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Abstract: The private sector is playing an increasingly important role in basic Ar-
tificial Intelligence (AI) R&D. This phenomenon, which is reflected in the perception
of a brain drain of researchers from academia to industry, is raising concerns about a
privatisation of AI research which could constrain its societal benefits. We contribute
to the evidence base by quantifying transition flows between industry and academia and
studying its drivers and potential consequences. We find a growing net flow of researchers
from academia to industry, particularly from elite institutions into technology companies
such as Google, Microsoft and Facebook. Our survival regression analysis reveals that
researchers working in the field of deep learning as well as those with higher average
impact are more likely to transition into industry. A di�erence-in-di�erences analysis
of the e�ect of switching into industry on a researcher’s influence proxied by citations
indicates that an initial increase in impact declines as researchers spend more time in
industry. This points at a privatisation of AI knowledge compared to a counterfactual
where those high-impact researchers had remained in academia. Our findings highlight
the importance of strengthening the public AI research sphere in order to ensure that
the future of this powerful technology is not dominated by private interests.

Keywords: AI, university-industry interaction, researcher careers, private research,
bibliometrics

1



1 Introduction
“The regulatory environment for

technology is often led by the people

who control the technology”

— Zoubin Ghahramani

In December 2020, renowned AI researcher Timnit Gebru was dismissed from her po-

sition as Ethics Co-Lead in Google Brain, Google’s AI research unit (Hao, 2020b). The

reason was a disagreement with senior management about a conference paper where

she and her co-authors outline the limitations and risks of large language models that

have come to dominate AI research and become an important component of Google’s

technical infrastructure (Bender et al., 2021). More specifically, the paper highlighted

growing concerns about the fairness of models trained on biased and noisy internet

data, their substantial environmental impacts and their limited ability to understand

language as compared to generate plausible-reading text. Gebru’s dismissal created an

uproar in the AI research community - As of 1st February 2021, a letter in her support

has garnered just under 7,000 signatures, including 2,695 Google employees.1

This controversy illustrates the increasing role that industrial labs are playing in

AI research, where they are not only advancing new AI techniques but also studying

their ethical challenges and socio-economic impacts. It also underscores the risk that

these labs may discourage employees from pursuing research agendas that are not

aligned with their commercial interests, potentially resulting in the development of AI

technologies that are unfair, unsafe or unsuitable beyond the use-cases of the companies

that build them. Ultimately, it bolsters the case for increasing AI research capabilities

in academia and government in order to ensure that public interests can continue

playing an active role in monitoring and shaping the trajectory of powerful AI systems.

However, strong industry demand for AI researchers with advanced technical skills

may create a brain drain from academia into industry that shrinks the pool of talent

available for public interest AI research.
1https://googlewalkout.medium.com/standing-with-dr-timnit-gebru-isupporttimnit-

believeblackwomen-6dadc300d382
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In this paper, we use bibliographic data to measure this flow of researchers from

academia to industry, study the factors driving it and consider its potential conse-

quences. In doing this we provide, to the best of our knowledge, the first compre-

hensive quantitative analysis of AI researcher flows between academia and industry,

contributing to the evidence base for science policies aimed at ensuring that AI evolves

following a trajectory that is consistent with the public good.2

2 Background

2.1 Recent evolution of AI research

Last decade has witnessed an unprecedented acceleration in the development, dif-

fusion and application of methods and technologies from the field of machine learning

(ML) and Artificial Intelligence (AI). This has been driven by breakthroughs in the de-

velopment of deep learning (DL) algorithms (LeCun et al., 2015) trained on a growing

amount of public and private data (Einav and Levin, 2014). Since 2012 in particular,

AI has flourished in academia and industry alike (Arthur, 2017), and is considered as

a likely candidate to become a general purpose technology (GPT; Trajtenberg, 2018;

Goldfarb et al., 2019; Klinger et al., 2018; Bianchini et al., 2020).

2.2 Private sector participation in AI research

One important feature of AI’s modern R&D trajectory is that private companies

native to the digital economy such as Google and Facebook are playing an increasingly

important role in basic research activities that used to be the domain of academia. For

example, at the 2019 “Neural Information Processing Systems” (NeurIPS) conference,

the main annual conference in AI and DL, Google research accounted for 167 of the

accepted full papers (fractionalized by the number of authors), more than twice the

amount of the second most represented institution, Stanford University (82 full papers).

2Gofman and Jin (2019) also studies the AI brain drain but with a specific focus on the transitions
of university professors and the subsequent (negative) impacts that their transition into industry
has on the levels of entrepreneurship in their departments.
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In addition to the growing amount of research output generated, industry is also playing

a dominant role in the creation of research tools, platforms, and frameworks. While

the first DL frameworks - Theano and Ca�e - emerged out of universities, today’s

most popular frameworks for deep learning - Tensorflow (GoogleBrain) and PyTorch

(Facebook AI) - have been developed by corporate players.

This shift in the centre of gravity of AI research from academia to industry is also

reflected in the career trajectory of researchers. Many star-scientists in the field of

DL have over time moved to full- or part-time industry a�liations, for instance Geof-

frey Hinton (Google), Yann LeCun (Facebook AI), Ian Goodfellow (Apple via Google

Brain), Zoubin Ghahramani (Uber AI) or Ruslan Salakhutdinov (Apple). The scale of

movement of AI researchers from academia to industry has led to concerns about an

“AI brain drain” (Sample, 2017; Gofman and Jin, 2019).

There are multiple (complementary) potential explanations for the increasing par-

ticipation of private sector companies in basic research activities despite the possibility

they may generate spillovers that benefit their competitors.

1. Modern AI methods have to be trained on large datasets and computational

infrastructures that have already been collected by these companies and are

di�cult to transfer to researchers in academia for technical, data protection and

privacy reasons.

2. There may be a disconnect between the type of AI research undertaken in

academia and the needs of industry (Arora et al., 2020) as a consequence of

innovation systems failures (Gustafsson and Autio, 2011) leading private compa-

nies to take basic research activities “in their own hands”.

3. AI systems are increasingly becoming tightly integrated into the cloud infras-

tructure of private sector companies to help them address their own needs as

well as those of third-party customers - the development of such systems may

be easier to undertake in-house. In doing this, companies also seek to establish

their AI systems as a de facto standard that increases the competitiveness of
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complementary platforms and cloud computing services.

4. The opportunity to continue doing basic research and publishing results helps

private sector companies attract top talent that is intrinsically attracted to envi-

ronments where it is possible to conduct creative, “blue-skies” research and gain

academic esteem.

5. Large technology companies with a substantial degree of market power are able to

internalize many of the externalities generated by basic research by, for example,

recruiting researchers, developers and engineers who have built up their AI skills

using open source tools and research results generated in industry, and acquiring

start-ups that sell AI-driven products and services.

2.3 Potential risks of AI privatization

In general terms, there are several reasons to worry about an encroachment on pub-

lic research agendas by the private sector. Increasing participation of private sector

organisations in basic research could lead to a potential homogenisation of public and

private research spheres as academic researchers respond to financial incentives to com-

mercialise their work in a way that limits its spillovers (David, 2003; David and Hall,

2006). Further, there is no guarantee that market-led opportunities correspond to so-

cial needs (Archibugi and Filippetti, 2018) or that they take into account technology’s

externalities and broader (perhaps longer-term) socioeconomic impacts.

If anything, industry-driven and dominated technological development could be ex-

pected to favor solutions that can be monetized in the short term, utilize incumbents’

accumulated capabilities, resources, infrastructure, and other types of competitive ad-

vantages, thus making them less inclusive and posing higher barriers for new entrants

(Hain and Jurowetzki, 2017). Ultimately, all this restricts the scope to steer techno-

logical development in a way that is aligned with societal goals. As biologist Paul

Berg wrote in relation to the Asilomar conference that led to a moratorium on genetic

modification of humans: “the best way to respond to concerns created by emerging

knowledge or early-stage technologies is for scientists from publicly funded institutions
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to find common cause with the wider public about the best way to regulate - as early as

possible. Once scientists from corporations begin to dominate the research enterprise,

it will simply be too late” (Berg, 2008).

All these concerns are heightened in the case of AI because of its potentially perva-

sive impact. As a strong candidate for one of the near-future’s GPTs, AI technologies

are expected to cause major disruptions across multiple domains, from communica-

tion, production, transport to education and health, and more broadly socioeconomic

dynamics – for example around public attitudes to privacy, autonomy or the right to

an explanation for a decision. As a still emerging technology, AI’s dominant trajectory

is still to be established but there are increasing concerns about certain aspects of the

industry-sponsored DL trajectory that has driven recent advances in the field.

Training deep neural networks requires enormous amounts of data and comput-

ing power (Marcus, 2018; Russell, 2019), often exclusively available to large industry

players and costly in terms of energy use and carbon emissions (Strubell et al., 2019).

While platforms and frameworks provided by industry (such as Tensorflow or PyTorch)

dramatically decrease entry barriers and advance collective progress, the direction of

search and e�ort along this trajectory reinforces the data and computation hungry DL

paradigm. Strong demand for data has led researchers to exploit large online corpora

that are increasingly being shown to incorporate a variety of gender and racial biases

that are subsequently transmitted into the trained models and their outputs (Paullada

et al., 2020). In the field of natural-language-processing (NLP), pretrained language

models in need of enormous resources such as “Bidirectional Encoder Representations

from Transformers” (BERT, GoogleAI Devlin et al., 2018) have become the de facto

standard for research and industry alike, shifting attention and resources away from

other “leaner” techniques - this concern was at the heart of the censored Timnit Gebru

paper mentioned in the introduction.3

3It should be noted that a comparably big and resource intensive model (GPT-2 Radford et al.,
2019) has been open-sourced by the nonprofit research lab OpenAI, which aims at counterbalancing
corporate AI with a public-spirited approach o technology development. Interestingly, as the costs
of basic AI research have increased, OpenAI has been criticized for becoming more secretive and
aggressive in fundraising in order to keep pace with their corporate competitors (see Hao, 2020a).
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Further downstream, a growing number of economists have expressed concerns that

left in the hands of the private sector, AI’s trajectory may evolve towards what is

described as “the wrong kind of AI” (Acemoglu and Restrepo, 2019) which displaces

workers without material impacts on productivity.

Activists and critical scholars point, on their side, at the evidence of racial and gender

biases in AI applications (Zou and Schiebinger, 2018). The opacity of DL systems

and their propensity to experience important declines in performance when exposed

to situations outside their training set (D’Amour et al., 2020) have raised questions

about their suitability for high-stakes domains such as health (Marcus, 2018).

Ultimately, a shrinking space for high-impact public research about AI technologies

is likely to lead to a loss in attention and knowledge, hampering the capacity of public

authorities to regulate and utilize them, and limiting the extent to which they can be

deployed in areas where there are less commercial incentives.4 Already today, algo-

rithmic bias, has been identified as one such problem, where technologies are clearly in

conflict with social values and regulations but lack of technological insight are hinder-

ing regulation (Sweeney, 2013; Hajian et al., 2016; Zou and Schiebinger, 2018; Clark

and Hadfield, 2019).

2.4 Studying university-industry transitions of AI researchers

Here, we analyze the causes and discuss potential consequences of this ongoing pri-

vatization of AI research, focusing particularly on the transition of AI researchers from

academia to industry. We start by assessing the scale of the phenomenon by measuring

transition flows between industry and academia, and providing a descriptive account

and exploratory analysis of characteristics of industry transition, research topics, and

temporal dynamics.

Having done this, we estimate the importance of various mechanisms that trigger

these university-industry transitions including researcher characteristics, performance

4In recent years public agencies have launched numerous funding calls and initiatives to support AI.
Yet, it remains questionable to which extent research in such a dynamic and competitive domain
can be supported with the volumes of funding currently available from public funders to an extent
that would allow it to compete with private AI labs.
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and field of activity as documented in bibliographic data. Researchers with a preference

for a corporate lifestyle, financial incentives, and less “taste for science” (Roach and

Sauermann, 2010) may self-select into particular fields of research aligned with the

interests of the industry through a (researcher-push mechanism. Further, the increasing

demand for data and infrastructure in particular fields of AI research (e.g., DL) result in

a technology-push providing incentives for AI researchers to seek an industry a�liation

in order to get access to necessary resources beyond the capacities most universities

o�er (Ahmed and Wahed, 2020). Lastly, industry might indeed attempt to play a

more active role in shaping the trajectories of AI research by either recruiting star AI

researchers per se, researchers associated with current key technologies, or researchers

in the process of developing potentially disruptive future technologies - we refer to this

as an industry-pull mechanism.

To assess the relative importance of these factors we deploy a survival model where

we estimate the probability that academic AI researchers will transition into indus-

try. In doing this, we test the e�ect of a range of researcher characteristics related to

their preferences for academia, their topical focus, and academic success.5 Finally, we

attempt to quantify the e�ect of university industry transition on researchers produc-

tivity. To do this, we match industry transitions with similar peers that remained in

academia. Here, we leverage insights on the mechanism triggering academia-industry

transitions identified in the previous step. In a di�erence-in-di�erence analysis we

investigate the impact of transitions on researcher outputs proxied through citations.

3 Data and Methods

3.1 Data

We collect data from Microsoft Academic Graph (MAG), a scientometric database

with more than 232 million academic documents (Wang et al., 2019). We leverage

5We note that lack of data about potential drivers of researcher career decisions such as salary
di�erentials between academia and industry makes it di�cult for us to distinguish, in practice,
between the researcher and technology push mechanisms we mentioned above.
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MAG’s Fields of Study (FoS), a six-level topical hierarchy (Shen et al., 2018), to query

its API with a list of hand-picked fields of study that cover key techniques in modern

AI research; machine learning, deep learning and reinforcement learning.

We bound the timeframe of our analysis between 2000 and 2020 and retrieve the

academic publications containing at least one of the queried FoS. In total, we collect

786,118 AI research papers alongside their metadata such as citation count, publica-

tion year and venue, title and abstract, fields of study, author names and a�liations.

These papers include peer-reviewed academic journal publications, conference proceed-

ings and preprint cllections such as arXiv, which are a popular medium of knowledge

dissemination in ML and AI research. We find that 1,165,913 scholars have developed

or used AI methods in their research which has been published in 10,653 journals and

presented at 3,150 conferences. We believe that this is an implausibly high number:

only 294,000 authors have more than one publication in the data, suggesting potential

quality issues. For this reason, the bulk of the analysis we present below focuses on

researchers whose activity is observable over five years, a restricted and more relevant

sample for the analysis of career transitions.

To investigate this paper’s main research question, we construct the a�liation history

of all researchers to be found as (co-) authors of the AI papers that we have identified.

We leverage a�liation information to be found on the papers and identify 10,381 unique

institutional a�liations allowing us to construct the a�liation history for all authors.

Having done this, we infer the type of an a�liation (industry or non-industry) using

an expansive list of terms related to academic institutions and governmental agencies,

finding that 80.73% are non-industry a�liations. We use the resulting variable to

identify academia-industry transitions.6

6This is complemented, in our exploratory data analysis, with an alternative strategy where we
match researcher a�liations with the Global Research Identifier (GRID) database using the method
described in Klinger et al. (2018), providing information about the character of an organisation (in
particular, whether it is a private company or an educational institution).
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3.2 Analytical strategy

To investigate the phenomenon of university-industry transition in AI research, we

structure our analysis in three steps. First, we perform a basic exploratory data

analysis to determine the magnitude, characteristics, pattern, and trends of academia-

industry transitions.

Second, we aim at identifying the drivers of university-industry transition. Here,

we assume the transition of academics to industry do not happen at random, but

are instead subject to self-selection by the researchers (research-push), technology and

resource requirements of particular technologies (technology-push), and external selec-

tion by potential employers (industry-pull). Using the a�liation history of all deep

learning researchers which either remain in academia or at one point transit to industry,

we perform a survival analysis (Cox proportional hazard model) where we model the

probability of a researcher undergoing an university-industry transition in a particular

year as a function of researcher characteristics, their research interactions and overall

pre-transition academic performance as potential candidates for transition drivers.

Third, we perform a regression analysis of the consequences of university-industry

transition in terms of research performance. To address the assumed endogenous se-

lection of researchers that transit to industry (ca. 10%), we apply the following strat-

egy to mimic a (quasi-) experiential setting. For every researcher that undergoes an

university-industry transition, we perform a propensity-score matching (PSM) proce-

dure to find their most similar counterpart among peers which remained in academia

throughout their observed career.7 We then for every academia-remaineder create

an “artificial transition” point, which we define to happen after the same number of

periods observed as the actual transition of their academia-industry matched peer.

By doing so, we aim at constructing an empirical setting that allows us to tackle

the question: “What would have happened to the researcher if she had remained in

academia?”. Using this matched sample, we perform a di�erence-in-di�erence regres-

7We match researchers on their main field of study, mean number of annual publications and received
citations, and gender. We also enforce that matched researchers need to have the exactly same
number of periods observed in our sample.
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sion analysis, where we contrast the e�ect on citations of university-industry transitions

of researchers which undergo this transition with peers that remained in academia.

3.3 Variables

In the following, we describe the construction of and rationale behind the vari-

ables used in our survival (transition drivers) and di�erence-in-di�erence (impact of

university-industry transition) models (see table Table 1 for a summary). To address

remaining endogeneity concerns, all independent and control variables are lagged by

one year.

Table 1: Variable Description
Variable Model Description

Dependent Variables

transition Surv. Dummy indicating the year of academia-industry transition.
citationrank DiD Percentage rank of researcher’s received citations in the corresponding year.

Independent Variables

DeepLearning Surv. Dummy variable for researcher’s publication of min. 1 deep learning paper in corresponding year.
centdgr Surv. Researcher’s degree centrality in overall co-publication network.
centdgr≠ind Surv. Researchers degree centrality in industry co-publication network.
switcher DiD Dummy variable indicating researcher to at one point undergo a university-industry transition.
transited DiD Dummy variable indicating the researcher has undergone a university-industry transition.
transitedt DiD Number of years since researcher’s university-industry transition.

Control Variables

seniority Surv., DiD Years since first observed publication.
gender Surv., DiD Dummy variable for researcher’s gender (fermale = 0, male = 1)
papern Surv., DiD Number of researcher’s publications in corresponding year.
citcum

ln Surv. Cumulative number of researchers citations (natural logarithm).
StudyField Surv., DiD Categorical control for most popular field of study in the researcher’s publications.
Year Surv., DiD Categorical control for the corresponding year.

Dependent Variables

The dependent variable in the survival analysis (transition drivers) is a dichoto-

mous indicator which takes the value of zero in the years a researcher has been a�liated

with academia in the previous year and continues to do so in this year, and takes the

value of one in the year the researcher’s first changes to a corporate a�liation. To

measure this, we use the a�liation information found in the researcher’s published pa-

pers in the corresponding year. In order to avoid being biased by short term a�liations

(eg. project based co-a�liation, internship, visiting researcher programs, random er-

rors when extracting institutional information from paper metadata), we compute the
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a�liation of researchers on an annual basis, and assign it to the institution found on

most papers published by the researcher in the corresponding year.In case of a draw,

we prioritize a�liations in the order they are mentioned on the publication.

This allows us to identify three distinct research-career profiles over time: (i.)

academia-only, (ii.) industry-only, and (iii.) university-industry transitions. We de-

fine the latter as researchers which started their career in academia, but at one point

become mainly associated with industry for at least one consecutive years. We do not

further di�erentiate between additional career paths, for instance “academia returnees”

or “serial switchers”. To derive meaningful information regarding the researchers’ ca-

reer paths, we also exclude researchers that could not be observed in the MAG data

for at least five years. Furthermore, due to the timeliness of the phenomenon under

research, we exclude researchers which have the last time been observed before 2015.

When analysing the e�ect of university-industry transitions on researcher’s career

in a di�erence-in-di�erence regression, we use the percentage-rank of the researcher’s

received citations in the corresponding year (citrank) as dependent variable to approx-

imate research performance and impact. Here, zero corresponds the researcher with

the lowest and one to researcher with the highest citation rank in the corresponding

year.

Independent Variables

We construct additional independent variables in the following way:

DeepLearning: A dummy variable indicating that the researcher published at least

one paper in the corresponding year which includes the MAG field-of-research tag

for either “Deep Learning” or one of the most related tags.8 Since deep learning

represents a field of research where access to large amounts of data and computing

power gives researchers an important competitive advantages, we expect deep learning

researchers to be more likely to undergo a university-industry transition in their career
8In this case, we include the field tags that most often co-occur together with “Deep Learning” in

our corpus. These are Recurrent neural network, Time delay neural network, Types of artificial
neural networks, Deep neural networks, Autoencoder, Deep belief network
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path (researcher-push and industry-pull).

centdgr: The authors degree-centrality in the co-publication network of papers pub-

lished in the corresponding year. Edges are weighted by the number of researchers

per paper, so that an increasing number of authors on a paper leads to a decreasing

edge-weight attributed to that paper.9 This variable approximates the researcher’s

current embeddedness within the research community. We expect researchers that are

more embedded in the community to be better networked and influential and therefore

attractive for industry recruiters (industry-pull).

centdgr≠ind: The authors degree-centrality in the co-publication network of papers

published in the corresponding year, where only edges to researchers with a current

industry-a�liation are included. This variable approximates the researcher’s proximity

to industry actors. We expect researchers that are already collaborating actively with

industry to be more likely to transition into industry.

papern: The number of papers (co-) authored by the researcher in the corresponding

year fractionalized by the number of authors, approximating the quantity of research

output.

citcum
ln : Accumulated number of citations to the researcher’s current and historical

publications. Assuming cumulative citations to have a decreasing marginal e�ect, we

transform this variable’s value by its’ natural logarithm.

For the di�erence-in-di�erence analysis, we create two additional independent vari-

ables, namely:

Switcher: A dummy variable indicating the researcher at one point in time during

their observable career transits from academia to industry.

9Here we follow Newman (2004) in assuming that a larger number of authors will lead to decreased
interaction and general bonding between the authors.
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transited: A dummy variable which takes the value of zero for researchers that have

not undergone an university-industry throughout their observable carer up to the cor-

responding year.

transitedt: The number of years passed since a researcher has undergone the university-

industry transition, zero for researchers (yet) in academia.

Control Variables

We approximate Seniority by the number of years since we observe a researcher’s

first publication in the data.10 We also control for the researcher’s Gender, which we

infer automatically from their name using GenderAPI (Stathoulopoulos and Mateos-

Garcia, 2019). This dummy variable takes the value of one for researchers who are

inferred to be male. We also include categorical controls for the researchers main

MAG field-of-research (Shen et al., 2018), where we assign the MAG field which is

most often found within the categories of her publications in the corresponding year.

Finally, to cover time-dependent exogeneous e�ects, we also for the current year.

3.4 Descriptive statistics

Table 2 provides descriptive statistics and Table 3 the corresponding correlation

matrix on our full dataset.

4 Exploratory Data Analysis

4.1 Thematic and organisational trends

We begin our exploration of the data by considering changes in levels of overall

activity (Figure 1), company participation in research (Figure 2) and thematic focus

of di�erent organisation types (Figure 3).

10Note that due to the our sample only including publications from earliest 2000, this variable is
left-censored by our starting point.

14



Table 2: Descriptive Statistics

Statistic N Mean St. Dev. Min Pctl(25) Pctl(75) Max

switcher 83,002 0.047 0.212 0 0 0 1
university 83,002 0.809 0.393 0 1 1 1
seniority 83,002 8.136 4.169 3 5 11 21
gender 83,002 0.872 0.334 0 1 1 1
DeepLearning 83,002 0.113 0.316 0 0 0 1
papern 83,002 1.431 2.460 0 0 2 76
citrank 83,002 0.319 0.381 0 0 0.7 1
citcum

n 83,002 2.417 1.673 0 1.050 3.527 9.630
centdgr 83,002 1.190 2.332 0 0 1.5 65
centdgr≠ind 83,002 1.094 2.028 0 0.000 1.357 56.343

Table 3: Correlation Matrix

(1) (2) (3) (4) (5) 6) (7) (8) (9)

(1) switcher
(2) university -0.01ú
(3) seniority -0.08ú -0.02ú
(4) gender -0.01 0.01 0.03ú
(5) DeepLearning -0.01 -0.06ú 0.17ú 0.02ú
(6) papern -0.06ú 0.02ú 0.21ú 0.03ú 0.29ú
(7) citrank -0.05ú -0.01 0.10ú 0.02ú 0.27ú 0.25ú
(6) citcum

n -0.02ú -0.03ú 0.18ú 0.04ú 0.23ú 0.31ú 0.12ú
(9) centdgr -0.04ú -0.01ú 0.23ú 0.03ú 0.45ú 0.66ú 0.38ú 0.45ú
(10) centdgr≠ind -0.04ú 0.00 0.22ú 0.03ú 0.34ú 0.61ú 0.22ú 0.45ú 0.78ú

úp<0.001
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Figure 1 shows growth in the levels of AI research in recent years specially driven by

a fast increase in the levels of research involving deep learning techniques, which have

gone from accounting for a negligible amount of AI research in 2012 to ca 30% of all

the papers published in 2019.

Figure 1: Levels of activity in absolute terms for the corpus and selected fields of study
(top panel) and as a share of all papers for selected fields of study (bottom
panel)

Figure 2 focuses on the level of company participation in AI research. It shows that

papers involving authors with a company a�liation have started capturing a larger

share of research since the 2010s. This is consistent with the idea that private sector

organisations are playing a stronger role in AI research although, at least in overall

volume of activity they are very far from dominant.

In Figure 3 we look at the share of all papers involving an educational institution or

a company in a year that contain a field of study (focusing on the 20 most frequently

occurring fields of study in the data). We note in particular that deep learning was

over-represented in private sector research by comparison to academia but educational

institutions seem to have caught up in recent years. Companies are also more active in

reinforcement learning and, more broadly, computer science topics - this could also be

linked to the finding elsewhere in the literature that private sector companies specialise

16



Figure 2: Organisational participation in absolute terms (top panel) and share of pa-
pers with company participation (bottom panel)

in more scalable and computationally demanding techniques than academic researchers

(Klinger et al., 2020; Ahmed and Wahed, 2020), consistent with one of our hypothesis

that the private sector may be a more suitable setting to pursue research in deep

learning methods.
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4.2 Transition trends

We move on to analyse the dynamics of researcher transitions, going from a macro

picture that considers all transition types in the data (Figure 4) to focus on researcher

flows between university and industry (Figure 5) distinguishing between academic in-

stitutions in di�erent positions of Nature’s global university rankings (Figure 6) and

finally considering the main educational sources and industrial destinations of AI re-

search talent ( Figure 7).

Figure 4 shows the changes in the composition of transitions by transition type in to-

tal (top panel) and as share of all transitions (bottom panel). It shows rapid growth all

types of researcher transitions in the AI ecosystem while underscoring that researcher

mobility between academic institutions remains the dominant type of transition, re-

flecting the prevalence of educational institutions, at least when measured based on

bibliometric data.

Figure 4: Number of researcher transition by types (top panel) and transition types as
a share of the total (bottom panel).
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In Figure 5 we concentrate on researcher transitions between educational institutions

and industry taking into account that flows can go in either direction. Our analysis

shows that in net terms, researcher flows favour industry (consistent with the hypoth-

esis of a ‘brain drain’) from academia to industry but also that there is a non-trivial

number of industry researchers transitioning into academia. One potential explanation

for this which would be worth exploring is that having moved into industry, academic

researchers do not enjoy the environment and decide to return to the public sector.

Figure 5: Researcher transitions between education and industry (blue area) and in-
dustry and education (orange area). Net flow in black bars.

When looking at labour flows between academia and industry it is important to take

into account the prestige of the organisations involved, which could be seen as a rough

proxy for the ‘quality’ of the researchers involved. To do this, we have fuzzy-matched

institution names from Microsoft Academic Graph with the 2020 Nature Index, which

ranks institutions based on the quality of their research in the Natural Sciences.11 In

Figure 6 we present the share of transitions from institutions in di�erent positions of

the ranking into industry (the Nature Index only includes 500 institutions so those

not included in it are labelled as ‘unranked’. The chart shows a clear and strong link

between a university’s prestige and its propensity to experience a flow of researchers

into industry. In particular, 25% of the AI researcher transitions from institutions in

11https://www.natureindex.com/annual-tables/2020/institution/academic/all
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the top 5 of the Nature Index were into industry - this suggests that industry tends to

attract AI researchers from elite institutions potentially reflecting a search for current

and potential future super-star talent or a narrow focus on high prestige sources of

talent.12

Figure 6: Share of all transitions from education to industry by year and position of
university in Nature University ranking.

Figure 7 drills down further to consider what are the top educational sources of talent

moving into industry and what are the top industrial destinations for graduates from

those institutions. It shows that the top academic sources of talent in the vertical

axis are prestigious institutions such as Carnegie Mellon, Stanford, Princeton, MIT

etc. The top destinations for AI talent (in the horizontal axis) are tech companies,

and particularly Google. We note the rapid growth in the share of all AI researcher

transitions from source institutions into Google between an early period (before 2015)

and a late period (after 2015) - in many cases Google accounts for more than 10% of all

researcher transitions into industry from top institutions. We also see that Facebook

has rapidly growth in importance as a destination for AI researcher talent since 2015.

12We note that this strategy could be detrimental for socio-demographic diversity in the AI industrial
research workforce, for example because it excludes graduates from historically black colleges and
universities.
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Figure 7: Share of all transitions from a source academic institution (vertical axis)
accounted by a destination company (horizontal axis) in pre-2015 and post-
2015 period.
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4.3 Characterisation of academic researchers transitioning into industry

Our strategy to define career transitions and measure career transitions between

academia and industry yields a set of summary statistics that we present in Table 4.

Table 4: Number and characteristics of author types

autho type n share papern,mean citmean gender

academia 54113 0.89 0.96 1.33 0.82
industry 1837 0.03 0.79 2.78 0.85
switcher 4751 0.08 1.18 4.23 0.86

Table 4 reports counts and mean values for characteristics and publication perfor-

mance for the di�erent researcher groups. Overall our sample contains 60.701 unique

AI researchers with approximately 90 percent who spent their observable career up

to now solely in academia, 3 percent in industry, and 8 percent transitioning from

academia to industry. As for the research productivity, we observe that AI researchers

in industry are least productive with regard to numbers of papers produced per year,

which is perhaps not surprising given that output in industry is measured di�erently

than in academia. However, at least by the academic yardstick of knowledge dissem-

ination we see that industry researchers lag behind. At the same time, their impact

in terms of received citations per paper is on average double that of academic re-

searchers, suggesting that industry researchers might participate more selectively in

the documentation of their research in the form of p paper, and only do so if they

deem the impact to justify the e�ort.13 Finally, transitioning AI scholars show the

highest publication totals and citation averages. This could indicate “cherry picking”

by the private sector of either already established or currently rising star researchers.

As for the gender of the scholars, we can see that the field is mainly populated by men.

Diversity is even lower in industry, and particularly inside the “switcher” group.

13Additionally, internal peer review processes such as those controversially deployed by Google may
create additional filters to publication in the private sector
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5 Econometric analysis

5.1 Drivers of switching - Survival analysis

In this section we investigate the drivers and mechanisms of university-industry

transition in AI research. We do so by performing a survival analysis on the the

likelihood that an academic AI researcher will transit into industry at a particular

point in time. Generally, survival analysis refers to a set of statistical techniques

to investigate the time it takes for an event of interest to occur. Here we deploy a

proportional hazard model (Cox, 1972), a multivariate regression technique allowing

us to identify the simultaneous e�ect of continuous as well as categorical variables on

the probability of a certain event (in this case, the transition to industry) to take place.

The results of this model are to be found in Table 5. Panel (1) only includes the

control variables, panel (2) additionally includes the deep learning dummy, panel (3)

adds the network-related independent variables, panel (4) the research-performance

related independent variables, and finally model (5) includes all variables together.

In model (1) including only our basic control variables, we observe a strong nega-

tive and significant e�ect for seniority, indicating that industry transitions appear to

happen sooner rather than later in research careers. This could be interpreted that

either researchers with a taste-for-industry already set themselves up for a early post-

graduation transition, or that industry generally prefers promising young over already

established researchers. The coe�cient for gender is positive and significant on the 1%

level, indicating female researchers, which are already underrepresented in AI research,

are less likely to transit to a career in industry. This e�ect remains persistent for all

following models.

The DeepLearning variable included in model (2) has a relatively high positive

coe�cient, significant on the 1% level. This is in line with our initial expectations

that the characteristics of this particular research field make a transition to industry

more attractive (research- and technology-push), as well as the earlier observation of

the strong engagement of companies with deep learning.
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Table 5: Cox Proportional Hazard Regression: Probability of university-industry tran-
sition

Dependent variable:
Industry Transition

(1) (2) (3) (4) (5)

seniority ≠13.358úúú ≠13.355úúú ≠13.346úúú ≠13.418úúú ≠13.423úúú

(5.113) (5.099) (5.068) (5.100) (5.113)

gender 0.230úúú 0.227úúú 0.227úúú 0.184úúú 0.183úúú

(0.018) (0.018) (0.018) (0.018) (0.018)

DeepLearning 0.568úúú 0.177úúú

(0.017) (0.017)

centdgr 0.034úúú ≠0.002
(0.002) (0.003)

centdgr≠ind 0.037úúú ≠0.043úúú

(0.002) (0.003)

papern ≠0.066úúú ≠0.054úúú

(0.003) (0.003)

citrank 0.540úúú 0.574úúú

(0.020) (0.020)

citcum
ln 0.376úúú 0.386úúú

(0.004) (0.004)

Study Field Control Yes Yes Yes Yes Yes
Year Control Yes Yes Yes Yes Yes

N 479,093 479,093 479,093 479,093 479,093
Pseudo R2 0.174 0.174 0.175 0.188 0.188
Wald Test 4,500úúú 6,196úúú 5,177úúú 12,454úúú 12,927úúú

LR Test 91,412úúú 91,871úúú 92,129úúú 99,825úúú 99,967úúú

Score (Logrank) Test 36,988úúú 37,392úúú 37,634úúú 45,079úúú 45,253úúú

Note: úp<0.05; úúp<0.01; úúúp<0.001, standard errors in parentheses
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In model (3) the focus is on the researchers’ embeddedness in the broader AI research

community (as approximated by their position in the AI co-author network) as driving

forces for industry transition. Initial expectations are that overall better connected

researchers would be more attractive for industry to recruit (industry-pull), and that

researchers which already seek out collaboration with industry partners during their

academic career reveal a certain “taste-for-industry” and openness toward an industry-

transition (research-push). Both variables have a positive and significant coe�cient,

thereby preliminarily lending support to our initial expectations.

Model (4) shows the impact of research performance related variables, measuring

current quantity (patern), quality (citrank) of research output as well as accumulated

reputation (citcum
ln ). Our results indicate the average citation rank as well as cumulative

citation numbers to increase the probability of transition, while the number of papers

published decreases it. This may be an indication for industry to favour quality over

quantity in terms of research output of transitioning scholars and thus provide further

support for the “cherry-picking” hypothesis.

Finally, when including all variables jointly in model (5), most observed e�ects re-

main roughly unchanged. The only exception are the results regarding the embedded-

ness in the AI research community, where the formerly significant and positive overall

embededness turns insignificant. The variable measuring industry-embededness re-

mains significant yet changes the coe�cient’s direction from positive to negative. This

might indicate that the positive impact we have formerly seen in model (4) might have

been driven by the variable’s correlation with the quantity of papers (more co-authored

papers result in higher centrality). When controlling for the number of papers, it turns

out that–against initial expectations–industry embededness in research makes a transi-

tion to industry less likely. This might hint at an industry preference to hire researchers

engaged in more fundamental and basic rather than applied research.
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5.2 Consequences of switching - Di�erence-in-Di�erence analysis

Finally, we investigate the consequences of university industry transition in terms

of research performance. Table 6 reports the results of a regression analysis, where we

investigate the e�ect of university-industry transitions on research productivity, which

we approximate by a researcher’s annual citation rank. We perform this analysis

in a di�erence-in-di�erence setting, where we compare the development of scientific

performance of researchers which undergo a university-industry transition (treated)

with their counterparts who stay in academia. The dependent variable here is the

researcher’s annual citation rank (citationrank) as a three year moving average.

Due to self-selection into an industry career, switchers are expected to be system-

atically di�erent from their peers remaining in academia. We address this issue by

performing a di�erence-in-di�erence analysis containing the following steps. First, we

perform a nearest neighbor matching, where we match every researcher in the sam-

ple which at one point transits to industry with a peer which is only observed with

academic a�liations. We match these pairs on their field of study, gender, mean num-

ber of papers published and citations received per year. We additionally require the

matched pair to be observable for the exactly same number of periods.

Having done so, we attempt to empirically transform this observational study into

a quasi-experimental econometric setting. In a di�erence-in-di�erence analysis, one

usually matches an observations subject to an intervention (treatment) with a similar

one which did not experience this intervention. However, since our sample is not strat-

ified and subject to left and right censoring, and furthermore the university-industry

transition happens at di�erent points in time and at di�erent stages of their career for

each researcher, we cannot define one intervention point across the sample. Rather,

we create a ‘pseudo-treatment’ time for every researcher remaining in academia which

is equal to the observation period in which their matched university-industry switcher

transits (variable transited). We furthermore create a variable indicating the years

since this transit takes place (transitedt). Beyond this, the models include a similar

selection of independent and control variables as the ones above.
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Table 6: Di�erence-in-Di�erence Regression: E�ect of university-industry transition

Dependent variable:
citationrank

(1) (2) (3) (4)

switcher ≠0.016úúú ≠0.013úúú ≠0.016úúú ≠0.013úúú

(0.002) (0.002) (0.002) (0.002)

transited 0.029úúú 0.029úúú ≠0.0004 0.013úúú

(0.003) (0.003) (0.004) (0.003)

seniority ≠0.001úú ≠0.006úúú ≠0.002úúú ≠0.006úúú

(0.0003) (0.0003) (0.0003) (0.0003)

gender 0.015úúú 0.009úúú 0.015úúú 0.009úúú

(0.003) (0.003) (0.003) (0.003)

centdgr 0.026úúú 0.025úúú

(0.001) (0.001)

centdgr≠ind 0.047úúú 0.047úúú

(0.001) (0.001)

transitedt 0.008úúú 0.004úúú

(0.001) (0.001)

switcherútransited 0.050úúú 0.053úúú 0.080úúú 0.079úúú

(0.004) (0.003) (0.005) (0.005)

switcher*transitedt ≠0.007úúú ≠0.006úúú

(0.001) (0.001)

Study Field Control Yes Yes Yes Yes
Year Control Yes Yes Yes Yes

N 83,364 83,364 83,364 83,364
R2 0.223 0.387 0.224 0.387
R̄2 0.222 0.386 0.224 0.387

Note: úp<0.05; úúp<0.01; úúúp<0.001, standard errors in parentheses
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Table 6 reports the results of this set of regressions. The first panel (1) includes

only control variables plus the dichotomous variable indicating researcher that at one

point undergo the university transition (switcher) and the periods after the transition

has taken place (transited). In the next panel (2) we include further controls for

the researchers overall (centdgr) and industry (centdgr≠ind) centrality within the co-

citation network. In the following panel (3), we turn our attention to the e�ect of

university-industry transitions by including the number of periods since the researcher

has transited to industry (transitedt) as well as interaction between switcher and the

variables indicating the post transition period. This enables us to identify di�erences

in citationrank between researchers after their transition has taken place, as compared

to peers remaining in academia with otherwise similar characteristics, and thereby

isolate the e�ect of university-industry transitions on research performance. The final

panel (4) includes all variables jointly.

While we control for a set of variables also included in the previous survival anal-

ysis, this di�erence-in-di�erence analysis also includes the interaction terms between

switcher, transited and additional variables, since they reveal the impact of a “real”

industry transition as compared to the artificial “pseudo” transition of their matched

peers that remain in academia.

In model (1), we only include the switcher ú transited interaction term which turns

out to be significant with a positive coe�cient, revealing that the industry transition

indeed appears to be conductive to research performance, placing them post-transition

5 percent higher in the citation ranking than their academia counterparts. Additional

controlling for embeddedness e�ects in model (2) does not alter the results.

In model (3), we introduce an additional interaction term switcherútransitedt which

captures the time e�ects of industry transition. A positive and significant coe�cient

indicates that after the initial boost in citation ranking researchers experience after

their transition, there is no continued beneficial e�ect in the long term. Instead, post

transition researchers over time loose 0.7% in their citation ranking per year compared

to their academia counterparts, as illustrated in Figure 8. However, the comparably
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Figure 8: Interaction plot: Model (3), switcher ú transitedt. Note this graph only
depicts the over-time e�ect and not the constant e�ect of the switcher ú
transited interaction term.

small coe�cient indicates this to happen slowly over time, taking approximately ten

years for a switcher to - after the initial boost - fall back again to the same level of their

academia remaining counterpart.Again, controlling for embededness-e�ects in model

(4) leaves the main results unchanged.

6 Discussion and Conclusion

Studying career paths of AI researchers, we shed light on the interplay between

academic and corporate research in this field and provide evidence about a potential

brain-drain from the public sector together with its drivers and outcomes. Our primary

aim is to inform science policy discussions around the development and application of

AI technologies and the supply of talent required to preserve a public research space for

AI focused on the creation of AI systems independently from short-term commercial

interests and in a way that is aware of ethical risks and externalities.We show that

increasing participation of the private sector in AI research has been accompanied by

a growing flow of researchers from academia into industry, and specially into technology

companies such as Google, Microsoft and Facebook.
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The survival analysis shows that researchers working with deep learning techniques

that have driven recent advances in AI systems have a much higher likelihood to

transition to industry, consistent with the idea that the private sector has been building

capabilities in state-of-the-art AI systems and raising questions about the ability of

‘public interest’ deep learning research to keep up, specially since industry tends to

recruit influential, high impact researchers.

Scholars producing lower numbers of papers with higher impact – which we interpret

as prioritising quality rather than quantity – are also more likely to transition. One

question for further research is to determine to which extent some of this indicators

are linked to di�erences in publication strategies across subfields of AI.

Interestingly, stronger embedding of researchers in the overall and industry specific

research community seems to marginally reduce the transition probability when paper

impact is accounted for.

Together, these results suggest that supply push and demand pull both play a role

in researcher transitions from academia to industry: researchers who specialise in deep

learning techniques may have incentives to pursue their careers in technology com-

panies with the data and infrastructure required to deploy these methods, and busi-

nesses have incentives to hire them because those techniques complement their assets

and business models. The private sector’s propensity to hire high impact researchers

suggests that there is an element of cherry-picking of researchers by industry which,

as mentioned, could raise concerns about a hollowing-out of the talent pool for public

interest AI research.

On average researchers working in industry receive twice the amount of citations

as compared to scholars in academia, while publishing less. In an industry with a

rather short distance from research to deployment in products and services, it is not

surprising that industry players are better at selecting and funding promising research,

and promoting its relevance. However, looking at the results from the di�-in-di�

analysis we also see some indication of stagnation in the academic impact of researchers

who transition to industry. This presents some similarities with the outcomes of start-
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ups that are acquired and absorbed by large companies that may be more interested

in implementation and exploitation of existing technology rather than exploration of

entirely new trajectories. Looking into the recent developments in NLP one could

argue that this is not the case – the majority of breakthrough developments (i.e. large

scale models) came out of industrial labs in the recent years. On the other hand – and

that brings us to the story that we mentioned in the introduction – it might be argued

that these models are in line with interest of large companies while leaner approaches

in state-of-the-art language processing remain unexplored. Would the situation be

di�erent if researchers who transitioned into industry had stayed in academia? That

kind of counterfactual analysis is challenging. Existing research suggests that there

are important di�erences between the research portfolios of academia and industry but

they do not consider how these di�erences are shaped by researcher career transitions

(Klinger et al., 2020). One potential avenue to understand this would be to compare

the ‘research trajectory’ of individual researchers for example estimated through a

semantic analysis of their paper before and after joining industry, and compared with

their peers who remain in academia.

Overall, our results based on a comprehensive analysis of bibliographic data support

the idea of a growing flow of talent from academia to industry which may require

attention from policymakers.

Future work should look into further e�ects of researcher transitions into industry,

examining for instance potential thematic change, diversity of themes as well as co-

authors. It is also important to explain the reasons for the gradual decline in academic

impact for those researchers who transition into industry: is this a consequence of

corporate policies that lead researchers to concentrate on specialised technological

development activities that are less relevant for the outside community (in line with

the model proposed by Rock (2019)) and along the lines of our startup harvesting

analogy, or is it that over time, researchers experience ‘industry burn-out’, becoming

less productive. Ultimately, and in order to answer the ‘so what’ question, we need

to find ways to measure the impact of career transitions from academia into industry
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beyond our scholarly productivity proxies: in what ways are public interest AI research

trajectories diminished when AI researchers transition into industry, and what is the

opportunity cost of subsequent declines in the research productivity of switchers.

We conclude by pointing out that while strong contributions to research from private

companies are commendable, it is vital to understand where complementary public in-

vestments in R&D can contribute to favourable long-term outcomes. More specifically

it is important to make sure that public research organization remain an attractive

workplace for talented AI researchers who may otherwise be attracted by lucrative

positions in industry that also o�er, at least in the short term, the prospect of en-

hanced academic impact. This requires investments in equipment, research funding

as well as well coordinated frameworks that allow these scholars to contribute to the

development of this technology and promote their contributions in the same way that

marketing departments in technology companies do with their own research outputs.

We know that AI is a strong contender for being a general purpose technology

and therefore much of the development and application requires coordination between

di�erent stakeholders across disciplines. In practise that means that is unlikely - and

perhaps undesirable from an e�ciency standpoint - that public research institutes try

to replicate open source frameworks and cloud computing infrastructures developed in

industry. Researchers in the public sector, however, have an important role to play

in studying a variety of questions related to the societal suitability and impacts of AI

systems - for example around fairness, security and accessibility - as well as exploring

new ideas that may provide the foundation for future AI research trajectories that are

less reliant on big datasets and computational infrastructures and more environmental

sustainable, explainable and robust. A burgeoning public interest sphere conducting

this research without having to balance academic integrity with commercial interests

is, as the Timnit Gebru case with which we began this paper, a critical requirement

for this space, and one that may be threatened by the sustained flow of researchers

from academia to industry that we have evidenced in this paper.
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