in this section to test the
proposed control scheme, especially the designed MPC.

The diagram of HIL simulation is illustrated in Fig. 2.

1

s
tre

Fig. 2. Diagram of simulation of attitude stabilization
control system

In Fig. 2, the ”PI” block is the position loop controller,
which is actually a simple PI controller. The ”MPC” block
is the velocity loop controller. The velocity model used
in simulation is (2). The disturbance from ship dynamics
is described as A · sin(ω · t), where A = 25 deg and
ω = 2π/6 sec, whose derivation is the ”Disturbance
Derivation” block. The ”Gyroscope Noise” block is added
to increase the simulation reliability. The noise data is
actually the measurement of gyroscope sensor chip when
the system is in static state. The ”AccCalculation” block is
applied to calculate the rotation acceleration directly from
rotation velocity, whose detailed description can be found
in Section ??. The reference angle of the position control
loop is 50 deg. The simulation step is set to be 0.002sec.

In HIL simulation, the MPC block in Fig. 2, is imple-
mented in FPGA while other blocks are run in other real-
time computation platform. Usually, a computer together
with Matlab/Simulink or LabView is used as the real-time
platform Xu et al. (2016); Hartley et al. (2014). Here, a
creative method for HIL simulation is proposed because of
the powerful architecture of SOC FPGA chip.

The proposed method of HIL simulation is illustrated in
Fig. 3. The MPC block in Fig. 2 is implemented in FPGA,
and the other blocks are implemented in ARM core 1 with
bare mental. A timer, AXI Timer, is defined in FPGA
with the interruption interval of 2ms, whose parameters
are set by ARM core 1 through AXI data bus. Every
2ms, ARM core 1 would receive an interrupt from AXI
Timer, and the corresponding Interrupt Service Routine
(ISR) will be called. Inside ISR, the following works are
done:1) Set the inputs of MPC through AXI data bus;

2) Start MPC calculation through AXI data bus; 3) Wait
until the calculation is done; 4) Get the MPC calculation
results through AXI data bus. Finally, exit ISR and wait
for next interrupt. The obtained calculation results are put
in DDR SDRAM by ARM core 1, which can also be read
by ARM core 2 through shared memory. In ARM core 2,
the Linux is run and is responsible for high-level tasks, such
as data displaying through GUI, network communication,
data storage on SD card, etc. The benefits of this method
are: 1) Real-time performance can be guaranteed, as no
operation system exists in ARM core 1 and only a timer is
used; 2)No data packet needs to be parsed, as it is known
that parsing a data packet is much harder than sending a
data packet; 3) No expensive device or software is required.

Fig. 3. Illustration of proposed HIL simulation in one SOC
FPGA chip

In Section 4.2, three data types are explored for MPC
implementation, which are tested here in HIL simulation
to check their performance. The MPC implementation in
each data type is tested in HIL simulation one by one, and
the testing results are collected and shown in Fig. 4.

From Fig. 4, it can be seen that the controller performance
of these three MPC controllers are similar. The RMS track-
ing angle errors are all less than the product requirement,
0.2 deg. The ability of MPC to handle constraints can be
found in Fig. 5. Because of the high similarity of ∆u in
all three kinds of MPC implementation, only the one in
fixed-point MPC is shown. From the top part of Fig. 5, it
can be seen that ∆u can be successfully handled by MPC
and be limited in allowable range. To show the details of
∆u, the area, indicated by a red frame in the top part of
Fig. 10, is plotted in the bottom part of Fig. 5.

There are advantages and disadvantages in each kind
of MPC implementation. The floating-point data type
has the largest data range and highest data precision.
The half-precision floating-point data type can satisfy



Fig. 4. HIL simulation results of three different kinds of
MPC implementation.
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Fig. 5. Top: ∆u output of fixed-point MPC during the
whole HIL simulation process. Bottom: ∆u output of
fixed-point MPC between 10sec to 10.5sec.

most cases of application requirements in terms of data
range and precision while can significantly decrease the
consumed FPGA resources. Moreover, the conversation
from floating-point to half-precision floating-point data
type is very easy. Among these data types, the fixed-
point data type possess absolute advantages in terms of
consumed time and resources, which is achieved at the cost
of long design time. Which data type is the best depends
on the specific control system needed to be handled.

The whole control system of MSTA becomes more chal-
lenging after realizing that, in the attitude stabilization
system of MSTA, there are totally three independent con-
trol system, which are the control systems of elevation
part, cross-elevation part, and azimuth part. Each control
system has the same structure as shown in Fig. 2. Hence,
there are totally three MPC controllers, which require
huge amount of computation capacity. The computation
capacity of the FPGA is only limited by its resources and

Table 3. Resources utilization after implemen-
tation of three fixed-point MPCs

Resources Utilization Available Utilization %

LUT 4500 532000 8.5
FF 4977 106400 4.7
DSP48E 36 220 16.4
BRAM 18K 34.5 140 24.6

xc7z020 is tested to see whether it can cope with the
computation task of three MPCs. After implementation
of all three fixed-point MPCs in the FPGA, the FPGA
resource utilization is shown in Fig. 6, where the area
in bright yellow color indicates the used resources and
the dark area means unused resources. It can be clearly
seen that there are still lots of unused resources, which
means the FPGA can handle the computation of three
parallel MPCs. The utilization of FPGA resources is also
summarized in Tab. 3. As the MSTA under development
is a commercial product, the price of every component has
to be as low as possible. From the percentage of the used
FPGA resources, it can be concluded that a cheaper FPGA
chip with smaller FPGA resources, such as xc7z010, will
be able to implement three MPC controllers.

Fig. 6. The FPGA resources consumed after implementa-
tion of three MPCs in FPGA

Another test is done to check whether the control system
performance will be affected if three MPC controllers are
implemented in the SOC FPGA. The running results of
fixed-point MPC of the elevation part in the case of three-
MPC implementation are compared with that in the case
of one-MPC implementation. And there is no difference in
the data collected in both cases.

6. CONCLUSION

In this paper, a control scheme based on MPC for at-
titude stabilization of MSTA is proposed and tested in
FPGA. The modelling of stepper motor is stated. The
MPC algorithm based on active set method is given and
explained with details. Three data types are explored for
the implementation of MPC in FPGA. A creative HIL
simulation is proposed to verify the performance of each
MPC implementation. The HIL simulation is achieved in
one SOC FPGA, which doesn’t require any expensive tools
or software. From HIL simulation results, it can been seen
that the proposed control scheme can satisfy the product
requirements and the RMS tracking angle error is within
0.2 deg. The application of MPC can handle of the velocity
change problem of stepper motor. The implementation of
three MPCs in one FPGA is also tested and its feasibility
is verified.
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