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Abstract22

Hydrological droughts are events of prolonged water scarcity and cause many devastating23

impacts. It is, therefore, extremely crucial to understand their spatiotemporal evolution to24

guide prevention and mitigation policies. The Gravity Recovery and Climate Experiment25

(GRACE, April 2002-June 2017) and GRACE Follow-On (GRACE-FO, June 2018-present)26

missions have been used to study large-scale droughts of almost two decades. But charac-27

terizing droughts during the between missions gap period of 2017-2018 has not been well28

addressed and will be covered here. To bridge the gap, an innovative Bayesian convolu-29

tional neural network is developed to reconstruct the missing signals from hydroclimatic30

inputs. The reconstruction fields and existing signals are then used to explore regions that31

have experienced consecutive water storage deficits during the 2017-2018 gap. We found32

many regions of the northern mid-latitudes exhibiting moderate to exceptional droughts33

in terms of water storage deficits, among which parts of Pakistan and Afghanistan, and34

Iberian Peninsula experienced exceptional droughts lasting for more than one year with the35

maximum deficits (−4.4 ± 0.8 cm and −7.2 ± 1.1 cm, respectively) being over 50% of the36

seasonal storage variations. Comparisons with climate indicators show that the identified37

droughts are predominantly caused by continuous below-normal precipitation. The recovery38

process correlates generally well with the accumulation rate of precipitation surpluses (the39

correlation coefficient (R) can be up to 0.92). Besides, the reconstructed signals, which have40

R > 0.7 with the testing GRACE(-FO) data in over 90% of the globe, reliably maintain the41

data continuity and therefore they are recommended for hydro-climatological studies.42

1 Introduction43

Drought is an event of prolonged water shortages and usually associated with long-44

standing (months or even years) and devastating impacts on ecosystem, agriculture, and45

society (Hao et al., 2018; X. He, Estes, et al., 2019; Van Loon, 2015). To better man-46

age these events and alleviate their impacts, it is extremely essential to understand the47

characteristics of historical drought events well, including their duration, intensity, affected48

areas, severity, and the process of droughts recovery. This information is useful for de-49

veloping proper water resources management policies to tackle challenges that likely occur50

in future (AghaKouchak et al., 2015; A. K. Mishra & Singh, 2010; Shah & Mishra, 2020;51

Van Loon, 2015; West et al., 2019). Droughts are generally classified into meteorological52

(deficit in precipitation), agricultural (deficit in soil moisture), hydrological (deficit in to-53
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tal water storage), and socioeconomic (water demand exceeds supply) (Wilhite & Glantz,54

1985). What we are concerned in this study can be categorized as hydrological droughts,55

and the study addresses the spatiotemporal evolution of global water storage deficits during56

the major drought events of 2017-2018.57

The Gravity Recovery and Climate Experiment (GRACE, 2003-2017) satellite mission58

and its follow-on (GRACE-FO, 2018-now) provide time-variable global gravity fields that59

can be converted to the terrestrial water storage anomaly (TWSA) estimates (Tapley et60

al., 2004). These fields are unique because they can reflect a summation of surface water61

(e.g., measured by altimetry and SAR missions), and shallow soil water storage (e.g., mon-62

itored by soil moisture remote sensing), as well as deep water storage in the rooted soil and63

groundwater compartments. The latter two compartments cannot be measured by other64

remote sensing techniques. Therefore, GRACE and GRACE-FO have been used widely for65

studying global large-scale hydrometeorological events (see, e.g., Chen et al., 2010; Eicker66

et al., 2016; Forootan et al., 2019; X. Liu et al., 2020; Long et al., 2013, 2014; Boergens,67

Güntner, et al., 2020; Humphrey et al., 2016; B. Li et al., 2019; Mehrnegar et al., 2021;68

Thomas et al., 2014; Yan et al., 2021).69

However, there is a major research gap of the existing literature related to characteri-70

zation of the hydrological drought events of 2017-2018. The key reason for this research gap71

is that there is an approximately one-year gap period (July 2017-May 2018) between the72

GRACE and GRACE-FO missions, therefore a reliable estimation of TWSA fields in this73

period is missing. As a result, the spatiotemporal characteristics of the hydrological drought74

events, whose duration is overlapped with this gap period, are still largely unknown. For in-75

stance, the missing GRACE(-FO) data records inhibit a full quantification of the 2018-201976

Central European drought (Boergens, Güntner, et al., 2020) and of the 2017-2019 Eastern77

Australian drought, which accounted for the severe and long-lasting 2019-2020 bushfires78

(Deb et al., 2020; Kumar et al., 2021). Many other regions also experienced drought con-79

ditions during the gap period, as consistently indicated in literature (see, e.g., V. Mishra80

et al., 2021; Theron et al., 2021) and by multiple drought monitors/indicators (e.g., US81

https://droughtmonitor.unl.edu and NASA https://nasagrace.unl.edu/) from the82

perspective of deficits in precipitation, soil moisture, or shallow groundwater. However, lit-83

tle is still known about the associated total water storage losses, which is a key characteristic84

for hydrological drought characterization. Lacking reliable characterizations for these recent85
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historical droughts poses challenges to future drought planning and management (Haile et86

al., 2019; X. He, Feng, et al., 2019; A. K. Mishra & Singh, 2010).87

Reconstructing gaps in GRACE(-FO) has been done in past by formulating a math-88

ematical relationship between TWSA and its indicators (e.g., Forootan et al., 2014, 2020;89

Humphrey & Gudmundsson, 2019; F. Li et al., 2021; A. Y. Sun et al., 2019, 2020; Z. Sun90

et al., 2020; Yi & Sneeuw, 2021). However, the accuracy of reconstruction may be lim-91

ited especially in (semi-)arid regions due to the high-complexity of hydrological processes92

in these regions (Mo et al., 2022; Z. Sun et al., 2020). Considering that the estimation of93

water storage deficits requires to remove the easiest-to-reconstruct seasonal component from94

the TWSA signals and the resulting deficit signals are subject to high-frequency variability95

(Humphrey et al., 2016), the limited TWSA reconstruction accuracy will lead to a poor96

reconstruction for the deficits. Consequently, their applications in quantifying droughts97

during the gap period, to the best of our knowledge, have not yet been reported.98

This study fills the existing the research gap by addressing the following questions:99

(1) how did the hydrological drought-induced water storage deficits spatiotemporally evolve100

during the 2017-2018 GRACE and GRACE-FO gap? and (2) what are the major causes101

for these drought events? For this, an innovative Bayesian Convolutional Neural Network102

(BCNN) is firstly developed to reliably reconstruct the missing TWSA fields from hydrocli-103

matic inputs (indicators) in an image-to-image (field-to-field) regression setup. The BCNN-104

reconstructed signals are then used together with the existing TWSA observations to bridge105

the mentioned research gap. The outperformance of convolutional neural network over tra-106

ditional statistical and machine learning methods in reconstructing the missing TWSA fields107

has been illustrated in A. Y. Sun et al. (2019) and our previous work (Mo et al., 2022). Its108

deep architecture with multiple nonlinear processing layers enables it to extract spatially-109

correlated and multiscale features of the data fields for effectively learning highly-complex110

mappings (LeCun et al., 2015; Du et al., 2022; Mo, Zhu, et al., 2019; Mo, Zabaras, et al.,111

2019; Mo et al., 2020; Reichstein et al., 2019; Shen, 2018). To further improve the TWSA112

reconstruction accuracy, the novel components introduced in BCNN relative to the convo-113

lutional neural networks used in A. Y. Sun et al. (2019) and Mo et al. (2022) include the114

residual-in-residual dense block to enhance information flow through deep networks (Wang115

et al., 2018) and the spatial-channel attention module to enable the network to automati-116

cally focus on useful features (Fu et al., 2019). The Bayesian nature of BCNN enables it to117
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provide uncertainty estimation for the deficit estimates. Finally, the hydrological drought118

quantification results will be examined by comparing with independent drought indices.119

In summary, our innovative contributions are as follows. First and most importantly,120

we cover the aforementioned research gap that the recent hydrological drought events over-121

lapping with the 2017-2018 GRACE and GRACE-FO gap period are characterized and122

quantified. The improved understanding toward spatiotemporal evolution of the associated123

water storage deficits, major causes for these droughts, and major factors influencing their124

recovery is of crucial significance for future drought management and mitigation. Second,125

we provide improved reconstructions of the missing 2017-2018 TWSA signals. Therefore,126

our reconstructions can more reliably maintain the TWSA data continuity and benefit sub-127

sequent hydroclimatic applications desiring a continuous data record. Finally, the proposed128

deep learning method can also be flexibly extended to other hydroclimatic problems involv-129

ing learning complex mappings due to its generic nature.130

2 Data and Methods131

2.1 GRACE-derived TWSAs132

There are multiple products of GRACE TWSA data, such as the spherical harmonic133

(SH) solutions provided by the Jet Propulsion Laboratory (JPL), German Research Center134

(GFZ), Center for Space Research (CSR) and many others, three mascons (provided by JPL,135

CSR, and Goddard Space Flight Center (GSFC)), and the GravIS and COST-G products136

by GFZ and the International Gravity Field Service (IGFS), respectively. These products137

differ mainly in the employed postprocessing algorithms. More details regarding GRACE138

data processing can be found in, for example, Save et al. (2016) and Boergens, Dobslaw, et139

al. (2020).140

It has been shown that an ensemble of different GRACE products is beneficial for141

reducing the associated uncertainties caused by signal processing (Ali et al., 2022; Sakumura142

et al., 2014; Yan et al., 2021). Therefore, we take a weighted average of the eight products143

in the spatial domain as the observed TWSAs (The signal attenuation in SH products is144

restored by multiplying the provided scaling factors). The weights are determined using145

the generalized three-cornered hat method (Long et al., 2017; Xu et al., 2020; Yin et al.,146

2021). The time-mean baseline for computing anomalies and the spatial resolutions of these147

products are not completely consistent. We recompute the anomalies of all products using148
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the same time-mean baseline (January 2004-December 2009) and resample averagely the149

data into 1◦ × 1◦ grids.150

The TWSA time series may exhibit long-term declining/rising trends caused by anthro-151

pogenic activities and/or climate change. Capturing the long-term trends is challenging as152

they may not be well reflected by the predictor data (Humphrey & Gudmundsson, 2019;153

Z. Sun et al., 2020). Fortunately, the GRACE TWSA data in the pre- (April 2002-June 2017)154

and post-gap (June 2018-) periods are available. We remove the linear trend (trendGRACE)155

fitted using the available GRACE data (i.e., April 2002-June 2017 and June 2018-December156

2020) from the original time series (TWSAGRACE) and let BCNN learn to reconstruct157

the detrended TWSA signals (TWSAdetrend
GRACE) instead. Finally, the reconstructions for the158

TWSAGRACE time series are obtained by adding the linear GRACE trend:159

TWSABCNN = TWSAdetrend
BCNN + trendGRACE, (1)160

where TWSAdetrend
BCNN denotes BCNN’s reconstruction for TWSAdetrend

GRACE.161

2.2 Hydroclimatic Predictors and Optimal Data Source Selection162

BCNN inherits the convolutional neural network’s flexible and excellent capability in163

efficiently handling multiple image inputs and extracting useful features from multi-source164

data (LeCun et al., 2015; Shen, 2018). Therefore, in addition to the commonly used pre-165

dictors, namely simulated/reanalyzed TWSA (sTWSA), precipitation (P), and temperature166

(T) (Humphrey & Gudmundsson, 2019; Z. Sun et al., 2020), we consider additional four167

TWSA-related predictors: climatic water balance (CWB), cumulative water storage change168

(CWSC), cumulative precipitation anomaly, and cumulative CWB (CCWB). CWB is de-169

fined as the difference between P and potential evapotranspiration (PET). Thus, CCWB is170

written as:171

CCWBt =

t∑
i=1

(Pi − PETi), (2)172

where t = 1, . . . , T , with T denoting the length of time series. CWSC is by definition the173

calculated TWSA calculating as the cumulative difference between the inflow (i.e., P) and174

outflow (i.e., evapotranspiration ET and runoff RO) of a region based on the water mass175

balance:176

CWSCt =

t∑
i=1

(Pi − ETi − ROi). (3)177

Human activities (e.g., reservoir operation and groundwater extraction) may also contribute178

to water storage changes, but they are difficult to quantify and thus not considered here.179
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Despite this, it is assumed that human activities are to some extent related to the climatic180

conditions. Therefore, the consideration of multiple hydroclimatic predictors may partially181

alleviate the influence of the omission of human activities. All predictor data are resampled182

averagely into 1◦ × 1◦ grids to match the GRACE resolution.183

Since multiple data products are usually available for each predictor and their quality184

varies with space and time, we make a grid-wise data source selection to identify the optimal185

data source for reconstructing GRACE TWSAs. For each grid cell, the product having the186

highest criterion value among all data source candidates is used as the predictor data. The187

selection criterion is the Nash-Sutcliffe efficiency or absolute correlation coefficient between188

the predictor and GRACE TWSA time series. The data source candidates considered for189

each predictor and the selection criterion are listed in Table C1. Similarly, the predictor190

time series are also detrended as GRACE TWSAs. The identified optimal data source for191

each predictor is shown in Figure S1.192

2.3 Drought Indices193

The hydrological drought index is defined on the basis of the deficit in total water194

storage, which is the negative deviation relative to the long-term climatology (also known195

as the seasonal signal) (Humphrey et al., 2016; Thomas et al., 2014), and can be calculated196

using the existing GRACE(-FO) TWSA observations and BCNN’s reconstructions. Prior197

to calculating the climatology, the linear trend of the original TWSA time series is removed198

to eliminate the effect of non-climatic factor-induced TWSA declining/increasing trends on199

drought evaluation as suggested by Humphrey et al. (2016) and X. Liu et al. (2020). For200

instance, the consistently declining TWSA trend induced by groundwater over-exploitation,201

will lead to an underestimation of the drought condition in the former period and an over-202

estimation in the latter period (X. Liu et al., 2020). Formally, the water storage deficit203

(WSD) is calculated as204

WSDi,j = TWSAdetrend
i,j − µi, (4)205

where j denotes the index of time series, and i = 1, . . . , 12 represents the ith calendar206

month of a year, TWSAdetrend
i,j is the detrended TWSA, and µi is the long-term climatology207

calculated by averaging all of the ith-month observations in detrended data record. A208

standardized water storage deficit index (WSDI) defined as209

WSDIi,j =
WSDi,j

σi
, (5)210
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is used to facilitate the identification of droughts in different regions, where σi is the standard211

deviation of TWSAdetrend
i,j in month i.212

Drought usually starts from a deficit in precipitation (i.e. meteorological drought)213

and further translates to agricultural/hydrological drought (Van Loon, 2015; West et al.,214

2019). Therefore, the SPEI-6 (6-month standardized precipitation evapotranspiration in-215

dex) (Vicente-Serrano et al., 2010) meteorological drought index and the standardized soil216

moisture (SM-Z) agricultural drought index from the Climate Prediction Center (CPC)217

(van den Dool et al., 2003) are used to validate the occurrence of the identified hydrological218

droughts during the 2017-2018 gap. The SM-Z index are standardized similarly as WSDI in219

equation (5). To make the data comparable with GRACE, we apply a 300 km Gaussian filter220

to the gridded drought indices. Note that the meteorological/agricultural drought indices221

(e.g., SPEI-6 and SM-Z), which are based commonly on precipitation, evapotranspiration,222

or soil moisture, can only represent the dynamics of respective water storage/cycle compo-223

nents. One unique merit of the GRACE-based WSD indicator is the ability to quantify the224

deficits in total water availability (Chen et al., 2010; Z. Sun et al., 2018; Zhao et al., 2017).225

2.4 BCNN Model226

The BCNN deep learning model is tasked with learning the underlying relationship227

between the target GRACE TWSAs and seven predictors. Let x ∈ Rnx×H×W and y ∈228

Rny×H×W denote the nx input (i.e., predictor) fields and ny output (i.e., GRACE TWSA)229

fields, respectively, with H ×W denoting the spatial resolution. They are treated in BCNN230

as images and the high-dimensional mapping learning task becomes an image-to-image re-231

gression problem between nx and ny images:232

η(x,w) : x ∈ Rnx×H×W −→ y ∈ Rny×H×W , (6)233

where w denotes all trainable parameters of the network η(·, ·). The region spanning 60◦S-234

84◦N and 180◦W-180◦E is considered, excluding Greenland and Antarctica. Thus, H×W =235

144× 360.236

The BCNN network architecture is depicted Figure 1. It contains multiple processing237

units for feature extraction and nonlinear transformations. The architecture is U-shaped238

that the input images are sequentially downsampled with convolutional layers and then239

recovered by transposed convolutional layers to extract multi-scale features (Ronneberger240

et al., 2015). The major improvement in network architecture design compared to A. Y. Sun241
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Figure 1. BCNN network architecture. It consists of alternating residual-in-residual dense blocks

(RRDBs) and downsampling/upsampling layers for feature extraction and nonlinear processing in

image-to-image regression. The network is U-shaped that the size of feature maps is sequentially

halved by downsampling layers and then recovered by upsampling layers to extract multiscale

features. +○ and c○ denote the addition (residual connection) and concatenation (dense connection)

operations on feature maps, respectively. The spatial and channel attention module (SCAM) is used

to enable BCNN to automatically focus on informative features. Conv: convolution.

et al. (2019) and Mo et al. (2022) is that we propose a novel basic building block for BCNN242

for higher performance. More details are given in Appendix A.243

Our aim is to reconstruct the TWSA signals during the 2017-2018 gap between GRACE244

and GRACE-FO. For those few one- or two-month gaps within the GRACE and GRACE-FO245

missions, we fill them with the pchip interpolation implemented in MATLAB for simplicity.246

Alternatively, one can simply leave these months out or fill them with BCNN. The GRACE247
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data of April 2002-March 2014 are used to train the BCNN network, and those of April248

2014-June 2017 and June 2018-December 2020 to test the performance. Considering that249

there may be a lagged response of TWSA to the predictors, the predictors in months t-2 to t250

are used as the inputs to BCNN to reconstruct the TWSA in month t. Thus, each predictor-251

predictand sample contains nx = 21 input images and ny = 1 output image. Details on252

BCNN training are given in Appendix A. The benefits of considering more predictors in253

addition to the three commonly used ones (i.e., sTWSA, P, and T) are illustrated and254

discussed in Appendix B.255

Figure 2. Reconstruction accuracy for the testing GRACE TWSA (a-d) and WSD (the de-

trended and deseasonalized TWSA) signals (e-h). CDF: cumulative distribution function; NRMSE:

normalized root mean squared error; NSE: Nash-Sutcliffe efficiency coefficient; R: correlation coef-

ficient.
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3 Results and Discussion256

3.1 TWSA Reconstruction Results257

Figures 2 show BCNN’s reconstruction accuracy in terms of correlation coefficient258

(R), Nash-Sutcliffe efficiency (NSE) coefficient, and normalized root mean squared error259

(NRMSE) for the original GRACE TWSA and WSD (i.e., the detrended and deseason-260

alized TWSA; equation (4)) signals during the testing periods. The NRMSE metric is a261

normalized version of the root mean squared error divided by the difference between the262

maximum and minimum values of the signals for each grid. For the original GRACE TWSA263

signals, BCNN achieves relatively high R and NSE, and low NRMSE reconstruction accuracy264

in most regions, with over 90% and 80% of grids having R >0.7 and NSE>0.6, respectively,265

as indicated by the cumulative distribution functions in Figure 2d. The hyper-arid regions266

(e.g., Sahara and Gobi) generally have low R and NSE values, which is mainly due to the267

low signal-to-noise ratio (Humphrey et al., 2016).For the detrened and deseasonalized WSD268

signals, the reconstruction accuracy show a similar spatial pattern to those of the original269

signals but decreases as expected since the deseasonalized time series are usually associated270

with high-frequency variability (Humphrey et al., 2016). However, considering the high271

variability of the WSD signals, BCNN still obtains a relatively high reconstruction accuracy272

with over 50% of grids having R >0.8 and NSE>0.6 (Figure 2h).273

Figure 3 compares BCNN TWSAs with the testing GRACE TWSAs in December274

2015 and November 2020 (The reconstructions for all testing months are shown in the GIF275

animation attached in the supporting information). The Bayesian nature of BCNN enables276

it to quantify the predictive uncertainty. Thus, the error and standard deviation of BCNN’s277

reconstructions are also shown. The two months are shown because they experienced a278

very strong El Niño event (December 2015) and a moderate La Niña event (November279

2020) (Figure C1). The climate extremes usually cause abnormal TWSA signals which are280

challenging to reconstruct. It is found that BCNN captures the spatial patterns of GRACE281

TWSAs relatively well and provides close reconstructions in both months. The time series282

of basin-averaged BCNN and GRACE TWSAs for 21 major river basins over the globe283

(Figure C2) are compared in Figure 4. It is observed that BCNN reliably bridges the data284

gap in the sense that the reconstructed TWSAs agree well with the testing GRACE TWSAs285

in the pre- and post-gap periods in these river basins dominated by either seasonal (e.g.286

Amazon, Figure 4a) or inter-annual/long-term (e.g. Murray-Darling, Figure 4k) signals287
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Figure 3. BCNN’s reconstructions for the GRACE TWSA fields in December 2015 (a-d) and

November 2020 (e-h). Error (c and g) denotes the difference between GRACE and BCNN TWSAs.

(d) and (h) show the standard deviation (Std) of BCNN’s reconstructions.

(see Humphrey et al. (2016) for the distribution of the relative contributions of different288

signal components).289

The above results indicate BCNN provides close reconstructions for the unseen testing290

GRACE TWSAs in the pre- and post-gap periods, suggesting that BCNN reliably main-291

tains the TWSA data continuity and thus enhance data consistency. Note that an implicit292

assumption here is that if BCNN is able to provide close reconstructions to the testing (un-293

seen) GRACE observations in the pre- and post-gap periods, the gap-filling reconstructions294

are thought to be reliable. Figure C3 further illustrates the superior performance of BCNN295

in providing improved TWSA and WSD reconstructions by comparing the NSE accuracy296

with that obtained in Mo et al. (2022), which achieved a clearly higher reconstruction ac-297

curacy in comparison with previous studies (Humphrey & Gudmundsson, 2019; F. Li et al.,298
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Figure 4. The basin-averaged GRACE and BCNN TWSA time series. The red shaded areas

denote the 95% CI of BCNN predictions. The BCNN model’s training period is April 2002-March

2014 and the testing periods are April 2014-June 2017 and June 2018-December 2020. CI: confidence

interval; TWSA: terrestrial water storage anomaly.

2021; Z. Sun et al., 2020) when evaluating on the same testing GRACE data. We attribute299

the outperformance of our BCNN jointly to the new network architecture, the data source300

selection strategy, and the consideration of more predictors.301

3.2 Characterization of the 2017-2018 Hydrological Droughts302

The hydrological drought regions are identified using the WSDI index (equation (5)) and303

the associated water storage deficit is quantified using the WSD index (equation (4)). The304

SPEI-6 meteorological drought index and the SM-Z agricultural drought index, as introduced305

in section 2.3, are utilized to verify the occurrence of the WSDI-identified droughts, though306

they indicate droughts in different hydrological cycle components. The regions having a307
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negative index value for at least three consecutive months with the maximum less than or308

equal to -0.5 are designated as experiencing droughts.309

Figure 5. Basin-averaged time series of GRACE- and BCNN-derived WSDs, SPEI-6, and SM-

Z in Central Valley and five river basins. These basins/regions experienced droughts during the

2015-2016 El Niño event. The red shaded areas denote the 95% CI (confidential interval) of BCNN

reconstructions. SM-Z: standardized soil moisture; SPEI-6: 6-month standardized precipitation

evapotranspiration index; WSD: water storage deficit.

We first demonstrate BCNN’s ability in quantifying the water storage deficits induced310

by GRACE-recorded hydrological droughts during BCNN’s testing period. The drought311

regions during the strongest 2015-2016 El Niño event on record (Figure C1) identified by312

GRACE and BCNN are compared in Figure C4. It is observed that BCNN-identified re-313

gions are generally consistent with those identified by GRACE. The basin-averaged time314

series of water storage deficit and two meteorological/agricultural drought indices (SPEI-6315

and SM-Z) in six river basins within these regions are compared in Figure 5. BCNN suc-316

cessfully reproduces the GRACE-based time series of the water storage deficit during the317

testing period, although the reconstructions may be slightly smoothed. In addition, the two318

meteorological/agricultural drought indices correlate well with GRACE- and BCNN-derived319

water storage deficits, suggesting that they can be used later to examine the BCNN-identified320

droughts during the 2017-2018 GRACE and GRACE-FO gap.321
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Figure 6. Drought regions identified by the BCNN WSDI index during the GRACE and

GRACE-FO gap (July 2017-May 2018). WSDI: water storage deficit index.

The drought regions during the 2017-2018 gap identified by BCNN-derived WSDI,322

SPEI-6, and SM-Z indices are depicted in Figures 6, C5, and C6, respectively. The regions323

identified by WSDI show a favorable spatiotemporal agreement with those by the other324

two indices. They consistently indicate that the droughts occurred in the northern mid-325

latitudes. We now quantify the basin-scale water storage deficits during the gap for six326

river basins within the identified regions, including the Amur, Indus-Helmand-Amu-Darya,327

Tigris-Euphrates, Colorado, and Missouri River Basins and those in Iberian Peninsula.328

The basin-averaged time series of GRACE- and BCNN-derived WSD, SPEI-6, and SM-329

Z are shown in Figures 7, in which the latter three indices again consistently suggest the330

occurrence of 2017-2018 droughts in these basins. Basing on the BCNN-derived WSD index,331

the droughts are characterized and quantified in Table 1. These droughts completely covered332

the 11-month gap (except the one in the Corolado River Basin) and lasted for 13-25 months.333

The maximum deficits account for 34%-56% of the seasonal water storage oscillations (i.e.,334

difference between the maximum and minimum of the seasonal signal). One exception is335

the Amur River Basin (181%) primarily due to the fact that the TWSA signals in this basin336

are dominated by the long-term/sub-seasonal changes and the seasonal change is relatively337

small (Humphrey et al., 2016). We classify the drought intensity according to the WSDImax338

values and the thresholds used by US Drought Monitor (Table C2) (Svoboda et al., 2002).339
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Figure 7. Basin-averaged time series of GRACE- and BCNN-derived WSD, SPEI-6, SM-Z,

and PA in six regions/river basins. CI: confidential interval; PA: precipitation anomaly; SM-Z:

standardized soil moisture; SPEI-6: 6-month standardized precipitation evapotranspiration index;

WSD: water storage deficit.

The results indicate that the six basins experienced severe to exceptional droughts during340

the gap period (Table 1).341

The complemented quantification of water storage deficits during the 2017-2018 GRACE342

and GRACE-FO gap allows for a full spatiotemporal characterization of the hydrological343

drought events since the GRACE era. Figure 8 illustrates the temporal evolution of percent344

area of different drought categories in the six basins since 2002. The missing data during345

the gap period are filled with BCNN’s reconstructions, where the (WSDIBCNN− 2σ) values346
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Table 1. Characterization and Quantification of the Droughts in Six River Basins During the

2017-2018 GRACE and GRACE-FO Gap.

Basin (Area [km2]) Time span
Duration

[months]

WSDmax ± σ

[cm] (date)

WSD ± σ

[cm]

WSDmax
SC

† Maximum intensity

(WSDImax)

Amur (2,251,276) 2017.3-2018.7 17 -3.9±0.8 (2018.4) -1.7±0.83 -181.4%‡ D3 (-1.7)

Colorado (669,546) 2017.12-2019.1 14 -3.0±0.6 (2018.3) -1.9±0.6 -46.5% D2 (-1.5)

Iberian Peninsula

(410,959)

2017.3-2018.3 13 -7.2±1.1 (2017.12) -2.7±1.0 -54.5% D4 (-2.5)

Indus-Helmand-Amu

-Darya (2,258,034)

2017.9-2019.1 17 -4.4±0.8 (2018.4) -2.2±0.8 -55.6% D4 (-2.7)

Missouri (1,354,379) 2017.6-2019.1 20 -3.7±0.8 (2018.6) -2.4±0.9 -38.2% D2 (-1.3)

Tigris-Euphrates

(602,127)

2016.10-2018.10 25 -4.9±0.9 (2018.4) -1.8±0.9 -33.8% D2 (-1.4)

† WSDmax
SC

denotes the ratio between the maximum water storage deficit (WSD) and the seasonal change (SC) of water storage.

‡
The TWSA signals in the Amur River Basin are dominated by the long-term/sub-seasonal changes, the SC is relatively small.

Note: WSDmax and WSD are the maximum and mean of WSD during the drought, respectively, σ denotes one standard

deviation of BCNN’s reconstructions.

(σ denotes one standard deviation of BCNN’s reconstruction) are utilized when classifying347

the drought to ensure a lower confidence level of ∼ 98%. It can be seen from Figure 8a that,348

for instance, some areas in the Amur River Basin started to occur drought since the middle349

of 2014. The drought areas then sequentially expanded and reached the maximum in April350

2018. During the gap period, all regions of the river basins in Iberian Peninsula experienced351

D2 or more severe droughts (>70% regions experienced D4 drought in December 2017; Fig-352

ure 8c). For the Missouri and Tigris-Euphrates River Basins, the 2017-2018 droughts may353

be partly related to the earlier ones since 2012 and 2008, respectively, as there have been354

regions experiencing droughts since then (Figures 8e and 8f).355

It is worth mentioning that the maximum deficits in these basins all occurred during356

the gap period (July 2017-May 2018) except the Missouri River Basin (Table 1). A lack of357

awareness of this fact as well as that these droughts completely cover the gap period will lead358

to an underestimation of the drought severity and duration. The improved understanding359
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Figure 8. Temporal evolution of the percent area of different drought categories in six river

basins since the GRACE era. The period between the two vertical dashed lines denotes the 2017-

2018 GRACE and GRACE-FO gap.

toward the most recent 2017-2018 hydrological droughts in these regions, therefore, can360

better guide future drought prevention and mitigation policies.361

3.3 Discussion362

In terms of the maximum deficit, the droughts covering the gap period in the Iberian363

Peninsula and Indus-Helmand-Amu-Darya River Basin (mostly in Pakistan and Afghanistan)364

are the most severe on record since the launch of GRACE (Figures 7d and 7e, 8c and365

8d). However, unlike the Iberian Peninsula where the water storage recovered quickly to a366

far above-normal condition, the drought recovery in the Indus-Helmand-Amu-Darya River367

Basin was slow and the water storage remained at a near- or below-normal level in post-368

drought years, leading to greater impacts.369

To investigate the major causes for the six droughts and the major factors influencing370

drought recovery, the time series of precipitation anomaly and BCNN- and GRACE-derived371

WSDs are also compared in Figure 7 (the global precipitation anomaly fields during the372

2017-2018 gap are shown in Figure S2). The precipitation is a weighted ensemble of the373

eight products listed in Table C1 by the generalized three-cornered hat method. We perform374

3-month running mean on the precipitation time series to smooth out short-term fluctua-375

tions. The anomaly is then respectively calculated for each month of a year. The WSD376

and precipitation anomaly time series are visually correlated well with each other that their377
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peaks/valleys are generally consistent, though there may be a time lag. The six basins all378

received below-normal precipitation during the gap period, implying that these droughts379

are primarily caused by continuous precipitation deficits. The Iberian Peninsula’s wet 2018380

summer with continuous and large precipitation surpluses contributed to a rapid drought re-381

covery (Figure 7c). On the contrary, although the Indus-Helmand-Amu-Darya River Basin382

experienced a relatively wet 2018 winter, the precipitation surpluses were obviously not suffi-383

cient to recharge the large deficits during the drought, leading to a slow recovery (Figures 7d384

and 8d). The results are further validated in Figure 9, which compares the BCNN-derived385

WSD time series with the cumulative precipitation anomaly since the beginning of drought.386

The cumulant is compared here due to the fact that the drought propagation/recovery relies387

generally on the continuous precipitation shortage/surplus. A cumulant can rule out the388

influence of local signal fluctuations and is thus more suitable for illustrating the lasting im-389

pact. The two time series show a good correlation (R ≥ 0.77 for all basins except the Amur390

River Basin (R = 0.26), but their fluctuations show a similar pattern in this basin) that the391

water storage recovery is generally consistent with the accumulation rate of precipitation392

surpluses. The faster recovery here indicates a higher drought resilience.393

Figure 9. Basin-averaged time series of BCNN-derived WSD and cumulative precipitation

anomaly (CPA) since the beginning of drought covering the 2017-2018 GRACE and GRACE-

FO gap in six river basins. R denotes the correlation coefficient between the two time series. CI:

confidential interval; WSD: water storage deficit.
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In addition to the hydrological droughts identified and quantified above, our gap-filling394

results enable a full characterization of previously analyzed ones. For example, the2018-395

2019 Central European drought partly quantified in Boergens, Güntner, et al. (2020) and396

the 2017-2019 drought in Murray-Darling River Basin recorded in Deb et al. (2020) and397

Kumar et al. (2021), which was the most severe on record and led to the serious 2019–2020398

bushfires. It can be seen from Figure 10a that prior to the 2018-2019 Central European399

drought, the above-normal precipitation in the latter half of 2017 resulted in an increased400

water storage. Then the storage declined rapidly due to continuous precipitation shortages401

since the beginning of 2018, thereby leading to the summer drought. The Murray-Darling402

Basin’s 2017-2019 drought was also caused by continuous below-normal precipitation since403

the beginning of 2017. The drought started in February 2018 in terms of water storage404

deficits, which reached the maximum (-8.7 cm) in December 2019 (Figure 10b). The con-405

tinuous precipitation shortages and water storage losses led to the long-lasting drought and406

eventually the very serious 2019–2020 bushfires (Deb et al., 2020; Kumar et al., 2021).407

Figure 10. Basin-averaged time series of GRACE- and BCNN-derived WSD, SPEI-6, SM-Z,

and precipitation anomaly (PA) in (a) Central Europe (45◦N-55◦N, 4◦E-24◦E) and (b) Murray-

Darling River Basin. CI: confidential interval; SM-Z: standardized soil moisture; SPEI-6: 6-month

standardized precipitation evapotranspiration index; WSD: water storage deficit.

Note that due to the potential inability of the hydroclimatic predictors in fully re-408

flecting the anthropogenic impacts on water storage dynamics, the noises associated with409

hydroclimatic data, and BCNN’s predictive uncertainties, the BCNN-filled WSD estimates410

are inevitably subject to uncertainties or even biases. For example, the GRACE WSD time411
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series indicate that the Ganges-Brahmaputra River Basin experienced a significant water412

storage deficit during June-October 2018. However, the two drought indicators (i.e., SPEI-6413

and SM-Z) all imply an opposite wet trend in this period, leading to biases in the BCNN414

estimations (Figure 5d). This limitation is expected to be alleviated with more GRACE415

training data available, higher-quality hydroclimatic data, the consideration of additional416

informative predictors related to human activities (e.g., the dataset of reservoir operations417

(Steyaert et al., 2022)), and future advances in deep learning.418

4 Conclusions419

The hydrological drought events of 2017-2018, whose duration is overlapped with the420

gap period (July 2017-May 2018) between the GRACE and GRACE-FO missions, are still421

largely unknown and poorly characterized. In this work, we bridge this research gap by422

reconstructing the missing TWSA fields from hydroclimatic inputs with a newly developed423

BCNN deep learning method. The results show that BCNN provides higher-quality recon-424

structions of the TWSA and water storage deficit signals to fill the data gap compared to425

previous studies. The reconstructed and existing signals are then utilized together to iden-426

tify regions experiencing droughts and characterize the spatiotemporal evolution of water427

storage losses during the 2017-2018 gap. Our major new finding is that many regions in the428

northern mid-latitudes experienced consecutive water deficits in this period. The results429

show a favorable consistency with two commonly used drought indices (SPEI-6 and SM-Z),430

though they only partly/qualitatively reflect the water availability from respective hydro-431

logical components. At the regional scale, the droughts in six regions/river basins within432

the identified regions are partly/completely overlapped with the gap period and last for433

13-25 months, among which the ones in Indus-Helmand-Amu-Darya River Basin (mostly in434

Pakistan and Afghanistan) and Iberian Peninsula are the most severe on GRACE record435

with the maximum deficits (−4.4 ± 0.8 cm and −7.2 ± 1.1 cm, respectively) being over436

50% of the seasonal water storage variations. These droughts are resulted predominantly437

from continuous precipitation deficiency. The recovery rate of these droughts is sensitive438

to the accumulation rate of precipitation surpluses in the late- and post-drought periods,439

with a faster recovery when the accumulated surpluses increase rapidly and their correlation440

coefficient being up to 0.92.441

The maximum deficits of the 2017-2018 droughts in five of the six mentioned basins442

occurred during the gap period and the drought duration completely overlaps with this443
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period. Lacking awareness of these facts will lead to an underestimation of drought du-444

ration and severity. Therefore, the improved understanding toward the recent 2017-2018445

hydrological droughts, together with the findings in previous studies from the perspective of446

meteorological/agricultural droughts, can better guide future drought prevention and miti-447

gation policies, allows for a full characterization and a joint assessment of droughts since the448

GRACE mission, and further investigation of insights into the causes/impacts. Addition-449

ally, the improved TWSA reconstructions by BCNN reliably maintain the data continuity,450

enhance data consistency, and therefore enable a full use/analysis of time series data. The451

proposed BCNN method can also be flexibly extended to other hydroclimatic applications452

involving learning complex mappings due to its generic nature.453

Data Availability Statement454

The BCNN-derived TWSA, WSD, and WSDI data generated in this study are available455

at https://zenodo.org/record/5336992. The codes of BCNN are available at https://456

github.com/njujinchun/BCNN4GRACE. Other datasets used are available at the following457

links:458

• GRACE SH: https://podaac-tools.jpl.nasa.gov/drive/files/GeodeticsGravity459

• GRACE mascon: http://www2.csr.utexas.edu/grace/RL06 mascons.html (CSR),460

https://earth.gsfc.nasa.gov/geo/data (GSFC), http://grace.jpl.nasa.gov/461

data/get-data/jpl global mascons (JPL)462

• COST-G and GravIS: http://gravis.gfz-potsdam.de/land463

• CPC soil moisture: https://psl.noaa.gov/data/gridded/data.cpcsoil.html464

• CRU: https://crudata.uea.ac.uk/cru/data/hrg/cru ts 4.05465

• ERA5-land: https://doi.org/10.24381/cds.68d2bb30466

• FLDAS: https://doi.org/10.5067/5NHC22T9375G467

• GHCN-CAMS: https://psl.noaa.gov/data/gridded/data.ghcncams.html468

• GLDAS: https://doi.org/10.5067/FOUXNLXFAZNY (CLSM), https://doi.org/10469

.5067/SXAVCZFAQLNO (Noah), https://doi.org/10.5067/VWTH7S6218SG (VIC)470

• GLEAM: submit a request on https://www.gleam.eu471

• GPCP: https://www.ncei.noaa.gov/data472

• MERRA-2: https://doi.org/10.5067/8S35XF81C28F473

• MSWEP: submit a request on http://www.gloh2o.org/mswep474
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• MSWX: submit a request on http://www.gloh2o.org/mswep475

• NLDAS: https://doi.org/10.5067/NOXZSD0Z6JGD476

• PRECL: https://psl.noaa.gov/data/gridded/data.precl.html477

• SPEI: https://spei.csic.es/database.html478

• TerraClimate: http://www.climatologylab.org/terraclimate.html479

Acronyms480

BCNN Bayesian Convolutional Neural Network481

CI Confidence Interval482

GRACE(-FO) Gravity Recovery and Climate Experiment (Follow-On)483

NRMSE normalized root mean squared error484

NSE Nash-Sutcliffe Efficiency coefficient485

R Correlation Coefficient486

SM-Z Standardized Soil Moisture487

SPEI-6 Six-month Standardized Precipitation Evapotranspiration Index488

TWSA Terrestrial Water Storage Anomaly489

WSD Water Storage Deficit490

WSDI Water Storage Deficit Index491
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Appendix A BCNN Architecture Design and Training501

The BCNN network architecture is U-shaped as shown in Figure 1. Compared to the502

U-Net in previous studies (Ronneberger et al., 2015; A. Y. Sun et al., 2019; Mo et al., 2022),503

we propose to use a modified residual-in-residual dense block (RRDB) (Wang et al., 2018)504

as the basic building block of BCNN for higher performance. RRDB introduces connections505

between non-adjacent layers to enhance information flow through networks (Huang et al.,506

2017) and residual learning to ease the training of deep networks (K. He et al., 2016). The507

combination of the two strategies can substantially strengthen the network performance508

in learning complex mappings (Wang et al., 2018; Mo et al., 2020). Compared to the509

original RRDB structure (Wang et al., 2018), we further incorporate the spatial and channel510

attention module (SCAM) (Fu et al., 2019) for the effective propagation of informative511

information through networks. More specifically, the spatial attention module outputs a512

h × w weight matrix assigning to the h × w pixels of the extracted feature maps to tell513

the network where to attend. Similarly, the channel attention module outputs nf weights514

assigning to the nf extracted feature maps to tell the network which maps to attend. The515

combination of these strategies in BCNN can substantially reduce the risk of overfitting and516

enables the network to automatically focus on informative features extracted from multi-517

source data for the image-to-image regression task. The RRDB and SCAM architectures518

are depicted in Figure A1.519

The network predictions are inevitably associated with uncertainties. To quantify the520

predictive uncertainties, the BCNN network is trained with a SVGD (stein variational gra-521

dient descent) Bayesian inference algorithm (Q. Liu & Wang, 2016; Zhu & Zabaras, 2018) to522

obtain a set of parameter estimates, {wi}NS

i=1. The predictive uncertainties for an arbitrary523

input x can then be computed based on the NS predictions (ŷ(i) = η(x,wi), i = 1, . . . , NS).524

We set NS = 30 as suggested in Zhu and Zabaras (2018). For more details regarding the525

SVGD Bayesian training strategy, one can refer to Q. Liu and Wang (2016) and Zhu and526

Zabaras (2018). The network is trained for 200 epochs with an initial learning rate of 0.0025527

and a batch size of 12.528

Appendix B Accuracy Improvement by Consideration of Additional Pre-529

dictors530

To illustrate the benefits of considering more predictors in BCNN in addition to the531

three commonly used ones (i.e., sTWSA, P, and T) in previous studies (e.g., A. Y. Sun et532
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Figure A1. Diagrams of the (a) spatial and channel attention module (SCAM) and (b) residual-

in-residual dense block (RRDB). nf × h × w denotes nf feature maps (images) with resolution

h×w. SCAM utilizes the outputs of average-pooling (AvgPool) and/or max-pooling (MaxPool) to

produce attention maps with weight values in [0, 1] to indicate “what” and “where” to attend. +○,

c○, and ×○ denote the addition, concatenation, and multiplication operations, respectively. Each

RRDB contains three residual dense blocks, which introduce connections between non-adjacent

layers to enhance information flow. Sigmoid and PReLU denote activation functions; BN: batch

normalization; Conv: convolution.
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al., 2019; Z. Sun et al., 2020), the testing NSE accuracy for the TWSA signals when all533

seven predictors and the three common predictors are respectively considered in BCNN is534

compared in Figure B1. It can be seen that the consideration of seven predictors achieves535

an accuracy improvement of 0.05∼0.1 in most regions (Figures B1c and B1d). Note that it536

is flexible and straightforward for BCNN to consider more predictors without requiring to537

modify the network architecture nor improving the training complexity. The results suggest538

that the commonly used three predictors are the most informative ones for TWSA recon-539

struction. The other four predictors are considered with the purpose of further improving540

the reconstruction accuracy.541

Figure B1. The testing NSE accuracy for the TWSA signals when (a) all seven predictors and

(b) the commonly used three predictors (i.e., sTWSA, P, and T) are considered. (d) The accuracy

differences (i.e., a-b). (d) Cumulative distribution function (CDF) of the NSE values in (a) and

(b).

Appendix C This section provides some tables and figures which support542

the discussion of this article543
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Table C1. Data source candidates considered for the seven predictors, including the simu-

lated/reanalyzed terrestrial water storage anomaly (sTWSA), cumulative water storage change

(CWSC), precipitation (P), temperature (T), climatic water balance (CWB), cumulative precipi-

tation anomaly (CPA), and cumulative CWB (CCWB). The selection criterion is the NSE or |R|

metric. NSE: Nash-Sutcliffe efficiency coefficient; |R|: absolute correlation coefficient.

Predictor Data source candidates Selection criteriona

sTWSA
ERA5-land, GLDAS v2.1 (Noah, VIC, CLSM)

FLDAS, NLDAS-2 Noah, MERRA-2, ensembleb
NSE

CWSC
ERA5-land, GLDAS v2.1 (Noah, VIC, CLSM), FLDAS

NLDAS-2 Noah, MERRA-2, TerraClimate, ensemble

NSE

P
ERA5-land, GLDAS, GPCP, MERRA-2, TerraClimate

MSWEP, PRECL,CRU, ensemble

|R|

T
ERA5-land, GLDAS, FLDAS, GHCN-CAMS, CRU

MSWX, ensemble

|R|

CWB
ERA5-land, GLDAS Noah, CRU, TerraClimate

MSWEP (P)&GLEAM (PET), ensemble

|R|

CPA Same as P |R|

CCWB Same as CWB |R|

a
The linear trends are removed from the time series of GRACE TWSA and predictor data before

calculating the criterion.

b
The ensemble indicates an average ensemble of all individual sources. The trends are removed before

calculating the ensemble.
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Table C2. Drought condition classification based on the water storage deficit index (WSDI). The

classification scheme is consistent with the US Drought Monitor (Svoboda et al., 2002).

Category Description WSDI

WD Near normal (-0.5, 0.5)

D0 Abnormally dry (-0.8, -0.5]

D1 Moderate drought (-1.3, -0.8]

D2 Severe drought (-1.6, -1.3]

D3 Extreme drought (-2, -1.6]

D4 Exceptional drought (-∞, -2]

Figure C1. The time series of 3-month running mean oceanic Niño index since 1990. The data

are available at https://ggweather.com/enso/oni.htm.
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Figure C2. Regions and river basins considered for result analysis. The regions/river basins

shown in blue are those experienced hydrological droughts during the 2017-2018 gap period and

analyzed in section 3.2. The shapefiles are downloaded from https://datacatalog.worldbank

.org/dataset/major-river-basins-world.
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Figure C3. Comparison of the testing NSE accuracy obtained in previous study (Mo et al.,

2022) and this study for the TWSA (a-c) and the water storage deficit (WSD) (d-f) signals. The

major differences between Mo et al. (2022) and this study are as follows: (1) Mo et al. (2022)

used only four predictors (sTWSA, CWSC, P, and T) derived from the ERA5 land dataset without

utilizing the data source selection strategy; (2) the JPL GRACE mascon product was used in Mo et

al. (2022), while a weighted average GRACE product is used here; (3) The BCNN method employed

in this study has been improved (see Appendix A).
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Figure C4. Comparison of the drought regions identified by the GRACE- and BCNN-derived

WSDI indices during the 2015-2016 El Niño event (Figure C1). In each column, the upper and

lower plots show GRACE’s and BCNN’s results for the same month, respectively. WSDI: water

storage deficit index.

Figure C5. Drought regions identified by the SPEI-6 index during the GRACE and GRACE-FO

gap (July 2017-May 2018). SPEI-6: 6-month standardized precipitation evapotranspiration index.
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Figure C6. Drought regions identified by the SM-Z index during the GRACE and GRACE-FO

gap (July 2017-May 2018). SM-Z: standardized soil moisture.
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