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Abstract:
In this paper we extend the work presented in Rathore et al. (2021) to leakage localization in
water distribution networks with multiple inlets. A self-adaptive reduced order model is used to
estimate network pressures under nominal condition. These estimated pressures are compared to
the measured network pressure to generate pressure residuals. Further, the pressure residuals are
compared to expected residual signatures for leakage localization. For the reduced order model
to be valid for water distribution network with multiple inlets, a control requirement is to be
placed on the network. In this paper we also present the test results from a laboratory setup,
which is present at Aalborg University, Denmark, to demonstrate the localization framework.

Keywords: Fault detection and isolation, water resources, graph theory, data-driven model,
sensitivity analysis

1. INTRODUCTION

According to 2030 Water Resources Group (2020), 700
million people could be displaced by water scarcity by
2030. Liemberger and Wyatt (2019) estimate the volume
of non-revenue water at 126 billion cubic meter with an
associated financial loss of 39 billion USD annually. A
significant part of this non-revenue water is water loss due
to leakages and therefore water utilities put substantial
efforts on leakage detection and isolation. A comprehen-
sive review and comparison of the existing technologies
in the field of leakage detection and isolation in water
distribution networks is presented in Chan et al. (2018);
Adedeji et al. (2017). Several of the commercially available
techniques rely on Minimum Night Flow, (Mazzolani et al.,
2017), acoustic noise loggers, (Sánchez et al., 2005), or
Ground Penetrating Radar (GPR) Demirci et al. (2012)
for leakage detection and identification. These methods
may not require a mathematical model of the network,
however, they need expensive equipment, manual labour
and are time-consuming.

A leakage in the network typically causes a sudden and
unexpected deviation in pressure at the critical points in
the network. Leakage detection and isolation using this ef-
fect has been previous employed in several previous works,
such as Perez et al. (2014) and Jensen et al. (2018). Perez
et al. (2014) utilizes a standard hydraulic simulation model
for making the comparison between the measured pressure
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and the nominal expected pressure, whereas Jensen et al.
(2018) utilizes a data driven reduced order model to do the
same. Both works present the use of sensitivity matrix,
which represents the relation between leakages and the
network pressure, for leakage localization. Rathore et al.
(2021) extends this work with derivation of sensitivity
matrix using reduced order model and considering leak-
ages as a change in the distribution among the consumers
rather than a change in consumption. Rathore et al. (2021)
also presents test results for leakage localization on an
EPANET model of a hydraulic network which is part of a
city’s water distribution network.

In this work we use similar approach as presented in
Rathore et al. (2021) for residual generation and deriva-
tion of sensitivity matrix. The residuals are generated
using pressure and flow measurements along with the self-
adaptive reduced order network model, and the sensitivity
matrix is derived using small signal model based on the
reduced order network model. The scheme presented in
Rathore et al. (2021) is only limited to networks with
single inlet, however in this work we extend it to networks
with multiple inlets. In this work we will show that with a
simple flow control constraints at inlets the reduced order
model for single inlet network can be extended to network
with multiple inlets. Further, the pressure variation model
based on this extended reduced order model is presented,
which are the main contribution of this work. The gener-
ated residuals are then compared to this pressure variation
model for different leakage scenarios to localize the leakage.
Moreover, the localization framework is tested on Smart
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Water Infrastructures Laboratory (SWIL) (Ledesma et al.,
2021) at Aalborg University, Denmark. With the test in
the laboratory setup we demonstrate the performance of
the framework in case where the residuals are subjected to
noise.

The rest of the paper is organized as follows. The frame-
work for the water distribution networks model under
consideration is presented in section 2. In section 3, the
pressure variation model for network with multiple inlet
is derived based on the reduced order model. Further, the
leakage localization framework is presented in section 4.
The laboratory setup and the test results of the localiza-
tion framework are presented in section 5. Finally, section
6 concludes the work.

2. REDUCED ORDER NETWORK MODEL FOR
NETWORK WITH MULTIPLE INLETS

In this section we extend the reduced order model for single
inlet network, first presented in Kallesøe et al. (2015), to
multiple inlet network. This model will be the base for
the leakage detection and localization framework. Firstly,
we would simply recall the graph theory based hydraulic
model presented in Kallesøe et al. (2015) in the following
equations; (1) and (2). A detailed derivation of the model
can be found in Kallesøe et al. (2015).

p̄(t) = H̄−T
T λT (−H̄−1

T H̄CqC(t)+H̄−1
T d̄(t))−(z̄−1zn)+1pn(t)

(1)

λC(qC(t))− H̄T
C H̄

−T
T λT (−H̄−1

T H̄CqC(t) + H̄−1
T d̄(t)) = 0

(2)

Here, the pipes are modelled as the edges and the connec-
tion points as the nodes of the graph. The supply flow and
the consumer demands are modelled by assigning indepen-
dent nodal demands to a subset of the nodes. Moreover,
the nth node is set as the reference node. The underlying
network graph had been divided into arbitrary spanning
tree T and its corresponding chords C. H̄C is the reduced
incidence matrix corresponding to the chords and H̄T to
the spanning tree. Similarly, the vector function λT (·) and
λC(·) models the flow dependent pressure drops in the
spanning tree T and the chords C respectively. qC(t) is the
vector of flows through the chords. d̄(t) ∈ R(n−1) the vector
of independent nodal demands at the non-reference nodes.
p̄(t) ∈ R(n−1) is the vector of pressure at the non-reference
nodes and pn(t) ∈ Rn is the reference node pressure.
Similarly, z̄ ∈ R(n−1) is the vector of pressures due to
geodesic levels at the non-reference nodes and zn ∈ Rn is
the pressure due to geodesic level at the reference node.
Also, 1 represents a vectors of 1s.

The water network considered in this project are District
Metering Areas (DMAs) with multiple supply points but
without an elevated reservoir. With that the independent

nodal demands can be partitioned as d(t) = [dc(t) dp(t)]
T
,

where dp(t) ∈ Rp is the vector of nodal demands at the

inlet nodes and dc(t) ∈ R(n−p) is the vector of nodal
demands at the non-inlet nodes. For the non-inlet nodes,
i = 1, · · · , (n − p), where the flow is out of the network,
di(t) ⩽ 0 and for the inlet nodes i = (n − p + 1), · · · , n,

where the flow is into the network, di(t) ⩾ 0. Further,
we set one of the inlet (or supply) node as the reference
node and also denote it as the nth node. Now, due to mass
conservation in the network, the flow at the reference node,
nth node, can be written as the negative sum of all the
other independent nodal flows in equation (3); and further
they would collectively be refereed as non-reference nodal
demands, d̄(t).

dn(t) = −




n−p
i=1

di(t) +

n−1
i=n−p+1

di(t)


 = −1T d̄(t) (3)

The network is considered to be sectionalized into DMAs
such that the consumers in the DMA are of the same
type, i.e. either residential or industrial. This consideration
implies that the consumer demand pattern for all the
consumers in the DMA are same in average, though scaled
for each consumer, i.e. the consumption flow for each
consumer has the same time function but multiplied by
different scaling factors. Further, we consider that the
reference node is pressure controlled and all the other
inlet nodes are flow controlled. Similar control structure
is present in the water distribution network in Randers,
Denmark operated by the company Verdo and is common
in operation of water networks. The flow controllers are
designed to ensure that the distribution of flow from the
inlets is always constant. These conditions are further
stated in the following assumption.

Assumption 1. The distribution between the n − p non-
inlet demands, dc(t), is fixed in time, i.e. ∃ wc ∈ Rn−p

+

with the property
n−p

i=1 wi = 1. Also, the distribution
between the p− 1 inlet demands of d̄p(t) is fixed in time,

i.e. ∃ wp ∈ Rp−1
− with the property

n−1
i=n−p+1 wi = −1 +

κ; where κ is the constant ratio of the reference inlet
flow, dn(t), to the total inlet flow (or the total non-inlet

demand), γ(t), κ = dn(t)
γ(t) such that,

d̄(t) = −wγ(t) = −

wc

wp


γ(t) ;

n−1
i=1

wi = κ . (4)

With that, the set-point reference for the non-reference
inlet flows would be d̄∗p(t) = −wpγ(t). Furthermore, fol-
lowing assumption is made about λ(·) from (2) and (1).

Assumption 2. The hydraulic resistance λi : R → R takes
the form (Swamee and Sharma, 2008),

λi(xi) = fi|xi|xi , (5)

with 0 < fi.

Here x represents the argument of the function. With
Assumption 2, λi is a homogeneous function with degree
2, i.e. λi(aix) = λi(ai)x

2 for x ⩾ 0.

Under Assumption 1, with a simple flow control on the
non-reference inlet nodes the distribution of nodal de-
mands among the non-reference nodes is constant; and
with that Lemma 1, proven in Kallesøe et al. (2015), holds
for networks with multiple inlets.

Lemma 1. Kallesøe et al. (2015) Under Assumptions 1 and
2, for a given distribution of flow at the non-reference
nodes, w, there exist a unique vector a, such that q(t) =
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Water Infrastructures Laboratory (SWIL) (Ledesma et al.,
2021) at Aalborg University, Denmark. With the test in
the laboratory setup we demonstrate the performance of
the framework in case where the residuals are subjected to
noise.

The rest of the paper is organized as follows. The frame-
work for the water distribution networks model under
consideration is presented in section 2. In section 3, the
pressure variation model for network with multiple inlet
is derived based on the reduced order model. Further, the
leakage localization framework is presented in section 4.
The laboratory setup and the test results of the localiza-
tion framework are presented in section 5. Finally, section
6 concludes the work.

2. REDUCED ORDER NETWORK MODEL FOR
NETWORK WITH MULTIPLE INLETS

In this section we extend the reduced order model for single
inlet network, first presented in Kallesøe et al. (2015), to
multiple inlet network. This model will be the base for
the leakage detection and localization framework. Firstly,
we would simply recall the graph theory based hydraulic
model presented in Kallesøe et al. (2015) in the following
equations; (1) and (2). A detailed derivation of the model
can be found in Kallesøe et al. (2015).

p̄(t) = H̄−T
T λT (−H̄−1

T H̄CqC(t)+H̄−1
T d̄(t))−(z̄−1zn)+1pn(t)

(1)

λC(qC(t))− H̄T
C H̄

−T
T λT (−H̄−1

T H̄CqC(t) + H̄−1
T d̄(t)) = 0

(2)

Here, the pipes are modelled as the edges and the connec-
tion points as the nodes of the graph. The supply flow and
the consumer demands are modelled by assigning indepen-
dent nodal demands to a subset of the nodes. Moreover,
the nth node is set as the reference node. The underlying
network graph had been divided into arbitrary spanning
tree T and its corresponding chords C. H̄C is the reduced
incidence matrix corresponding to the chords and H̄T to
the spanning tree. Similarly, the vector function λT (·) and
λC(·) models the flow dependent pressure drops in the
spanning tree T and the chords C respectively. qC(t) is the
vector of flows through the chords. d̄(t) ∈ R(n−1) the vector
of independent nodal demands at the non-reference nodes.
p̄(t) ∈ R(n−1) is the vector of pressure at the non-reference
nodes and pn(t) ∈ Rn is the reference node pressure.
Similarly, z̄ ∈ R(n−1) is the vector of pressures due to
geodesic levels at the non-reference nodes and zn ∈ Rn is
the pressure due to geodesic level at the reference node.
Also, 1 represents a vectors of 1s.

The water network considered in this project are District
Metering Areas (DMAs) with multiple supply points but
without an elevated reservoir. With that the independent
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where dp(t) ∈ Rp is the vector of nodal demands at the
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demands at the non-inlet nodes. For the non-inlet nodes,
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where the flow is into the network, di(t) ⩾ 0. Further,
we set one of the inlet (or supply) node as the reference
node and also denote it as the nth node. Now, due to mass
conservation in the network, the flow at the reference node,
nth node, can be written as the negative sum of all the
other independent nodal flows in equation (3); and further
they would collectively be refereed as non-reference nodal
demands, d̄(t).
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 = −1T d̄(t) (3)

The network is considered to be sectionalized into DMAs
such that the consumers in the DMA are of the same
type, i.e. either residential or industrial. This consideration
implies that the consumer demand pattern for all the
consumers in the DMA are same in average, though scaled
for each consumer, i.e. the consumption flow for each
consumer has the same time function but multiplied by
different scaling factors. Further, we consider that the
reference node is pressure controlled and all the other
inlet nodes are flow controlled. Similar control structure
is present in the water distribution network in Randers,
Denmark operated by the company Verdo and is common
in operation of water networks. The flow controllers are
designed to ensure that the distribution of flow from the
inlets is always constant. These conditions are further
stated in the following assumption.

Assumption 1. The distribution between the n − p non-
inlet demands, dc(t), is fixed in time, i.e. ∃ wc ∈ Rn−p

+

with the property
n−p

i=1 wi = 1. Also, the distribution
between the p− 1 inlet demands of d̄p(t) is fixed in time,

i.e. ∃ wp ∈ Rp−1
− with the property

n−1
i=n−p+1 wi = −1 +

κ; where κ is the constant ratio of the reference inlet
flow, dn(t), to the total inlet flow (or the total non-inlet

demand), γ(t), κ = dn(t)
γ(t) such that,

d̄(t) = −wγ(t) = −

wc

wp


γ(t) ;

n−1
i=1

wi = κ . (4)

With that, the set-point reference for the non-reference
inlet flows would be d̄∗p(t) = −wpγ(t). Furthermore, fol-
lowing assumption is made about λ(·) from (2) and (1).

Assumption 2. The hydraulic resistance λi : R → R takes
the form (Swamee and Sharma, 2008),

λi(xi) = fi|xi|xi , (5)

with 0 < fi.

Here x represents the argument of the function. With
Assumption 2, λi is a homogeneous function with degree
2, i.e. λi(aix) = λi(ai)x

2 for x ⩾ 0.

Under Assumption 1, with a simple flow control on the
non-reference inlet nodes the distribution of nodal de-
mands among the non-reference nodes is constant; and
with that Lemma 1, proven in Kallesøe et al. (2015), holds
for networks with multiple inlets.

Lemma 1. Kallesøe et al. (2015) Under Assumptions 1 and
2, for a given distribution of flow at the non-reference
nodes, w, there exist a unique vector a, such that q(t) =

aγ(t), where q(t) is is the vector of flows through the
network.

Lemma 1 implies that for a constant distribution of nodal
demands among the non-reference nodes, w, there exists
a constant distribution of flow among all the edges of
the network, a. This distribution is independent of the
magnitude of the total demand γ(t).

Now, with Assumption 1 and 2, and Lemma 1, the nodal
pressure equation, (1), can be written as,

p̄(t) = γ(t)2g(aC , w) + bpn(t) + c , (6)

and the vector function and vectors g, b, and c are,

g(aC , w) = H̄−T
T λT (−H̄−1

T w − H̄−1
T H̄CaC)

b = 1 , c = 1zn − z̄ .

Here, the vector aC is the part of a from Lemma 1 that
relates to the chord flows of the spanning tree. Note that
the vectors w and a are time invariant by Assumption 1
and Lemma 1 respectively.

Similarly, the chord flows equation, (2), can be written as,

h(aC , w)γ(t)
2 = 0 , (7)

where,

h(aC , w) = λC(aC)− H̄T
C H̄

−T
T λT (−H̄−1

T w − H̄−1
T H̄CaC) .

And with that the reduced order model for networks with
single inlet, from Kallesøe et al. (2015), is extended to
network with multiple inlets with the control structure
proposed in this paper.

3. PRESSURE VARIATION MODEL

In this section a small signal variation model is presented
which based on the reduced order model given by (6) and
(7). Subsequently, the variation model is used to define the
sensitivity matrix for leakage localization. As the structure
of (6) and (7) is same as the model structure for networks
with single inlet as presented in Rathore et al. (2021),
we employ the same development step for the pressure
variation model here. Therefore, the derivation of the
pressure variation model is not presented and simply the
final equations are presented.

Before presenting the pressure variation model we first
introduce some terms. Let D̄(t) denote the nominal nodal
demands at the non-reference nodes and Q(t) denote the
nominal flow in the edges; and we define nominal nodal
demand distribution, W , as D̄(t) = WΓ(t) and nominal
edge flow distribution, A, as Q(t) = AΓ(t), where Γ(t) is
the nominal total inlet flow. With a leakage in the network
the actual non-reference nodal demand would differ from
the nominal demands and is given by d̄(t) = D̄(t) + δd̄(t),
where δd̄(t) represents the leakage flow. With leakages the
actual nodal demand distribution and the actual edge flow
distribution also differs from their nominal values and is
given by,

a(t) = A+ δa(t) , w(t) = W + δw(t) , (8)

where, δw(t) is the variation of the non-reference nodal
demand distribution and δa(t) the variation of the edge
flows distribution due to leakage δd̄(t). Further, let δp(t)
denote the variation of the nodal pressures around the
nominal nodal pressures, P̄ (t).

From Rathore et al. (2021), δp(t) is given as,

δp̄(t) = −γ(t)2Sδw(t) , (9)

where S is termed as the resistance matrix and is given
by,

S = ∂aCg|AC,W (∂aCh|AC,W )−1∂wh|AC,W − ∂wg|AC,W .

The notation ∂xf |X,Y is used to denote partial derivative
of f with respect to x evaluated at X,Y . Further, the
S matrix can be expressed in terms of graph matrices,
by calculating the partial derivative and using Woodbury
Matrix Identity (Hager, 1989) as,

S = (H̄T ∂λ
−1
T H̄T

T + H̄C∂λ
−1
C H̄T

C )
−1 . (10)

The S matrix only depends on the nominal distribution of
the demands, W . Moreover, from Assumption 2, ∂λT and
∂λC are diagonal matrices implying that S is symmetric.
Again, from Assumption 2, ∂λi > 0 for qi ̸= 0. In a real-
life water network ∂λC and ∂λT are always non-singular,
as all edges are pipes with an inherent flow resistance.

Now, a relation between δw(t) and δd̄(t) is derived to
obtain relation between δp̄(t) and δw(t), for network with
multiple inlets, from (9).

As mentioned before, the actual non-reference nodal de-
mand in the network with a leakage, d̄(t), can be repre-
sented as deviation δd̄(t) from nominal D̄(t).

d̄(t) = D̄(t) + δd̄(t) (11)

The nominal non-reference nodal demand D̄ and the non-
reference nodal demand d̄ with a leakage δd̄ is described
by,

D̄(t) = −WΓ(t) , d̄(t) = −(W + δw(t))γ(t) .
(12)

With mass conservation in the network, (3), the negative
sum of all non-reference nodal demands d̄(t) (and D̄(t))
must equal the flow at the reference node dn(t) (and
Dn(t)), respectively. Further, from Assumption 1 with flow
control at all the non-reference inlet nodes, the flow at
the reference inlet node can be represented as a fixed
ratio, κ, of the total inlet flow, γ(t) (and Γ(t)).Therefore,
κγ(t) = −1T d̄(t) (and κΓ(t) = −1T D̄(t)). With that
rewriting (11) gives,

Γ(t)− γ(t) =
1

κ
1T δd̄(t) . (13)

Substituting (12) in (11) and solving for δw using (13)
leads to the following relation between δw(t) and δd(t),

δw(t) = − 1

γ(t)

(
I − 1

κ
W1T

)
δd̄(t) . (14)

The following can be stated about the matrix (I− 1
κW1T )

and is proven in Appendix A.

Lemma 2. Let M = I − 1
κW1T , where

∑
i Wi = κ, then

M has a non-trivial kernel,

ker(M) = span{W} .

Now, the relation between leakages and the pressure vari-
ation can be given by substituting expression for δw from
(14) in (9).
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δp̄(t) = γ(t)S

(
I − 1

κ
W1T

)
δd̄(t) (15)

In real-life water network for all i, qi ̸= 0, making S full
rank, therefore with Lemma 2, δp̄(t) is zero only when
δd̄(t) = 0 or δd̄(t) ∈ span{W}. Here, δd̄(t) is used to
model leakages in the network, hence δd̄(t) = 0 implies
no leakage in the network. Further, Lemma 2 implies that
as long as the non-reference nodal demand distribution
between the nodes, in case of a set of leaks, is different
from the nominal distribution W , the pressure residuals
δp̄(t) would be non-zero and hence the leakages would
be visible in the pressure residuals. Therefore, in practice
a leakage at a single node would always be detectable.
In the following section, leakage localization using (15) is
presented, assuming that a leakage appears only one node
at the time.

4. LEAKAGE LOCALIZATION

Now that we have the pressure variation model for net-
works with multiple inlets, we can use it for leakage local-
ization. Leakage localization in networks with single inlet
using pressure variation model is presented in Rathore
et al. (2021) and here, we follow a similar scheme to extend
it to networks with multiple inlets. The leakage localization
approach is based on pressure residuals, which are calcu-
lated as a difference between measured nodal pressure and
estimated nominal nodal pressure. The nominal pressures
are estimated using (6). The obtained residuals are then
compared to expected pressure change due to leakages,
given by the variation model (15), for leakage localization.

4.1 Residual generation

Given the reference inlet pressure pn(t), total inlet flow
γ(t), the non-reference nodal pressures in the network
under nominal conditions can be estimated using (6). The
estimated nominal nodal pressure at the ith node can be
given as,

P̂i(t) = αidn(t)
2 + βi + pn(t), (16)

where, from (6), αi is the i
th element of H̄−T

T fT (H̄
−1
T W −

H̄−1
T H̄CAC) and βi is the ith element −(z̄ − 1zn). The

parameters αi and βi can be estimated given time series
data of measured pressure at the ith node, Pi(t), γ(t) and
pn(t), for the network operating under nominal conditions,
these parameters can be identified using linear regression
(Madsen, 2007). Note that the parameters can only be
identified for the nodes where the pressure is measured and
subsequently the nominal pressure can only be estimated
for those nodes.

With the estimated pressure, given by (16), the pressure
residual can be calculated as,

ri(t) = pi(t)− P̂i(t) , (17)

where pi is the measured pressure at the ith node and
P̂i is its estimated value in the non-leaking case. In the
following section we use the residual vector r for leakage
localization.

4.2 Leakage localization

A leakage is seen as an unexpected change in the end-
user demands. We assume leaks to occur only at non-inlet
nodes and a leak at only one node at a time. Therefore, a
leakage at node l ∈ Z : l ∈ [1, (n−p)] can be represented as

a change in demand such that δd̄ =
[
el

T wT
p

]T
ζ(t), where

el ∈ {0, 1}(n−p) is a unit vector with 1 at lth position and
wp is the distribution between the p−1 non-reference inlet
demands; and ζ(t) < 0 is the magnitude of the leakage.
To localize a leakage we compare the measure residual
and the expected residual, therefore the expected residual,
r̂l(t), should only include the nodes where the pressure is
measured. These nodes are nothing but a subset of the
non-reference nodes, hence we use a binary matrix F to
extract those nodes from (15) which gives an expression
for r̂l(t) as,

r̂l(t) = −γ(t)G

[
el
wp

]
ζ(t) = γ(t)|ζ(t)|G

[
el
wp

]
. (18)

Here, G is the sensitivity matrix obtained from (15) and
is given by,

G = −FS

(
I − 1

κ
W1T

)
, (19)

G gives the directional relation between the residual and
any leak in the network nodes. From (18) it can be seen,
that the direction of rl(t) is neither impacted by total
inlet flow, γ(t), nor by the magnitude of the leakage
ζ(t). Moreover, G only depends on the distribution of the
nominal non-reference nodal demands, W , which can be
deduced from billing data and inlet flow control. Note
that, theoretically the leakage size does not impact the
leakage localization however, in laboratory tests or real-life
scenarios there is higher possibility of better localization
with larger leakage size, as in these cases the data is
impacted by the stochastic nature of the consumers and
measurement noises.

The leaking node is identified by comparing the direction
of the actual residual, r(t) from (17), with the set of
possible reference directions described by r̂i i = 1, · · · , n−
p from (18), leading to following decision signal,

ψi(r(t)) =

〈
r(t), G

[
ei
wp

]〉

|r(t)|
∣∣∣∣G

[
ei
wp

]∣∣∣∣
. (20)

The notation ⟨·, ·⟩ denotes vector inner product. This
approach for comparing measured residual to leakage
signature has been previously presented in Perez et al.
(2014) and Rathore et al. (2021).

From (20) we know −1 ⩽ ψi ⩽ 1; and for a node a value
of ψ closet to 1 would indicate the best directional fit and
a leakage at that node. A leakage indicator can also be
obtained by truncating the decision signal ψi(r) to be zero
or larger than zero,
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δp̄(t) = γ(t)S

(
I − 1

κ
W1T

)
δd̄(t) (15)

In real-life water network for all i, qi ̸= 0, making S full
rank, therefore with Lemma 2, δp̄(t) is zero only when
δd̄(t) = 0 or δd̄(t) ∈ span{W}. Here, δd̄(t) is used to
model leakages in the network, hence δd̄(t) = 0 implies
no leakage in the network. Further, Lemma 2 implies that
as long as the non-reference nodal demand distribution
between the nodes, in case of a set of leaks, is different
from the nominal distribution W , the pressure residuals
δp̄(t) would be non-zero and hence the leakages would
be visible in the pressure residuals. Therefore, in practice
a leakage at a single node would always be detectable.
In the following section, leakage localization using (15) is
presented, assuming that a leakage appears only one node
at the time.

4. LEAKAGE LOCALIZATION

Now that we have the pressure variation model for net-
works with multiple inlets, we can use it for leakage local-
ization. Leakage localization in networks with single inlet
using pressure variation model is presented in Rathore
et al. (2021) and here, we follow a similar scheme to extend
it to networks with multiple inlets. The leakage localization
approach is based on pressure residuals, which are calcu-
lated as a difference between measured nodal pressure and
estimated nominal nodal pressure. The nominal pressures
are estimated using (6). The obtained residuals are then
compared to expected pressure change due to leakages,
given by the variation model (15), for leakage localization.

4.1 Residual generation

Given the reference inlet pressure pn(t), total inlet flow
γ(t), the non-reference nodal pressures in the network
under nominal conditions can be estimated using (6). The
estimated nominal nodal pressure at the ith node can be
given as,

P̂i(t) = αidn(t)
2 + βi + pn(t), (16)

where, from (6), αi is the i
th element of H̄−T

T fT (H̄
−1
T W −

H̄−1
T H̄CAC) and βi is the ith element −(z̄ − 1zn). The

parameters αi and βi can be estimated given time series
data of measured pressure at the ith node, Pi(t), γ(t) and
pn(t), for the network operating under nominal conditions,
these parameters can be identified using linear regression
(Madsen, 2007). Note that the parameters can only be
identified for the nodes where the pressure is measured and
subsequently the nominal pressure can only be estimated
for those nodes.

With the estimated pressure, given by (16), the pressure
residual can be calculated as,

ri(t) = pi(t)− P̂i(t) , (17)

where pi is the measured pressure at the ith node and
P̂i is its estimated value in the non-leaking case. In the
following section we use the residual vector r for leakage
localization.

4.2 Leakage localization

A leakage is seen as an unexpected change in the end-
user demands. We assume leaks to occur only at non-inlet
nodes and a leak at only one node at a time. Therefore, a
leakage at node l ∈ Z : l ∈ [1, (n−p)] can be represented as

a change in demand such that δd̄ =
[
el

T wT
p

]T
ζ(t), where

el ∈ {0, 1}(n−p) is a unit vector with 1 at lth position and
wp is the distribution between the p−1 non-reference inlet
demands; and ζ(t) < 0 is the magnitude of the leakage.
To localize a leakage we compare the measure residual
and the expected residual, therefore the expected residual,
r̂l(t), should only include the nodes where the pressure is
measured. These nodes are nothing but a subset of the
non-reference nodes, hence we use a binary matrix F to
extract those nodes from (15) which gives an expression
for r̂l(t) as,

r̂l(t) = −γ(t)G

[
el
wp

]
ζ(t) = γ(t)|ζ(t)|G

[
el
wp

]
. (18)

Here, G is the sensitivity matrix obtained from (15) and
is given by,

G = −FS

(
I − 1

κ
W1T

)
, (19)

G gives the directional relation between the residual and
any leak in the network nodes. From (18) it can be seen,
that the direction of rl(t) is neither impacted by total
inlet flow, γ(t), nor by the magnitude of the leakage
ζ(t). Moreover, G only depends on the distribution of the
nominal non-reference nodal demands, W , which can be
deduced from billing data and inlet flow control. Note
that, theoretically the leakage size does not impact the
leakage localization however, in laboratory tests or real-life
scenarios there is higher possibility of better localization
with larger leakage size, as in these cases the data is
impacted by the stochastic nature of the consumers and
measurement noises.

The leaking node is identified by comparing the direction
of the actual residual, r(t) from (17), with the set of
possible reference directions described by r̂i i = 1, · · · , n−
p from (18), leading to following decision signal,

ψi(r(t)) =

〈
r(t), G

[
ei
wp

]〉

|r(t)|
∣∣∣∣G

[
ei
wp

]∣∣∣∣
. (20)

The notation ⟨·, ·⟩ denotes vector inner product. This
approach for comparing measured residual to leakage
signature has been previously presented in Perez et al.
(2014) and Rathore et al. (2021).

From (20) we know −1 ⩽ ψi ⩽ 1; and for a node a value
of ψ closet to 1 would indicate the best directional fit and
a leakage at that node. A leakage indicator can also be
obtained by truncating the decision signal ψi(r) to be zero
or larger than zero,

Fig. 1. The SWIL setup and it corresponding network
graph used for laboratory test.

µi(t) = max {ψi(r(t)), 0}i=1,··· ,n−1 , (21)

where µi ∈ [0, 1] is the leakage indicator for the ith node
and again a value closet to 1 indicates a leakage at that
node. However, a real-life water network is susceptible to
uncertainties, mainly from immediate consumer demands
which would bring uncertainty to nominal distribution, W
and thereby to the sensitivity matrix, G. Thus creating
a dubiety towards (21) to point to the correct node.
Therefore, one should expect the leakage indicator to point
towards a set of nodes, having higher likelihood of a
leakage with µ value close to 1; meaning that the leakage
indicator signal leads the utility to an area of the network
that should be inspected for the leakage.

5. LABORATORY TEST RESULTS

5.1 Laboratory setup

To evaluate the performance of the leakage localization
algorithm, a test is carried out on a re-configurable labo-
ratory test-bed, viz. Smart Water Infrastructures Labora-
tory (SWIL), present at Aalborg University, Denmark. De-
tail of SWIL with it’s application is presented in Ledesma
et al. (2021).

The SWIL setup and it’s corresponding network graph is
presented in figure 1. Both the hydraulic network and the
graph is labelled with nodes, v1 · · · v9, the pipes in the
network, which are considered as the edges of the network
graph, are labelled with e1 · · · e10; the direction considered
for the edges are also presented in the network graph.
Apart from that, the length and diameter for each pipe is
mentioned in blue with the following notation x|y, where x
is the length of the pipe in m and y is the diameter of the
pipe in mm. The geodesic levels for the nodes is presented
in table 1.

Table 1. Geodesic levels for the nodes

Node v1 v2 v3 v4 v5
Geodesic level [m] 0 0 0 1.5 1.5

Node v6 v7 v8 v9
Geodesic level [m] 0 1.5 0 0

Fig. 2. Pressure and flow measurements from the labora-
tory test on the setup presented in figure 1.

In the laboratory setup, the pump 1 and 9 are connected
at v1 and v9 respectively; whereas the consumer 4, 5 and 7
are connected at v4, v5 and v7 respectively. The numbering
for the pumps and consumer is for easy association to the
nodes to which they are connected. The node v9 has been
considered as the reference node, and here the reference
node pressure pn is measured. The inlet flow at both
the pump nodes are also measured and the sum of both
these flows is the total inlet flow, γ. Apart from that, the
pressure is also measured at nodes v1, v3 and v5; these
nodes are termed as the critical nodes and these are the
nodes for which the pressure residuals are generated using
(17).

5.2 Laboratory results for residual generation and leakage
detection

In-line with Assumption 1, the pump 9, which is connected
to the reference node, is pressure controlled and the pump
1 is flow controlled. In the laboratory, this is achieved
by a simple Multiple Input Multiple Output State Space
controlled; we use the same controller as developed and
presented by Nielsen et al. (2021). The consumer flows is
manipulated by controlling the valves for each consumers
using individual PI controllers. The set-point reference for
the consumer demands is a periodic signal with a time
period of 120 min; this is to imitate 24 hrs of real-life
operation in 120 min in the laboratory setup.

Figure 2 presents the pressure and flow measurement data
from the laboratory test. The 1st sub-plot presents inlet
flows from both the pumping stations. The flow from the
pump 1 is controlled at a set-point reference of 0.6 times
the total inlet flow and with that κ = 0.4. A leakage
is emulated at 173 min at node v2 by simply opening
a valve which is connected at node v2 and is opened to
atmospheric pressure; this results in a leakage flow of a
around 0.14 m3/h from 173 min till the end of test. The
leakage flow measurement is presented in the 2nd sub-plot.
The pressure measurements from the laboratory test is
presented in the 3rd sub-plot. The pump 9 pressure is
controlled at a set-point reference of 0.4 bar and this is
labelled as p9 in the figure. The other measured pressures
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Fig. 3. Pressure residual signals for the critical nodes v1,
v3 and v5.

at node v1, v3 and v5 are labelled as p1, p3 and p5 in the
figure.

The network parameters, αi and βi, are identified for the
critical nodes from the normal operation data from the
laboratory. Further by (17), the pressure residuals are
generated for the critical nodes. These pressure residuals
are presented in figure 3, where 1st, 2nd and 3rd sub-plots
each presents residual for node v1, v3 and v5 respectively.
In the figure it can be seen that after the leakage has
occurred the mean value of the residuals diverge from zero,
however the residuals are impacted by noise and therefore
leakage detection using a simple decision signal of ri ̸= 0
won’t be apt. The leakage detection in this work is done
by using Generalised Likelihood Ratio (GLR) algorithm
(Blanke et al., 2006) for detecting change in mean of the
residuals and the mean value of the residuals under normal
operation is assumed to be 0. The GLR decision function,
ϕi(k), for the ith residual at time instance k is given by,

ϕi(k) =
1

2σ2
i

max
k−Mw+1⩽j⩽k

1

k − j + 1




k
s=j

ri(s)




2

, (22)

where σi is the standard deviation of the residual signal,
Mw is the sliding window and ri is the ith residual signal.
A fault or a leakage is said to have happened when any one
of the GLR decision function crosses the threshold value,
thr; i.e. if ϕi(k) > thri for any i, a leakage is detected.
The GLR decision functions for the pressure residuals
of the critical nodes and their individual thresholds are
presented in figure 4. The parameters of GLR, Mw = 300
and thr for individual residuals are selected based on
experimental tests. In the figure it can be seen that before
the leakage time the GLR decision functions for all the
three residuals are below their individual thresholds and
after sometime of the leakage the GLR decision functions
crosses the threshold, implying a leakage has occurred. A
leakage detection alarm is generated as soon as any one of
the GLR decision functions crosses the threshold.

5.3 Laboratory results for leakage localization

The sensitivity matrix, G is obtained with the known pa-
rameters of the laboratory setup and the known distribu-
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Fig. 4. The GLR decision functions to detect change in
mean for pressure residuals presented in figure 3.

Fig. 5. The leakage localization indicators for each node
for the laboratory test.

tion of non-reference flows. And once a leakage is detected,
the generated residuals are compared to the expected
residual signatures using (20) and (21). This comparison
leads to leakage indicators for the all the nodes. The
leakage indicator result for the laboratory test is presented
in figure 5. For the laboratory data to reduce the impact of
the noise from the residuals, the mean value of 300 samples
of the residual after the leakage is detected is considered
when comparing with the expected residual signatures. In
the figure, a colour scale presents the likelihood of leakage
at a node in the laboratory setup. Again from (21), the
colour close to 1 represents maximum likelihood of leakage
and the colour close to 0 represents least likelihood of
leakage.

From figure 5, it can seen that the leakage indicators point
towards a set of nodes on the left side of the network. And
the leakage is marginally more likely to be at node v2,
which is the actual leaking node.

6. CONCLUSION

This paper presents leakage localization framework for
water supply networks with multiple inlets. The framework
utilizes the reduced order model for generation of pressure
residuals. This reduced order model is only valid under
a special operational control structure, which is pressure
control for one of the inlet pumps and flow control for the
rest of the inlet pumps. The generated pressure residuals
are compared to expected residual signatures, which are
derived from a small signal model. The expected residual
signatures are represented by a sensitivity matrix. In
this work, the sensitivity matrix is obtained by just the
known parameters of the network and the distribution
of demands between the end-users. Further, the leakage
localization framework is tested on a laboratory setup
which is impacted by noise. The experimental results
shows that the localization framework is able to locate the
leakage to a set of nodes which includes the actual leaking
node. Considering the stochastic nature of the consumer
demands in the model itself for leakage localization could
be a possible future work.
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Fig. 3. Pressure residual signals for the critical nodes v1,
v3 and v5.

at node v1, v3 and v5 are labelled as p1, p3 and p5 in the
figure.

The network parameters, αi and βi, are identified for the
critical nodes from the normal operation data from the
laboratory. Further by (17), the pressure residuals are
generated for the critical nodes. These pressure residuals
are presented in figure 3, where 1st, 2nd and 3rd sub-plots
each presents residual for node v1, v3 and v5 respectively.
In the figure it can be seen that after the leakage has
occurred the mean value of the residuals diverge from zero,
however the residuals are impacted by noise and therefore
leakage detection using a simple decision signal of ri ̸= 0
won’t be apt. The leakage detection in this work is done
by using Generalised Likelihood Ratio (GLR) algorithm
(Blanke et al., 2006) for detecting change in mean of the
residuals and the mean value of the residuals under normal
operation is assumed to be 0. The GLR decision function,
ϕi(k), for the ith residual at time instance k is given by,

ϕi(k) =
1

2σ2
i

max
k−Mw+1⩽j⩽k

1

k − j + 1




k
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ri(s)
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, (22)

where σi is the standard deviation of the residual signal,
Mw is the sliding window and ri is the ith residual signal.
A fault or a leakage is said to have happened when any one
of the GLR decision function crosses the threshold value,
thr; i.e. if ϕi(k) > thri for any i, a leakage is detected.
The GLR decision functions for the pressure residuals
of the critical nodes and their individual thresholds are
presented in figure 4. The parameters of GLR, Mw = 300
and thr for individual residuals are selected based on
experimental tests. In the figure it can be seen that before
the leakage time the GLR decision functions for all the
three residuals are below their individual thresholds and
after sometime of the leakage the GLR decision functions
crosses the threshold, implying a leakage has occurred. A
leakage detection alarm is generated as soon as any one of
the GLR decision functions crosses the threshold.

5.3 Laboratory results for leakage localization

The sensitivity matrix, G is obtained with the known pa-
rameters of the laboratory setup and the known distribu-
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Fig. 4. The GLR decision functions to detect change in
mean for pressure residuals presented in figure 3.

Fig. 5. The leakage localization indicators for each node
for the laboratory test.

tion of non-reference flows. And once a leakage is detected,
the generated residuals are compared to the expected
residual signatures using (20) and (21). This comparison
leads to leakage indicators for the all the nodes. The
leakage indicator result for the laboratory test is presented
in figure 5. For the laboratory data to reduce the impact of
the noise from the residuals, the mean value of 300 samples
of the residual after the leakage is detected is considered
when comparing with the expected residual signatures. In
the figure, a colour scale presents the likelihood of leakage
at a node in the laboratory setup. Again from (21), the
colour close to 1 represents maximum likelihood of leakage
and the colour close to 0 represents least likelihood of
leakage.

From figure 5, it can seen that the leakage indicators point
towards a set of nodes on the left side of the network. And
the leakage is marginally more likely to be at node v2,
which is the actual leaking node.

6. CONCLUSION

This paper presents leakage localization framework for
water supply networks with multiple inlets. The framework
utilizes the reduced order model for generation of pressure
residuals. This reduced order model is only valid under
a special operational control structure, which is pressure
control for one of the inlet pumps and flow control for the
rest of the inlet pumps. The generated pressure residuals
are compared to expected residual signatures, which are
derived from a small signal model. The expected residual
signatures are represented by a sensitivity matrix. In
this work, the sensitivity matrix is obtained by just the
known parameters of the network and the distribution
of demands between the end-users. Further, the leakage
localization framework is tested on a laboratory setup
which is impacted by noise. The experimental results
shows that the localization framework is able to locate the
leakage to a set of nodes which includes the actual leaking
node. Considering the stochastic nature of the consumer
demands in the model itself for leakage localization could
be a possible future work.
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Appendix A. PROOF OF LEMMA 2

Let M = I − 1
κw1

T , then for x ∈ ker(M)

0 = (I − 1

κ
w1T )x ⇔ x =

1

κ

(
n−1∑
i=1

xi

)
w ,

which clearly has a trivial solution. For this equation to
have a non-trivial solution the following must hold true

κ
x∑n−1

i=1 xi

= w (A.1)

This equation has a solution if and only if
∑

i wi = κ
otherwise the kernel ofM is trivial. Therefore, for

∑
i wi =

κ then ker(M) = span{w}, which completes the proof.


