Aalborg Universitet

A new model for gas radiative properties applicable to oxy-fuel combustion modelling

Yin, Chungen; Johansen, Lars Christian Riis; Rosendahl, Lasse; Kær, Søren Knudsen

Publication date: 2010

Document Version Publisher's PDF, also known as Version of record

Link to publication from Aalborg University

Citation for published version (APA):

Yin, C., Johansen, L. C. R., Rosendahl, L., & Kær, S. K. (2010). *A new model for gas radiative properties applicable to oxy-fuel combustion modelling*. Poster presented at 33rd International Symposium on Combustion, Beijing, China.

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal -

Take down policy

If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to the work immediately and investigate your claim.

A new model for gas radiative properties applicable to oxy-fuel combustion modelling

Chungen Yin, Lars C.R. Johansen, Lasse A. Rosendahl, Søren K. Kær Department of Energy Technology, Aalborg University, Denmark

Introduction

Radiation is the principal mode of heat transfer in furnaces. Modeling of radiation heat transfer in combustion systems is very complicated. There are two key issues, i.e., how to calculate radiation intensity at different locations along different directions from radiative transfer equations and how to evaluate radiation properties at different locations. Different combustion environments (air-fuel or oxyfuel) make no difference to the 1st key issue; they will only affect the gaseous radiative properties.

Result 2: The new models

The complete set of the new models consists of the following equations and new parameters for a number of representative air-fuel and oxy-fuel conditions, and the way to implement them into CFD modeling. Here, only the new WSGGM parameters for the representative oxy-fuel conditions are listed, as seen in Table 1.

Result 3: Demonstration

The new models have been applied to CFD of a 0.8MW IFRF oxy-natural gas flame furnace.

Models for gaseous radiative properties have been well established for air combustion. However, there is uncertainty regarding their applicability to oxy-fuel conditions. In this paper, a new and complete set of models for gaseous radiative properties is derived, which is applicable to CFD modeling of both air-fuel and oxy-fuel conditions. The derivation, calibration and implementation of the new model are given.

Method

- First, a computer code is developed to evaluate the emissivity of *any* gas mixture at *any* condition by using the exponential wide band model (EWBM), and the calculated results are calibrated in very details by data in literature.
- Then, the calibrated code is used to generate emissivity databases for representative air-firing and oxy-firing conditions, for each of which a new weighted-sum-of-gray-gases model (WSGGM)

$$\varepsilon = \sum_{i=0}^{I} a_{\varepsilon,i}(T_g) \cdot \left(1 - e^{-k_i \cdot P \cdot L}\right)$$

$$a_{\varepsilon,i}(T) = \sum_{j=1}^{J} b_{\varepsilon,i,j} \left(\frac{T_g}{T_{\text{ref}}}\right)^{j-1} \qquad i = 1, \dots, I \qquad a_{\varepsilon,i} > 0$$

I = 4, J = 4, $T_{ref} = 1200$ (in the unit of K) for a better estimate

 $k_0 = 0$: represent 'windows' in the spectrum; $a_{\varepsilon,0} = 1 - \sum_{i=1}^{I} a_{\varepsilon,i} > 0$

P: the sum of the partial pressures of all the participating gases, atm

Table 1. New parameters for the WSGGMs, applicable to oxy-fuel flames.

i	k _i	$b_{s,i,1}$	$b_{\varepsilon,i,2}$	$b_{s,i,3}$	$b_{s,i,4}$					
$P_w \rightarrow 0$ atm, $P_c \rightarrow 0$ atm										
1	0.009422	0.778969	-1.342848	0.964858	-0.195747					
2	0.415646	-0.011449	0.343754	-0.234886	0.044008					
3	11.617018	-0.007627	0.242233	-0.173738	0.033868					
4	319.911168	0.080082	-0.049280	0.001861	0.002232					
$P_w = 0.1 \text{ atm}, \ P_c = 0.1 \text{ atm}$										
1	0.256738	0.492304	-0.433789	0.279329	-0.057770					
2	3.108033	0.082686	0.486294	-0.369752	0.070509					
3	52.585782	0.144385	-0.083662	0.002003	0.003902					
4	440.845718	0.079515	-0.110361	0.051379	-0.007983					
$P_w = 0.3 \text{atm}, 1$	$P_c = 0.1 \mathrm{atm}$									
1	0.132242	0.478371	-0.608643	0.475098	-0.109044					
2	14.660767	0.101065	0.204118	-0.202202	0.042771					
3	1.750654	0.185155	0.299794	-0.240346	0.046968					
4	165.763926	0.191665	-0.277448	0.133514	-0.021280					
$P_w/P_c = 1/8$, $P_w + P_c = 1$ atm (corresponding to dry flue gas recycling, FGR)										
1	0.051237	0.515415	-0.618162	0.430921	-0.092082					
2	0.688383	0.199807	0.298581	-0.265758	0.052910					
3	13.763205	0.138767	-0.001851	-0.049353	0.013012					
4	289.841885	0.087511	-0.067295	0.013489	-5.54E-06					
$P_w/P_c = 1/4 ,$	$P_w + P_c = 1 \text{ atm}$									
1	0.052694	0.486247	-0.644137	0.485654	-0.107808					
2	0.752776	0.213959	0.306543	-0.264417	0.051889					
3	11.543306	0.181991	-0.020460	-0.053791	0.015058					
$\frac{4}{D / D - 1/2}$	252.958841	0.105180	-0.096088	0.028114	-0.002443					
$P_W/P_c = 1/2 ,$	$P_w + P_c = 1 \text{ aum}$									
1	0.052378	0.383225	-0.510937	0.442201	-0.106398					
2	0.712283	0.251481	0.101002	-0.150405	0.028982					
5	0.007037	0.206259	0.070097	-0.155008	0.032090					
$\frac{4}{P/P} = 3/4$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$									
$1_{W}^{1} = 0, 1,$	$1_W + 1_c = 1$ utili 0.051630	0.255053	0 276222	0 311285	0.084003					
2	0.051059	0.235955	-0.276222	0.511265	-0.004903					
3	6.051770	0.160253	0.289548	-0 284144	0.060344					
4	150.875915	0.201452	-0.233937	0.095159	-0.013302					
$P_{\rm w}/P_{\rm c} = 1/1$,	$P_{1v} + P_c = 1$ atm (correspondence)	onding to wet FGR)								
1	0.051487	0.164048	-0.087793	0.195253	-0.063573					
2	0.571797	0.412652	-0.339810	0.197886	-0.038963					
3	5.398936	0.112364	0.450929	-0.388486	0.079862					
4	130.622859	0.238339	-0.288619	0.121962	-0.017651					
$P_w/P_c = 2/1$, $P_w + P_c = 1$ atm (corresponding to, e.g., oxy-fuel combustion of natural gas, without FGR)										
1	0.054480	-0.002188	0.286129	-0.048594	-0.016243					
2	0.555304	0.546857	-0.714799	0.452812	-0.088841					
3	5.040174	-0.001911	0.764177	-0.581819	0.115069					
4	100.372663	0.317219	-0.415470	0.186570	-0.028335					
$P_w / P_c = 4/1$,	$P_w + P_c = 1 \mathrm{atm}$									
1	0.060800	-0.053999	0.434975	-0.152413	0.005094					
2	5.608831	-0.094953	0.952010	-0.696161	0.136316					
3	0.676040	0.606525	-0.853216	0.545562	-0.107328					
4	84.540632	0.369661	-0.517493	0.244011	-0.038451					

with new parameters is derived. The way to implement the new models into CFD simulations of combustion systems is given.

 Finally, as a demonstration, the new models are applied to CFD modeling of a 0.8MW oxy-natural gas flame furnace. The CFD results are compared with those based on the widely used WSGGMs in literature. Based on that, some useful guidelines on oxy-fuel modeling are recommended.

Result 1: Calibration of EWBM code

Based on "almost exact analytical expressions", a computer code in c++ is developed to evaluate the emissivity of *any* gas mixture that may consist of H_2O , CO_2 , CO, CH_4 , NO and SO_2 at *any* condition using the EWBM. The application of this code to a gas mixture is shown below, with almost all the values here calibrated with a reference example.

[0] Input Conditions: Gas temperature, T_g [K] = 1500.00 Total pressure, P_T [Pa] = 101325.00 Path length, S [m] = 0.50000 Mole fraction: (i=0) x_H20=0.160; (i=1) x_C02=0.085; (i=2) x_C0=0.020; (i=3) x_CH4=0.005											

[1] Calculate th λ[μm] H2O (i=0)	ne lower an χ[g/m2]	nd upper Pe	band limits ω[1/cm]	(η_L, η_U) fo α[m2/(g*cm)]	r j-th band β	of i-th A[1/cm]	participa τ Δι	ting species η=A/(1-τ)[1/cm]	η_L[1/cm]	η_U[1/cm]	
71.43 (j=0) 6.25 (j=1) 2.66 (j=2)	11.7090 11.7090 11.7090	1.2753 1.2753 1.2753	268.398 218.436 232.379	4327.750522 41.200000 24.995037	0.03695 0.17712 0.40010	879.403 259.220 253.996	0.3052 0.5952 0.7334	1265.701 640.322 952.754	0.000 1279.839 3283.623	772.850 1920.161 4236.377	

 P_w , P_c and P_w/P_c are never constant throughout any real combustion system. The parameters of different representative conditions will be used based on local gas conditions in the combustion system under modeling.

Conclusions

The new WSGGMs need to be used in CFD modeling of large-scale oxy-fuel furnaces. For small-scale facilities, they do not make remarkable difference. Combustion chemistry also plays a key role in oxy-firing modelling.

1.8/ (j=: 1.38 (j=4	4) 11.7090	1.2753	123.935	2.647639	0.20987	45.346 31.001	0.9000	453.455 310.011	7094.995	7405.005
14.99 (j=1) 10.42 (j=1)	$\begin{array}{c} 0) & 15.1962 \\ 1) & 15.1962 \end{array}$	1.0178	49.187 51.898	19.000000 0.156331	1.12948	136.241	0.3610	213.219	560.391 948.122	773.609 971.878
9.43 (j=2	2) 15.1962	1.0203	39.117	0.158436	2.66500	2.408	0.9000	24.076	1047.962	1072.038
1.15 (j=3	3) 15.1962	1.0203	13.377	110.000000	1.15962	201.774	0.2150	257.030	2152.970	2410.000
2.73 (j=4 1.92 (j=4	4) 15.1962 5) 15.1962	1.0165	91.015	5.9536/2	3.30914	90.4/3	0.9000	904.730	5207.635	4112.365
co(i=2)	5) 15.1502	1.0105	155.010	0.130024	12.02155	2.057	0.5000	20.374	5105.515	5210.407
4.67 (j=(0) 2.2757	1.0016	98.761	20.900000	0.05205	26.148	0.5984	65.118	2110.441	2175.559
2.35 (j=1	1) 2.2757	1.0000	77.460	0.181109	0.13722	0.412	0.9000	4.122	4257.939	4262.061
CH4 (1=3)	0) 0 2250	1 0012	01 222	28 000000	2 02972	9 124	0 9000	01 228	1264 221	1255 610
3.31 (i=1	1) 0.3259	1.0012	216.887	46.000000	1.53867	14.989	0.9000	149.892	2945.054	3094.946
2.37 (j=2	2) 0.3259	1.0012	232.379	4.248850	9.90290	1.384	0.9000	13.845	4213.078	4226.922
1.71 (j=	3) 0.3259	1.0012	174.284	0.811520	23.42482	0.264	0.9000	2.644	5859.678	5862.322
[2] Calculate	e band transm	ittances	(т 1 т 2	т b) Planck	blackbody	fractional	function (f	II f I) ar	d total emis	sivity
η_L[1/cm]	$\eta_U[1/cm]$	Overlapp	ed_Bands(i,	j) т_1	т_2	т_b=т_1*	τ_2 f_U	_0, 'L/, a' f_L	(1-τ_b)*(f	_U-f_L)
0.000	560.391	ÇÖ,	0) (-, -)	0.3052	1.0000	0.3052	1.0000	0 0.99352	0.0045	00
560.391	772.850	(0,	0) (1, 0)	0.3052	0.3610	0.1102	0.9935	2 0.98433	0.0081	76
772.850	773.609	Ç1,	0 (-, -)	0.3610	1.0000	0.3610	0.9843	3 0.98429	0.0000	27
773.609	948.122	2.1	3 (,)	1.0000	1.0000	1.0000	0.9842	9 0.97298	0.0000	91
971 878	1047 962		3 67 3	1 0000	1 0000	1 0000	0.9723	6 0.97110	0.0001	00
1047.962	1072.038	č1.	2)(-, -)	0.9000	1.0000	0,9000	0.9649	1 0.96280	0.0002	12
1072.038	1264.381	22	-5 (-, -5	1.0000	1.0000	1.0000	0.9628	0 0.94346	0.0000	00
1264.381	1279.839	(3,	0) (-, -)	0.9000	1.0000	0.9000	0.9434	6 0.94172	0.0001	74
1279.839	1355.619	Ç0,	1) (3, 0)	0.5952	0.9000	0.5357	0.9417	2 0.93282	0.0041	33
1355.619	1920.161	Ç0,	12 (-, -)	0.5952	1.0000	0.5952	0.9328	2 0.8484/	0.0341	4/
1920.161	2110.441	<u> </u>	-) (-, -)	1.0000	1.0000	1.0000	0.8484	7 0.81415 E 0.90616	0.0000	00
2110.441	2175 559	21	3)(2, 0)	0.3964	0 5984	0.5964	0.0141	6 0 80188	0.0032	30
2175.559	2410.000	č1.	3)(-, -)	0.2150	1.0000	0.2150	0.8018	8 0.75599	0.0360	30
2410.000	2945.054	Č-,	-) (-, -)	1.0000	1.0000	1.0000	0.7559	9 0.64526	0.0000	00
2945.054	3094.946	(3,	1) (-, -)	0.9000	1.0000	0.9000	0.6452	6 0.61382	0.00314	44
3094.946	3207.635	(-,	-) (-, -)	1.0000	1.0000	1.0000	0.6138	2 0.59031	0.0000	00
3207.635	3283.623	(1,	4)(-, -)	0.9000	1.0000	0.9000	0.5903	1 0.57455	0.0015	76
3283.623	4112.365	ξů,	2) (1, 4)	0.7334	0.9000	0.6601	0.5/45	5 0.41325	0.0548	33
4213 078	4226 922	20,	(2) $(3, 2)$	0.7334	0,9000	0.7554	0.4152	5 0 39304	0.0047	19
4226.922	4236.377	čŏ:	2)(-1, -1)	0.7334	1.0000	0.7334	0.3930	4 0.39140	0.0004	37
4236.377	4257.939	Č-,	-) (-, -)	1.0000	1.0000	1.0000	0.3914	0 0.38767	0.0000	00
4257.939	4262.061	(2,	1) (-, -)	0.9000	1.0000	0.9000	0.3876	7 0.38696	0.0000	71
4262.061	5123.272	(-,	-) (-, -)	1.0000	1.0000	1.0000	0.3869	6 0.25687	0.0000	00
5123.272	5189.513	(0,	3) (-, -)	0.9000	1.0000	0.9000	0.2568	7 0.24839	0.0008	48
5189.513	5210.487	Ç 0,	3)(1, 3)	0.9000	1.0000	0.8100	0.2483	9 0.24575	0.0005	69
5576.728	5859.678	2.	3 6 2 3	1.0000	1.0000	1.0000	0.2437	6 0.17432	0.00042	00
5859.678	5862.322	Č3.	3) ()	0.9000	1.0000	0.9000	0.1743	2 0.17406	0.0000	25
5862.322	7094.995	(-,	-) (-, -)	1.0000	1.0000	1.0000	0.1740	6 0.08549	0.0000	00
7094.995	7405.005	Ç0,	4) (-, -)	0.9000	1.0000	0.9000	0.0854	9 0.07076	0.0014	73
7405.005	100000.00	(-,	-) (-, -)	1.0000	1.0000	1.0000	0.0707	6 0.00000	0.0000	00
		(-, -)	means "no b	and"					sum = 0.16	7256724
The test-1		£ +h =		abaua and	i	16725672	4			
ino total		T THO MIV	TUPO of the	above condit	I	1 16//56/2/				

The total emissivity of the mixture at the above condition, $\epsilon = 0.167256724$ The equivalent (gray) absorption coefficient, $-(1/S)*\log(1-\epsilon) = 0.366059752$

The detailed results of the EWBM code applied to calculate the total emissivity of an arbitrary gas mixture.

Emissivity vs. beam length at different P_w/P_c *, for constant temperature 1750K.*

Emissivity vs. gas temperature at different P_w/P_c *, for constant beam length 40m.*

Contact:

Aalborg University, Dept. of Energy Technology

Chungen Yin

Ph: +45 30622577 Email: chy@et.aau.dk Web: http://www.iet.aau.dk

Acknowledgements

This work was financially supported by Grant ForskEL 2009-1-0256, "Advanced modelling of oxyfuel combustion of natural gas".