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Classifying sleep stages in real-time represents considerable potential, for instance in enabling interac-
tive noise masking in noisy environments when persons are in a state of light sleep or to support clinical
staff in analyzing sleep patterns etc. However, the current gold standard for classifying sleep stages,
Polysomnography (PSG), is too cumbersome to apply outside controlled hospital settings and requires
manual as well as highly specialized knowledge to classify sleep stages. Using data from Consumer Sleep

Keywords: Technologies (CSTs) to inform machine learning algorithms represent a promising opportunity for
Sleep A ol s L o R
Artificial intelligence automating the process of classifying sleep stages, also in settings outside the confinements of clinica
Interaction expert settings. This study reviews 27 papers that use CSTs in combination with Artificial Intelligence (AI)

models to classify sleep stages. Al models and their performance are described and compared to syn-
thesize current state of the art in sleep stage classification with CSTs. Furthermore, gaps in the current
approaches are shown and how these Al models could be improved in the near-future. Lastly, the
challenges of designing interactions for users that are asleep are highlighted pointing towards avenues of
more interactive sleep interventions based on Al-infused CSTs solutions.

Intervention

© 2022 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Getting a good nights sleep is critical for our well being. It is
well-known that disruptions to our sleep lead to various negative
consequences for our health, quality of life, and work productivity.
Short-term consequences for our health are increased stress level,
somatic problems, emotional distress and mood disorders [1]. In
terms of productivity, studies have shown that short-term conse-
quences of sleep disturbance lead to cognitive and performance
deficits, cf [1, 2]. The risk of work related injuries are also shown to
increase by a factor of 1.62 due to sleep issues [3]. While there is a
large body of knowledge on how to reduce the negative effects of
lifestyle, psychological and medical conditions on sleep, they
mostly focus on sleep hygiene [4] based on approaches of pre-
ventive measures. These are mainly related to lifestyle changes. An
example of an area where preventive measurements are limited,
are sleeping in noisy environments. There are rather few studies
dealing with the challenges of reducing the effect of noise disrup-
tions of our environment [5]. alre Another solution is using
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loudspeakers to mask environmental sounds using white noise.
This has shown to have positive short-term effect on improving
sleep quality [6] while recent studies suggest that prolonged
exposure to noise from sound machines can induce auditory
perceptual problems [7]. Instead of a static solution, where e.g. a
white noise machine is either turned on the whole night or turned
off with a timer, this calls for a more interactive solution. By
monitoring the sleep stages of a user it could become possible to
intervene regarding the various disturbing factors that can arise in
the night, in real time, and particularly during light sleep.
Monitoring and measurement of sleep is a vast area of research
where many different approaches have been utilized. The study by
Ref. [8] presents a review of methods to assess sleep quality and a
ranking of existing methods including questionnaires and diaries
[8], contactless devices [9], contact devices [10] and Poly-
somnography (PSG) [11]. The gold standard for sleep studies in-
volves PSG which is a device consisting of multiple sensors;
Electroencephalography (EEG) for measuring brain activity, Elec-
trooculography (EOG) for eye movements, Electromyography
(EMG) for muscle activity or skeletal muscle activation, and Elec-
trocardiography (ECG) for heart rhythm [12]. These recordings are
then manually scored by trained experts to classify the sleep. They
typically classify sleep according to the American Academy of Sleep

1389-9457/© 2022 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Medicine (AASM) guidelines [13] which involve 5 stages:

@ Stage W (Wakefulness)
@ Stage N1 (NREM 1)

@ Stage N2 (NREM 2)

@ Stage N3 (NREM 3)

@ Stage R (REM)

There are a multitude of reasons why a PSG is not always feasible
with some major drawbacks being that they are resource expensive
and obtrusive [14, 15]. A promising approach to solve these prob-
lems are Consumer Sleep Technologies (CSTs) [16]. They are both
cheaper and less intrusive than PSG but unfortunately they are not
yet suitable for clinical studies [17]. Their sleep stage classification
is currently not at the level of PSGs and the products often have a
proprietary algorithm that makes it a black box with no access to
the raw data. Nonetheless, interest in CSTs has risen in recent years.
A promising approach with CSTs are using the physiological data in
combination with the advances made in Artificial Intelligence (AI)
the past 10 years. These advances open a path to measuring and
improving sleep in a new way. Typically it has been most common
to assess sleep quality and disruption in the night through indirect
measures based on questionnaires after one has finished sleeping
[8]. With CSTs a more interactive approach based on Machine
Learning (ML) and real-time noise masking may be possible for
improving sleep.

To be able to have a more interactive approach towards sleep
intervention it is relevant to understand the current landscape of
research into Al based CSTs. The review by Ref. [18] covers a broad
area of computational sleep research including sleep classification
for medical and home use. Likewise [19] is a similar study of Deep
Learning (DL) for sleep classification but only covers PSG based
studies. We expand previous research efforts by providing 1) an
overview of state-of-the-art on models for sleep stage classification
based on CST data and 2) a performance analysis of these classifi-
cation models highlighting avenues for future research and impli-
cations towards development of CSTs suitable for home use.

The main contribution of this article is two-fold. Firstly we
provide a summary of CST devices and ML algorithm performance in
classifying sleep stages. Throughout this review we aim to provide a
future outlook for researchers outside the area of machine learning
based on our knowledge as researchers within the field of com-
puter science. We aim to strike a balance between giving an over-
view of the fundamental ML techniques and performance metrics
for researchers outside this domain of expertise while at the same
time emphasizing state-of-the-art. Secondly we open a discussion
on the implications of designing a system where users interacts with
the system while they are asleep.

2. Machine learning

ML is a central part of Al and the two are often used inter-
changeably. This section provides a general and simplified under-
standing of ML and is intended for researchers with limited
familiarity of ML. It can be seen as a family of mathematical models
that optimize their model coefficients by reducing a loss function
on a given dataset. This process is referred to as training a model,
and the dataset used for this is the training data. A part of the
dataset is often withheld from the model during training and used
afterwards to test how well the model performs on unseen data.
This part of the dataset is called the test data. These models can
then be used for tasks such as classification or regression. They have
been widely successful in fields such as medicine, speech recogni-
tion and computer vision [20]. One of the main reasons that ML has
proven successful in the last two decades is that advances in
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computing power has allowed these models to be trained effec-
tively on massive amounts of data in a reasonable time frame [21].
Another reason is that massive amounts of data have become
available like the crowd sourced image dataset of 1.2 million images
used in training AlexNet [22]. Traditionally the flow of these models
has been to perform feature engineering on the datasets to find
features that represent important relationships between predictors
in the datasets. This approach is especially powerful when the
dataset is low dimensional and limited data is available [20] These
features are typically chosen by a combination of previous domain
knowledge and trial and error. Examples of this in the domain of
sleep stage classification are Heart Rate Variability (HRV) features.
HRV has been used by Ref. [23] where they calculated various
features like the mean and standard deviation of interbeat in-
tervals, and power of the various frequency bands. Similarly this is
done in actiography where features are calculated from an accel-
erometer signal and fed to a Support Vector Machine (SVM) to
predict sleep or awake. This approach has the benefit of using input
that has been well studied and builds on an existing foundation.
The features are transparent, easily replicable and well understood.
The drawback is the limitation of finding the right features to
represent the signal which requires a great deal of feature
engineering.

DL is a subset of ML that has had massive success in the last
decade and are outperforming classical ML models tasks where the
data is large scale, noisy and unstructured [20]. DL models are
based on neural networks, where a neuron is linked to many other
neurons in various configurations. Collectively, their configurations
are referred to as the neural networks architecture and they allow
the networks to learn highly complex and non-linear relationships
between input and output. Earlier neural network architectures are
called feed-forward Multilayer Perceptron (MLP) as the input is fed
forward through a fully connected network with multiple layers of
neurons and backpropagation is performed to optimize each
neuron according to a loss function. This is done in multiple iter-
ations called epochs until model performance is stabilized. Archi-
tectures like Convolutional Neural Network (CNN) and Long Short-
Term Memory (LSTM) have different configurations of neurons that
allow them to learn different kinds of features, like spatial or
temporal features. Even though they have a different architecture
they still build on the principles from MLP with using back-
propagation to optimize neurons. What makes DL different from
classical ML models is that while they can be used with features
from feature engineering as input they can also use the raw data as
input instead. Examples of these can be images or audio files. The
model can then learn internal features that it will use to perform
classification or regression. A simplified graphical representation of
the difference in the process between feature engineering and the
DL can bee seen in Fig. 1. The drawback of this is that the model
becomes more like a black box where it can be difficult to deter-
mine what it actually learns and what it bases its decision making
on. This runs the risk of the model learning a relationship between
the input and output that might only be applicable to the specific
dataset. Explainability and transparency of these DL models is also
a field of study that is getting more attention [24]. Nonetheless they
have shown great progress and are a promising approach when
working with biological signals.

3. Method

A systematic review of the recent application of ML and DL
models to automatically classify sleep stage with input from CSTs
conducted and is here reported accordingly to the PRISMA state-
ment guidelines [25]. A detailed illustration of the selection process
to extract the relevant papers can be seen in Fig. 3.
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Fig. 1. A simplified process of feature based ML approach and DL that uses the raw signal. The difference between them is whether to base the model on features that are known to
represent the signal well or let the DL model derive its own features.

@ Search strategy: Electronic searches in Scopus were per-

formed. To get a better understanding of the terminology
used in sleep stage classification, a naive search was done. To
ensure a high level of inclusiveness, broad search terms were
applied. This resulted in the following search query: sleep
AND (consumer OR wearable OR cst OR "Consumer Sleep
Technology”) AND (”"Machine learning” OR Al OR "Artificial in-
telligence” OR "Deep Learning”). As seen in Fig. 2 there was a
spike of interest in 2017. Therefore only records from 2017 to
2021 will be reviewed. This search was performed
September 24, 2021.

@ Identification: A total of 248 records were identified. Based

70

Documents
»
o

<]

10

0

on a screening of title alone 96 records were identified as
potentially relevant.

Documents per year

71

a

g o—O—g——— " —0—¢

$ Q N SN N A o & QR N N
P U i e A g g AR

Year

Fig. 2. Documents related to search query per year.

@ Screening: This was done in two passes. First applying the
inclusion criteria on the abstract and skimming of the text
and then again after a full read. On the first pass 36 records
were identified and on the second pass 27 records were
chosen for synthesis. The records were selected by the first
author and in case of doubt the other authors were
consulted.

@ Inclusion criteria: studies were included that met the
following criteria: 1) sleep classification was performed us-
ing ML or DL; 2) devices used to capture physiological data
were either wearables or had the potential to be wearable; 3)
ground truth labels came from AASM rules; 4) English lan-
guage and peer-reviewed journal, conference or workshop.

@ Data extraction: 27 records were chosen for review. From
each study the following information was extracted, if
available: device and sensors, amount of data used, avail-
ability of datasets, type of ML/DL model, raw signal or feature
engineering approach, modality of model, number of sleep
stages classified, and the model performance.

@ Synthesis of results: Due to the vast difference in the data-
sets used, lack of data availability and difference in meth-
odologies a meta-analysis is not appropriate, hence a
systematic qualitative review was conducted.

Initially records were excluded based on title alone. This left 96
records. Afterwards the abstract of each record was read and the
text was skimmed. This left 36 articles to be reviewed in depth.
After a full reading 27 articles were chosen for synthesis. These
comprised of 16 conference articles and 11 journal articles [26]. is a
review about wearable general for healthcare. The only sleep
related section was about the Cole-Kripke algorithm so it was
deemed not relevant to this study. This process can be seen in Fig. 3
along with exclusion criteria.
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Records identified through SCOPUS
(n = 248)

Records after screening title
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Excluded records with criteria
(n = 152)

(n = 96)

Records after screening abstract and text
(n = 36)

Records chosen for synthesis
(n=27)

L

105 not related to sleep

45 involving sleep but not sleep stages
1 not involving CST

1 Inaccessible

Excluded records with criteria,
(n = 60)

10 not related to sleep

31 involving sleep but not sleep stages
10 not involving CST

3 consumer wearable validation studies
1 Inaccesible

1 Opinion piece

1 Letter to editor

1 Editorial commentary

1 Shortpaper

1 Review

Excluded records with criteria
(n=09)

3 involving sleep but not sleep stages
1 review

2 with no experiment

1 ground truth from wearable

1 propietary sleep stage algorithm

1 no ground truth

Fig. 3. Flowchart of exclusion of records and exclusion criteria. From an initial 248 records found from the search query, 27 were chosen for to review.

4. Devices & datasets

This section will summarize what CSTs have been used in the
literature, the amount of data gathered and datasets available.

4.1. Devices

There are many different CSTs that exist both on the market and
off the market. A comprehensive review of these can be found in
Ref. [17]. The ones used in the 27 articles chosen for synthesis can
be seen in Table 3. The devices’ name, physical location, commercial
availability, sensors in the device and their sampling frequency
have been noted. The most common type of CSTs are the wrist-
worn devices with 17 out of the 32 devices used in the studies.
They also often contain multiple sensors which allow for multi-
modal classification of sleep stages like the finger-worn OURA
ring [27] which has a Photoplethysmogram (PPG), an accelerometer
and skin temperature measurements. Not every study specified all
the details about the chosen device. For an example [28] only
specified that they used a finger-worn PPG but specified sampling
frequency. On the other end [23] used a Samsung Gear S2 smart-
watch which contains multiple sensors but only used PPG which is
why only PPG was reported as a sensors.

Some articles mention how much data they gathered and some
only mention the number of participants. 15 studies only used data
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they gathered themselves, 8 studies only used dataset from other
studies and 4 did both. The additional datasets are described in
Table 2 [30]. has an asterisk as they did not use a PSG to score sleep
stages but instead used a single channel EEG. and scored according
to rules from AASM.

4.2. Datasets

One of the crucial aspects that has allowed ML to be as influ-
ential as it is in a field like image recognition is the amount of data
that has become available, especially labelled data. This process is
very resource exhaustive in the sleep classification domain as
manually labelling requires expert coders and PSG recordings. A
summary of public datasets used in the 27 studies can be seen in
Table 2. The largest studies being Multi-Ethnic Study of Athero-
sclerosis (MESA) and The Sleep Heart Health Study (SHHS) are both
restricted access, which means you have to apply to use them while
datasets on PhysioNet and Zenodo are open access. Locating the
actual datasets was a challenge since e.g. Ref. [50] mention that
they used Technische Universitat Darmstadt (ICHI14) but referred
to it as TUD. Furthermore the only reference to the dataset was [53]
which is the article that introduced the dataset. Unfortunately [53]
linked to a website that did not exist anymore as it had changed
since 2014. This issue can be circumvented by attaching a more
permanent identifier to a dataset like a DOI which many have done.
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A hyperlink to the dataset location has been included for all data-
sets except Whitehall I and Fitabase-fitbit PPG which just link to
their respective websites. There were 3 datasets which could not be
located; Fitabase-PPG used in Ref. [43], the CONTEXT study used in
Ref. [50] and a dataset from University of Pensylvania used in
Ref. [51]. The authors were also unable to learn more about the
Whitehall II study beyond that they had participants self-reporting
their sleep/wake status. All studies except Whitehall II mentioned
in Table 2 are PSG validated.

Even though there exist large studies like MESA they often lack
diversity of sensor modalities for CSTs. The MESA study includes a
wrist-worn actiography but if another modality like a PPG is
desired the pool of data is lacking. Since there also exist a plethora
of different CSTs as seen in Ref. [17] researches often end up col-
lecting their own datasets. Unfortunately most of these are not
made publicly available. Table 1 show an overview of the amount of
data the chosen studies have used. It is quickly evident that the
studies fall into three categories; 15 articles that only use data they
gathered themselves, 8 that only used publicly available data and 4
who did both. It is also evident that only [42] made the data they
gathered available. An issue that makes it challenging to compare
datasets across studies is how they report their data. Since most are
not available it matters how they describe the data. Some studies
only report the number of subjects/participants. Others measure it
in number of nights/recordings/days. Others use hours or epochs to
describe the data. Also as seen in Table 1 not every study uses PSG
validated data [38]. as an example made subjects self report when
they went to bed and when they were awake and used that as
ground truth for awake/sleep classification. The way additional
datasets were used also differed in the studies [44, 42, 43]. trained a
model on their own data and tested against an additional dataset
[45]. did it the other way around by training on the additional
dataset and testing against a part of the additional dataset and their
own dataset.

Sleep Medicine 100 (2022) 390—403
5. Classification approaches

This section will describe what types of algorithms were used in
the 27 selected articles and how they were used. A summary can be
seen in Fig. 4. The full table of every article can be found in the
appendix Table A1l. The authors were unable to determine which
model in Ref. [29] performed the best, therefore their models have
been left out of the table to not crowd it as they tried Conditional
inference tree, Random Forrest (RF), Logistic model trees, Naive
Bayes, Nearest shrunken centroids and SVM. The rest of their
approach was included in the table. Table 4 shows the taxonomy of
the sleep stages and how they relate to the AASM stages. The
presented attributes are; How many sleep stages were used; if the
algorithm was based on ML or DL; if data was from one sensor or
multiple modalities; what algorithm was used and what sensors
were used. Some papers [47, 51, 27, 39, 44, 34, 32, 42] tried multiple
sleep stage combinations and therefore the best performing algo-
rithm was chosen for each case. This causes the summary to add up
to more than 27 and should instead be read as X out of 27 papers
used this approach in their study. For the specific algorithm they
have been simplified for the summary, e.g. Ref. [45] used a
Complex-valued unsupervised CNN but this is just counted as a
CNN.

2-stage sleep classification is the most common with 14 of the
papers they have used that. There is an even split between 4 and 5
stage classification with 3 stage being the least common. Unimodal
approaches are by far the most common with 18 papers using this
approach. The most common sensor are accelerometers which
make sense as actiography is a well researched area. Another
popular approach is sensors measuring heart activity through PPG
(7), ECG (4), Ballistocardiography (BCG) (3). There are also 5 studies
using EEGs and while an EEG is typically not very mobile the
studies make use of 1-channel EEG like [48] or a mobile EEG like
[32,46]

There seems so be an even split between using ML (14) and DL

Table 1

Summary of sleep data used in the 27 articles chosen for review.
Author No. of participants Data gathered PSG validated Dataset available Additional datasets Total data
[28] 10 10 nights Yes No
[29] 23 No No
[30] 23 No* No
[31] 22 Yes No
[32] 17 165 Hours Yes No
[33] 25 24029 epochs  Yes No
[34] 19 Yes No
[35] 25 Yes No
[36] 10 10 nights Yes No
[37] 5 Yes No
[38] 3 21 nights No No
[39] 50 50 nights Yes No
[27] 106 440 nights Yes No
[40] 10 123134 epochs No No
[41] 26 Yes No
[42] 31 Yes Yes MESA 219 subjects
[43] 25 51 nights Yes No MIT-BIH, Fitabase-Fitbit PPG 143 nights
[44] 17 2 weeks No No ICHI14 59 subjects
[45] 32 Yes No SHHS 449 subjects
[46] MIT-BIH 39 nights
[47] MESA 1743 nights
[48] Sleep-edfx 197 nights
[49] Sleep-edfx 36 nights (20 subjects)
[23] CAP, MIT-BIH, UCD 410 Hours
[50] CONTEXT study, ICHI14, Newcastle PSG 145 nights
[51] Newcastle PSG, University of Pensylvania, Whitehall I 156 subjects
[52] UCD, MIT-BIH
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Table 2
Summary of datasets from other studies used in the 27 articles chosen for review. Fitabase is the only dataset which could not be located hence the missing accessibility.
Whitehall I is a massive study spanning decades and the amount of participants in their sleep study was unassessable.

Name Author Accecability DOI Platform Additional Subjects Records
sensors
Multi-Ethnic Study of Atherosclerosis (MESA) [54,55] Restricted National Sleep Research Accelerometer 2237
Resource (NSRR)
MIT-BIH Arrhythmia Database [56] Open 10.13026/C2F305 PhysioNet 47 48
Fitabase-fitbit PPG [57] Fitabase PPG 24 24
Technische Universitat Darmstadt (ICHI 14) [53] Open Technische Universitat Accelerometer 42 45
Darmstadt
The Sleep Heart Health Study-1 (SHHS-1) [58] Restricted  10.25822/ghy8-  National Sleep Research 6441
ks59 Resource (NSRR)
The Sleep Heart Health Study-2 (SHHS-2) [58] Restriced 10.25822/ghy8-  National Sleep Research 3295
ks59 Resource (NSRR)
Sleep-EDF Database Expanded [59] Open 10.13026/C2X676 PhysioNet 197
CAP Sleep Database [60] Open 10.13026/C2VC79 PhysioNet 108
St. Vincent’s University Hospital/University College Dublin Open 10.13026/C26C7D PhysioNet 25 25
Sleep Apnea Database (UCD
Newcastle PSG [61] Open 10.5281/ Zenodo Accelerometer 28 28
zenodo.1160410
Whitehall 11 Restricted University College London  Accelerometer
(ucrL)
Table 3

Table of the CSTs used in the literature, where they are placed during sleep, what kind of sensors were used in the studies, and the sampling rate of the sensors in Hz if they
described it.

Author CST Device location Commercially available Sensor Hz
[43] Dozee Under matress Yes BCG 250
[28] Not specified Finger PPG 128
[46] Headband EEG Head No EEG
[47] Actiwatch Spectrum Wrist Yes Accelorometer
ECG
[45] SensEcho Vest No ECG 200
accelerometer 25
[49] Muse Head Yes EEG 220 (100)
[23] Samsung Gear S2 smartwatch Wrist Yes PPG 25
[50] AX3 Wrist Yes Accelorometer
HedgeHog Wrist No
GENEActiv Wrist Yes
[29] Fitbit Charge 2 Wrist Yes
[31] The Philips Actiwatch 2 Wrist Yes Accelorometer 32
[30] Fitbit Charge 2 Wrist Yes
[32] Ear-EEG Ear No EEG 1200
Scalp-EEG Scalp
[33] Eye Mask Face No ECG
EOG
[34] Zephyr BioHarness 3 Chest Yes ECG 1
MSR 145B3 Wrist & Ankle Yes Accelerometer 51.2
[35] WhizPad Under matress Yes BCG
[36] Wave Near bed No Passive infrared sensor
Galaxy Note 8 Near bed Yes Microwave sensor
[37] Their own Under matress No ballistocardiography 100
[38] Empatica E4 Wrist Yes EDA 1
PPG
Accelorometer
[39] Samsung band Wrist Yes Accelerometer 20
PPG 20
[27] Oura Finger Yes PPG 125
Accelerometer 50
Temperature
[51] GENEActiv Wrist Yes Accelorometer
[44] wACctiSleep-BT Wrist Yes Accelerometer 60
EZ430-Chronos Wrist Yes Accelerometer 60
[40] GT3X (Actilife, USA) Wrist Yes Accelerometer 100
[41] Zephyr BioHarness 3 Chest Yes ECG 1
MSR 145B3 Wrist & Ankle Yes Accelerometer 51.2
[42] Apple Watch Wrist Yes Accelerometer 50
[48] Single channel EEG 200
[52] EEG
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Summary of articles
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Fig. 4. Summary of approaches performed amongst the 27 articles. Since some studies perform multiple sleep stage classifications the total of each group does not sum up to 27.
There are 5 groups on the figure describing the number of sleep stages they tried to classify, the modality of the algorithm, if it was a ML or DL model, what class of algorithm was

used and where the data used in the models was from.

Table 4

A summary of the different terminology for talking about the different sleep stages.
It begins from 5 sleep stages and shows which classes are collapsed as the number of
sleep stages descend.

Sleep stages Terminology

5 w N1 N2 N3 R
4 Wake Light Deep R
3 Wake NREM R
2 Wake Sleep

(15). For ML the most common models are SVM (6) and RF (3)/
Decision Trees (DT) (2) which are related models. For DL, CNN (6),
LSTM (3), and architecture which combines them CNN-LSTM (3) are
popular choices.

5.1. Modalities

As seen in Fig. 4 unimodal approaches where only one sensor is
used is the most researched approach. It can make it easier to un-
derstand how well that specific sensor performs sleep classifica-
tion. On the other hand an increase in modality can make the
performance better. There are two ways which modalities have
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been combined amongst the 27 papers. The first is by combining
data from multiple sensors. This has been done in Ref. [38] where
they use the Empatica E4 wrist device that has various sensors
amongst which they use PPG, Electrodermal activity (EDA) and the
accelerometer. They extract features for the sensors for a given 30 s
segment of data like the mean of EDA, mean heart rate, standard
deviation for the Blood Volume Pulse (BVP) and mean of the
accelerometer signal. They feed these into an SVM to classify sleep/
wake. Their best performing model was the one that combined all
four features. Similarly [47] extract HRV and accelerometers fea-
tures and show how combining them increases performance as
they go from 2 stage sleep classification to 3, 4 and 5 stage sleep
classification. At 2 sleep stages, the accuracy for the best perform-
ing models for multi (84.4%), actiography (84.9%) and HRV (79.5%)
does not differ much. At 5 sleep stages, multi (63.7%) and actiog-
raphy (55.6%) and HRV (56.9%) differ significantly indicating that
there is additional information in the different signals that provide
a richer signal when combining them.

5.2. Classical machine learning vs Deep Learning

As mentioned before the classical approach is using hand craf-
ted features as input for the model [23]. is an example of this
approach. They calculated 43 features from HRV for their models.
These features are from the time domain like mean and standard
deviation, the frequency domain with power of the various fre-
quency bands, and some non linear features. This resulted in a
feature vector of length 43 which was used as input in an SVM to
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predict sleep/wake. Similarly [51] had a similar approach where
they calculated 12 features for each axis of the accelerometers
which resulted in a 36 feature vector that was fed to a RE. Another
way of using features can be seen in Ref. [29] where they in tandem
with an accelerometers and PPG also use demographical features
like the sex, age, and subjective sleep quality from a questionnaire
of the participants. DL on the other hand allows the opportunity to
use move past feature engineering and use the raw signal instead
where a model will learn internal features to represent the signal.
This was done in Ref. [40] where they tested both approaches. For
the classical approach they extracted 36 features from an acceler-
ometer across the time domain and frequency domain and used as
input in various models including RF and a feature based CNN to
classify sleep/wake. The other approach was to use the x, y and z
axis signal from the accelerometer as input for their CNN. This
increased the performance from and accuracy of 84.14% with the
feature based approach to 89.65%. Out of the 14 papers that used a
DL model, 9 used some form of the raw signal as input [40, 37, 50,
52, 43, 49, 41, 34, 33]. In most cases the raw signal was pre-
possessed initially by either some band filtering or normalizing
before usage [50]. made a CNN that took both an acceleromoter axis
and its corresponding Fast Fourier Transform coefficients as fea-
tures as input, thus combining raw signal and handcrafted features
[33]. transformed EEG and EOG signal into a spectogram image and
used a CNN called MobileNetV2 which was pretrained for image
classification tasks [34,41]. combined ML and DL as they features
generated by a Deep belief network (DBM) as input in a RF model. A
DBM is essentially a model that tries to probabilistically reconstruct
the given input which in this case was 30 s accelerometers
recording. The hidden layers of the DBM can then be used as fea-
tures in classification model.

5.3. Sleep stage classification performance

Evaluating model performance and comparing models ap-
proaches across papers is not a straight forward task. First of all
there does not seem to be agreement of how this should be re-
ported in the field. We observed that the most common metrics
were accuracy, F1, sensitivity, precision, Cohens Kappa and a
confusion matrix of the sleep classes. By far the most common is
accuracy, but this metric has a major drawback as sleep stages are
inherently uneven. In wake/sleep classification the distribution
favours sleep heavily as participants usually are asleep most of the
night. Therefor by just classifying everything as sleep the model
will achieve a high accuracy. For a full REM cycle of adult sleep the
distribution of time in each sleep stage approximates 5% N1, 50%
N2, 20% N3, and 25% REM [62]. This results in N1 occurring the least
and therefore the same problem arises. To account for this inherent
imbalance in the distribution of training data there exist multiple
metrics to describe model performance. Among the common ones
seen in the 27 studies were sensitivity, precision, F1- score, Cohens
Kappa and confusion matrices. We will provide a brief and intuitive
understanding of these and what they show. Sensitivity is the
fraction of true positives that were correctly classified and precision
is the fraction true positives of everything classified as positive. F1
is a the harmonic mean of precision and sensitivity. These three
range from O to 1 with 1 being highest score. Cohens Kappa, often
written as k, is a measurement that also takes into account that
correct classification could occur by chance and ranges from —1
with complete disagreement, to 1 being complete agreement. The
confusion matrix is simply a matrix that shows all the models
classification compared to what the ground truth is and is reported
in either percentages or total number classified. The confusion
matrix has the advantage that is shows which classes the model
struggles with and how they are misclassified. Another aspect is
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how the authors choose to validate their models. It is common
practice in the ML field to reserve a portion of a dataset which has
not been used to training the algorithm as a test set. There is no rule
as to how much training data to use but a typical split is 80% for
training and 20% for testing. This approach has the drawback that
the model is only run once and the variability of model perfor-
mance is not captured. To combat this problem another validation
methodology called K-fold Cross Validation (CV), where the dataset
it split into K partitions of equal size and the model is trained from
scratch on the rest of the data. This is repeated for each K. So a 5 fold
CV means that the dataset is split into 5 equally large parts, and the
model is training on 80% of the data and tested on 20% of the data 5
times. This results in an average performance of the model with the
variance shown even though the variance is not always reported. A
different variation of CV is Leave-One-Out CV where in the case of
sleep stages either a subject or recording is left out training and
used for testing. If a subject is left out it shows how well a model
performs on a subject it has not been before while the other
methods show how well it performs when it has seen some sleep
data from the subject. As it has been referenced in different ways in
the studies e.g. LOOCV, LOOV, LOSO, we choose to abbreviate it
Leave-One-Subject-Out (LOSO) to be explicit. Lastly some also use a
completely different data set to measure how well the model
generalises to completely unseen data, which often causes a drop in
performance compared to the test set. All of these different choices
of measuring a models performance can make it difficult to
compare models and conclude which specific model is the best.

For sleep/wake classification it can be seen that out of the 5
studies that have above 90% above accuracy 3 of them combine PPG
with an accelerometer. The model with the highest accuracy, 96%, is
by Ref. [27] but given their F1-score of 0.78 which indicates that it
overestimates one of the classes. Depending on what the objective
is a higher F1-score is preferable on the cost of a loss in accuracy
[40]. which only uses accelerometer sensor but uses the raw signal
with a CNN-LSTM also performs reasonably with an accuracy of
88.77% and sensistivy and precision above .9. The only EEG model
for 2 stage sleep classification is also the best performing unimodal
model with an accuracy of 95.2 and a « of 0.83. It seems that the
unimodal approach of accelerometer or heart rate are performing
similarly.

For 3 stage sleep classification is seems that [37] vastly
outperform the other approaches with their BCG based CNN-LSTM
model which uses the raw signal. It was initially trained on sleep
posture labels of subject and then fine tuned to sleep stage labels.
They do not report a total accuracy but report their confusion
matrix which results in accuracies for wake (95.3%), NREM (93,1%)
and REM (84%) [34, 41]. seem to be the other approach where they
take features from an accelerometer and use a RF model and ach-
ieve N1 of 37.3% and 32.9% respectively. The only heart rate based
approach [47], does not seem be able classify N1 nor N3.

For 4 stage sleep classification [36] has by far the best perfor-
mance reaching an accuracy of 99.65% by combining contact free
microwave sensor and an infrared sensor with a K-nearest neigh-
bour (KNN) model. These results are quite incredible but are diffi-
cult to reproduce as they have not released neither their training
data nor their code. They are also unclear about their definitions of
the different sleep stages as they in one instance write ” ... L: Light
sleep (non-REM sleep stage 1); D: Deep sleep (non-REM sleep stage
2 and 3).” and in another” ... light sleep (non-REM 1 and 2), and
slow-wave sleep (non-REM 3).” The seconds best model was [34]
RF model with an accuracy of 90%. They use handcrafted 36 features
from two accelerometers and compared this approach to DL fea-
tures generated by a DBM. Their handcrafted features performed
best but the DL features achieved an accuracy of 83.2%. The two EEG
based models [33, 46] performed similarly with accuracies of
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86.72% and 85.5%. They both used DL models but [33] used the
spectrogram images of EEG and EOG signal. Their spectrogram
included 15 s before and after a given 30 s epoch. The rest use a
combination of heart rate sensors and accelerometers and achieve
an accuracy between 70.3% and 80.75% [47]. is the only that seemed
to be unable to do 4 stage sleep classification as it has an accuracy of
4% in the deep sleep stage.

For 5 stage sleep classification, accuracy is not a good metric. It is
evident that the challenge lies in differentiating N1 and N2. The
difference in accuracy between the top 2 [52], 87% and [32], 85.9% Is
only 2.9% but their difference in N1 is 60.05%. Likewise the second
highest N1 accuracy is [44] with 69.45% but with a significant drop
in all other sleep stages. The two most successful approaches that
achieve the highest N1% while not sacrificing the other sleep stages
are [49,52] with N1 of 80.2% and 41.54% respectively. They have in
common that they both use a CNN based arcitecture that takes the
raw signal instead of feature engineering from an EEG.

1-

6. Discussion
6.1. Potential areas of interest for improving classifiers

There seems to be untapped potential in the area of using raw
signals with DL models for sleep classification. There are currently
only six studies that have delved into this approach. The initial
findings are that they perform very well and are amongst the best
performers in 3 and 5 stage sleep classification. This also makes
sense intuitively, as with more sleep stages the complexity also
increases, especially differentiating between N1 and N2. Trans-
forming the signal into a spectogram as [33] did and turning the
task into a image classification task is an interesting approach with
a lot of potential as this is a field where DL has been performing
exceptionally well. This also allows to use neural networks that are
pretrained on other visual tasks and fine tune them for sleep. A
variation of this could be seen in Ref. [37], which used a raw BCG
signal but was pretrained on a different task and fine tuned for
sleep. There are more complex architectures designed specifically
for raw signals that could be explored further like WaveNet [64].

To properly be able to utilize the power of DL models, large
amounts of data are needed. As seen in Table 1 only one study made
their data available. We strongly urge researchers in this field to
follow the FAIR principles [65] and make both the labelled sleep
recordings from PSG, their chosen CST, and the models they used
available on easily accessible repositories such as PhysioNet or
Zenodo, which already hosts some labelled sleep recordings as seen
in Table 2. It would also make it possible to recreate or validate the
studies as that is currently impossible without access to their data
or software.

Currently most publicly available datasets do not contain addi-
tional wearable sensors. It would be valuable to be able to harness
these datasets for models to be used with wearables. Especially
sensors that measure heart rate are an obvious choice as a PSG
includes ECG and many wearable have PPGs. Recent studies also
point to HRV being the best sole indicator of sleep stages [66] which
has shown great results with DL [67]. An example of this could be
seen in Ref. [43] where a model was pretrained on ECG and PPG
data but used with a BCG sensor. Similarly [68] also trained a DL
model on HRV features from an ECG and finetuned the model with
HRV features from a PPG. A variation of this approach could be to
transform the PPG signal into an ECG, signal which has been done
in a pilot study by Ref. [69]. Another unexplored avenue to increase
the amount of data used for training, is to use synthetically
generated data. This has been seen in the field of eye movement
classification which has certain parallels to sleep stage
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classification. Both fields try to classify events based on a biometric
signal according to a ruleset, and manually labelling data is very
time consuming and requires training. To address the problem of
data availability an Recurrent Neural Network (RNN) based model
was trained to generate synthetic signals of eye movements and
then a separate neural network was trained on the synthetic data to
classify the movements [70].

Another way to improve the models is by combining modalities
to create a richer signal. This was seen in Table 5b and Table 5d
where performance increased, especially with number of sleep
stages. Most commonly seen in the reviewed papers was to
combine accelerometer with a heart based sensor, but it was also
shown that combining demographical information into the model
increased performance. There are many stages that modalities can
be combined at; signal, feature, score, rank, or decision level [71].
All the attempts described earlier are combined at the feature level
where features from different modalities are extracted and merged
into a single feature vector and fed to a model. We believe these
different stages of combining modalities are worth exploring to
investigate how much the models performance can be improved.
Especially a more advanced method such as a fusion network [72]
are interesting. An example of this in the context of sleep stage
classification, is a neural network which takes a 30 s segment of
signal from a PPG as input in one channel and the corresponding
segment from an accelerometer as input in a second channel with
the last layers of the network concatenating their output before
classification. These are not restricted to only two modalities or to
using a CNN architecture. A simplified depiction of this architecture
is shown in Fig. 5. In addition to increasing modalities there is also
the aspect of individualising the models. This can be done by
investigating the effect using a model trained on a general popu-
lation and finetuning it for an individual participant or de-
mographic [73].

6.2. Designing for interactive sleep intervention

There exists a large of body of work detailing how sleep can be
improved which is beyond the scope of this study. Nonetheless
there seems to be a focus on sleep hygiene [4] where preventive
measures are taken by changing lifestyle and habits like regular
exercise, avoidance of caffeine, nicotine, and alcohol. As CSTs
improve and Internet of Things becomes more advanced and
widespread it will become possible to measure the sleep cycle at
home and intervene during sleep instead of only using preventive
measures. An example of this is wearing a smartwatch or having a
BCG sensor under the bed while sleeping, that classifies sleep
stages in real time and adjusts the physical properties of the
environment like lighting, temperature, and ambient sounds of a
room. In the former we have emphasized the technical potential for
constructing ML infused systems to facilitate such changes in real
time to support users’ sleep. However, developing successful sys-
tems is also a matter of designing the user interfaces in a way that
enables and engages interactions. Given the recent advances and
increased availability of ML infused systems it is necessary to
consider how to design these. This is because ML enables a higher
level of system autonomy compared to systems in which the users
traditionally have had full control. Van Berkel and colleagues
differentiate between intermittent, continuous and proactive ML
systems, with the most recent advancements pointing towards
users interacting with ML systems that act like real-time collabo-
rative partners, i.e. continuous ML interaction rather than con-
ventional intermittent interaction, described as turn-taking [74].
Looking a bit further ahead we should also expect more proactive
systems to appear, that is, ML systems that act more autonomously
and not necessarily based on explicit user input, e.g. ML systems
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Table 5

Summary table of best performing sleep classification models from each study. Describes the inputs of the model, algorithm and validation methods used, and performance
metrics. Accu. describes the accuracy. Validation describes the respectively the training/test split, type of CV denoted by number of splits or LOSO. The independent dataset is a
dataset from a different source than training data. MCCV is a Monte Carlo CV where a dataset is split randomly N times into training and testing. $denotes the usage of the raw
signal instead of engineered features. (B) is a balanced accuracy which is different from regular accuracy. (W) is a weighted, F1, sensitivity and precision. Acc is an acceler-
ometer. Temp is skin temperature. Circ. is a mathematical modelling of the circadian rhythm.

(@)

2-stage sleep classification: wake, sleep

Author Signal Algorithm Validation Accu. (%) F1 Sensitivity Precision Specificity Kappa Wake (%) Sleep (%)
[27] PPG, acc, temp, circ. LGBM 5CV 96 0.78 0.8074 0.9815
[32] EEG SVM 10 CV 95.2 0.83
[38] PPG, acc, EDA SVM 80/20 0.93
[63] BCG DT 10 CV 90.9 0.957 0.775 77.5 95.72
[42] PPG, acc SVM 50 MCCV 70/30 90.1 0449 59.6 93
[40] acc CNN-LSTM 10 CV 88.77 0.9296 0.9039

1-
[47] acc CNN 80/20 84.9 0.883  0.938 0.847 0.671 0.63 67 93
[28] PPG SVM 70/30 81.1 0.8174 0.8106 0.9937 0.8250
[23] ECG SVM 80/20 80.1 (B) 0.786 0.816 0.801
[30] PPG, acc, questionnaire DT LOSO 0.848 0.614
[51] acc RF 75/15 78.76 0.7393 58.93 89.66
[50] acc CNN Independent data set 77 0.83 0.5

1.
[31] acc LSTM 80/20 67.7 0.377 0.907

1.
(b)
3-stage sleep classification: wake, NREM, REM
Author Signal Algorithm Validation Accu. (%) F1 Sensitivity Precision Specificity Kappa Wake (%) NREM (%) REM (%)
[37] BCG CNN-LSTM  LOSO 95.3 93.1 84

t
[32] EEG SVM 10 CV 90 0.8
[39] PPG, acc LDA LOSO 84 0.85 (W) 0.84 (W) 0.85 (W) 0.67
[47] ECG,acc LSTM 80/20 76.2 0.679 0.688 0.722 0.856 0.584 75 84 48
[42] PPG, acc MLP 20 MCCV 70/30 723 0.277 60 65.1 65
(0
4-stage sleep classification: wake, light sleep, deep sleep, REM
Author Signal Algorithm Validation Accu. (%) F1 Sensitivity Precision Specificity Kappa Wake (%) Light (%) Deep (%) REM (%)
[36] microwave, infrared ~ KNN LOSO 98.65 96.5 98.3 99.5 99.6
[34] acc RF 10 CV 90 84.4 92.3 90.2 87
[33] EEG, EOG CNN 68/32 86.72 85.2 87.17 82.87 89.30
1.
[46] EEG MLP LOSO 85.5 94.8 81.9 88.9 79.2
[45] ECG, acc, adb. reading LSTM Own dataset 80.75 069 872 75.5 90.8 88.8
[27] PPG, acc, temp LGBM 5CV 79 0.78
[39] PPG, acc LDA LOSO 77 0.76 (W) 0.76 (W) 0.76 (W) 0.58
[43] BCG CNN-LSTM 80/20 74 0.73 0.74 0.73 70 75 76 64
1.

[47] ECG, acc LSTM 80/20 70.3 51.9 54.0 57.9 874 538 77 80 4 55

(d)
5-stage sleep classification: wake, N1, N2, N3, REM

Author Signal Algorithm Validation Accu. (%) F1 Sensitivity Precision Specificity Kappa Wake (%) N1 (%) N2 (%) N3 (%) REM (%)

[52] EEG CNN LOSO 87 0.8 88 80.2 94.05 9007 85.02
1.

[32] EEG SVM 10 CV 85.9 0.79 83.77 2025 8948 86.12 81.78

[34] acc RF 10Cv 84.5 86.8 373 90.5 90.2 89.6

[48] EEG SVM 5Cv 0.85 0.836 0.847

[49] EEG CNN 95/5 81.72 0.76  0.77 0.76 96.16 4154 8287 8131 82.61
1.

[41] acc RF 10Cv 80.7 90.3 329 83.1 913 91

[44] acc 0OSGD Unclear 73.2 74.78 6945 7029 5822  58.22

[47] ECG, acc CNN 80/20 63.7 0399 043 0.471 0.887 0.563 80 2 79 6 49

[51] acc RF 75/15 59.82 0249  71.28 18.13 795
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Fig. 5. Depiction of a simplified fusion network. There are two input channels for the neural network that take the raw PPG and accelerometer signal. A convolution structure is
used to learn a representation of the signals which is combined in the fully connected stage and used to predict sleep stages.

that act on sensor data rather than input consciously provided by a
user [74]. Related to the notion of proactive ML systems, Janlert and
Stolterman highlight the concept of agency in interactive systems
[75]. Janlert and Stolterman note that user perceived interactivity is
a matter of balancing between too low system agency (system
being perceived as too predictable or "pliant”) and too high system
agency (system being perceived as too unpredictable or "having its
own will”). Either of these extremes represents a risk of the system
not enabling and engaging user interaction [75].

The unique challenges in designing the user experience (UX) of
ML infused systems has been discussed for years in the Human-
Computer Interaction research community, cf [76]. The over-
arching question being: To what extent can UX designers rely on well-
established design principles to shape user interfaces in a way that
supports the users’ mental models of ML systems’ behaviour? Amer-
shi and colleagues [77] provides a synthesis of previous efforts in
guideline development and suggest a range of 18 design principles
for UX designers to follow when designing ML infused interactive
systems. While this work is commendable, their guidelines have
been critiqued for essentially not dealing with challenges unique to
the design of interactive ML infused systems [76]. What [76] pro-
pose instead is to consider ML systems at four levels with the first
level not representing unique design challenges. Level 1 is defined
as an ML system with a fixed capability (e.g. face detection) and
limited system output (e.g. face recognized or not) while level 4 is
defined by evolving system capabilities (e.g. search engines that
learn from new data after deployment) and the possibility of
infinite system outputs (e.g. result suggestions in a search engine)
[76]. Our case of interactive ML based noise masking may be clas-
sified between level 1 and level 2 given the fixed nature of such a
systems’ capability (to classify sleep stages and invoke noise
masking) and the output complexity of the ML algorithm being
constrained to a finite number of sleep stages. According to Ref. [76]
systems like that envisioned here may not necessarily invoke the
need to develop and utilize design guidelines uniquely applying to
interactive ML infused systems. Yet, although the output of an ML
algorithm may be constrained to a finite number of sleep stages, it
will lead to intervening instructions on, e.g. changing the ambient
sounds (noise masking), lighting, temperature etc. Such in-
terventions represent a higher level of output complexity.
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Additionally, dealing with a system that interacts with the user
being in an unconscious state (sleeping) and based on real-time
sensor data represents an avenue of work that needs to be
further explored. This is because there is no visual, auditory or
tactile interface through which the user provides input and receives
feedback, i.e. the system is proactive [74]. We argue that the type of
interaction at play during sleep must be implicit rather than explicit,
meaning that the user can interact with the ML system in way that
does not require the users’ attention. According to Janlert and
Stolterman such unattentiveness would bear more resemblance to
automation rather than "genuine interaction” [75], but it can also
be argued that the type of system discussed here represents a case
of "genuine implicit interaction”, simply due to the fact that you are
sleeping, i.e. unconscious while the system not only registers your
physiological input, but it also reacts towards this. This is a different
case than implicitly interacting with e.g. an automatic sliding door
in a building on your way to a meeting. You are aware of the door
and implicitly assume that it will open, but your main intent is to
get to the meeting and are therefore less attentive towards the door.
Such genuine implicit interaction leads to a wealth of questions
worth exploring, e.g. how do users experience a system that they
implicitly interact with during a state of unconsciousness? How
and when should users explicitly interact with the system in order
to adjust the classification model to be more precise? To what
extent are users aware of the system making the correct classifi-
cations of sleep stages, i.e. do they even notice if the ML algorithm
makes mistakes? How can we strike a balance in perceived system
agency such that it will lead to sustained usage of the system?

7. Conclusion

This work shows a systematic review of the current landscape of
Al in sleep stage classification using CSTs. There is a trend of model
performance increasing by combining modalities such as acceler-
ometer with heart based sensors like a PPG, especially when
moving from sleep/wake classification to 3 and 4 stage classifica-
tion. For 5 stage sleep classification multi-modal approaches are
less common. The majority of approaches reviewed used models
trained on engineered features but there is a subset of studies that
use the raw signal as input for DL models that perform
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comparatively. We believe that the DL approach shows great
promise and we discuss a future road map for how these DL models
can be improved. A crucial aspect for this to be possible is for re-
searches to make their PSG and CST sensor data and sleep labels
available to fellow researchers due to the requirement of large data
sets to apply DL. As these models reach maturity, new methods of
sleep intervention, based on real time sleep classification, are
possible. These interventions also open a set of challenges from an
interaction design perspective, which are vital to consider when
designing a system that operates while the user is not consciously
aware of the changes that are happening.
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algorithms used, the specific algorithm that performed best and their corresponding inputs. When multiple algorithms are mentioned it is because e.g. one was best at 2 stage
classification while the other was better in 3 stage classification [29]. does not have an algorithm as they tried many different and did not conclucde which performed best.

Author No. sleep stages Alg type Modality Algorithm Input sensor

[38] 2 ML Multi SVM PPG, acc, EDA

[40] 2 DL Uni CNN, CNN-LSTM acc

[51] 2,5 ML Uni RF acc

[23] 2 ML Uni SVM ECG

[28] 2 ML Uni SVM PPG

[47] 2,3,4,5 DL Uni, Multi CNN, LSTM acc, ECG

[27] 2,4 ML Multi LGBM PPG, acc, temp

[63] 2 ML Uni J48-DT BCG

[50] 2 DL Uni CNN acc

[31] 2 DL Uni LSTM acc

[39] 3,4 ML Multi LDA acc, PPG

[37] 3 DL Uni CNN-LSTM BCG

[52] 5 DL Uni CUCNN ECG

[29] 4 ML Multi acc, PPG, questionnaire
[33] 4 DL Multi MobileNetV2 EEG, EOG
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[43] 4 DL Uni CNN-BLSTM BCG
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[44] 2,5 ML Uni Online Stochastic Gradient Descent (OSGD) acc
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[32] 2,3,5 ML Uni SVM In-ear EEG, Scalp-EEG
[42] 2,3 DL Multi MLP PPG, acc

[46] 4 DL Uni MLP EEG

[30] 2 ML Multi DT PPG, acc, questionnaire
[36] 4 ML Multi KNN Mircowave, infrared
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