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a b s t r a c t 

Explainable Artificial Intelligence (XAI) has in recent years become a well-suited framework to generate 

human understandable explanations of ‘black- box’ models. In this paper, a novel XAI visual explana- 

tion algorithm known as the Similarity Difference and Uniqueness (SIDU) method that can effectively 

localize entire object regions responsible for prediction is presented in full detail. The SIDU algorithm ro- 

bustness and effectiveness is analyzed through various computational and human subject experiments. In 

particular, the SIDU algorithm is assessed using three different types of evaluations (Application, Human 

and Functionally-Grounded) to demonstrate its superior performance. The robustness of SIDU is further 

studied in the presence of adversarial attack on ’black-box’ models to better understand its performance. 

Our code is available at: https://github.com/satyamahesh84/SIDU _ XAI _ CODE . 

© 2022 The Authors. Published by Elsevier Ltd. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 

1. Introduction 

In recent years deep neural networks (DNN) have resulted in 

ground-breaking performance in solving many complex and long- 

running problems of artificial intelligence (AI). In particular, em- 

ploying DNN architectures in tasks such as object detection [1] , 

image classification [2] and medical imaging [3] has received great 

attention within the AI research field. As a result, it is no surprise 

to observe that DNNs have become a favoring solution for any ap- 

plications involving big data analysis. As human dependency on 

these solutions increase on a daily basis, it is crucial from both 

research and business standpoints to understand the underlying 

processes of DNNs that output a certain decision. As reported in 

recent works [4,5] , such decisions result from the complex inner 

stacked layer of the DNN that are typically referred to as ‘black- 

box’ model. The use of the term ‘black-box’ indicates how it is very 

challenging to understand which inner features of the model are 

the major contributors to the accuracy of the output [6] . In such 

cases the term ‘black-box’ predictors is used to aid such compre- 

hension aspects. The interpretation ability of the ‘black-box’ DNN 

provides transparent explanation and audit model output that is 

∗ Corresponding author. 
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crucial for sensitive domains such as medical or risk analysis [7,8] . 

Consequently, a new paradigm addressing explainability of these 

models has emerged in AI research namely Explainable AI (XAI) [9] . 

XAI attempts to provide further insight into the black-box models 

and their internal interactions that enable humans to understand a 

machine-generated output. Furthermore, for end-users in sensitive 

domains, XAI gives the ability to interpret model features at the 

‘group level’ or ‘instance level’ of the input which results in gain- 

ing greater trust for validating the outcome of deployed AI mod- 

els. Although, there is no standard consensus in the literature re- 

garding how to define a human-interpretable explanation method 

for the black-box model, a widely-adopted and popular approach 

is to form a visual saliency map of input data showing which parts 

of the input have influence on the final prediction. This is moti- 

vated by the fact that the visual explanation methods can align 

closely with human intuition. For instance, it is more straightfor- 

ward to the end-user in the medical domain to evaluate and com- 

pare the visual saliency map on a medical image produced by a 

DNNs model with those generated by actual clinicians. A number 

of visual explanation algorithms has been proposed among which 

methods such as LIME [10] , GRAD-CAM [11] and RISE [12] are the 

most used examples of this class. While each of these methods can 

be justifiable in one way or another, apart from challenges such as 

gradient computation of DNN architecture (e.g., Grad-CAM) or vi- 

sualizing all the perturbations modes (e.g., RISE), the generated vi- 
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Fig. 1. An example of failure of saliency maps to capture entire object class ‘clock’. 

sual explanation suffers from a lack of localizing the entire salient 

regions of an object, which is often required for higher classifica- 

tion scores. Following our prior identification of this research gap 

in the field, we further define it by proposing a new visual ex- 

planation approach known as SIDU [13] to address issues relating 

to salient region localization. SIDU stands for ‘Similarity Difference 

and Uniqueness’ method for estimating pixel saliency by extracting 

the last convolutional layer of the deep CNN model and creating 

the similarity differences and uniqueness masks that are eventu- 

ally combined to form a final map for generating the visual expla- 

nation for the prediction. We briefly showed by both quantitative 

and qualitative analysis how SIDU can provide greater trust for the 

end-user in sensitive domains. The algorithm provides improved 

localization of the object class being questioned (see, for example, 

Fig. 1 d)). 

This results in gaining greater trust of human expert level to 

rely on the deep model. This paper aims at providing a more 

general framework of the SIDU method by presenting the pro- 

posed method in further details whilst exploring its characteristic 

via various experimental studies. Concretely, the studies investigate 

SIDU’s visual explanation through three main levels of evaluation 

as proposed in [14] . Since these evaluation methods have different 

pros and cons, the superior performance of the SIDU can be inves- 

tigated at depth to provide a deeper level of insight. To the best 

of our knowledge, our comprehensive experiment studies of these 

different evaluation levels are the first in the context of XAI. More- 

over, the ability of the XAI method to generalize its explanations of 

the black-box in different deployment scenarios can establish fur- 

ther trust. As evident in recent work, one example where black- 

box models are subject to less generalization is the presence of 

adversarial attack especially in sensitive domains and wider scope 

of trust [15] . Therefore, we investigate how XAI can handle such 

potential threat and respectively guard against it. Our main contri- 

butions in this work can be summarized as follows: 

1. We provided step-by-step detailed explanations of the SIDU al- 

gorithm that from our investigation yielded a visual explanation 

map, which enabled localization of entire object classes from 

within an image of interest. 

2. We conducted three different types of experimental evaluations 

to thoroughly assess SIDU: these were coined as (1) ‘Human- 

Grounded’, (2) ‘Functionally-Grounded’, and (3) ‘Application- 

Grounded’ evaluations. Initially for (1) we conducted an inter- 

active experiment with eye-tracking non-expert subjects to de- 

velop a database containing natural image annotation. This was 

done to assess how closely human eye-fixation on natural im- 

ages can be matched to the visual salient map of SIDU to recog- 

nize the object class. In a similar setting, (3) was performed to 

assess the retinal quality assessment, and (2) was implemented 

alongside an automatic casual metrics [12] on two datasets 

with different characteristics. 

3. Robustness of SIDU’s explanation was analyzed in the presence 

of adversarial attacks to show how different noise levels can 

affect the classification task of the black-box model as well as 

its explanation consistency. 

The rest of the paper is organized as follows. Section 2 presents 

state-of-the art XAI methods, XAI evaluations methods, and adver- 

sarial attacks. SIDU is explained in Section 3 with Section 4 hav- 

ing four subsections that are devoted to a particular evaluation 

of SIDU. In Section 4.1 , Functionally-Grounded evaluation is pre- 

sented. In Section 4.2 , Human-Grounded evaluation is applied and 

Application-Grounded evaluation in Section 4.3 is used to assess 

SIDU’s performance. In Section 4.4 , evaluation of SIDU with respect 

to adversarial attack is shown and lastly Section 5 concludes the 

study and discuss future work. 

2. Related work 

In this work, we follow three main research directions of XAI: 

a) visual explanation methods developed to explain the black-box 

model such as deep CNN, b) validity and evaluation of the gen- 

erated explanation by XAI methods and c) vulnerability of black- 

box explanation method toward adversarial attacks. The literature 

of each direction is presented in the following subsections. 

2.1. Visual explanation 

For an end-user, visual explanation methods makes it easier 

to understand the prediction output of the black-box model. One 

common approach to generate such a visualization is done via 

saliency maps [16,17] and such algorithms may be divided into 

the following three categories:‘back-propagation based’ methods, 

‘perturbation-based’ methods and ‘approximation-based’ methods. 

Back-propagation methods : back-propagation methods spread a fea- 

ture signal from an output neuron rearwards through the layers of 

a model to the input in a single pass; making them efficient. ‘Layer 

wise Relevance Propagation’ [18] and ‘DeCovNet’ [19] are exam- 

ples of this category. Network weights and feature activation map 

of CNN model at a specific layer, e.g., CNN’s last layer, are con- 

sidered as an effective saliency method for generating visual ex- 

planation. Class Activation Mapping (CAM) [20] that visually high- 

lights the discriminative region of the image class prediction is an 

example of this family. In addition, the gradient or its modified 

version in the back-propagation algorithm can be employed to vi- 

sualize the derivative of the CNN’s output w.r.t. to its input, e.g. 

such as Grad-CAM [11] . An improved method to produce input im- 

ages that effectively activate a neuron was proposed in [21] . The 

method explored in this related work was focused upon generat- 

ing class-specific saliency maps by performing a gradient ascent in 

pixel space to reach a maxima. This synthesized image served as a 

class-specific visualization that augmented comprehension of how 

a given CNN modeled a class. Perturbation-based methods : here, the 

input is perturbed while keeping track of the resultant changes to 

the output. In some work, the change occurs at intermediate lay- 

ers of the model. The state-of-the-art RISE [12] algorithm belongs 

2 



S.M. Muddamsetty, M.N.S. Jahromi, A.E. Ciontos et al. Pattern Recognition 127 (2022) 108604 

to this category. Meaningful perturbations [22] optimized a spa- 

tial perturbation mask that maximally effects a model’s output to 

reveal a new image saliency model that sought to identify where 

an algorithm searches by finding out which regions of an im- 

age most affected its output level when perturbed. Approximation- 

based method : Methods of this class attempt to provide explanation 

to a complex black-box model by utilizing an easier-to-understand 

and more interpretable model such as decision trees or linear re- 

gression. Apart from these simple models, a good example class 

that is widely applied to visual input is the LIME algorithm [10] . 

The main idea behind this related approach was to sample single 

visual input (i.e., image patches), correlate to the predictor model 

and subsequently identify its contribution toward the output class. 

The prediction results of each sample patch of the single image 

were then weighted with respect to the highest class score re- 

spectively. Finally, these weightings were used to train a simple 

surrogate model that was used as a local explanation for the re- 

sult of the complex model. Furthermore, another related work ti- 

tled DeepLift [23] evaluated the importance of each input neuron 

for a particular decision by approximating the instantaneous gra- 

dients (of the output with respect to the inputs) with discrete gra- 

dients. This obviated the need to train interpretable classifiers for 

explaining each input-output relationship (as in LIME) for every 

test point.Inspired by the CAM method under the back-propagation 

based visual saliency approach, our proposed visual explanation, 

SIDU [13] utilized ’Similarity Difference’ and ’Uniqueness’ measures 

to score the importance of associated activation maps from the last 

convolution layer of a CNN model. The proposed visual explana- 

tion algorithm is a gradient-free method that can effectively local- 

ize an entire salient region of the object of interest compared to 

the state-of-the-art XAI methods such as Grad-CAM and RISE. 

2.2. Evaluation of explanation methods 

Since it is rather challenging to establish a unique and general- 

ized evaluation metric that can be applied to any task, authors in 

[14] proposed three different types of evaluations to measure the 

effectiveness of explanations. These are presented in the following. 

1. Application-Grounded evaluation : Application-Grounded evalua- 

tion includes carrying out human experiments within a real ap- 

plication. If the researcher has a concrete application in mind- 

such as teaming up with doctors on diagnosing patients with 

a specific disease-the best method to show that the design is 

effective is to assess it with respect to the task. A sound ex- 

perimental setup and knowing how to evaluate the quality of 

the elucidation are needed. This approach is based upon how 

well a human can expound how the same (machine) decision 

is reached as output. Human expert level evaluation is neces- 

sary for those end-users who may have less confidence in the 

prediction model (e.g., clinician). 

2. Human-Grounded evaluation : Human-Grounded evalua- 

tion involves conducting basic human-subject experiments 

that,substantiate the core of target application. This method is 

appealing when experiments involving the target community 

are difficult. The evaluations can be completed with laypersons, 

thus creating a greater subject pool and cutting down expenses, 

since we do not have to pay highly trained domain experts. 

3. Functionally-Grounded evaluation : This method utilizes numeric 

metrics or proxies such as ‘local fidelity’ to evaluate explana- 

tions across different applications. The main advantage of this 

evaluation is that it is free from human bias that effectively 

saves time and resources. Most of the state-of-art methods fall 

into this category [19,22] . For example, the authors in [12] pro- 

posed casual metrics insertion and deletion , which are indepen- 

dent of humans to evaluate the faithfulness of the XAI methods. 

2.3. Adversarial attacks 

In the context of XAI, adversarial attack generators can be di- 

vided into ‘white-box’ attacks and ‘black- box’ attacks. The Fast 

Gradient Sign Method (FGSM) [24] and Projected Gradient Descent 

(PGD) [25] algorithms are well-known examples of a white-box at- 

tack where small amount of noise is added to an image that is not 

visually detectable by the end user. In the case of black-box at- 

tacks, the adversarial attack happens through various mechanisms 

to fool the model’s classifier and alter its outcome. The majority 

of the proposed approaches in this class are based on perturb- 

ing the model input either globally or locally. For instance, Deep- 

Fool [26] attack can be characterized by performing pixel-wise 

perturbation of an image while an adversarial patch attempts to 

change the pixel values in a specific region of an image. In general, 

the ability of changing a model’s output via small input perturba- 

tions makes the XAI explanation methods challenging and less re- 

liable. Thus, to establish greater trust, it is essential for the XAI al- 

gorithms to only be effective but also robust against an adversarial 

attack at the same time [15] . Analyzing how the black-box expla- 

nation (like SIDU) can effectively handle such a potential problem 

helps the end-user to guard against a possible disastrous outcome 

from the classifier when adversarial attack is presented. 

3. SIDU: proposed method 

Recent XAI methods have shown that deeper representations in 

CNN models illustrate higher-level visual features [5] . A recent ap- 

proach titled as Grad-CAM [11] interprets the importance of each 

neuron responsible for a decision of interest by computing the gra- 

dient information from the last convolutional layer of the CNN. 

Alternatively, the authors in [12] proposed a method titled RISE, 

which finds the effect of selectively inserting or deleting parts of 

the input ( perturbation-based ) in the CNN model’s output predic- 

tion. This perturbation-based method has been found to provide 

increased accuracy of visual explanation saliency maps compared 

to gradient based methods, However these methods fail to visu- 

alize all the perturbations in order to determine which one char- 

acterizes the best desired explanation. Furthermore, the visual ex- 

planations generated by both the gradient-based and perturbation 

explanations methods failed to localize the entire salient regions of 

an object class responsible for higher classification scores. 

To overcome the challenges of the most recent state-of-the art 

methods we proposed a XAI method that consequently provides 

better explanation method for any given CNN model. The pro- 

posed method takes the last convolution layer for generating the 

masks. From these masks Similarity Difference and Uniqueness 

scores are computed to get the explanation of the CNN model de- 

cision acronymed in therefore denoted SIDU. An overview of the 

proposed method is presented in Fig. 2 . Our method is composed 

of three steps, First we extract the last convolution layer of the 

CNN to generate the feature image mask using the last convolu- 

tion layer of the given model. Second, we compute the similarity 

differences for each mask with respect to a predicted class and fi- 

nally we compute the weights of each mask and combine them 

into a final map that shows the explanation of the prediction. Each 

step is described in the following Sections 3.1 –3.3 . Note that, the 

CNN model used is the same for all steps. 

3.1. Step1: generating feature activation image masks 

To provide a visual explanation of the predicted output of a 

CNN model F , we first generate feature activation image masks 

from the last convolution layers. For any deep CNN model F , we 

consider the last convolution layers of size n × n × N where ′ n ′ 
is the size of that convolution layer and 

′ N 

′ is the total number 
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Fig. 2. Block diagram of SIDU. The CNN model F is same of all the steps. 

Fig. 3. The procedure of generating feature image masks from last layer activation’s of CNN model F . The total numbers of masks generated are equal to the size of last 

convolution layer of CNN model F . We have shown some of the feature activation image masks A c 
i =1 , 500 

in the Figure. Note that the CNN model F used is same for all the 

steps. 

of features activation f of class c, i.e., f 
c = [ f c 

1 
, . . . . f c 

N 
] . For exam- 

ple, if the CNN model F has the last convolution layers of size 

7 × 7 × 2042 , the total feature activations we can generate is 2042 

of size 7 × 7 . Therefore, the activation masks are generated upon 

image class explanation. Each feature activation map f c 
i 

is then 

converted into a binary mask B c 
i 

by thresholding each value and 

is given by 

B 

c 
i =1 .N = f c i =1 .N > τ (1) 

where τ is the threshold. In our experiments we use τ = 0 . 5 . Note 

that we found experimentally that choosing different threshold 

values in the mask binarization step has almost no effect on gener- 

ating the final explanation heatmap of the input image. The binary 

mask B c 
i 

is then up-sampled by applying bi-linear interpolation for 

a given input image I with size of W idth × Height . Next, the up- 

samples binary mask M 

c 
i 

will have values between [0,1] and it is 

no longer binary. The up-sampled binary masks are also known as 

feature activation masks and is shown in Fig. 3 . Finally, point-wise 

multiplication is performed between the feature activation mask 

(Up-sampled binary mask) M 

c 
i 

and input image I to calculate the 

feature activation image mask A 

i 
c and is represented as 

A 

c 
i = F (I � M 

c 
i ) , (2) 

where F is an CNN model, A 

c 
i 

is the feature activation image mask 

of feature map f c 
i 

and i = 1 , . . . .N. The procedure of generating fea- 

ture activation image masks is shown in Fig. 3 where we illustrate 

some of the feature activation image masks from the total number 

of masks N. The feature activation image masks A 

c of object class 

c are used to get prediction scores which is explained in detail in 

the following Section 3.2 

3.2. Step2: computing feature importance weights using similarity 

differences and uniqueness 

The total number of feature activation image masks is depen- 

dent on the number of activations in the last convolution layer of 

the CNN model. Let the last convolution layer of the CNN model F 

be of size n × n × N. The total number of feature activation image 

masks will be N. Next, we compute probability prediction scores 

for all the feature activation image masks A 

c of object class c, i.e., 

A 

c = [ A 

c 
1 
, . . . .A 

c 
N 

] individually using the same CNN model F used for 

generating the feature activation image masks. The probability pre- 

diction score of the feature activation image mask A 

c 
i 

is defined as 

P c 
i 

and the probability prediction score for the given input image I

is defined as P c org . The prediction scores vector size will be depen- 

dent on the total number of classes use to train the CNN model. 
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Fig. 4. The prediction score vectors for each individual feature activation image mask A c 
i 

and the original image I are computed from the CNN model F . These prediction 

score vectors are used for computing Similarity Differences and Uniqueness, and finally the dot product is calculated to get the feature importance weights. Note that the 

CNN model F is the same for all the steps. 

E.g., If the CNN model is trained on the ImageNet dataset, which 

has a total of 10 0 0 object classes, then the size of the predictions 

score vector P c 
i 

of the each individual feature image mask A 

c 
i 

will 

be 1 × 10 0 0 , where i = 1 . . . N. Fig. 4 on page 12, illustrates the pro- 

cedure of computing the predictions scores vector. 

Once the predictions scores vectors are computed for all feature 

activation image masks and original input image, we then compute 

similarity differences between each input feature activation image 

mask prediction score P c 
i 

and prediction score P c org of the original 

input image I. The similarity difference between these two vec- 

tors gives the relevance of feature activation image mask with re- 

spect to the original input image. The intuition behind computing 

the relevance of a feature map is to measure how the prediction 

changes if the feature is not known, i.e., the similarity difference 

between prediction scores. The relevance value of the feature ac- 

tivation image mask will be high if it is similar to the predicted 

class but the relevance value will be low if dissimilar. The Similar- 

ity Difference measure between the prediction vector of the orig- 

inal input image I, P c org and the i th feature activation image mask 

prediction, P c 
i 

is given by 

SD 

c 
i = exp 

(−‖ P c org − P c 
i 
‖ 

2 σ 2 

)
(3) 

where σ is an controlling parameter. It should be noted from 

Eq. (3) that P c 
i 

is the prediction vectors for the feature activation 

image mask A 

c 
i 

generated from the last convolution layer of CNN 

model F . This is illustrated in Fig. 4 . Moreover, the Similarity mea- 

sure in Eq. (3) is inspired by Gaussian kernel function which is 

a suitable metrics for weighting observations as opposed to Eu- 

clidean distance. The kernel function decreases with distance and 

lies between zero and one. For Euclidean distance, however, the 

value increases with distance and provides only an absolute dif- 

ference between two vectors. After computing the similarity dif- 

ference measure, we also computed a uniqueness measure U 

c be- 

tween the feature activation image masks prediction score vectors. 

It is one of the most popular assumptions that the image regions 

which stand out from the other regions grab our attention in cer- 

tain aspects. Therefore the region should be labeled as a highly 

salient region. We therefore evaluate how different each respective 

feature mask is from all other feature masks constituting an image. 

The reason behind this is to suppress the false regions with low 

weights and highlight the actual regions which are responsible for 

predictionswith higher weights. The uniqueness measure for the i th 

feature image mask of object class c, U 

c 
i 

, is defined as 

U 

c 
i = 

N ∑ 

j=1 

‖ P c i − P c j ‖ , i = 1 , 2 , . . . , N (4) 

Where N is the total number of feature activation image masks. 

Finally, the weight of each feature importance W 

c 
i 

is computed as 

the dot product of the Similarity Difference SD 

c 
i 

and Uniqueness 

measure U 

c 
i 

where 

W 

c 
i = SD 

c 
i · U 

c 
i , (5) 

where SD 

c 
i 
, U 

c 
i 

are the Similarity Difference and Uniqueness values 

for the feature activation image mask A 

c 
i 

of the object class c. The 

total number of feature importance weights will be as size of total 

number of masks N. The feature importance weight will be high 

for the feature which has more influence in predicting the actual 

class object c and low for the feature with low influence. 

3.3. Step3: visual explanations for the prediction 

To get the visual explanation (saliency map) of the predicted 

output class c of a CNN model F , we then performed a weighted 

sum between feature activation mask M 

c 
i 

and the corresponding 

feature importance weights W 

c 
i 

, where the weights are computed 

by Eq. (5) . The visual explanation map is in the form of a heatmap 

(saliency map) and is represented as S c and is shown in Fig. 5 on 

page 14. The visual explanation map S c is also known as the class 

discriminative localization map. Thus, the visual explanation of the 

predicted class c is given by 

S c = 

1 

N 

N ∑ 

i =1 

W 

c 
i · M 

c 
i (6) 

The weighted combinations of feature activation masks to calculate 

the final visual explanation (saliency map) of the prediction of the 

class is illustrated in Fig. 5 . 

In summary, to explain the decision of the predicted class c

visually, we first generated the N feature activation masks (up- 

sampled binary masks) from the last convolution layer of the deep 

CNN model F which has N number of feature activation maps of 

size n × n . We then perform point wise multiplication between 

each generated up-sampled binary mask M i and the input image 

I to calculate feature activation image mask. Next, we compute 
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Fig. 5. Visual explanation for the prediction. The visual explanation is a weighted linear combinations of feature activation masks for the prediction of the class. 

Fig. 6. Visual comparison of explanation maps generated for the natural images classes ‘Bird’,‘Borzoi dog’, ‘Spoonbill’, ‘Goose’, and ‘Harp’ predicted by CNN model. 

Similarity Differences SD 

c 
i 

and uniqueness measure U 

c 
i 

using pre- 

dictions scores of feature activation image mask A i . Feature im- 

portance weights W i of each feature activation image mask A i is 

computed by the dot product of SD 

c 
i 

and U 

c 
i 

. Finally, the visual ex- 

planation S c of a given input image is obtained by calculating a 

weighted sum of feature activation image masks A i as stated in 

Eq. (6) . Furthermore an example of visual comparison of explana- 

tion maps generated for the natural images classes is illustrated in 

Fig. 6 on page 15. 

4. Evaluation 

In this section we evaluate the performance of SIDU. We con- 

ducted a comprehensive set of experiments to study the correla- 

tion of the visual explanation with the model prediction to eval- 

uate the faithfulness. SIDU is evaluated using all three categories 

of evaluations as previously detailed herein [14] , i.e., functionally 

grounded, application grounded, and human grounded. The evalu- 

ation results were compared with the most recent state-of-the art 
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Fig. 7. Evaluation using insertion and deletion casual metrics AUC is computed. (a) original image (b) SIDU explanation map (c) the deletion metric; this being where the 

salient pixels are gradually removed from the image for decreasing the importance,and the probability of the class ‘spoonbill’ as predicted by the CNN model is plotted with 

respect to the removed pixels Area Under Curve (AUC) is computed in (d). (e) insertion metric; this being where the salient pixels are gradually inserted to the image for 

increasing the importance, and the probability of the class ‘spoonbill’ predicted by the CNN model is plotted with respect to the inserted pixels and AUC is computed in (f). 

methods namely RISE [12] and GRAD-CAM [11] . A good explana- 

tion method not only provides an appropriate explanation for the 

prediction but also it should be robust against adversarial noise. 

To this end, the proposed method is evaluated on adversarial sam- 

ples and compared with the most recent state-of-the-art meth- 

ods RISE [12] and GRAD-CAM [11] . The experimental evaluation 

of faithfulness of the SIDU model on the above mentioned eval- 

uation categories and effect of adversarial noise are described in 

Sections 4.1 , 4.2 , 4.3 and 4.4 , respectively. 

4.1. Functionally-Grounded evaluation 

To preform the Functionally-Grounded evaluation we choose 

the two automatic causal metrics insertion and deletion as proposed 

by Petsiuk et al. [12] . The deletion metric deletes the saliency region 

in the image which is responsible for higher classification scores 

and forces the CNN model to change its decision. This metric es- 

timates the decrease in the probability classification scores, when 

more pixels are removed from the saliency region. With the dele- 

tion metric, the good explanation shows a sharp drop in the pre- 

dicted score and area under the probability curve will be lower. 

Whereas, the insertion metric measures the probability increase of 

the predicted score. As more pixels are inserted in the image, a 

higher Area Under Curve (AUC) rate can be achieved (i.e., effec- 

tiveness of explanation model at a greater level). The procedure of 

computing AUC using insertion and deletion is illustrated in Fig. 7 

on page 17. These metrics were selected since they are indepen- 

dent of human subjects, bias free and hence increase transparency 

when evaluating the XAI methods. 

In order to evaluate the performance of the SIDU explana- 

tion method we choose two datasets with different characteristics, 

namely- The ImageNet [27] dataset of Natural Images with 10 0 0 

classes. We used 20 0 0 images randomly collected from the Ima- 

geNet validation dataset. The other is a Retinal Fundus Image Qual- 

ity Assessment (RFIQA) dataset from the medical domain consist- 

ing of 9945 images with two levels of quality, ’Good’ and ’Bad’. The 

retinal images were collected from a large number of patients with 

retinal diseases [28] . 

We conducted two experiments for evaluating the faithfulness 

of the proposed explanation method. The first experiment is per- 

formed on the ImageNet validation dataset where we randomly 

selected 20 0 0 images from the ImageNet dataset. To do a fair 

evaluation, we choose two existing standard CNN models, ResNet- 

50 [29] and VGG-16 [30] that had been pre-trained on the Im- 

ageNet dataset [27] . Table 1 summarizes the results obtained on 

ResNet-50 for the proposed method and compares it to the most 

recent works RISE [12] and GRAD-CAM [11] . It was observed that 

the proposed method achieved improved performance for both 

Table 1 

Comparision of XAI methods using ResNet-50 and VGG-16 on ImageNet validation 

set. All values in the table has the unit of Area Under Curve (AUC). 

Resnet-50 [29] VGG-16 [30] 

XAI Methods Insertion ↑ Deletion ↓ Insertion ↑ Deletion ↓ 
RISE [12] 0.63571 0.13505 0.47113 0.1313 

GRAD-CAM [11] O.62863 0.15399 0.41720 0.15486 

SIDU 0.65801 0.13424 0.49419 0.1309 

Table 2 

Comparison of XAI methods on RFIQA dataset using trained ResNet-50 model. 

METHODS Insertion ↑ Deletion ↓ 
RISE [12] 0.75231 0.59632 

GRAD-CAM [11] 0.91303 0.43061 

SIDU 0.87883 0.47818 

metrics, followed by RISE [12] and GRAD-CAM [11] . Table 1 sum- 

marizes the results obtained on the VGG-16 model for the pro- 

posed method and compares it to most recent works RISE [12] and 

GRAD-CAM [11] where it can be identified that proposed method, 

SIDU achieved best performance. From the Table 1 , we can observe 

that the values are better for ResNet-50 than VGG-16 for all the 

XAI methods, which suggests that ResNet-50 is a better classifica- 

tion model than VGG-16. Qualitative examples are shown in Fig. 6 . 

In our proposed method, the generated masks come from the last 

feature activation maps of the CNN model, due to this the final 

explanation map will localize the entire region of interest (object 

class). 

We also conducted a second experiment on the Medical Im- 

age dataset which has totally different characteristics. We trained 

the existing ResNet-50 [29] with an additional two FC layers and 

softmax layer on the RFIQA dataset [28] . The CNN model achieve 

94% accuracy. The proposed explanation method uses the trained 

model for explaining the prediction of the RFIQA test subset with 

1028 images. The evaluated results of the proposed method and 

RISE [12] and GRAD-CAM [11] are summarized in Table 2 . We can 

observe that the GRAD-CAM achieves slightly higher AUC for in- 

sertion and lower AUC for deletion followed by SIDU. RISE [12] has 

shown least performance in both metrics, This can be explained 

by the fact that the RISE method generates N number of ran- 

dom masks and the weights predicted for these masks give higher 

weights to false regions which makes the final map of RISE noisy. 

The visual explanations of the proposed method (SIDU) and the 

RISE [12] , GRAD-CAM [11] methods on the RFIQA test dataset are 

shown in Fig. 10 (b)–(d). 

7 



S.M. Muddamsetty, M.N.S. Jahromi, A.E. Ciontos et al. Pattern Recognition 127 (2022) 108604 

4.2. Human-Grounded evaluation 

Human-Grounded evaluation is most appropriate when one 

aims at testing a general notions of an explanation quality. There- 

fore, for generic applications in the AI domain, such as object de- 

tection and object recognition, it might be sufficient to inspect a 

degree to which a non-expert human can understand the cause 

of a decision generated by a black-box model. One excellent way 

to measure and compare the correlation of visual explanation be- 

tween a human subject and the black-box is to use an eye tracker 

that records the non-expert subject’s fixations within interactive 

test settings. This approach is chosen because of its similarity to 

XAI methods, visual explanations. Both generate heatmaps repre- 

senting salient areas of an object in an image. 

An eye-tracker was used for gathering eye tracking data from 

human subjects to gain an understanding of visual perception [31] . 

The study using eye tracking data for understanding human vi- 

sual attention is useful and has received great attention by UX 

researchers [32] . For example, the authors in [33] conducted an 

experimental study and gathered data ‘human attention’ in Visual 

Question Answering (VQA) to interpret where the humans choose 

to look to answer the questions regarding the images. The authors 

in [34] established mouse-tracking approach to accurately collect- 

ing attention maps via collecting a large-amount of attention an- 

notations for MS COCO on Amazon Mechanical Turk (AMT). In [35] , 

recordings of subjects’ eye-fixations in relation to body parts were 

used to investigate which body parts of virtual characters are most 

looked at in scenes containing duplicate characters or clones. How- 

ever, all these experimental studies have used eye tracking to un- 

derstand the human visual attention for different types of prob- 

lems. 

In our study, we investigated how non-expert subjects gener- 

ated explanations via the eye-tracker, compared with those of gen- 

erated by XAI visual explanation methods across natural images for 

recognizing object class. To this end, we follow the data collection 

protocol discussed in detail in the next Section 4.2.1 . 

4.2.1. Database of eye tracking data 

We randomly sampled 100 images from 10 different classes of 

the ImageNet [27] benchmark validation dataset. All the collected 

images are RGB and are resized to 224 × 224 pixels. 

4.2.2. Data collection protocol 

In order to collect eye-fixation, 5 human subjects participated 

in an interactive test procedure using Tobii-X120 eye-tracker in the 

following main steps: 

1. The subject was seated in front of a computer-sized screen 

where the eye-tracker is ready to record the visual fixations and 

the system is calibrated. 

2. Each image from the dataset was shown in a random order 

for 3 seconds and corresponding fixations of the subject were 

recorded. 

3. We divided all 100 images into 4 equally sized data blocks with 

a break between each experiment in order to reduce the burden 

on each subject. We further add a cross-fixation image between 

two stimuli to reset the visionary fixation on the screen while 

changing from one image to the next. 

4. The participants were shown random images from the collected 

dataset and then asked the question, what kind of object class 

is presented in the image. 

5. The eye-fixations of each individual participant were automat- 

ically recorded via the eye- tracker when the participant looks 

at the image for recognizing the object class. 

6. After all 5 participants’ fixations were collected, an aggregated 

heatmaps was generated by convolving a Gaussian filter across 

each user’s fixation for each image- see, Fig. 8 on page 21. The 

resulting heatmaps highlight the salient regions of each object 

class that often attracted attention of all subjects in the exper- 

iment and hence can be used to compare with the heatmaps 

produced by the XAI explanation algorithms. 

4.2.3. Comparison metrics 

To evaluate the models with human fixations using only one 

metric is not enough to achieve a valid and reliable outcome [36] . 

We used three metrics to compare the XAI and eye-tracker gen- 

erated heatmaps [37] : These are (1) Area Under ROC Curve (AUC), 

(2) Kullback-Leibler Divergence (KL) and (3) Spearmans Correlation 

Coefficient metric (SCC) metrics. The use of multiple metrics en- 

sures that the discussion about the results is as independent as 

possible from the choice of metrics. The results of the different 

evaluation measures are not necessarily the same, but when two 

metrics show similarities, then claims of robustness can be argued 

from a stronger position. 

1. Area under ROC Curve (AUC): The Receiver Operating Character- 

istics (ROC) is one of the commonly used metric for assessing 

the degree of similarity of two saliency maps. It is represented 

in the form of a graphical plot which describes the trade-off

between true and false positives at different thresholds [37] . 

A fraction of true positives from the total actual positives are 

plotted against the false positives’ fraction out of the total ac- 

tual negatives to create the ROC. This is denoted as TPR, repre- 

senting the true positive rate, and FPR that indicates the false 

positive rate. The rates are examined at different threshold val- 

ues. If a TPR value of 1 is achieved at 0 FPR, the prediction 

method is good. These values will yield a point in the ROC 

space’s upper left corner and correspond to a near-perfect clas- 

sification. Conversely, when the guess is completely random, it 

will generate a point along a diagonal line starting at the left 

bottom and going up towards the top right corner. If the di- 

agonal divides the ROC space while and points above the di- 

agonal, this represents good classification results. Such results 

are considered better than random results. On the other hand, 

the line below is a sign of poor results, which is even worse 

than getting random results. The Area Under Curve (AUC) is the 

method used to measure the ROC curve’s performance. The AUC 

is equal to the probability of a classifier ranking a randomly 

selected positive instance, which is usually higher than a ran- 

domly selected negative instance, assuming that the positive 

ranks higher than a negative. To compute the AUC, XAI visual 

explanation heatmaps are treated as fixations’ binary classifiers 

at numerous threshold values or value sets. The true and false 

positive rates are measured under each binary classified or level 

set to sweep out the ROC curve. 

2. Kullback-Leibler Divergence (KL-DIV): The Kullback-Leibler Diver- 

gence is an metric, which is used to measure dissimilarity be- 

tween two probability density functions [37] . For evaluating 

the XAI methods, eye-fixation maps and the visual explanation 

maps produced by the model are used for the distributions. 

F M represents the heatmaps probability distribution from eye- 

tracking data, and EM indicates the visual explanation maps 

probability distribution. These probability distributions are nor- 

malized and they are given by : 

E M(x ) = 

E M(x ) ∑ X 
x =1 E M(x ) + ε

, (7) 

F M(x ) = 

F M(x ) ∑ X 
x =1 F M(x ) + ε

, (8) 

where X is the number of pixels and ε is a regularization con- 

stant to avoid division by zero. The KL-DIV measure is com- 
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Fig. 8. Examples of Eye-tracking data collection from humans for recognizing the given object classes ‘Model T and ‘Armadillo’. 

Table 3 

saliency maps of XAI methods with eye fixation maps. 

METHODS mean KL-DIV ↓ mean SCC ↑ mean AUC ↑ 
RISE [12] 8.4384 0.1967 0.6385 

GRAD-CAM [11] 9.7892 0.2711 0.6828 

SIDU 4.3027 0.3314 0.7708 

puted between these two distributions to know whether the vi- 

sual explanation map which is computed from the XAI method 

matches human fixations. It is a non-linear measure and gener- 

ally varies in ranges from zero to infinity. If the KL-DIV measure 

between EM and F M is lower, then the EM maps have better 

approximation of the human eye-fixation F M. 

3. Spearmans Correlation Coefficient (SCC): Spearman’s correlation 

is a non-parametric measure that analyses how well the rela- 

tionship between two variables can be described using a mono- 

tonic function [38] . It is a statistical method used mainly for 

measuring the correlation or dependency between two vari- 

ables. This metric varies between the values of −1 and 1, where 

a score of −1 , represents no correlation. The SCC between two 

variables will be high when observations have a similar (with a 

correlation close to 1) rank between the two variables, and low 

when observations have a dissimilar rank (with a correlation 

close to −1 ) between the two variables [38] . 

It is an appropriate measure for both continuous and discrete 

ordinal variables [38] . F M represents the heat map from eye 

tracking data, whereas EM is the visual explanation map. The 

SCC between the two random variable maps, F M and EM is 

given by : 

SC C (EM, F M) = 

cov (EM, F M) 

σ (EM) × σ (F M) 
, (9) 

where cov (EM, F M) is the covariance of EM and F M , σ (EM ) and 

σ (F M) are the standard deviations of EM and F M respectively. 

4.2.4. Comparing SIDU and state-of-art methods with human 

attention for recognizing the object classes 

In this experiment, we use the Imagenet images eye-tracking 

data recordings described in Section 4.2.1 to generate and evaluate 

the explanation by the XAI algorithms. To this end, we first gen- 

erate ground truth heatmaps by applying Gaussian distributions 

on human expert eye-fixations. These heatmaps are then used to 

compare with the XAI heatmaps. AUC, SCC and KL-DIV evaluation 

metrics are used to evaluate the performance. We finally calcu- 

late the mean of AUC, SCC and KL-DIV of all the images in the 

dataset. Table 3 summarizes the results obtained by SIDU and the 

two different state-of-the art XAI methods RISE [12] and GRAD- 

CAM [11] on our proposed imageNet eye-tracking data. We can ob- 

serve that, SIDU outperforms GRAD-CAM and RISE in all the three 

metrics. Therefore, we can conclude that SIDU explanations are a 

closer match with the human explanations (heatmaps) for recog- 

nizing the object class. This is further illustrated by example image 

explanation in Fig. 9 on page 25. 

Table 4 

Expert level evaluation of XAI methods on medical RFIQA dataset. 

METHODS Expert I Expert II 

RISE [12] (Method I) 0.02 0.05 

SIDU (Method II) 0.84 0.93 

BOTH 0.14 0.02 

4.3. Application-Grounded evaluation 

Application-Grounded evaluation involves conducting experi- 

ments within a real application to assess the trust of the black-box 

models. We choose an medical case as a test application where 

we use the task of retinal fundus image quality assessment [28] . 

The application is used for screening for retinal diseases, where 

poor-quality retinal images do not allow an accurate medical di- 

agnosis. Generally, in sensitive domains such as clinical settings, 

the domain experts (here clinicians) are skeptical in supporting ex- 

planations generated by AI diagnostic tools in cases involving high 

risk. 

In our experimental setup at a local hospital, two ophthalmol- 

ogists participated in testing to evaluate which visual explanation 

resulted in more trust and further aligns with actual physical ex- 

amination performed in the clinic. This experiment assesses the ef- 

fectiveness of the proposed method in terms of localizing the exact 

region for predicting the retinal fundus image quality with respect 

to state-of-the-art methods. Here, the generated visual explanation 

heatmaps in the RISE algorithm were used for comparison. We fol- 

low the similar setting as discussed in [11] , i.e., using both the 

proposed SIDU method and the RISE method, visual explanation 

heatmaps of 100 retinal fundus images for two classes of ‘Good’ 

and ‘Bad’ quality were recorded. The explanation methods used the 

trained model as described in Section 4.1 for explaining the predic- 

tion of the retina fundus images. Neither of the ophthalmologists 

had prior knowledge about any explanation model presented to 

them. The two explanations methods are labelled as either method 

I or method II to participants involved in experiments. The partic- 

ipants can opt for “both” methods if they feel that both explana- 

tions are rather similar. Therefore, each ophthalmologist will have 

three different options for every test image. Once the ophthalmol- 

ogist determined which method better localizes the regions of in- 

terest (good/bad quality regions) for each image, we then calcu- 

lated the relative frequency of each outcome per total retinal fun- 

dus image. Table 4 on page 27 summarizes the results of the two 

methods evaluated by the experts (with an ophthalmologists). We 

observed that, in the case of the first ophthalmologist, the RISE 

explanation map was selected with the relative frequency of 0.02, 

the proposed method, SIDU with 0.84 and 0.14 being the same. For 

the second ophthalmologist, the relative frequencies are 0.05, 0.93 

and 0.02, respectively. Therefore, the experiments conclude that, 

the proposed method gains greater trust from both ophthalmol- 

ogists and the visual explanations in Fig. 10 further supports this 

claim. 
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Fig. 9. Comparison of XAI methods visual explanation of object classes from top to bottom ‘model T’, ‘armadillo’, ‘acorn’, ‘canoe’ and ‘kuvasz’ with human visual explanation 

(heatmaps). The generated heatmaps in 3rd, 4th and 5th columns by the SIDU, GRAD-CAM and RISE demonstrate how the visual explanation methods are closely aligned 

with of human. 

4.4. Effect of adversarial noise on XAI methods 

Despite the success in many applications of AI, recent studies 

find that Deep Learning is against well designed input samples 

know as adversarial examples poses a major challenge [15] . Ad- 

versarial examples are carefully perturbed versions of the original 

data that successfully fool a classifier. In the image domain, for ex- 

ample, adversarial examples are images that have no visual differ- 

ence from natural images, but that lead to different classification 

results. How resilient different XAI algorithms are towards adver- 

sarial examples is a largely overlooked topic. In this subsection we 

therefore investigate exactly that. 

To perform this experiment, we choose one the most success- 

ful white box attacks, namely, gradient based attacks. Fast Gra- 

dient Sign Method (FGSM) [24] and Projected Gradient Descent 

(PGD) [25] are the examples of such attacks. PGD is an iterative 

application of FGSM such that the process of PGD is more complex 

and time consuming. Therefore, the Fast Gradient Sign Method 

(FGSM) was selected because of its simplicity and effectiveness. 

The adversarial image is generated using FGSM by adding noise 

to an original image. The direction of this noise is the same as the 

gradient of the cost with respect to the input data. The amount of 

noise can be controlled by a coefficient, ε. By applying this coef- 

ficient properly, it will change the model predictions and it is un- 

detectable to a human observer. Fig. 11 shows the different levels 

of FGSM adversarial noise added to an original image. Two differ- 

ent experiments were conducted using adversarial noise to demon- 

strate the effectiveness of SIDU, compared to the state-of-the-art 

methods RISE and GRAD-CAM. The experiments are described in 

the following. 

4.4.1. How do XAI method visual explanations heatmaps of 

adversarial examples deviate from human eye-fixation heatmaps? 

In this experiment, we analysed how robust the XAI meth- 

ods are against an adversarial attack in terms of generating re- 

liable explanations. Reliable visual explanations are defined in 
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Fig. 10. The visual explanation of Good (Top) / Bad (Bottom) quality eye fundus images < (B), (C), (D) > from RFIQA dataset by RISE, GRAD-CAM and the SIDU method 

with ResNet50 as the base network. In the real scenario, the doctors observed the visibility of the optical disc and macular regions in a good quality image (1st image, 1st 

row) corresponding to the region highlighted in the visual explanation heatmap of the proposed method. The bad quality image (2nd image, 2nd row) is due to the shadow 

which is observed near to the center of the image (optical disc), i.e., exactly the region highlighted by the proposed method. 

Fig. 11. Example of a natural image ‘Flamingo’ in its original form and also with three different levels of FGSM noise, together with the corresponding predictions ‘American 

egret’, ‘Nematode’ and ‘Nematode’. 

Table 5 

Visual explanation heatmaps from adversarial noise ε with eye fixation heatmaps. 

ε = 0 . 007 ε = 0 . 5 ε = 0 . 1 

XAI Methods mean KL-DIV mean SCC mean AUC mean KL-DIV mean SCC mean AUC mean KL-DIV mean SCC mean AUC 

RISE [12] 8.0547 0.2121 0.6526 9.3305 0.1995 0.6380 9.1246 0.2068 0.6461 

GRAD-CAM [11] 10.3257 0.2530 0.6719 11.6447 0.2229 0.6431 12.3077 0.2112 0.6281 

SIDU 4.3785 0.3309 0.7689 4.8492 0.2929 0.7397 4.2239 0.2817 0.7364 

terms of resemblance to the human eye-fixation heatmaps. To con- 

duct this experiments we choose the same pre-trained ResNet- 

50 model used in Section 4.1 . We first applied the FGSM noise 

with different epsilon levels to the dataset of 100 images collected 

from Imagenet validation set as described in Section 4.2.1 . We 

choose three different optimal noise coefficients between 0 and 1, 

with the chosen valued being are ε = 0 . 007 , ε = 0 . 05 and ε = 0 . 1 . 

These values were considered optimal because they are sufficient 

enough to pass unnoticeable by the human eye. We extracted the 

visual explanations heatmaps using the proposed method SIDU, 

RISE [12] and GRAD-CAM [11] . The heatmaps generated by SIDU, 

RISE and GRAD-CAM methods were finally compared with human 

generated visual explanations using the eye-tracker as described 

in Section 4.2.1 using the three evaluation metrics AUC, SCC and 

KL-DIV. Table 5 on page 30, summarizes the mean AUC, SCC and 

KL-DIV results. From the table it can be observed that SIDU out- 

performs GRAD-CAM and RISE for different levels of adversarial 

noise with all the three evaluation metrics. We also observe that, 

the performance of XAI methods decrease with all the three met- 

rics with the increase in adversarial noise to the original images. 

From this it can concluded that the proposed method (SIDU) has 

higher robustness to adversarial noise than RISE or GRAD-CAM, as 

is visually evident in the Fig. 12 . We see that SIDU localizes the 

entire actual object class after adding the three different levels of 

adversarial noise, whereas the other methods completely loose the 

actual object class localization after adding the noise. 

4.4.2. How do visual explanation maps from adversarial examples 

deviate from original visual explanation maps? 

In this experiment, we analyse how the visual explanation from 

adversarial noise added examples of XAI methods deviate from the 

original images visual explanation maps. To conduct this experi- 

ments we choose the same pre-trained ResNet-50 model used in 

Section 4.1 . We first applied the FGSM noise with different ep- 

silon levels to the dataset of 100 images collected from Imagenet 

validation set as described in Section 4.2.1 . We choose one noise 

level ε = 0 . 1 for these experiments. We extract the visual explana- 

tions heatmaps using the proposed method (SIDU), RISE [12] and 

GRAD-CAM [11] as applied to the original images without noise 

and with noise ε = 0 . 1 . The heatmaps generated by SIDU, RISE and 

11 



S.M. Muddamsetty, M.N.S. Jahromi, A.E. Ciontos et al. Pattern Recognition 127 (2022) 108604 

Fig. 12. Comparison of XAI visual explanation with different levels of FGSM noise with human visual explanation (heatmaps). The generated heatmaps on adversarial noise 

levels ε = 0 . 007 , 0 . 5 , 0 . 1 . in 3rd, 4th and 5th columns by the GRAD-CAM, RISE and SIDU, respectively. (a) Original Image (b) Eye-tracker (c) ε = 0 (d) ε = 0 . 007 (e) ε = 0 . 05 

(f) ε = 0 . 1 . 

Table 6 

Visual explanation heatmaps from adversarial examples and their deviation from 

original visual explanation heatmaps. 

METHODS mean KL-DIV ↓ mean SCC ↑ mean AUC ↑ 
RISE [12] 9.6665 0.2385 0.6133 

GRAD-CAM [11] 10.0077 0.4061 0.6875 

SIDU 2.4924 0.6488 0.8347 

GRAD-CAM methods are finally compared with the original image 

visual explanations to see adversarial noise added images are de- 

viated from the original ones by using the three evaluation met- 

rics AUC, SCC and KL-DIV. Table 6 summarizes the mean AUC, SCC 

and KL-DIV results obtained by the XAI methods. From the table 

we can observe that, SIDU outperforms GRAD-CAM and RISE for 

all the three evaluation metrics. From Fig. 12 , it can be observed 

that the propose method(SIDU) doesn’t deviate in its localizing of 

the object class that is responsible for the prediction. Therefore, 

from these two adversarial noise experiments it can be concluded 

that the proposed method exhibits higher robust against adversar- 

ial noise. 

5. Conclusion and future work 

In this work, a novel method titled ’Similarity Difference 

and Uniqueness’ method is proposed for explaining the CNN 

model.Specifically, the investigations were of visual predictions in 

a form of heatmap through feature activation maps of the last con- 

volution layers in the model. The proposed method is independent 

of gradients and can effectively localize entire object classes in an 

image which is responsible for the CNN prediction. The new expla- 

nation approach helps in gaining more trust in prediction results 

of the CNN model by providing further insights to the end-user in 

sensitive-domains. The effectiveness of our method was validated 

by conducting three different XAI evaluations methods. These were 

(1) Application-Grounded (invoking human experts trust in medi- 

cal domain), (2) Functionally-Grounded (using an automated causal 

metrics independent of humans) and (3) Human-Grounded evalu- 

ation. For the Human-Grounded evaluation, we proposed a frame- 

work for evaluating explainable AI (XAI) methods using an eye- 

tracker. The framework is designed specifically for evaluating XAI 

methods using non-experts to understand the human visual per- 

ception for recognizing the given object class and compared it with 

visual explanations of standard well-known CNN models on natu- 

ral images. Experiments on adversarial examples were also con- 

ducted. Results identify our proposed method outperforms com- 

pared to state-of-the-art methods. Although comprehensive experi- 

mental studies for evaluating XAI methods were conducted, we ac- 

knowledge that the experiments involving an eye-tracker are lim- 

ited only to single-object classification of ten classes. This is due 

to the fact that there are various methodological challenges associ- 

ated with eye-tracking (e.g., subject training, hardware calibration, 

etc) that makes it difficult to access subjects who are willing to 

participate in data collection for several different scenarios. How- 

ever, we believe that by demonstrating the great potential of gen- 

erating valid and reliable explanation via user interaction with an 

eye-tracker, holds a great value for the research community. Fu- 

ture work involves extending SIDU to spatio-temporal CNN models 

to provide visual explanations for video applications tasks such as 

video classification and action recognition. Further more, exploring 

the possibility of extending our method to explain decisions made 

by other neural network architectures (e.g., LSTM), Vision Trans- 

formers and in other domains (e.g., Natural Language Processing). 

We also aim to extend our eye-tracking experimental evaluation 

on multi-object classification tasks in the future work. Our code is 

available at: https://github.com/satyamahesh84/SIDU _ XAI _ CODE . 
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