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Preparing infection detection
technology for hospital at home
after lower limb external fixation

Sowmya Annadatha1 , Qirui Hua1 , Marie Fridberg2, Tobias Lindstrøm Jensen1,
Jianan Liu3, Søren Kold2 , Ole Rahbek2 and Ming Shen1

Abstract

Background: Patients with severe bone fractures and complex bone deformities are treated by orthopedic surgeons with
external fixation for several months. During this long treatment period, there is a high risk of inflammation and infection
at the superficial skin area (pin site). This can develop into a devastating, sometimes fatal, and always costly condition
of deep bone infection.

Objective: For pin site infection surveillance, thermography technology could be the solution to build an objective and con-
tinuous home-based remote monitoring tool to avoid frequent nursing care and hospital visits. However, future studies of
infection monitoring require a preliminary step to automate the process of locating and detecting the pin sites in thermal
images reliably for temperature measurement, and this step is the aim of this study.

Methods: This study presents an automatic approach for identifying and annotating pin sites on visible images using bound-
ing boxes and transferring them to the corresponding thermal images for temperature measurement. The pin site is detected
by applying deep learning-based object detection architecture YOLOv5 with a novel loss evaluation and regression method,
control distance intersection over union. Furthermore, we address detecting pin sites in a practical environment (home set-
ting) accurately through transfer learning.

Results and conclusion: The proposed model offers the pin site detection in 1.8 ms with a high precision of 0.98 and enables
temperature information extraction. Our work for automatic pin site annotation on thermography paves the way for future
research on infection assessment on thermography.
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Introduction
An External Fixator (EF) in Figure 1 is a device ortho-
pedic surgeons use to save, correct, and reconstruct
lower limbs after fractures. It consists of an external
frame connected to the bone inside the limb with pins
and wires. The fixation of the bone is important to
obtain a stable construct for bone healing. The pin site,
as highlighted with the blue bounding box in
Figure 2(b), is the skin region where the pins and wires
pass through the skin. There is a high risk of infection
at the pin site during treatment since it is an open

wound. The time period for treatment with an EF after
a lower limb bone fracture is typically 3–12 months,
and previous studies have reported that up to 50% of
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the patients suffer from mild to severe infection during
that period.1 Infection can become a serious situation
for the patient; the construction can become less stable,
resulting in slow or lack of bone healing, or the patient
can become acute septic, and in the worst case, the

patient will need an amputation of the limb. During the
treatment period with an EF, there is a need to monitor
the patients frequently, and they have nursing care for
cleaning and dressing the wounds to avoid infections
one to several times weekly. Patients are examined at
routine check-ups at the hospital and have X-rays every
week or every few weeks throughout the whole treatment
period as well. The post-surgical care regime and mul-
tiple outpatient clinic visits in the hospital are time and
resource-consuming, both for patients and the healthcare
system. Today, patients are discharged earlier from hos-
pitals, shifting the postoperative surveillance to the home
of the patient. The care is thus transferred from the highly
specialized hospital to surveillance by municipality home
nurses and general practitioners. During this shift, both
information and knowledge of postoperative care are
often lost, leaving the patient with uncertainty. A lack
of agreement on the definition of surgical site infection
by clinicians and little evidence of systematic measure-
ment and monitoring of wounds after discharge from
the hospital enhance this uncertainty. To summarize,
there is a need to develop a point-of-care tool warning
about early signs of infection to prevent complications
of surgery.

Figure 2. RGB visible images and infrared thermal images after external fixation. (a) RGB visual images, (b) images with bounding boxes
annotating pin sites, as references for training, (c) thermal images.

Figure 1. A patient with an external fixator (EF) after a lower limb
bone fracture.
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It has been suggested that thermography is reliable in
detecting signs of infection at pin sites.2 The technology
of those thermographic cameras is quickly evolving these
days, and it is becoming possible to take good-quality infra-
red thermal images with a low-cost hand-held camera.3

These new infrared cameras even now come as an add-on
to a mobile phone device, giving the possibility to
monitor the infection signs remotely, by the patients from
the patients’ home setting and having the on-demand evalu-
ation. Furthermore, analyzing the thermography by
machine learning methods has shown powerful potential
in the evaluation of health4 and diagnosis of diseases
including breast cancer5 and Raynaud’s phenomenon,6

but the training of model requires lots of data. To prepare
the infection detection technology through temperature ana-
lysis, there is a need to annotate the essential pin site region
on infrared thermal images. However, interfaces between
skin and pins are not clearly visible to distinguish and
mark based on their shapes and colours in most of the
thermal images, for example, Figure 2 (c) while in RGB
visible images like Figure 2 (b), they can be easily anno-
tated in bounding boxes. For thermal images, pin sites
that should have been monitored can be missed. To
achieve higher accuracy of infection detection on thermog-
raphy as well as the efficient collection of essential data, the
idea is to first use the original visible images of RGB
colours to detect the pin sites and transfer the selected
regions to the corresponding infrared thermographic
images. Considering a large amount of data of images,
this repetitive task can take clinical manpower to complete
and an automated and accurate annotation tool can effect-
ively accelerate the detection with consistency.

In this paper, we propose a pin site detection model that
automates the process of identifying and annotating regions
of interest with bounding boxes on the corresponding RGB
visible images and transfers the detected boxes to the tar-
geted infrared thermal images. Therefore, this work contri-
butes to preparing further research and potential
applications in pin site infection detection using digital
thermography for home-based care of patients after lower
limb external fixation.

Literature review

Object detection

The implementation of an automatic pin site detection
framework relies on object detection algorithms that can
search and mark bounding boxes of the informative loca-
tion from the given images. As a popular and important
topic in computer vision, object detection has been widely
studied and applied in many fields including face recogni-
tion,7 auto-driving8 and medical image analysis.9 Some
traditional algorithms follow the exhaustive method with
many sliding windows10 to find useful regions from the

image. But they consume considerable computational
resources with poor accuracy and speed, and there is a
doubt about their robustness to the diversity of images.11

Furthermore, those works that utilize rule-based algorithms
for desired area extraction like statistical pattern recognition
algorithm12 require rules or features defined manually.13 In
the past decade, convolution neural networks (CNNs) have
been introduced for object detection with possible superior
performance in both accuracy and computation time, which
greatly enhances the development of medical image
assessment.11

One-stage and two-stage object detectors

These CNN-based frameworks can be mainly divided into
two groups, one-stage, and two-stage object detector. The
former type, such as you only look once (YOLO),14 only
contains one step of regression and classification that
takes input images to learn the coordinates of bounding
boxes and probabilities of classes. While the latter group,
like R-CNN (regions with CNN features),15 fast R-CNN16

and faster R-CNN,17 achieves object detection by two
steps, acquiring regions of interests in the first stage and
then in the second stage making the decision from the
selected regions. Compared to two-step frameworks that
require separated stages to generate results, one-step
methods require less consuming time and produce relatively
lower but still acceptable accuracy.18 In the state of the art
one-stage object detectors like YOLOv419 and YOLOv5,20

the accuracy is also improved with fast processing speed.
Aiming to develop a lightweight application that can be
deployed in mobile phones for patients, implemented by
Pytorch, the one-stage framework YOLOv5 providing
both processing speed and accuracy is chosen in this work.

Intersection over union in object detection

The evaluation of loss is significant to the bounding box
regression in YOLO frameworks. To represent the similar-
ity of the predicted box and ground-true box, the traditional
intersection over union (IoU), as well as IoU loss function,
is only determined by the overlapping area, which means
different relative positions could result in the same IoU
and degrades regression accuracy. Therefore, advanced
methods have been suggested to comprehensively analyse
the difference from various dimensions. For example, gen-
eralized IoU (GIoU)21 introduces a penalty term for non-
overlapping cases. Distance-IoU (DIoU) and complete
IoU (CIoU)22 take more aspects into account such as
central distance and aspect ratio, but DIoU loss encounters
difficulties when the center points of predicted boxes coin-
cide while CIoU requires a relatively longer calculation
time. In addition, one of the latest evaluation systems,
control distance IoU (CDIoU),23 can directly indicate the
degree of difference between the predicted region and
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ground-true box and shows better performance with
reduced complexity. Considering having an optimized
selection for the pin site data set, in this work, we incorpor-
ate DIoU, CIoU, and CDIoU methods into YOLOv4 and
YOLOv5 and observe their performance.

Transfer learning

Generally, collecting sufficient medical image data is
expensive and challenging, requiring professional equip-
ment and experienced clinical staff, and therefore transfer
learning approaches are widely utilized to construct
medical imaging analysis models. There are lots of strat-
egies for transfer learning, including instance weighting,
feature transformation, model control, and parameter
control.24 Parameter control approaches are commonly uti-
lized for deep learning-based models by sharing the
network parameters of the source domain and target
domain. An initial neural network can be trained by a
large data set of the source domain and then finetuned
only using a small set of data from the target domain to
adapt. In this process, parameter sharing is achieved by
freezing some layers of the pre-trained network on the
source domain and training the last layers by instances
from the target domain like deep adaptation networks
(DAN),25 or initializing the network parameters from the
pre-trained network without freezing. These approaches
have been applied in medical image diagnosis, including
Alzheimer’s disease26 and knee osteoarthritis27 and show
good classification accuracy.

In our work, the photos taken by doctors in the hospital
scenarios and by patients at home scenarios differ a lot in
aspects including definition, pin site distance, and bright-
ness, and hence the model trained by the large data set
from the hospital has poor performance in the applications
for patients at home. In addition, it is not possible to obtain
sufficient patients’ data due to the lack of infrared cameras
available at their homes and logistic problem. As a result,
we employ transfer learning to finetune the pre-trained
model on the hospital data set so that the final model has
better accuracy for patients at home.

Camera calibration and registration

The metal pins are not always clearly visible on thermal
images, and therefore the region of interest on the skin,
the pin site, is detected on the RGB visible images and
then transferred to the corresponding thermal images for
temperature extraction. However, the spatial difference
due to the physical location causes a shifting error in the
transferred bounding boxes. Therefore, calibration of the
camera and registration of the images are mandatory
before analyzing the annotated regions. The coordinate
systems of cameras not at the same spatial position are dif-
ferent. So, the purpose of calibration is to derive a matrix for

converting coordinates from one system to another, based
on which the images can be registered and aligned
without any error in position and size.

With the rapid development in computer vision with the
use of multiple cameras, lots of calibration and
co-registration methods have been proposed. It is
common and convenient to utilize a checkerboard or chess-
board as the reference for calibration. By taking images of
the checkerboard at a few orientations and annotating
feature points, the parameters of the conversion matrix
can be calculated.28,29 Functions provided by OpenCV
can help to automate the process of locating points and esti-
mating the parameters.30

Methods

Data set

Visible and thermal image data set construction. In this work,
the data sets contain RGB visible images and infrared
thermography of external fixation from patients who are
undergoing treatments for bone fracture. Table 1 introduces
and classifies the data sets with different objectives and
properties including size, collected method, scenario and
image resolution. Besides, the specifications of digital
cameras used for this work to capture images and construct
the data set are presented in Table 2. To train the model for
the pin site detection on visible images, data set P1 is col-
lected using FLIR C3 cameras by professional clinical
nursing staff the Aalborg University Hospital. Some
samples of images in P1 are illustrated in Figure 3. After
data augmentation, data set P1 is divided into a training
group, a validation group, and a test group in the ratio of
8:1:1. In addition, data sets D1 and D2 are captured by
patients themselves at home using FLIR C3 camera. With
D1 data set, we have examined the performance of the
detection model at home scenario as a practical application
case, which was unsatisfactory due to scenario differences
including uncontrolled illumination conditions, various
angles and distances. As a result, the same data set, D1 is
used to finetune the initial pin site model through transfer
learning. To further validate the performance for harsh
cases, this new transfer learned model is tested by another
data set D2, which is also collected from home setting by
patients and without any guidance from the research
nurse and contains some images taken at a shorter distance.
The pin site detection model training data sets are mainly
collected from patients who have light skin tones from
type 1 to type 2 based on the Fitzpatrick scale, and only
the P1 data set contains 147 images of type 6 dark skin
tone. Some of the patients have a certain stage of inflamma-
tion and infectious sign on their skin. Furthermore, most
types of external frame constructions are included, contain-
ing various shapes taken from multiple orientations, as well
as different numbers of thick and thin pins.
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Two sets of data (T1 and T2 in Table 1) including both
RGB visible images and their respective infrared thermal
images are acquired to validate the desired operation of
the model. The effectiveness of the object detection
model trained by the images taken by the FLIR C3
camera as well as temperature analysis is validated by
these two data sets.

Data annotation. To construct a pin site detection model
for infection assessment, the ground-true box plays an

important role as the region of interest for training. In
our work, pins along with the skin interfaces on the
images are annotated within bounding boxes as pin sites,
which is completed manually through visual object
tagging tool to guarantee precision. Some examples of
annotated ground-true pin sites are illustrated in Figures
2 (b) and 3, which are marked with blue boxes represent-
ing regions of interest. It should be noted only the clear
and visible pins are annotated in bounding boxes, while
those pins that are hard to distinguish due to obstacles or

Table 1. Data sets collected and used in this work.

data set Camera Size
Visible image
resolution

Thermal
resolution Scenario Purpose

Hospital data set
(P1)

FLIR C3 1042 640 * 480 80 * 60 Hospital by
clinical
staff

Images in this data set are taken by trained
research nurses under the controlled setup in
the hospital. Only visible images of this data
set are used to train and test the initial pin site
detection model (M1), which only detects and
annotates regions of interest on visible
images.

Home data set 1
(D1)

FLIR C3 197 640 * 480 80 * 60 Home by the
patient

This data set is collected by the patient
themselves, at home under uncontrolled
illumination setup but with some help of
nursing staff. We first test the initial pin site
detection model (M1) with visible images of
this data set and then use this set of images
for finetuning the model M1 to obtain the
transfer learned pin site detection model (M2)
for home scenarios.

Home data set 2
(D2)

FLIR C3 429 640 * 480 80 * 60 Home by the
patient

This data set is collected by patients at home,
under uncontrolled illumination conditions
and without any help from the nursing staff,
and it contains some images taken at a short
distance. With this data set, we evaluate the
performance of the transfer learned pin site
detection model (M2) on visible images based
on shorter distances and from home settings.

Thermography
data set 1 (T1)

FLIR One
Pro

25 1440 * 1080 160 * 120 Hospital by
clinical
staff

The visible images and thermal images of pin
sites in this data set are collected by trained
research nurse under a controlled setup,
which is utilized to test the complete function
of the final pin site detection model (M3) on
extracting temperature values from the
detected area in the thermographic image.

Thermography
data set 2 (T2)

FLIR
T540

15 1280 * 960 464 * 348 Hospital by
clinical
staff

The visible images and thermal images of pin
sites in this data set are collected by trained
research nurse under controlled setup, which
is utilized to test the complete function of the
final pin site detection model (M3) on
extracting temperature values from the
detected area in the thermographic image.
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poor angles and distances are ignored as outliers. In add-
ition, visible wounds are also included in the bounding
boxes, allowing the measurement of clinical parameters
for infection monitoring. Therefore, the center of the
bounding box is defined by the interfacing point of the
pin and skin as the pin site.

Data augmentation. There are three reasons for us to apply
augmentation to our image data, which are listed below:

1. The size of the original base data set is too small with
1042 images, which is not sufficient to train a reliable
pin site detection model with the desired accuracy.

Table 2. Specifications of cameras used for data set construction.

FLIR type Thermalresolution Thermalsensitivity Accuracy Minimumfocus distance

C3 80 * 60 100mK 2◦C or2% Thermal: 15 cm MSX: 1m

T540 464 * 348 40mK 2◦C or 2% Thermal: 15 cm MSX: 0.5m

One Pro 160 * 120 70mK 3◦C or 5% Thermal: 15 cm MSX: 0.3m

MSX: Multi-spectral dynamic imaging

Figure 3. Hospital image data set of external fixation taken by FLIR C3 cameras, the second row contains manually annotated pin site
boxes.

Figure 4. Images in the home data set: (a) D1 data set and (b) D2 data set.
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Figure 5. (a) Visual and thermal images taken by FLIR One Pro in T1 data set. (b) Visual and thermal images taken by FLIR T540
in T2 data set.

Annadatha et al. 7



2. The collected data set is impossible to cover photos of
all scenarios in real-world applications while the
model needs to be trained with enough situations to
achieve generalization. Therefore, it is essential to trans-
form the original images into diverse conditions.

3. Augmenting the image data is adapted to address over-
fitting based on our experience.

Therefore, the data set from the hospital is scaled up and
enriched with a wide range of scenarios for model training.
In our work, the data augmentation is implemented by 8
techniques: horizontal flip, vertical flip, motion blur with
the Gaussian kernel equal to 15, alpha blend with the
overlay factor from 0 to 1, linear contrast adjustment via
scales between 0.4 and 1.6, gamma contrast adjustment in
the range 0 to 2, rotation between −45◦ and 45◦,
zooming in by two times and shearing between -16◦ and
16◦. The exact transformations for a method with a given
range are selected uniformly at random within its boundar-
ies. For the alpha blend method, two branches of images are
created with the pixel intensities multiplied by 100 and 0.2,
respectively, which are then sampled by the overlay factor.
Figure 6 presents an example of a raw photo augmented by
these nine methods. Eventually, the size of the base image
data set is increased to 10,409, and it is randomly divided
into a training set, a validation set, and a test set, containing
8325, 1040, and 1044 images, respectively.

Thermography pin site detection model architecture

The objective of the pin site detection is to find and mark
the regions of interest around the pin sites on the thermal
images of external fixation, which prepares as a tool for
future infection assessment. The processing flowchart of
the complete model is illustrated in Figure 7, including
data set construction, pin site detection model pre-training
with the main hospital data set, finetuning through transfer

learning with the home data set D1, testing on visible
images in the home data set D2, camera calibration,
image registration, bounding boxes transfer, and
maximum temperature extraction. As shown in the flow-
chart, RGB visible cameras and infrared thermal cameras
are calibrated, and thus thermal and visible images in the
data set collected by those cameras are registered to
remove the position and scale differences. Then, bounding
boxes of pin sites are generated by the YOLOv5-based
object detection model with CDIoU and transfer learning
on visible images of external fixation. Because thermal
images and visible images are well aligned after registra-
tion, those detected bounding boxes can be directly
moved onto the respective thermal images. Based on each
region of interest marked by the bounding box on tempera-
ture arrays of thermal images, we can obtain a set of
maximum temperatures of their corresponding pin sites,
which could be followed by future infection assessment
research. For example, currently suggested by doctors, a
threshold can be set for these maximum temperature
values, above which a potential infection of the pin site is
considered.

Pin site detection model on visible images. In our proposed
model, the pin sites are detected from the corresponding
visible images and marked with bounding boxes. After
that, these bounding boxes are projected onto the respective
infrared thermal images. To achieve it on visible images as
the first step, we propose the pin site detection model based
on the anchor-based object detection framework YOLOv5.
Instead of using GIoU as its loss function in the basic
YOLOv5 model, we have investigated other novel loss
assessment methods such as CDIoU, CIoU and DIoU,
and propose that CDIoU could provide excellent results
in our targeted pin site data set. Furthermore, fully convolu-
tional one-stage (FCOS)31 object detection framework also

Figure 6. Augmentation techniques applied to the images, including flipping, motion blur, alpha blending, linear contrast, gamma
contrast rotation, zooming in and shearing.
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has been explored to achieve an anchor-free structure for
potential optimization. However, its results are not as
expected, which are attached in the ‘Results and
Discussion section for comparison. In addition, considering
the challenges of applying the model to low-quality images
and the lack of data from patients’ homes, transfer learning
techniques are introduced to adapt the model. The initial
proposed model is pre-trained over a large data set from
our hospital with data augmentation. Then, the transfer
learning approach is employed to finetune the model with
another small data set collected from home scenarios by
patients, so that the final model can suit practical applica-
tions for patients at home.

YOLOv5. The novel object detection model with the one-
stage and anchor-based framework, YOLOv5, is utilized for
detecting pin sites in this work. As shown in Figure 8,
YOLOv5 consists of three essential components, backbone,
neck, and head.20 The first component, backbone, is a CNN
used for features extraction and implemented by the cross
stage partial network bottleneck with a focus layer. In the
neck section, a path aggregation network (PANet) and a
spatial pyramid pooling structure are applied to generate
feature pyramids with improved information flow. As the
final detection stage, the head leverages the features and
anchor boxes to generate predicted outputs with scores
for regression. In our cases, the classification of objects is
not necessary as only the pins are required to detect.

As for activation functions, the middle and hidden layers
employ the leaky rectified linear unit function while the
final detection layer utilizes the sigmoid function.

Besides, as the default optimization function, stochastic
gradient descent (SGD) is used for training.

Loss functions. In the ‘Detection section, the calculation
of loss function is only based on the bounding box loss for
regression. To represent the relative position relationship
between the predicted boxes and ground-true boxes,
IoU-based loss evaluation methods are popular and power-
ful. While different methods result in different results, the
selection of a suitable approach for the target data set is
important. For detecting pins in our work, CDIoU is pro-
posed and incorporated into the YOLOv5 model.
Considering the targeted pin site data set, the region of inter-
est for doctors is the wound around a pin and hence the center
of the bounding box is set at the position where the pin
inserts into the skin. As the center is also a key feature in
our image data set, we believe that for fast loss convergence,
it is important to reduce the central point distance between
the predicted bounding box and ground-true box without
an increase in the inference time. Therefore, DIoU and
CIoU featured by minimizing central distance directly are
first considered, within which CIoU also takes the aspect
ratio into account but consumes more time for calculation.22

Furthermore, the latest method CDIoU evaluates both the
central distance and shape similarity in the loss function
through a minimum bounding rectangle of the predicted
box and ground-true box. It is possible to reduce the center
distance while considering the aspect ratio but without the
performance degradation in the calculation time.23

In conclusion, the loss analysis methods performed in
this work include CIoU, DIoU, and CDIoU, and their

Figure 7. The flowchart of the construction of the pin site detection model.
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detailed loss functions are described below. Assuming B
represents the predicted bounding box and Bgt is the
ground-true box, the basic IoU and its loss function LIoU

are defined by:

IoU = |B ∩ Bgt|
|B ∪ Bgt| , (1)

LIoU = 1− IoU. (2)

The central points b and bgt of B and Bgt are used for the
calculation of DIoU loss function as follows22:

LDIoU = 1− IoU + ρ2(b, bgt)
c2

(3)

where ρ(·) denotes the Euclidean distance and c represents
the diagonal length of the minimum bounding box that
encloses B and Bgt. Similarly, adding a factor of aspect
ratio υ and the trade-off parameter α, the CIoU loss is
given by22:

LCIoU = 1− IoU + ρ2(b, bgt)
c2

+ αυ, (4)

υ = 4
π

arctan
wgt

hgt
− arctan

w

h

( )2

(5)

α = υ

(1− IoU)− υ
, (6)

where (w, h) and (wgt, hgt) are determined by the width and
height of B and Bgt, respectively.

Besides, with less calculation than CIoU, as vectors AE,
BF, CG and DH defined by Figure 9, the calculation of
CDIoU is determined by23:

diou = AE + BF + CG+ DH

4WY
, (7)

LCDIoU = LIoU − diou (8)

Transfer learning. The experience has been, that when
the pin site detection model is trained on the images col-
lected by a research team at the hospital, it obtains an excel-
lent accuracy in the testing set. However, when this trained
model is applied to images taken by the patients at their
home setting (data set D1), we observe a considerable
reduction in detection accuracy. It can be explained by
the fact that the clinic nurses who take those images
possess professional skills that those at-home patients do
not have and that the characteristics of images vary
greatly from patient to patient, including lighting condi-
tions, appropriate distance to retain focus and optimal
angles to make the pin sites most visible. Furthermore,
home environments may not allow patients to take good
images of the EF with pins. As the preliminary pin site
detection model was trained from a data set where hospital

Figure 8. The architecture of the YOLOv5 object detection model.
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images are the majority, its actual performance for real
patients at home is heavily suffered by the image quality
problems from home scenarios. Specifically, the doctors
would take the images of the external fixation from a
remote distance to capture a full view of the pins,
whereas most patients’ images are taken at a relatively
short distance. Meanwhile, it is not efficient to collect a
large number of images from patients at home so that we
can acquire a data set as large as the one from the hospital
to retrain a model, limited by the imaging devices for
patients due to logistic reasons.

As a result, to raise the detection accuracy on images
taken by patients in practical applications, transfer learning
is adopted in our work to deal with the low-quality images
while the training data set is undersized. Firstly, the images
from two environments are sorted into two groups accord-
ingly. The main data set consists of a significantly larger
number of images taken in the hospital by nurses as com-
pared to the small-size data set D1 collected by patients
in home environments. Then, the transfer learning steps

via the data set D1 as demonstrated in Figure 7 are
brought as a part of the overall model training procedure.
The initial pin site detection model is pre-trained by the
main hospital data set through the object detection frame-
work as described in the previous section and then adjusted
by the transfer learning techniques on the D1 data set.
Transfer learning in our work is implemented by leveraging
the pre-trained model as the initial setting and finetuning it
with data set D1 as illustrated in Figure 10. We explore the
performance of three approaches in Figure 10 to finetune
the parameters of the pre-trained model during training
the transfer learning model, including freezing 9 layers of
the backbone (backbone freezing), freezing 23 layers of
the backbone and neck (full freezing), and not freezing
any layers (no freezing). The results of these three strategies
could be compared and we propose no layer freezing
method resulting in the best performance. Finally, the trans-
fer learned pin site detection model is tested by data set D2,
which is another set of low-quality images taken by
patients, and its ability to detect challenging pin sites for
real-world applications can be examined.

Thermal camera calibration and image registration. Sections
mentioned previously present our YOLOv5 with CDIoU
pin site detection model and transfer learning algorithm
on visible images. As infrared and visible images are cap-
tured by two separated cameras from the same device,
which indicates different spatial locations, they use two
coordinate systems that lead to shifts between the projection
of objects onto the thermal images and visible images. The
purpose of calibration is to derive the calibration matrix
between the thermal camera and visible camera coordinate
systems, based on which the thermal and visible images can
be registered and aligned without any position and size dif-
ferences. After the displacement errors between two types
of images are eliminated, the bounding boxes of pin sites
generated by the detection model can be simply transferred
to the thermal images without shifts. Therefore, each
camera containing an image sensor and a thermal sensor
needs to be calibrated individually. In this work, both the
registered visible images and the converted temperature

Figure 10. The processes of implementing transfer learning techniques.

Figure 9. Calculation of control distance intersection over union
(CDIoU) loss function. Rectangle AWGY represents the smallest
rectangle encloses the region proposal box ABCD and ground-true
box EFHG.
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values from the thermal sensor output are simply extracted
from the FLIR Image Extractor tool https://github.com/
nationaldronesau/FlirImageExtractor. This program for
FLIR cameras provides functions for aligning thermal and
visible images and for extracting the temperature values
corresponding to visible pixels.

However, to further reduce the displacement error, we
suggest two suitable calibration methods for thermographic
images from the literature.

Geometric calibration of cameras has been extensively
investigated in previous studies, for studies including com-
puter vision. Zhang’s calibration method28 through a checker-
board is convenient and has been widely adopted. A
three-dimensional (3D) point in the real world coordinate
system can be denoted as Mw = [Xw, Yw, Zw, 1]T , with the
augmented vector 1 added. Similarly, its corresponding two-
dimensional (2D) pixels in visible image and thermal image
can be represented by mc = [uc, vc, 1]T and mt =
[ut, vt, 1]T in their pixel coordinate systems, separately.
The relationship between the 3D and 2D points can be
expressed by:

scmc = sc

uc
vc
1

⎡
⎢⎣

⎤
⎥⎦ = Kc[Rc|tc]Mw

= Kc[rc1 rc2 rc3 tc]

Xw

Yw
Zw
1

⎡
⎢⎢⎢⎣

⎤
⎥⎥⎥⎦

(9)

stmt = st

ut
vt

1

⎡
⎢⎣

⎤
⎥⎦ = Kt[Rt|tt]Mw

= Kt[rt1 rt2 rt3 tt]

Xw

Yw
Zw
1

⎡
⎢⎢⎢⎣

⎤
⎥⎥⎥⎦

(10)

where sc and st are scaling factors and Kc and Kt are intrinsic
matrices of the thermal and visible cameras. [Rc|tc] and
[Rt|tt] are extrinsic matrices of the thermal and visible
cameras including the rotation parameters Rc and Rt as well
as translate parameters tc and tt, and rci and rti represent the
ith column of the matrix Rc and Rt, respectively. Assume
that the plane of the checkerboard for calibration is Zw = 0
of the world coordinate system, so each calibration point on
it has Zw = 0, and hence the equations above can be simpli-
fied as:

uc
vc
1

⎡
⎢⎣

⎤
⎥⎦ = s−1

c Kc[rc1 rc2 tc]

Xw

Yw
1

⎡
⎢⎣

⎤
⎥⎦ = Hc

Xw

Yw
1

⎡
⎢⎣

⎤
⎥⎦
(11)

ut
vt
1

⎡
⎢⎣

⎤
⎥⎦ = s−1

t Kt[rt1 rt2 tt]

Xw

Yw
1

⎡
⎢⎣

⎤
⎥⎦ = Ht

Xw

Yw
1

⎡
⎢⎣

⎤
⎥⎦
(12)

where the 3 × 3 homography matrices Hc and Ht define the
relation between the point of the real world and the pixels
of the images. By annotating at least 4 calibration points on
the checkerboard with known 3D coordinates and detecting
their projected pixels with 2D coordinates on the images,
the calibration matrices Hc and Ht of the thermal and
visible cameras can be calculated through OpenCV. The
standard calibration method would have to derive the intrinsic
matrix and extrinsic matrix, but for our case, we only require
the homography Hc and Ht to obtain the transformation
matrix between coordinate systems of thermal and visible
cameras for registration. The visible images can be registered
with the thermal images by the function:

ut
vt
1

⎡
⎣

⎤
⎦ = HtH−1

c

uc
vc
1

⎡
⎣

⎤
⎦ = W

uc
vc
1

⎡
⎣

⎤
⎦ (13)

where W = HtH−1
c is the transformation matrix for image

registration.
However, the conventional method must rely on a

checkerboard and its cross dots as the image and world
points, which cannot be detected by thermal cameras and
thus is not applicable directly. To address this problem, the
calibration of thermal images includes a step to design pat-
terns with clear feature points that can be recognized by
infrared cameras before applying conventional calibration
algorithms. As Method 1 shown in Figure 11, it leverages
a foam metal plate32 made of cold and black metal aluminum
disks inserted into a pink foam board at the ambient tempera-
ture. Thus, it consists of round dots that vary in temperature
from that of the plate as thermographic patterns, and hence
both the RGB visible camera and the infrared thermal
camera can capture the recognizable features of the board.
As a result, it is now possible to apply the conventional cali-
bration technique introduced above28 to extract the homogra-
phy matrices Hc and Ht of the visible and thermal cameras,
which is implemented by OpenCV. The transformation
matrix W, calculated based on homography matrices, con-
verts every pixel on the visible images from the coordinate
system of the visible camera to the coordinate system of
the thermal camera as shown in the equation (13), so the
visible images are registered with thermal images and the
shifts are removed. The blank pixels of the image after regis-
tration as well as redundant parts of the image will be cut off
to adjust the size of both types of images to be consistent.

An alternative33 simplifies the calculation of the trans-
formation matrix for calibration and also requires a foam
metal board as a checkerboard. Illustrated in Figure 11 as
Method 2, pixels are translated by calculating a root mean
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square error (RMSE) of the centroids of the metal alumi-
num disks between the RGB visible image and infrared
thermal images. It is feasible as the thermal and visible
cameras are on the same plane and vertical line as the
FLIR cameras we used in this work.

Maximum temperature extraction. The maximum tempera-
ture around each pin site region might be significant for
the infection assessment according to our pilot research.
As a result, the last step of the model is to automate the

process of extracting the maximum temperature from the
detected bounding box, which is shown in Figure 12. The
pixel-level temperature values are directly readable from
the FLIR images, as these follow the exchangeable image
file format standard. After the bounding boxes are trans-
ferred to the calibrated thermal images, their coordinates
can directly be obtained. As pin site regions on the tempera-
ture array are determined by the coordinates, the maximum
temperature of each pin site can be calculated accordingly.
As presented in Figure 12, the maximum temperature

Figure 11. Two suggested methods for thermal camera calibration.

Figure 12. Maximum temperature extraction.
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within the detected bounding box of the pin site is extracted
based on the coordinates of 4 corners and relevant informa-
tion in the temperature array of the thermography.

Model configuration and evaluation methods

The pin site detection model training is set as the
YOLOv5-small configuration and carried out according to
the processes shown in Figure 7. As the default anchor box
setting for the COCO data set is used for the pin site data
set as the best possible recall value for pin site annotations
reaches 99% of the COCO data set. SGD optimizer is set
with momentum 0.937 and weight decay 0.0005. The
initial learning rate lr0 is 0.01 and IoU training threshold
is 0.2. In addition, the anchor threshold is set as 4.0 to
decide which anchor the pin site is associated with. With
the settings, the pin site detection model is pre-trained using
the large data set from hospital environments and then fine-
tuned by the small practical data set from home environments
(D1 data set) using transfer learning techniques. Finally, the
output of the model is filtered by non-maximum suppression
(NMS) to generate the detection results.

To evaluate the performance of the model for pin site detec-
tion, the basic statistics are observed on the test data set like
true positive (TP), false positive (FP), false negative (FN),
representing true detections, missed detections and false detec-
tions, separately. In addition, inference time for the analysis of
detection speed and advanced metrics including precision (P),
recall (R), F1-score and average precision (AP) are employed,
whose calculation functions are defined by:

Precision : P = TP
TP+ FP

, (14)

Recall : R = TP
TP+ FN

, (15)

F1 = 2 × P × R

P+ R
, (16)

AP = 1
101

∑
R∈{0,0.01,0.02,...,1}

max
R′≥R

P(R′). (17)

The precision indicates the ratio of correct detection and recall
defines the percentage of positives found by the model.
Furthermore, AP is calculated by the area under the precision-
recall rate curve, P(R′), which is defined by the precision at
recall R′. Note that as there is only one object class in our
target data set, the mean AP (mAP) is equal to AP.

Results and discussion

Basic model performance

To evaluate the basic performance in an ideal setting (hos-
pital environment), we compare the proposed pin site detec-
tion model (YOLOv5 with CDIoU) with other conventional

models such as FCOS and YOLOv4, which are trained and
tested with the hospital data set. Their performance metrics
are shown and compared in Table 3.

YOLOv4 vs YOLOv5. It can be found that YOLOv5 object
detectors lead to much faster operation and higher detection
precision than the models based on YOLOv4. The detected
boxes of pin sites generated by YOLOv5 models with
CDIoU, DIoU and CIoU have a high precision from 0.97
to 0.98, outperforming the anchor-free FCOS model and
YOLOv4 models by around 0.05. Similarly, mAP and F1

score results also indicate that YOLOv5 models excluding
the FCOS method still exhibit better detection accuracy,
improving the mAP and F1 by about 0.02 compared to
YOLOv4 models. YOLOv5 has proven its convincing
ability to identify and label all required pin sites from the
images with excellent accuracy, and its improvements in
accuracy over YOLOv4 do not come at the cost of
complex computation. While YOLOv4 is implemented in
Darknet, YOLOv5 is developed with PyTorch, which
makes it light-weight and fast as a real-time pin site detec-
tion model. In our case, the calculation YOLOv5 models
with DIoU, CIoU, and CDIoU require around 16.8 mega
floating-point operations per second (MFLOPS) for pin
site detection from one input image, which takes approxi-
mately 1.8 ms.

Besides, we have examined the anchor-free model using
the YOLOv5 structure incorporated with FCOS. However,
it performs worse than the traditional anchor-based frame-
works YOLOv5 with CDIoU with obvious reduction in
the recall rate and F1 score and is therefore not
recommended.

Table 3. Performance metrics of YOLOv5 and YOLOv4 pin site
detection models with CDIoU, DIoU, CIoU or YOLOv5 + FCOS on the
hospital data set.

Models

Hospital Data set

Precision Recall F1 mAP [0.5]

YOLOv5 + CDIoU 0.976 0.949 0.96 0.961

YOLOv5 + FCOS 0.933 0.759 0.837 0.737

YOLOv5 + DIoU 0.97 0.94 0.96 0.957

YOLOv5 + CIoU 0.98 0.94 0.96 0.96

YOLOv4 + CDIoU 0.93 0.93 0.93 0.94

YOLOv4 + DIoU 0.92 0.96 0.93 0.938

mAP: mean average precision; CDIoU: control distance intersection over
union; DIoU: distance-IoU; CIoU: complete-IoU; YOLO: you only look once;
FCOS: fully convolutional one-stage.
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Loss functions. The proposed combination of object detec-
tion framework and loss function, YOLOv5 with CDIoU,
contributes to the leading metrics in the tests. More TP
bounding boxes can be detected with the CDIoU loss,
achieving an outstanding precision of 0.976 and nearly
0.1 higher recall rate than DIoU and CIoU. It is because
the CDIoU loss can represent the difference in central dis-
tance and aspect ratio more comprehensively.
Furthermore, in the NMS process, two or more predicted
bounding boxes generated by DIoU and CIoU models
with similar center points could have the same high IoU
values in an image, which causes random selection of pro-
posals and hence a decline in the recall rate. However, the
model using CDIoU would result in different IoU values
for NMS due to another loss calculation method consider-
ing both the centroid and aspect ratio. As a result, some pro-
posals randomly discarded with DIoU and CIoU methods
would be picked by using the CDIoU approach instead,
so the recall rate is benefited. Such an improvement does
not come at the cost of computational time, as the model
using CDIoU stays a similar inference time to models
with DIoU and CIoU at around 1.8ms.

Improvements through transfer learning

With the satisfactory results in the test, the models based on
the YOLOv5 framework (without transfer learning) are
applied to more images from different scenarios in the D1
data set to verify their performance. However, as presented
in Table 4, the models with good metrics in the previous test
obtain relatively poor detection precision in applications for
patients. The mAP drops to around 0.3 with an AP of 0.58,
using YOLOv5 models for patients. It could be deduced
that patients lacking specialized skills lower the quality of
images, which creates a challenge for the models trained
by the high-quality images.

To address this issue, we take advantage of transfer
learning to improve the pin site detection accuracy for the
home data set without the need for a large amount of train-
ing data. A transfer learning technique based on parameter
sharing is employed, trained, and tested using the D1 data
set. We have an experiment on three strategies of defining
sharing parameters for our targeted data set, including
freezing backbone, freezing neck and backbone, and freez-
ing nothing. Obviously, the no-freezing method is chosen
for its fastest convergence rate based on the loss curve
and highest mAP value with the same number of epochs.
Finally, the finetuned model using YOLOv5 and CDIoU
and freezing no layers in transfer learning achieves an
mAP of 0.67 with high precision as shown in Table 5,
which is greatly improved compared to the results before
introducing transfer learning in Table 4.

In addition, the models based on YOLOv5 after transfer
learning are further evaluated by another Data set D2,
which contains low-quality images intentionally collected

from patients at home. The metrics of their performance
are concluded in Table 6 and compared to the models
with the same object detection architectures but without
transfer learning. There are considerable improvements in
precision and recall rate by 0.1–0.11 and 0.13–0.14, separ-
ately, through implementing the transfer learning tech-
nique. And generally, the introduction of transfer learning
increases the mAp scores by at least 0.17. The CDIoU
loss incorporated with transfer learning still brings
supreme performance, including detection accuracy and
speed rather than DIoU and CIoU. It earns 0.01 higher
recall rate and 0.008 better mAp score than other models
while the inference time is 0.1 ms faster. However, the
final pin site detection precision of 0.7 and recall rate at
0.58 in a new data set D2 is not as good as the performance
with the test data set. To gain the generalization ability over
a wide range of data collected in various environments,

Table 4. Performance metrics of YOLOv5 pin site detection models
with CDIoU, DIoU or CIoU trained by the hospital data set and tested
by the data set D1 from patients at home.

Models

Home data set D1

Precision Recall F1

mAP
[0.5]

Inference
time, ms

YOLOv5 + CDIoU 0.58 0.42 0.48 0.31 2.5

YOLOv5 + DIoU 0.55 0.41 0.47 0.29 2.4

YOLOv5 + CIoU 0.63 0.41 0.5 0.32 2.9

CDIoU: control distance intersection over union; DIoU: distance-IoU; CIoU:
complete-IoU; YOLO: you only look once; FCOS: fully convolutional
one-stage.

Table 5. Performance comparison of the YOLOv5 and CDIoU pin site
detection model incorporated with TL methods using the home data
set D1.

TL methods

Home Data set D1

Precision Recall F1

mAP
[0.5]

Inference
time, ms

No freezing 1 0.66 0.79 0.67 6.8

Backbone
freezing

0.76 0.66 0.71 0.61 9.8

Backbone
and neck
freezing

0.68 0.54 0.6 0.41 10.2

mAP: mean average precision; CDIoU: control distance intersection over
union; TL: transfer learning; YOLO: you only look once.

Annadatha et al. 15



further development as well as a better design of model
structure and parameters is necessary. The detected pin
site results with red bounding boxes on images in the hos-
pital data set and home data set are visualized in Figure 13
and Figure 14, respectively, which demonstrate the detec-
tion capability of the proposed YOLOv5 model with
CDIoU and finetuned by transfer learning.

Results visualization

Pin site detection in thermography. Figure 15 illustrates the
results of detected pin sites on thermography. The proposed
pin site detection model based on YOLOv5 is firstly applied
to the visible images in Figure 15(a). Then, the generated
bounding boxes are transferred to the corresponding
thermal images and illustrated as pin sites in Figure 15(b),
thanks to the calibration of visible and thermal cameras

and registration of images in advance. Although it is not
possible to directly apply object detection models to
thermal images where pins of EFs are not clearly visible,
our proposed method leverages object detection model on
visible images and camera calibration methods to find out
pin sites and project detected bounding boxes onto the
thermal images. Primarily detecting pin sites on visible
images could have higher accuracy and calibration mini-
mizes the displacement errors between cameras to transfer
bounding boxes, contributing to the precise annotation of
pin sites on thermal images.

Maximum temperature extraction. Based on the regions of
interest for all pin sites generated by the model, the
maximum temperature can be easily measured for infection
evaluation. Figures 16 and 17 show maximum temperature
values for some pin sites in data sets T1 and T2, respectively.
These results are obtained by applying the proposed pin site
detection model to visual images and extracting from the
aligned bounding boxes on their corresponding thermal
images. Not limited to extracting maximum temperatures
within the annotated area, more analysis methods are pos-
sible to be performed to the extracted data from the
regions, such as deriving a function of temperature and
area.34 We believe further studies on infection could be effi-
ciently carried out with the help of our proposed model.

Future work

The key task in our future work is to apply the pin site
detection tool for studies focusing on infection detection.
The temperatures at the pin site are associated with the
early signs of wound inflammation and infection, and a
thermography-based analysis might be an efficient tool to
detect it.2,34 We will extend the size of our data set, and
the developed pin site detection will be applied to automate
the process of annotation to explore possible patterns of
infection related to thermal imaging.

In addition, the results presented above demonstrate the
general performance of the automatic pin site detection tool
and indicate that it is ready for application in the research in
infection detection for annotation of regions of interest.

Figure 13. Pin site detection results in bounding boxes with confidence scores, generated by the proposed model using YOLOv5 with CDIoU
on the hospital data set. YOLO: you only look once; CDIoU: control distance intersection over union.

Table 6. Performance metrics of YOLOv5 pin site detection models
with and without TL using the data set D1 and tested on the home
data set D2 from patients.

Models

Home data set D2

Precision Recall F1 mAP [0.5]
Inference
time, ms

TL (D1) + YOLOv5
+ CDIoU

0.7 0.58 0.64 0.518 1.9

TL (D1) + YOLOv5
+ DIoU

0.69 0.57 0.63 0.51 2.0

TL (D1) + YOLOv5
+ CIoU

0.7 0.57 0.63 0.5 2.2

YOLOv5 + CDIoU 0.6 0.44 0.51 0.34 1.8

YOLOv5 + DIoU 0.59 0.44 0.5 0.36 2.1

YOLOv5 + CIoU 0.59 0.44 0.5 0.34 2.1

mAP: mean average precision; CDIoU: control distance intersection over
union; TL: transfer learning; YOLO: you only look once.
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Figure 15. Applications of the pin site detection model on the thermal images: (a) original visible images, (b) infrared thermal images with
pin site bounding boxes generated by the proposed model on the original visible images.

Figure 14. Pin site detection results in bounding boxes with confidence scores, generated by the model pre-trained using YOLOv5 with
CDIoU and finetuned by transfer learning on the home data set. YOLO: you only look once; CDIoU: control distance intersection over union.

Figure 16. Measurement of maximum temperature in T1 data set.
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However, we notice that there is some room for improve-
ment in our future work. First of all, the data sets in this
work are collected from three different cameras while we
were exploring the choice of cameras with the consideration
of factors such as resolution, temperature accuracy, operat-
ing distance, costs and operational difficulties, which may
be considered as weaknesses to the study. On the other
hand, the use of diverse types of cameras and the different
conditions, such as obtained by hospital staff or the patient
himself, could introduce a strength to the proposed model
since its generalization has been further expanded under
different conditions with variations in image specifications.
In future infection studies, the appropriate type of thermal
camera will be selected for collecting the extended data
set after careful assessment of those factors. Besides, a
wider diversity of data related to pin site detection
studies, such as skin tones, infection level and fracture
type, will be collected and recorded in the future. The
current pin site detection model has been trained primarily
on images of light skin tones, as it reflects the predominant
skin tones of actual patients from Scandinavian countries in
our clinic. However, diversity is warranted, and more skin
tones are essential for future refinement of the model. As
for camera calibration and image registration, we simplify
this step and obtain the registered visible images and tem-
perature values from the thermal images with the help of
the FLIR Image Extractor tool due to the limitation of mate-
rials. To transfer the region of interest to the thermal image
more precisely, one of the two recommended calibration
methods described in the ‘Method section will be
implemented.

Conclusion
In this paper, we present a pin site detection model prepar-
ing for exploring a new technique of infection detection

through thermography to monitor patients after lower
limb external fixation. The challenge of annotating pin
sites on thermal images has been overcome by applying
the deep learning-based object detection model to the
respective visible images and registering them with their
corresponding thermal images. For locating pin sites on
visible images, YOLOv5 object detection architecture is
selected in this work, incorporated with a novel loss regres-
sion method by CDIoU and optimized by transfer learning
to be adapted for patient applications in practical environ-
ments. Thanks to image registration, the detected bounding
boxes can be transferred to the thermal images without
losing accuracy and are ready for further temperature ana-
lysis. We have applied the proposed model to the data
set, and the expected pin site regions and temperature
values are successfully annotated and detected.

The development of the pin site detection model is sig-
nificant to the future goal of studying the relationship
between temperature and pin site infectionin patients with
EFs with the following advances.

1. Provide an automatic pin site detection tool to extract
targeted temperature information from a large number
of thermal images, improving the efficiency of neces-
sary data collection.

2. Ensure the accuracy of marking pin sites by the conjoint
utilization between visible images and thermal imaging
through camera calibration and image registration.

3. Optimize the YOLOv5 object detection architecture for
pin site detection in general scenarios, which is
achieved by integrating the CDIoU loss function and
cooperating with the transfer learning algorithm.

4. Pave the way for our further research to reveal the
underlying patterns of infection detection through
thermography.

Figure 17. Measurement of maximum temperature in T2 data set.
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Being able to extract targeted temperature information from
a large number of images automatically, this time-
consuming work is therefore simplified and necessary
data for analysis would be available. In addition, we lever-
age the object detection model, YOLOv5, in this work for
pin site detection. Instead of directly using the original
model, the selection of loss functions is considered for
potential optimization towards our aimed applications.
Our experiment indicates CDIoU outperforms other con-
ventional methods and is selected. It also verifies the effect-
iveness of the CDIoU loss function integrated into the
YOLOv5 architecture in practical applications. Besides,
the transfer learning algorithm is incorporated, and the
motivation comes from our experiment results that the
YOLOv5 pin site detection model trained in a hospital
data set has a reduced accuracy when applied to a patient’s
home environment. Despite the limitation of the size of the
home scenario data set, after being finetuned transfer learn-
ing, the model manages to increase precision and recall rate
by 0.1 and 0.14, respectively, showing the adaptability in
the home scenario. In general, compared to the original
model, for the data set from home scenarios, the introduc-
tion of CDIoU loss function and transfer learning improves
the accuracy performance and maintains inference time
similarly. The experimental results in this paper have
demonstrated the desired capability as well as the perform-
ance of the proposed pin site detection model that satisfies
the requirements of detecting pin sites above.

By calibrating and registering the thermal camera and
visible camera, the detected bounding boxes of pin sites
on the visible images can be transferred to the thermal
images for temperature analysis and infection detection.
Once we could determine the assessment criteria of pin
site infection on thermal images, the patients could use
their mobile phones with the proposed pin site detection
model for remote monitoring every day at home. In total,
this paper exhibits the first work applying an object detec-
tion model on thermographic images for pin site detection,
which paves the way for our future research on infection
analysis with temperature information.
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