
Aalborg Universitet

SOUP

A fleet management system for passenger demand prediction and competitive taxi supply

Hu, Qi; Ming, Lingfeng; Xi, Ruijie; Chen, Lu; Jensen, Christian S.; Zheng, Bolong

Published in:
Proceedings - 2021 IEEE 37th International Conference on Data Engineering, ICDE 2021

DOI (link to publication from Publisher):
10.1109/ICDE51399.2021.00297

Publication date:
2021

Document Version
Accepted author manuscript, peer reviewed version

Link to publication from Aalborg University

Citation for published version (APA):
Hu, Q., Ming, L., Xi, R., Chen, L., Jensen, C. S., & Zheng, B. (2021). SOUP: A fleet management system for
passenger demand prediction and competitive taxi supply. In Proceedings - 2021 IEEE 37th International
Conference on Data Engineering, ICDE 2021 (pp. 2657-2660). Article 9458616 IEEE (Institute of Electrical and
Electronics Engineers). https://doi.org/10.1109/ICDE51399.2021.00297

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 - Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 - You may not further distribute the material or use it for any profit-making activity or commercial gain
 - You may freely distribute the URL identifying the publication in the public portal -
Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: July 04, 2025

https://doi.org/10.1109/ICDE51399.2021.00297
https://vbn.aau.dk/en/publications/9892d189-c33d-4bd4-9fa2-aaec62022aa1
https://doi.org/10.1109/ICDE51399.2021.00297

SOUP: A Fleet Management System for Passenger
Demand Prediction and Competitive Taxi Supply

Qi Hu1, Lingfeng Ming1, Ruijie Xi1, Lu Chen2, Christian S. Jensen3, Bolong Zheng1
1Huazhong University of Science and Technology, Wuhan, China

Email: {huqi11, lingfengming, ruijiexi, bolongzheng}@hust.edu.cn
2Zhejiang University, Hangzhou, China

Email: luchen@zju.edu.cn
3Aalborg University, Aalborg, Denmark

Email: csj@cs.aau.dk

Abstract—Online car-hailing services have gained substantial
popularity. An effective taxi fleet management strategy should not
only increase taxi utilization by reducing taxi idle time, but should
also improve passenger satisfaction by minimizing passenger
waiting time. We demonstrate a fleet management system called
SOUP that aims at minimizing taxi idle time and that monitors
the fleet movement status. SOUP includes a passenger request
prediction model called ST-GCSL that predicts the number of
requests in the near future, and it includes a demand-aware
route planning algorithm called DROP that provides idle taxis
with search routes to serve potential requests. In addition, SOUP
supports visualizing and analyzing historical passenger requests,
simulating fleet movement, and computing evaluation metrics. We
demonstrate how SOUP accurately predicts passenger demand
and significantly reduces taxi idle time.

I. INTRODUCTION

The near-ubiquitous deployment of smartphones has en-
abled transportation network companies such as Didi Chuxing
[1] and Uber [2] to operate ride-hailing platforms that enable
the servicing of transportation requests by means of fleets of
drivers. In these platforms, drivers accept requests and move
to the origins of requests to complete the requests. Such plat-
forms have reduced the time drivers are idle and spend waiting
to service prospective passengers, thus improving the trans-
portation efficiency of a city. In this setting, historical requests
provide insight into the movement patterns of passengers and
drivers, which is beneficial for many applications such as
traffic demand prediction, supply and demand allocation, and
route planning.

We focus on the passenger demand prediction and compet-
itive taxi supply problem, which includes the prediction of
passenger requests and the planning routes for taxis to follow
in order to serve requests in a manner that minimizes the
average idle time across all taxis. We propose a data-driven
solution that assigns a route to a taxi as soon as the taxi
becomes idle such that it can serve a request quickly. Overall,
we address two sub-problems:

(i) Dynamic request patterns. In order to help taxis serve
new requests quickly, we need to know the request
availability across the road network of a city.

(ii) Competition among taxis. If all taxis tend to move
towards hot regions with many requests to find new

requests, they will compete due to a high supply-demand
ratio, which causes the so-called “herding” effect.

Our fleet management system SOUP solves the above prob-
lems. We choose carefully a spatial granularity for partitioning
a road network and temporal granularity for partitioning
time in order to achieve accurate predictions of requests.
We then build an end-to-end deep learning model, called
spatial-temporal graph convolutional sequential learning, ST-
GCSL, to predict future requests. To eliminate the “herding”
effect, we develop a demand-aware route planning algorithm,
DROP, that assigns taxis to destinations with a supply-demand
balance.

The major contributions are summarized as follows:
• We demonstrate SOUP that effectively improves taxi

utilization and passenger satisfaction.
• We present the request prediction model ST-GCSL that

predicts near-future passenger demand, and we present
DROP that provides passenger-search routes for idle
taxis.

• We utilize request analysis and visualization functions
to analyze historical passenger request datasets and to
monitor fleet movement status.

The remainder of this paper is organized as follows. The
related work is covered in Section II. We detail the problem ad-
dressed in Section III. Section IV presents a system overview
of SOUP and introduces the major components in detail.
Finally, Section V demonstrates the functionalities of SOUP,
including request analysis, request prediction, and simulation.

II. RELATED WORK

Traffic demand prediction is a critical aspect of when aiming
to achieve an efficient transportation system. Existing traffic
demand prediction models can be divided into Convolutional
Neural Network-based (CNN-based) models and Graph Con-
volutional Network-based (GCN-based) models. CNN-based
models, such as ConvLSTM [8], utilize CNNs to extract
spatial dependencies, but they only model Euclidean relations
among grid regions and ignore the non-Euclidean relations. In
contrast, GCNs can extract local features from non-Euclidean
structures, resulting in improved performance. For instance,

STGCN [10] combines CNNs and GCNs to capture temporal
dependencies and spatial dependencies, respectively. Further,
STG2Seq [3] uses a multiple gate graph convolution module
to capture spatial-temporal dependencies. These GCN-based
models are flexible and progressive, but most of them to some
extent miss short-term spatial-temporal dependencies. Unlike
the existing models, ST-GCSL captures all dependencies
simultaneously and incorporates context features to improve
prediction accuracy.

For the taxi reposition problem, existing work can be
divided into combination optimization methods and deep
reinforcement learning (DRL) methods. For example, one
study [9] models the driver repositioning task as a classical
Minimum Cost Flow (MCF) problem and then solves it by
combination optimization. MCF-FM [6] develops a continuous
order dispatch strategy for an effective fleet management. One
study [7] uses a Deep Q-Network (DQN) to learn the optimal
dispatch policy from a simulated environment. These methods
disregard the real-time nature of supply and demand, which
hurts their performances. SOUP incorporates a demand-aware
route planning algorithm DROP to reposition idle taxis based
on real-time supply and demand distributions.

III. PRELIMINARIES

Settings. The setting of SOUP is a fleet of taxis A = {ai}
that serve a set of passenger requests Ω = {ωj} on a road
network that is modeled as a weighted and directed graph
G = (V,E,W), where V is the node set, E is the edge
set, and W : E → R assigns a weight to each edge. All
taxis are in the system from the beginning, and each locates
at a random location in the road network. Taxis are labeled
empty and travel along a search route provided by our system.
Requests are introduced into the system in a streaming fashion,
each with a origin and a destination. A taxi needs to arrive
at the origin of a request within a fixed time window (for
pick-up) and then moves to the destination (for drop-off);
otherwise, the request is removed from the system, an outcome
called request expiration. When a request enters the system,
the system assigns the nearest empty taxi to the request if the
taxi can reach the request’s origin within the time window.

The goal of SOUP is to plan search routes for taxis to
serve new requests when they become empty such that the
idle time is minimized. To solve this problem, we consider
two sub-problems.

Passenger Demand Prediction. Given a historical set of
requests, we aim to build a request data model to predict the
numbers of requests at different locations and times.

Competitive Taxi Supply. Given a request data model, a
fleet of taxis with original locations, and a stream of requests,
we aim to plan search routes for taxis to serve potential
requests and avoid the competition such that the average idle
time of taxis is reduced.

IV. SYSTEM OVERVIEW

The SOUP framework encompasses three major compo-
nents: (1) Spatial-temporal partitioning, (2) request prediction,

Historical Taxi

Order Data

a b

c

d

e

f

Road Network

Spatial-Temporal

Partitioning

Prediction

Model

Time

Context

Route

Planning

Weather & Time of day

Server

Time & Location

Web Browser

Date & Number of taxis Prediction results Taxis & Requests

Request Analysis Request Prediction Simulation

Statistics

Fig. 1. System Overview

(3) route planning. A detailed description of SOUP can be
found in [11].

A. SOUP Framework

Fig. 1 shows the SOUP framework, which adopts a
browser-server model. The browser side provides three com-
ponents for visualization and analysis: request analysis, re-
quest prediction visualization, and simulation. The server
side consists of three modules: spatial-temporal partitioning,
request prediction, and route planning. The spatial-temporal
partitioning module is responsible for counting the number
of requests in each region and time slot. The request predic-
tion module predicts near-future requests. The route planning
module provides a search route for each idle taxi based on the
predicted requests.

SOUP allows users to select a date and a fleet cardinality.
The spatial-temporal partitioning module partitions the road
network into hexagon regions and partitions a day into time
slots. The number of historical passenger requests of each
region and time slot is computed and then sent to the browser
side. There, the user can visualize and analyze the data through
the request analysis module. Next, the prediction model uses
the request data and context features (e.g., weather, events) to
predict the number of requests for each region in the next time
slot. The prediction is then used by the route planning module.
The route planning module plans a search route for each idle
taxi based on its current location and the prediction results, so
as to guide taxis to locations where requests are anticipated.
The simulation module monitors the movement of the fleet of
taxis under the assumption that all taxis follow their assigned
search routes.

B. Spatial-Temporal Partitioning

We partition the road network into n hexagon regions
with the Uber H3 library1 and denote the set of regions by
R = {r1, r2, . . . , rn}. We partition a day into m time slots
and denote the set of time slots by T = {t1, t2, . . . , tm}. Let

1https://github.com/uber/h3-java

Concat
< 𝑫𝑫𝒕𝒕−𝒉𝒉+𝟏𝟏,𝑫𝑫𝒕𝒕−𝒉𝒉+𝟐𝟐, … ,𝑫𝑫𝒕𝒕 >

< 𝚿𝚿𝒕𝒕−𝒉𝒉+𝟏𝟏,𝚿𝚿𝒕𝒕−𝒉𝒉+𝟐𝟐, … ,𝚿𝚿𝒕𝒕 >

ST-Gate Block

MSTCM STCM

ST-Gate Block

TICC Conv2d

Conv2d

�𝑫𝑫t+1

MSTCM STCM

cf

𝑿𝑿𝒕𝒕

Time Time

Fig. 2. The structure of ST-GCSL

Di
j denote the number of requests in region ri in time slot

tj . Let 〈D1,D2, . . . ,Dm〉 be a request sequence, where each
Dj = {D1

j , D
2
j , . . . , D

n
j } denotes the number of requests of

all regions in time slot tj .

C. Request Prediction

To model the historical request patterns, we observe that
three types of dependencies should be considered: spatial,
temporal, and short-term spatial-temporal dependencies. Ex-
isting models disregard the spatial or the short-term spatial-
temporal dependencies. We propose ST-GCSL to capture all
three types of dependencies while utilizing the context features
for improving the prediction accuracy.

Region Correlation Graph. Since the spatial dependency
between regions can be captured accurately by a topology
structure rather than by the Euclidean space [3], we transform
the request prediction problem into a graph node prediction
problem. To model the correlations among regions, we build
a region correlation graph G = (R,A), where the set of nodes
R is the region set introduced earlier and A is the edge set
of G in the form of an adjacency matrix. To define A, we
consider both the geographical and semantic neighborhoods
between regions [11].

ST-GCSL Model. The structure of ST-GCSL is shown in
Fig. 2. At the current time t, the input of ST-GCSL has two
parts, where the first part is the historical request sequence of
the h most recent time steps, i.e., 〈Dt−h+1,Dt−h+2, . . . ,Dt〉,
and the second part is the corresponding context feature
sequence (such as time of day, day of week, weather, holidays,
events), i.e., 〈Ψt−h+1,Ψt−h+2, . . . ,Ψt〉. We adopt TICC [4]
to process the context features. Then, we concatenate the
two parts to enhance the node feature. The output is request
predictions for the next time step, i.e., D̂t+1 ∈ RN . The
Spatial-Temporal Convolutional Module (STCM) in a Spatial-
Temporal Gate Block (ST-Gate Block) is designed to extract
long-term spatial-temporal dependencies, while the Multiple
Spatial-Temporal Convolutional Module (MSTCM) stacked by
several STCM is used to extract short-term spatial-temporal
dependencies. The ST-Gate Block can easily adapt to com-
plicated problems and can efficiently extract spatial-temporal
dependencies.

(a) Plotting pick-up and drop-off

(b) Weekday and weekend comparison

Fig. 3. Request Analysis Module

D. Route Planning

The route planning algorithm DROP computes a search
route for a taxi when the taxi becomes idle. The idea of DROP
is to dispatch taxis to regions based on the predicted request
distribution such that the supply and demand is balanced
across regions.

Candidate Region Generation. To reduce the search space,
we only consider the L-order neighbor regions. Specifically,
for a taxi’s current region r, let RL(r) represent the L-order
neighbors of r. We add all regions from R0(r) to RL(r) to
form the candidate region set R∗.

Destination Region Determination. In order to dispatch
taxis according to the request distribution, we compute a score
Score(ri) that represents the popularity of region ri based on
the number of request origins and destinations within ri [11].
The intuition is that the more request origins that locate in a
region ri, the more popular ri is. In contrast, the more request
destinations that locate in a region ri, the less popular ri is.
Then we use roulette wheel selection to sample a destination
region [5]. For a candidate region ri, the probability of ri
being sampled is Score(ri)∑

r∈R∗ Score(r) .
Planning Search Route. To determine the destination,

we first select road intersections with the largest predicted
number of requests from the destination region as potential
destinations. Then we again apply the roulette wheel selection
to sample an intersection as the destination. Finally, a search
route directed to this intersection along the shortest travel-time
path is planned for the taxi.

V. DEMONSTRATION

We use the New York TLC Trip Record YELLOW Data2

to demonstrate the functionalities of SOUP. This dataset
contains records with both pick-up and drop-off information
for yellow taxis in New York City. We use the data from 8:00
to 22:00 on June 1st, 2016 for demonstration. The underlying
road network is taken from OpenStreetMap3 and contains
4,360 nodes and 9,542 edges. To evaluate ST-GCSL, we use
three well-adopted metrics: Mean Average Percentage Error
(MAPE), Mean Absolute Error (MAE), and Rooted Mean
Square Error (RMSE). To evaluate DROP, we use three

2https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page
3https://www.openstreetmap.org/

①

②
③

(a) Request Prediction

①

② ③

40%

11%

9.3%

(b) Simulation

Fig. 4. Demonstration of SOUP

metrics: the average taxi idle time, the average request waiting
time, and the request expiration percentage.

A. Request Analysis

The passenger request distribution information is shown in
Fig. 3. The red and blue dots in Fig. 3(a) represent pick-
up and drop-off points, respectively. Requests are located in
midtown and lower Manhattan, and very few requests exist in
uptown. Further, SOUP provides a request curve to show the
changing trend of pick-ups and drop-offs during a day: there
are two peak periods of requests, one in the morning and one
in the evening. SOUP provides a time line that users can
move in order to quickly view the changing trend of requests
during the day. The line chart in Fig. 3(b) compares the request
distributions on weekdays and weekends.

B. Request Prediction

SOUP supports the visualization of prediction results. The
user interface of the request prediction module is shown in
Fig. 4(a). The two choropleth maps in Fig. 4(a)- 2© show the
distribution of the ground truth data on June 1st, 2016 and the
distribution predicted by ST-GCSL. Fig. 4(a)- 1© computes the
values of the three metrics—these enable the user to evaluate
the performance of the prediction model. The line charts in
Fig. 4(a)- 3© enable comparison between the ground truth and
predicted values. The user can adjust the time period by
dragging the slider below, thus viewing the accuracy of the
prediction results at different levels of detail.

C. Simulation

The simulation module visualizes the real-time locations of
idle taxis and waiting requests. Fig. 4(b) gives a snapshot of the
simulation process. Users can select the date and the number
of taxis, then click the “Run” button to start the simulation.
The real-time locations of idle taxis and waiting requests are
updated dynamically on the map. Red dots represent idle taxis,
and blue dots represent waiting requests. It is easy to see that
idle taxis should be directed to midtown, where most waiting
requests are located. We also show the values of the three
evaluation metrics in Fig. 4(b)- 1©. The line charts in Fig. 4(b)-
3© compare DROP and the baseline RD [5] according to the

three metrics. DROP can reduce the average taxi idle time
by 40% and the average request waiting time by 11%. The
expiration percentage is reduced to 5.8%, an improvement of
9.3% over RD.

VI. CONCLUSION

We demonstrate the fleet management system SOUP that
supports passenger demand prediction and competitive taxi
supply. SOUP encompasses a prediction model called ST-
GCSL that predicts the number of passenger requests in
the near future, and it encompasses a demand-aware route
planning algorithm called DROP that provides search routes
for idle taxis based on predicted passenger requests. We
demonstrate SOUP on a real dataset, showing that it is capable
of good performance.

REFERENCES

[1] Didi: https://www.xiaojukeji.com, 2020.
[2] Uber: https://www.uber.com, 2020.
[3] L. Bai, L. Yao, S. S. Kanhere, X. Wang, and Q. Z. Sheng. Stg2seq:

Spatial-temporal graph to sequence model for multi-step passenger
demand forecasting. In IJCAI, pages 1981–1987, 2019.

[4] D. Hallac, S. Vare, S. P. Boyd, and J. Leskovec. Toeplitz inverse
covariance-based clustering of multivariate time series data. In IJCAI,
pages 5254–5258, 2018.

[5] Q. Hu, L. Ming, C. Tong, and B. Zheng. An effective partitioning
approach for competitive spatial-temporal searching (GIS cup). In
SIGSPATIAL/GIS, pages 620–623, 2019.

[6] L. Ming, Q. Hu, M. Dong, and B. Zheng. An effective fleet management
strategy for collaborative spatio-temporal searching (GIS cup). In
SIGSPATIAL/GIS, pages 651–654, 2020.

[7] T. Oda and C. Joe-Wong. MOVI: A model-free approach to dynamic
fleet management. In INFOCOM, pages 2708–2716, 2018.

[8] X. Shi, Z. Chen, H. Wang, D. Yeung, W. Wong, and W. Woo. Convo-
lutional LSTM network: A machine learning approach for precipitation
nowcasting. In NIPS, pages 802–810, 2015.

[9] Z. Xu, C. Men, P. Li, B. Jin, G. Li, Y. Yang, C. Liu, B. Wang, and
X. Qie. When recommender systems meet fleet management: Practical
study in online driver repositioning system. In WWW, pages 2220–2229,
2020.

[10] B. Yu, H. Yin, and Z. Zhu. Spatio-temporal graph convolutional
networks: A deep learning framework for traffic forecasting. In IJCAI,
pages 3634–3640, 2018.

[11] B. Zheng, Q. Hu, L. Ming, J. Hu, L. Chen, K. Zheng, and C. S. Jensen.
Spatial-temporal demand forecasting and competitive supply via graph
convolutional networks. CoRR, abs/2009.12157, 2020.

