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MUCKENHOUPT MATRIX WEIGHTS

MORTEN NIELSEN AND HRVOJE ŠIKIĆ∗

Dedicated to Guido L. Weiss

Abstract. We study matrix weights defined on the multivariate torus Td. Sufficient
conditions for a matrix weight to be in the Muckenhoupt A2-class are studied, and
two such sufficiency results obtained by S. Bloom for d = 1 are generalized to the
multivariate setting. As an application, an A2-decomposition property is introduced
for matrix weights and a BMO distance theorem for matrix weights is considered.

1. Introduction

Rooted in the studies of the Hardy-Littlewood maximal operator and the work on
prediction theory by Kolmogorov and Krein and by Helson and Szegö, the theory of
weighted norm inequalities developed with a very fast pace some four decades ago. The
Analysis School at Washington University in St. Louis, of which Guido Weiss is a central
figure, played one of the main roles in this development. It is not possible for us to give
a full historic account here, but we shall mention only several of the classical papers
from this period. The work of Muckenhoupt [13] on the boundedness of the Hardy-
Littlewood maximal operator introduces a notion of the Ap-weight. Its importance is
emphasized further in the papers by Hunt, Muckenhoupt and Wheeden [10], and by
Coifman and Fefferman [3]. Among others, these papers deal with the boundedness of
the conjugation operator. As it turned out, there is yet another interesting approach to
this problem; using the Fefferman duality theorem and the class of BMO functions, it
deals with the boundedness of the commutator operator (see the fundamental paper by
Coifman, Rochberg and Weiss [5] for details).

The above mentioned papers influenced a rather pioneering work of S. Bloom, whose
PhD dissertation was defended in August of 1981 at Washington University in St Louis.
In his dissertation [1], as well as in several publications (for us here the most important
being [2]), Bloom develops a theory of matrix-valued weights, which he successfully
applies to the weighted norm inequalities for vector-valued functions. It took almost
twenty years for the full realization of the significance of Bloom’s approach, but the
theory was pushed forward through the seminal work of Trĕıl′ and Volberg [24], Nazarov
and Trĕıl′ [14], Volberg [25], and Goldberg [7]. It is fairly obvious to extend the notion
of the Ap-weight from the scalar-valued case to the case of diagonal matrices, i.e., to the
finite spectrum of the matrix. However, the extension to a wider class of matrices is
far from trivial. For matrix-valued weights defined on a one-dimensional domain Bloom
develops the notion of a log-preserving unitary matrix (which preserve the A2-property)
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MUCKENHOUPT MATRIX WEIGHTS 2

and shows that a wide range of unitary matrices, having Lipschitz coefficients, belong
to the class LP of log-preserving matrices. Bloom’s approach naturally leads toward the
class of functions in BMO weighted spaces. The interest in Bloom’s work and related
subjects increased even more in the last several years with dozens of papers devoted to
commutators, matrix weights, etc. (as an illustration we mention here [9], [16], [11]).

Our interest in the subject developed initially from the studies of shift invariant spaces
in the theory of wavelets and other reproducing function systems (see [17] and [26] ). The
relationship between Schauder bases and Riesz bases in this context guided us naturally
toward the stability of Schauder basis property (see [18]) and the Garnett-Jones distance
in BMO spaces (see [19]). In particular, we developed the notion of the A2-decomposition
property for a large class of the so called Calderón-Zygmund coverings, and we show that
this decomposition is essential for the Garnett-Jones distance theorem (for the original
work on the subject consider the paper by Garnett and Jones [6], but also the related
work by Coifman and Rochberg [4] and by F.Soria [22]).

In this paper we address the question of the A2-decomposition property for matrix
weights. The question presents us immediately with a technical problem of the extension
of the Bloom method of the LP matrices to the case of matrix weights defined on a d-
dimensional domain. The problem proved to be more involved than one may expect.
We leave its full implementation (i.e., for functions with any Lipschitz-type condition)
for future research. However, we were able to prove the desired result for functions in
Lip1. The argument is somewhat complex and we present it in detail in Section 2. In
Section 3 we establish the A2-decomposition property for matrix weights defined on a
d-dimensional torus. The consequences of these results, together with the discussion
about the intricacies of the BMO distance theorem for matrix weights, are presented in
Section 4.

2. Muckenhoupt weights

Let Q denote the family of cubes in the multivariate torus Td, d ∈ N. A (measurable)
scalar weight w : Td → (0,∞) is said to satisfy the Muckenhoupt Ap-condition, 1 < p <
∞, provided

(2.1) [w]Ap(Td) := sup
Q∈Q

 
Q

w(x) dx ·
[ 

Q

w−
1
p−1 (x) dx

]p−1

<∞,

where for any measurable subset E ⊂ Td of positive measure, we define

fE :=
1

|E|

ˆ
E

f(x) dx,

and we use the notation  
E

f(x) dx :=
1

|E|

ˆ
E

f(x) dx.

We denote the class of such Muckenhoupt weights by Ap(Td). Even though the scalar
Ap-conditions are quite involved, they are still very much operational since quite large
classes of, e.g., polynomial weights are known to satisfy the respective conditions, see
e.g. [20].
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MUCKENHOUPT MATRIX WEIGHTS 3

Now consider a measurable matrix valued weight W : Td → CN×N , taking values in the
positive definite N ×N -matrices. The matrix Ap condition was introduced and studied
in [14, 24, 25] and it is considerably more complicated than the scalar condition, and
there are no known straightforward sufficient conditions on a matrix weight to ensure
membership in the Ap class except in very special cases (e.g., for diagonal weights and
for weights with strong pointwise bounds on its spectrum).

S. Roudenko introduced an equivalent matrix Ap condition in [21] which is often more
straightforward to verify. Let 1 < p <∞ and let q be the dual exponent, 1/p+ 1/q = 1.
The matrix Ap condition holds if and only if W : Td → CN×N is measurable and positive
definite a.e. and satisfies

(2.2) [W ]Ap(Td) := sup
Q∈Q

ˆ
Q

(ˆ
Q

∥∥W 1/p(x)W−1/p(t)
∥∥q dt
|Q|

)p/q
dx

|Q|
<∞.

The norm ‖ · ‖ appearing in the integral is any matrix norm on the N × N matrices.
The family of such matrix weights is denoted by Ap(Td). In the special case N = 1
(1× 1-matrices), one can verify that Ap(Td) = Ap(Td).

We will also need weighted vector-valued Lp-spaces, 1 < p <∞. For W : Td → CN×N

a matrix-valued function, which is measurable and positive definite a.e., let Lp(W ) denote
the family of measurable functions f : Td → CN with

‖f‖Lp(W ) :=

(ˆ
Td
|W 1/pf |p dx

)1/p

<∞.

In order to turn Lp(W ) into a Banach space, one has to factorize over {f : Td →
CN ; ‖f‖Lp(W ) = 0}.

2.1. A sufficient condition based on commutators. We now turn to our first suf-
ficient condition for membership in Ap(Td). We will primarily focus on A2(Td)-weights.
Weighted BMO spaces and commutators will play an essential part in the sufficient con-
dition, together with the fact that boundedness of the (discrete) Riesz transforms on
L2(W ) is equivalent to W ∈ A2(Td).

Definition 2.1. Let ν ∈ A2(Td). A function b : Td → C is said to be in weighted
BMOν(Td) provided

sup
Q∈Q

1

ν(Q)

ˆ
Q

|b(x)− bQ| dx < +∞,

where ν(Q) :=
´
Q
ν(y)dy.

For later use, we notice that the more conventional (unweighted) BMO is given by
BMO(Td) := BMO1(Td).

We can now state the result. The univariate case, d = 1, is due to Bloom [1]. The
new contribution is the multivariate case.

Theorem 2.2. Suppose the matrix weight W : Td → CN×N , Td ⊂ Rd, admits a factori-
sation W (t) = U∗(t)D(t)U(t), with U unitary a.e. and

D(t) = diag(λ1(t), λ2(t), . . . , λN(t)),
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MUCKENHOUPT MATRIX WEIGHTS 4

with λj ∈ A2(Td), j = 1, . . . , N . Suppose that U = (uij), with

uij ∈ BMO√
λiλ
−1
k

, k = 1, 2, . . . , N.

Then W ∈ A2(Td).

Proof. The case d = 1 has been proved by Bloom [1]. For d ≥ 2, we let Rj denote the

discrete Riesz transform, i.e., the periodized version of R̂jf(ξ) = −i ξj|ξ| f̂(ξ). For f ∈ L2
W ,

we have

‖Rjf‖2
L2(W ) = 〈U∗DURjf,Rjf〉

= 〈DURjf, URjf〉

=
N∑
k=1

ˆ
Td
|(URjf)k(x)|2λk(x) dx.

Notice that

URjf = Rj(Uf) + URjf −Rj(Uf)

= Rj(Uf) + URjU
∗(Uf)− UU∗RjUf.

Hence, with U = (ulk),

(URjf)k = Rj(Uf)k +
N∑
m=1

ukm(RjU
∗(Uf)m − U∗Rj(Uf)m)(2.3)

Moreover,

RjU
∗(Uf)m − U∗Rj(Uf)m =

N∑
r=1

(
Rjūrm(Uf)r − ūrmRj(Uf)r

)

=
N∑
r=1

[Rj,Mūrm ] (Uf)r,

where [·, ·] denotes the commutator. The fact that U is unitary implies that |ulk| ≤ 1,
so using Eq. (2.3) we obtain

|(URjf)k| ≤ |Rj(Uf)k|+
N∑
r=1

N∑
m=1

∣∣ [Rj,Mūrm ] (Uf)r
∣∣.

Hence, there exists a constant C such that

|(URjf)k|2 ≤ C|Rj(Uf)k|2 +
N∑
r=1

N∑
m=1

∣∣ [Rj,Mūrm ] (Uf)r
∣∣2,

where we used that the `1 and `2 norms are equivalent on RN2+1. Now, since we have
the scalar condition λk ∈ A2(Td), and Rj is a standard singular integral operator,ˆ

Td
|(Rj(Uf)k|2λk dx ≤ C

ˆ
Td
|(Uf)k|2λk dx.
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By the generalized Bloom commutator result, see [9], using that ūrm ∈ BMO√
λrλ
−1
k

,
ˆ
Td

∣∣ [Rj,Mūrm ] (Uf)r
∣∣2λk dx ≤ C

ˆ
Td
|(Uf)r|2λr dx.

So for j = 1, . . . , d,

‖Rjf‖2
L2(W ) ≤ C

N∑
r=1

ˆ
Td
|(Uf)r|2λr dx = C‖f‖2

L2(W ).

It now follows from [15, Corollary 4.2] that boundedness of the discrete Riesz transforms
in L2(W ) imply that W is in A2(Td), which completes the proof. �

2.2. Lipschitz continuous matrix weights. The conditions uij ∈ BMO√
λiλ
−1
k

in

Theorem 2.2 may be somewhat challenging to verify in specific cases. We shall now
derive a more straightforward sufficient condition to be in A2(Td).

Recall that a function f : Td → C is said to be in Lipγ(Td), 0 < γ ≤ 1, provided there
exists a Lipschitz constant Cγ <∞ such that

|f(x)− f(y)| ≤ Cγ|x− y|γ, x, y ∈ Td.
We can now state the result. The univariate case, d = 1, is due to Bloom [1]. The

multivariate case is, as far as we know, new.

Theorem 2.3. Let W = U∗DU , with D = diag(eλ1 , . . . , eλN ), where eλi ∈ A2, and
U = (uij) a unitary matrix function with entries uij ∈ Lip1(Td), i, j ∈ {1, 2, . . . , N}.
Then there exists η > 0 such that W η = U∗DηU ∈ A2(Td), where the value of η and
the A2 constant of W η depend only on the Lipschitz constants of {uij}ij and on the A2

constants of the scalar functions {eλi}i.
We will prove the proposition by analyzing certain averaging operators. As before,

we let Q denote the collection of cubes in Td. For Q ∈ Q, and a locally integrable
vector-valued function f : Td → CN , we consider the vector-valued operator

AQf(x) := χQ(x)
1

|Q|

ˆ
Q

f(t)dt,

where the integral is applied coordinate-wise.
The following fundamental property of the operators {AQ}Q∈Q was proved by Nazarov

and Trĕıl′ in [14], see also [7, Proposition 2.1].

Theorem 2.4. Let W : Td → CN×N be a matrix weight. Then W ∈ Ap(Td) if and only
if the operators {AQ}Q∈Q are uniformly bounded on Lp(W ). Moreover, the supremum
of the operator norms of {AQ}Q∈Q is equivalent to the Ap-constant [W ]Ap(Td) given by
(2.2).

A well-know useful observation is that for any linear operator T , we have

‖Tf‖Lp(W ) = ‖W 1/pTf‖Lp(Id) = ‖W 1/pTW−1/pg‖Lp(Id),

with g = W 1/pf satisfying ‖f‖Lp(W ) = ‖g‖Lp(Id). Hence, boundedness of T on Lp(W )

is equivalent to boundedness of the conjugate operator W 1/pTW−1/p on the unweighted
space Lp(CN) := Lp(Id). We now turn to the proof of Theorem 2.3.
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Proof. We first assume that the elements ofD have been normalized such that ‖eλi‖L1(Td) =
1 for i = 1, 2 . . . , N . For τ > 0, we have W τ = U∗DτU , with

Dτ = diag(eτλ1 , . . . , eτλN ).

For use later, we notice that for any linear operator T on Lp(W τ ), with f ∈ Lp(W τ ),

‖Tf‖pLp(W τ ) =

ˆ
Td
〈W 2τ/pTf, Tf〉p/2 dx

=

ˆ
Td

〈
exp

(
2τ

p
D

)
UTf, UTf

〉p/2
dx

=

ˆ
Td

(∑
k

|(UTf)k|2 exp

(
2τλk
p

))p/2
dx

≥
ˆ
Td
|(UTf(x))k|p exp(τλk) dx, k = 1, 2, . . . , N.(2.4)

Now fix Q ∈ Q and let f be any smooth vector-valued function. For any fixed 2 ≤ p <∞,
we notice that for any 0 < τ ≤ 1 the scalar Muckenhoupt conditions eτλk ∈ Ap(Td) for
k = 1, . . . , N are satisfied, see [8, Chap. 7]. For use later, we notice that for a scalar-
valued function g, we can use Theorem 2.4 in the scalar case to conclude that

(2.5)

ˆ
Td
|AQg|peτλr dx ≤ K

ˆ
Td
|g|peτλr dx, r = 1, 2, . . . , N,

where K1/p is any upper bound on the Ap-norms of eτλ1 , . . . , eτλN . Notice, in particular,
that K does not depend on Q.

We now write

U(x)AQf(x) = U(x)
χQ(x)

|Q|

ˆ
Q

f(t) dt =
χQ(x)

|Q|

ˆ
Q

U(x)U∗(t)(Uf)(t) dt,

where the matrix U(x)U∗(t) is continuous in t, and equals the identity at t = x. With
δik the Kronecker delta, and recalling that |uij| ≤ 1 since U is unitary,

|(U(x)U∗(t))ik − δik| =
∣∣∣∣∑

r

uir(x)ūkr(x)−
∑
r

uir(x)ūkr(x)

∣∣∣∣
≤
∑
r

|uir(x)||ūkr(t)− ūkr(x)|

≤
∑
r

|ūkr(t)− ūkr(x)|

≤M |x− t|,

with M any upper bound for the Lipschitz constants of the collection {ūij}ij. Conse-
quently,

(2.6) |(U(x)U∗(t))ik| ≤ δik +M |x− t|.
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With a view towards (2.4) with T = AQ, we now employ the estimate (2.6) to deduce
the following

|(U(x)AQf)(x))r| =
χQ(x)

|Q|

∣∣∣∣ ˆ
Q

∑
k

(U(x)U∗(t))rk(Uf)k(t) dt

∣∣∣∣
≤ χQ(x)

|Q|

ˆ
Q

∑
k

(δrk +M |x− t|)|(Uf)k(t)| dt

≤ AQ(|(Uf)r|)(x) +M
∑
k

1

|Q|

ˆ
Q

|x− t||(Uf)k(t)| dt

≤ AQ(|(Uf)r|)(x) + cM
∑
k

ˆ
Q

|x− t|1−d|(Uf)k(t)| dt

≤ AQ(|(Uf)r|)(x) + cM
∑
k

ˆ
Td
|x− t|1−d|(Uf)k(t)| dt,(2.7)

where we used that |Q| � diam(Q)d ≥ |x− t|d for x, t ∈ Q.
If d = 1, we may skip the following step and continue the estimate (2.7) directly as

indicated below in (2.8) with any p > 2. For d ≥ 2, however, we need an additional
estimate. We fix q > 1 such that q(d− 1) < d and we define p by 1/p+ 1/q = 1, where
we notice that p > 2. Pick s > 1 such that sq(d− 1) < d and let 1/s+ 1/s′ = 1. Then

ˆ
Td
|x− t|q(1−d) exp(−τq/pλk) dt ≤

( ˆ
Td
|x− t|sq(1−d) dt

)1/s( ˆ
Td

exp

(
− s′τq

p
λk

)
dt

)1/s′

.

We now adjust the value of τ so τs′ = 1, which ensures that eτs
′λk ∈ Ap, k = 1, . . . , N ,

and implies that exp(−s′τqλk/p) ∈ L1(Td), k = 1, . . . , N, with norms that depend only
on the A2-constants of {eλk}. Consequently, with these choices,

ˆ
Td
|x− t|q(1−d) exp(−τq/pλk) dt ≤ C <∞.

We now continue from the estimate (2.7),

|(U(x)AQf)(x))r| ≤ AQ(|(Uf)r|)(x) + cM
∑
k

ˆ
Td
|x− t|1−d|(Uf)k(t)|eτλk/p|e−τλk/p dt

≤ AQ(|(Uf)r|)(x) + cM
∑
k

( ˆ
Td
|(Uf)k(t)|peτλk dt

)1/p

×
( ˆ

Td
|x− t|q(1−d)e−τqλk/p dt

)1/q

≤ AQ(|(Uf)r|)(x) + cMC1/q
∑
k

( ˆ
Td
|(Uf)k(t)|peτλk dt

)1/p

≤ AQ(|(Uf)r|)(x) + C̃‖f‖Lp(W ),(2.8)
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where we used the estimate (2.4). Finally, using (2.8) once more,

‖AQf‖pLp(W τ ) =

ˆ
Td

(∑
r

|(UAQf(x))r|2 exp

(
2τ

p
λr

))p/2
dx

≤
ˆ
Td

(∑
r

(AQ(|(Uf)r|)(x) + C̃‖f‖Lp(W ))
2 exp

(
2τ

p
λr

))p/2
dx

≤
ˆ
Td

(∑
r

(2AQ(|(Uf)r|)(x)2 + 2C̃2‖f‖2
Lp(W )) exp

(
2τ

p
λr

))p/2
dx

Now we use Hölder’s inequality with parameter p/2 > 1 in the finite sum over r,

≤ C(p)

ˆ
Td

(∑
r

(AQ(|(Uf)r|)(x)p + C̃p‖f‖pLp(W )) exp(τλr)

)
dx

≤ C(p)

ˆ
Td
AQ(|(Uf)r|)(x)p exp(τλr) dx+ C(p)C̃p‖f‖pLp(W )

∑
r

‖eτλr‖L1(Td)

≤ C(p)K

ˆ
Td
|(Uf)r|p exp(τλr) dx+ C(p)C̃p‖f‖pLp(W )

∑
r

‖eτλr‖L1(Td),

where we used (2.5) in the last step. We use the estimate (2.4) to conclude that

‖AQf‖pLp(W τ ) ≤ C ′‖f‖pLp(W τ ),(2.9)

with

C ′ := C(p)

(
K + C̃p

∑
r

‖eτλr‖L1(Td)

)
independent of Q. Hence, AQ extends to a uniformly bounded family of bounded op-
erators on Lp(W τ ). We now follow Bloom [1] and use Stein’s interpolation theorem,
see [23],to cover the case L2(W η) for a suitable value of η > 0. Define the analytic class

Tz := W τz/pAQW
−τz/p, {z : 0 ≤ Re(z) ≤ 1},

and notice that (2.9) implies that T1 is bounded on the (unweighted) vector-valued
Lp(CN). Also notice that T0 = AQ is bounded (uniformly in Q) on Lq(CN), which
follows from Theorem 2.4 in the scalar case. Using the observation that for z = x+ iy,

W τ(x+iy)/pAQW
−τ(x+iy)/p = W iτy/pTxW

−iτy/p,

with W±iτy/p unitary matrices, one can check that the conditions in Stein’s interpolation
theorem are met. Hence, by Stein’s interpolation theorem, T 1

2
is bounded on L2(CN)

with an operator norm that does not depend on Q. Therefore, W τ/p ∈ A2(Td), and we
may put η = τ/p. We note that the specific choice of p only depends on d and the choice
of τ only depends on d and p. The operator norm of T1/2 depends only on p and the A2

constants of {eλi}i.
Finally, for D without L1-normalization, we introduce V = U∗BU , where

B = diag(‖eλ1‖−1
L1(Td)

, . . . , ‖eλN‖−1
L1(Td)

).
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Notice that W ′ = VW = U∗(BD)U , where BD has normalized elements. Using Lemma
2.5 below, (W ′)τ/p ∈ A2(Td) if and only if W τ/p ∈ A2(Td). This completes the proof. �

The following lemma, which may be of independent interest, was used in the proof of
Theorem 2.3. We let L∞N×N denote the family of N × N -matrices defined on Td with
entries in L∞(Td).

Lemma 2.5. Suppose V ∈ A2(Td) and B = exp(B′) with B′ ∈ L∞N×N satisfying [V,B] =
0, then W = V B ∈ A2(Td).

Proof. By the result of Roudenko [21], V ∈ A2(Td) is equivalent to the uniform estimate
over cubes Q, ˆ

Q

ˆ
Q

‖V 1/2(x)V −1/2(t)‖2 dt

|Q|
dx

|Q|
≤ CV <∞.

Now, we notice that by the uniform bound on the operator norm of B, using that V 1/2

and B1/2 commute,ˆ
Q

ˆ
Q

‖(BV )1/2(x)V −1/2(t)‖2 dt

|Q|
dx

|Q|
≤ CQ

ˆ
Q

ˆ
Q

‖V 1/2(x)V −1/2(t)‖2 dt

|Q|
dx

|Q|
.

However, using the fact that (BV )1/2 and V −1/2 are self-adjoint, and that for self-adjoint
matrices of the same size C and D, ‖CD‖ = ‖(CD)∗‖ = ‖DC‖,ˆ

Q

ˆ
Q

‖(BV )1/2(x)V −1/2(t)‖2 dt

|Q|
dx

|Q|
=

ˆ
Q

ˆ
Q

‖V −1/2(t)(BV )1/2(x)‖2 dt

|Q|
dx

|Q|
.

Now we use the uniform bound on the operator norm of B−1, and that V −1/2 and B−1/2

commute,ˆ
Q

ˆ
Q

‖(BV )−1/2(t)(BV )1/2(x)‖2 dt

|Q|
dx

|Q|
≤ CB−1

ˆ
Q

ˆ
Q

‖V −1/2(t)(BV )1/2(x)‖2 dt

|Q|
dx

|Q|

= CB−1

ˆ
Q

ˆ
Q

‖(BV )1/2(x)V −1/2(t)‖2 dt

|Q|
dx

|Q|
.

By combining the above estimates, we obtainˆ
Q

ˆ
Q

‖(BV )−1/2(t)(BV )1/2(x)‖2 dt

|Q|
dx

|Q|
≤ CQCB−1

ˆ
Q

ˆ
Q

‖V 1/2(x)V −1/2(t)‖2 dt

|Q|
dx

|Q|
,

and we conclude that (V B)−1 ∈ A2(Td) so V B ∈ A2(Td) and the lemma follows. �

3. The matrix A2-decomposition property

In the recent paper [19], the present authors studied the BMO distance theorem of
Garnett and Jones and certain decomposition properties of scalar Muckenhoupt weights
related to the Jones factorization theorem, see [12]. In particular, it was proven that the
BMO distance theorem holds if and only if a certain A2-decomposition property holds.

Here we consider a corresponding A2-decomposition property for matrix weights.
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Definition 3.1. Let F be a family of A2(Td) matrix weights. We say that F has
the matrix A2-decomposition property provided there exist constants K = K(F), and
δ := δ(F) > 0, such that for W ∈ F , there exist commuting matrix weights V,B,
satisfying

W δ = V B,

with V ∈ A2(Td) such that [V ]A2(Td) ≤ K, and B is a matrix with spectrum that is

(essentially) bounded and bounded from below on Td.

Remark 3.2. The A2-decomposition property is trivially satisfied for any finite family of
matrix weights in A2(Td). In the scalar case it is known, see [19], that the full A2 class
has the A2-decomposition property.

It is not known at present whether the full class A2(Td) has the matrixA2-decomposition
property. We therefore restrict our attention to certain subsets of A2(Td). We need the
following definition of matrix BMO.

Definition 3.3. We say that a matrix weight W : Td → CN×N , W = (wij), is in BMO
provided that each entry wij : Td → C, i, j ∈ {1, . . . , N}, is a scalar valued BMO
function. The BMO-norm of such W is defined by

max
i,j
‖wij‖BMO(Td).

Bloom proves in [1], in the case d = 1, that W ∈ A2(Td) implies that log(W ) ∈ BMO.
One can easily verify that Bloom’s proof generalizes verbatim to the multivariate case.
However, Bloom also constructs a symmetric B ∈ BMO for which exp(tB) 6∈ A2(Td)
for any t > 0. To avoid such ill-conditioned matrices, we follow Bloom [1] and define
so-called log-preserving unitary matrices.

Definition 3.4. A unitary matrix weight U : Td → CN×N is called log-preserving, de-
noted U ∈ LP , if for any diagonal matrix Λ ∈ BMO, there exists an α > 0 depending
only on the BMO-norm of Λ, and the matrix U , such that

U∗ exp(αΛ)U ∈ A2(Td),

with the corresponding A2-constant depending only on the the BMO-norm of Λ, and
the matrix U .

We have the following immediate corollary to Theorem 2.3.

Corollary 3.5. Suppose U : Td → CN×N , U = (uij), is a unitary matrix function with
entries uij ∈ Lip1(Td), i, j ∈ {1, 2, . . . , N}. Then U is log-preserving.

We now prove that certain families of matrix weights associated with log-preserving
matrices satisfy the A2-decomposition property.

Proposition 3.6. Let U : Td → CN×N be a log-preserving weight. Consider any family

M := {U∗ΛγU}γ∈F ,

with Λγ = diag(λγ1 , . . . λ
γ
N), where λγj ∈ A2(Td), γ ∈ F , j = 1, 2, . . . , N . ThenM has the

matrix A2-decomposition property.
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Proof. By the scalar A2-decomposition property, there exist K > 0, and δ > 0, such that

(λγj )
δ = uγj b

γ
j ,

with [uγj ]A2 ≤ K, and bγj bounded and bounded from below. Notice that by standard
estimates,

‖ log(uγj )‖BMO ≤ K, γ ∈ F, j = 1, . . . , N.

Let Vγ = diag(uγ1 , . . . , u
γ
N). Then log(Vγ) ∈ BMO with norm bounded uniformly for

γ ∈ F . Hence there exists α := α(K,U) > 0 such that

U∗ exp(α log(Vγ))U = U∗V α
γ U ∈ A2(Td),

with the corresponding A2-constant depending only on U and K. Put

Bγ = diag(bγ1 , . . . , b
γ
N),

and notice that the spectrum of Bγ is bounded, and bounded from below. The decom-
position

(U∗ΛγU)α = U∗Λα
γU = (U∗V α

γ U)(U∗Bα
γU)

now provided the desired A2-decomposition. �

4. The distance to a matrix in BMO

We conclude the paper by a study of the BMO distance to L∞ for matrices related to
weights in A2(Td). For a matrix weight M : Td → CN×N , satisfying exp(M) ∈ A2(Td),
we define

ε(M) := inf
λ∈R+

{λ : exp(M/λ) ∈ A2(Td)},

where we notice that ε(M) ≤ 1. In the scalar case, using a reverse Hölder estimate, one
can deduce that ε is always strictly greater than one, but this self-improving type result
is known to fail for matrix weights [1].

We introduce two notions of BMO distance to L∞ for a matrices.

Definition 4.1. Suppose U : Td → CN×N is a log-preserving matrix. For M = U∗DU ,
with D a diagonal matrix in BMO, we define

dist(M,L∞) := inf{‖D −D′‖BMO : B = U∗D′U ∈ L∞N×N},
where D′ varies over the diagonal matrices in L∞N×N . Moreover, we define

dist(M,L∞N×N) := inf{‖M −B‖BMO : B ∈ L∞N×N with [M,B] = 0}.

Remark 4.2. Notice that U ∈ L∞N×N since U is unitary, so automatically U∗D′U ∈ L∞N×N
for any diagonal matrix D′ ∈ L∞N×N . Hence, dist(M,L∞N×N) ≤ dist(M,L∞). At this
point, however, we do not know if the two distance measures are equivalent.

Before we get to the main result, let us relate ε(M) to ε(D), when M and D are
related through conjugation with a log-preserving weight.

Lemma 4.3. Suppose U is a continuous log-preserving matrix associated with the con-
stant α > 0. For M = U∗DU , with D = diag(λ1, . . . , λN), satisfying exp(M) ∈ A2(Td),
it holds that

αε(M) ≤ inf
η∈R+

{eλi/η ∈ A2, i = 1, 2, . . . , N} ≤ ε(M).
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Proof. Notice that exp(M/η) = U∗ exp(D/η)U , where exp(D/η) = diag(eλ1/η, . . . , eλN/η).
So by Bloom’s result [1, Theorem 4.9], for any η > 0 for which exp(M/η) ∈ A2(Td), it
holds that eλi/η ∈ A2 for i = 1, 2, . . . , N . Hence,

inf
η∈R+

{eλi/η ∈ A2, i = 1, 2, . . . , N} ≤ ε(M).

Conversely, if eλi/η ∈ A2, i = 1, 2, . . . , N , then λi/η = log(eλi/η) ∈ BMO, and it follows
from the log-preserving property of U that exp(αM/η) = U∗ exp(αD/η)U ∈ A2(Td).
Hence,

ε(M) ≤ α−1 inf
η∈R+

{eλi/η ∈ A2, i = 1, 2, . . . , N},

which completes the proof. �

Remark 4.4. Bloom’s result [1, Theorem 4.9] is proved for d = 1, but one can verify that
the proof can be adapted to the case d > 1. For the sake of brevity, we leave the details
for the reader.

We now turn to the main result of this section.

Proposition 4.5. Suppose U : Td → CN×N is a log-preserving matrix. Then there exist
constants c1, c2, c3 > 0, depending only on U , such that for W = exp(M) = U∗DU ∈
A2(Td),

dist(M,L∞N×N) ≤ c1dist(M,L∞) ≤ c2ε(M) ≤ c3dist(M,L∞).

Proof. Suppose W = exp(M) = U∗DU ∈ A2(Td). Then M ∈ BMO(Td) by Bloom’s
theorem. Pick λ satisfying ε(M) ≤ λ ≤ 2ε(M). Then W 1/λ = U∗D1/λU ∈ A2(Td).
We now use the A2-decomposition property to write W δ/λ = V B, with [V,B] = 0 and
[V ]A2(Td) ≤ K for some K depending only on U . Notice that logB ∈ L∞N×N . We apply
the matrix logarithm to conclude that

δ

λ
M = log V + logB,

where we used that V and B commute. Hence,∥∥∥∥M − λ

δ
logB

∥∥∥∥
BMO(Td)

=

∥∥∥∥λδ log V

∥∥∥∥
BMO(Td)

≤ λK

δ
≤ 2K

δ
ε(M),

and we conclude that dist(M,L∞N×N) ≤ 2K
δ
ε(M). In fact, the proof of Proposition 3.6

actually reveals that dist(M,L∞) ≤ 2K
δ
ε(M).

For the converse, we consider W = exp(M) = U∗ exp(D)U ∈ A2(Td), with U log-
preserving and D = diag(λ1, . . . , λN). Hence, by the log-preserving property of U , there
exists α > 0, independent of W , such that for λ ≥ ‖D‖BMO(Td),

Wα/λ = U∗ exp(αD/λ)U ∈ A2(Td).

We conclude that ε(M) ≤ α−1‖D‖BMO(Td). Next we pick a sequence of diagonal matrices
{D′n}∞n=1 ∈ L∞N×N , satisfying

‖D −D′n‖BMO → dist(M,L∞).
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We have Bn := U∗D′nU ∈ L∞N×N since U is unitary and thus contained in L∞N×N . Notice
that for any B ∈ L∞N×N with [exp(M), exp(B)] = 0,

(W exp(−B))1/γ = W 1/γ exp(−B/γ),

with −B/γ ∈ L∞N×N . Using Lemma 2.5 we conclude that

ε(M) = ε(M −B).

Hence,

ε(M) = ε(M −Bn) ≤ α−1‖D −D′n‖BMO(Td) → α−1dist(M,L∞),

so

ε(M) ≤ α−1dist(M,L∞).

�
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