
https://doi.org/10.1007/s10664-022-10208-4
https://vbn.aau.dk/en/publications/1c8a2e23-69fa-46b1-a71c-2f5535de158c
https://doi.org/10.1007/s10664-022-10208-4

Empirical Software Engineering (2022) 27:165
https://doi.org/10.1007/s10664-022-10208-4

How Scrum adds value to achieving software quality?

Adam Alami1 ·Oliver Krancher2

Accepted: 8 July 2022
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022

Abstract
Scrum remains the most popular agile software development method implementation for a
variety of reasons; one important motive is to improve software quality. Yet many organiza-
tions fail to achieve quality improvements through the use of Scrum, and existing research
sheds little light on the value-add of Scrum for software quality. More specifically, (1)
how notions of software quality among Scrum practitioners relate to established quality
perspectives, (2) how Scrum helps teams to achieve higher software quality and (3) why
some teams fail to meet the objective of higher quality. We addressed these gaps through
a two-phased qualitative study based on 39 interviews and two in-depth case studies. We
find that Scrum practitioners emphasize established notions of external quality compris-
ing of conformity to business needs and absence of defects, while they also value internal
quality, especially sustainable software design. Our results show that Scrum helps teams
achieve both dimensions of quality by promoting some social antecedents (collaboration,
psychological safety, accountability, transparency) and process-induced advantages (itera-
tive development, formal inspection, and adaptation). Our findings unveil how these factors
contribute to achieving software quality and under what conditions their effects can fail
to materialize. These conditions include inconsistent Scrum implementations, cultural con-
straints, team tensions, and inaccessibility of end-users. In addition, the complexity of the
project aggravates the impact of these conditions. Taken together, these findings show that
Scrum can complement established quality assurance and software engineering practices by
promoting a social environment that is conducive to creating high-quality software. Based
on our findings, we provide specific recommendations for how practitioners can create such
an environment.

Keywords Agile methods · Scrum · Software quality · Case studies

Communicated by: Tayana Conte

� Adam Alami
adal@cs.aau.dk

Oliver Krancher
olik@itu.dk

1 Department of Computer Science, Aalborg University, Selma Lagerlöfs Vej 300,
9220 Aalborg, Denmark

2 IT University of Copenhagen, Rued Langgaards Vej 7, DK-2300 Copenhagen S, Denmark

http://crossmark.crossref.org/dialog/?doi=10.1007/s10664-022-10208-4&domain=pdf
http://orcid.org/0000-0003-4483-0105
mailto: adal@cs.aau.dk
mailto: olik@itu.dk

 165 Page 2 of 68 Empir Software Eng (2022) 27:165

1 Introduction

Agile software development methods have become mainstream. While the traditional
waterfall method works well when requirements are predictable, technologies are well
understood, and plans are irrevocable, agile methods enable adaptation and response to
change through early feedback and incremen5tal delivery (Chuang et al. 2014; Dingsøyr
et al. 2012). Scrum remains the most popular agile method (digital.ai 2021), with adoption
rates of around 75% (digital.ai 2021). Scrum practitioners attribute the popularity of Scrum,
among other factors, to its simplicity, its ease of implementation (Schwaber and Suther-
land 2017; Deemer et al. 2012) and its ability to enhance team productivity (Sutherland and
Sutherland 2014). The latter claim has also been corroborated by a number of empirical
studies (Layman et al. 2004; Ilieva et al. 2004; Teasley et al. 2000; Sutherland et al. 2009).

Notwithstanding these potential benefits, a key value-add of agile methods such as Scrum
lies in their potential to enhance software quality. According to an agile adoption survey
conducted in 2008 (Ambler 2008), 77% of the respondents claimed that agile adoption
helped achieve higher software quality. Vijayasarathy and Turk (2008) survey also sup-
ported this claim (Vijayasarathy and Turk 2008). They found that the second most cited
benefit of adopting agile methods was improved software quality. In a survey among Finish
organizations, Rodrı́guez et al. (2012) found that 61% of agile adopters were motivated by
improving product quality. A recent survey (digital.ai 2021) suggests that goals and bene-
fits have stood the test of time, reporting that 42% of participating companies adopted agile
to enhance software quality and that 46% were able to improve software quality (Rodrı́guez
et al. 2012).

While these figures indicate that some teams manage to improve software quality by
using Scrum, the numbers also show that the use of agile methods such as Scrum does not
always result in quality improvements. This is problematic given the enormous economic
costs associated with poor software quality. Software defects cost 40 to 1,000 times more
to correct after the release of the software (Issac et al. 2003). The American Consortium for
Information and Software Quality (CISQ) issued a report in 2018 on the state of software
quality in the US (Krasner 2018). The report estimates that the cost of poor software quality
in the US in 2018 was approximately $2.84 trillion. The report further states that about 60%
of the software engineering effort was consumed by finding and fixing defects (Krasner
2018). Bugs in production software can have a negative impact on the business, regardless of
severity. The same report claims that business disruptions caused by information technology
defects can cost between $32.22 and $53.21 a minute (Krasner 2018). Software defects
will continue to make their way into production. However, our efforts to prevent defects
and resolve them before they are released should continue. This includes research efforts
directed towards understanding how software teams can achieve higher software quality.

In sum, although poor software quality entails enormous costs and many teams use
Scrum to increase software quality, these efforts are not always successful. Thus it is impor-
tant to understand how teams can improve software quality by using Scrum and why these
efforts sometimes fail. However, we still do not know well enough how agile methods, par-
ticularly Scrum, help achieve high software quality. While some studies suggest that agile
methods help reduce defect densities (Ilieva et al. 2004; Layman et al. 2004; Li et al. 2010;
Abbas et al. 2010b; Tarhan and Yilmaz 2014; Williams et al. 2011); other work did not
find significant positive effects of agile methods use on quality (Li et al. 2010; Krancher
2020). Moreover, these studies do not dwell upon the way or manner in which methods
such as Scrum allow teams to achieve higher quality. In addition, we lack knowledge about

Empir Software Eng (2022) 27:165 Page 3 of 68 165

what agile methods do well and do differently to facilitate achieving software quality. Key
principles of the manifesto (Beck et al. 2001), e.g., “individuals and interactions over pro-
cesses and tools”, “customer collaboration over contract negotiation” and “responding to
change over following a plan” may indicate that the value-add of agile methods is strongly
related to values rather than specific engineering practices. How this shift from a process-
heavy approach to a value-based approach enhances the ability of software development
teams to achieve quality remains poorly understood. In addition, Arcos-Medina and Mauri-
cio (2019) literature review shows that most factors identified to improve quality in agile
teams are a combination of non-engineering (e.g., “self-organizing” and continuous learn-
ing) and engineering practices (Arcos-Medina and Mauricio 2019). Notably, “teamwork”
and “management” practices were often cited in the literature to advance quality (Arcos-
Medina and Mauricio 2019). Furthermore, even though the studies identified above suggest
a potential positive effect of the use of agile methods on quality, the latter is not explicitly
mentioned in the Agile Manifesto. This suggests that much remains to be learned about the
relationship between agile methods use and quality. In light of these gaps, our study exam-
ines three research questions. The first focuses on the concept of software quality, which
is rather complex “because it means different things to different people” (Kitchenham and
Pfleeger 1996). Given that definitions may evolve over time, it is sound to revisit them,
especially after a period where new methods have taken over and new ways of developing
software have been advocated and adopted. It is also an opportunity to assess whether a
consensus has emerged about the meaning of software quality. We want to understand agile
practitioners’ perspectives on the definition of software quality, which also allows us to dis-
cuss our findings on our subsequent research questions, with a more relatable definition of
software quality. Hence, we investigate:

RQ1: How Do Scrum Practitioners Define Software Quality?

Our second research question focuses on how Scrum teams achieve higher software
quality. Traditional approaches to software development assure quality by having qual-
ity gates at the transitions between project phases and by extensive tests at the end of
development. Traditional approaches also emphasize good software engineering and quality
assurance practices (e.g., continuous integration, coding standards, peer review and automa-
tion), which have been advocated for decades to achieve quality. In the Agile Manifesto,
quality is an attendant goal, not explicitly advocated. Moreover, there is a paucity of empiri-
cal research that shows how agile practitioners achieve higher software quality using Scrum.
Thus, it remains unclear how agile teams’ endeavors to attain higher software quality com-
pare to traditional approaches. Eliciting knowledge on how software quality is achieved in
the context of agile software development is relevant because it would make this knowledge
explicit in the software engineering literature, presenting thus an opportunity to reduce the
theory-practice gap, i.e., our theoretical understanding may not be universal in the industry
or discipline-wide. To recap, software quality control and assurance practices have existed
for decades prior to agile. The agile proposition is to influence values, principles, events and
activities in software development. The focus of our second research question lies on how
this proposition helps teams to achieve software quality:

RQ2: How Do Scrum Values, Principles and Prescribed Events and Activities Advance
Achieving Software Quality?

Our third research question focuses on why Scrum teams may fail to achieve higher
software quality. Although surveys have consistently reported promising results from agile

 165 Page 4 of 68 Empir Software Eng (2022) 27:165

adopters, they also tell a hidden story. For example, the latest available survey (digital.ai
2021) reports that 46% of agile adopters have achieved enhanced software quality. Then,
what happened in the other 54% of the surveyed companies? That is, why did some compa-
nies not achieve improvements in the quality of their software? Even in the most enthusiastic
survey, where 77% of the respondents reported increases of software quality, 23% of the
surveyed participants failed to enhance software quality. The literature cited above focuses
primarily on positive cases, i.e., noticeable improvements in software quality. We believe it
is essential to understand and report examples of the stories of the 54% (in digital.ai 2021
survey) and 23% (Ambler 2008 survey) cases. Hence, we propose to investigate:

RQ3: What Are the Circumstances and the Conditions which Impede Scrum Teams from
Improving the Quality of their Software?

We investigated our research questions using a two-phased qualitative research design
based on interviews and case studies. In the first phase, we conducted interviews to cap-
ture the experience and perspectives of Scrum practitioners, addressing RQ1 and RQ2. To
do so, we recruited practitioners with extensive experience in software development, man-
aging software teams, software developers, quality assurance practitioners, and participants
with responsibilities overseeing the delivery of software products using Scrum. It is par-
ticularly relevant to understand how practitioners have managed to successfully use Scrum
to achieve quality. Not only does this deepen our understanding of how practitioners use
Scrum to achieve quality; it also provides insights for those who pursue using this method.
Whereas Phase 1 focused on positive experiences using Scrum (i.e., practitioners with expe-
riences achieving better software quality using Scrum), Phase 2 zoomed into two cases with
limited improvements in software quality after more than two years of its implementation.
Thus, Phase 2 addressed RQ3 through a study of two negative cases. This juxtaposing of
positive (RQ2) and negative (RQ3) experiences provided a balanced perspective and was
instrumental in arriving at a synthesis of our conclusions. We found:

– RQ1: Even though our participants were somehow reluctant to define software quality,
stating the subjectivity of the concept, most participants emphasized properties that we
subsume under external quality, including conformity with business needs and absence
of defects. These properties are in line with well-established industry standards (e.g.,
ISO/IEC 25010 ISO/IEC 2011). Some participants, especially those recruited from pos-
itive cases, also emphasize properties related to internal quality, including a sustainable
software design that supports the continuity of the software and eases teamwork.

– RQ2: We identified the added value of Scrum for achieving software quality. It is
a combination of social qualities and process-induced advantages that strengthen the
team’s ability to deliver software within the quality expectations. While quality control
(e.g., software testing) and assurance (e.g., code review) techniques are prevention-
oriented and detection-oriented, respectively, the value added by Scrum lies in social
foundations and process-induced advantages that advance the team’s ability to deliver
software quality. For example, Scrum values promote psychological safety in the devel-
opment environment, which instills developers to feel “safe” to invest effort in assuring
quality, e.g., writing elegant and readable code. Scrum principles and values also pro-
mote collaboration, which facilitates knowledge sharing within the team, resulting in
a better understanding of the requirements and fewer assumptions that may result in
defects.

– RQ3: We found that the potential value-add of Scrum for achieving software qual-
ity can be compromised by constraints. These constraints can prevent the value-add

Empir Software Eng (2022) 27:165 Page 5 of 68 165

of Scrum by inhibiting social antecedents or process-induced advantages that are
promoted by Scrum. For example, in the cases we studied, we found that cultural con-
straints and team tensions restricted their Scrum implementations to produce some of
the results reported by Phase 1 participants. Cultural constraints hampered, for example,
the development of psychological safety, leading to an environment where engineers
feared to speak up. In the second case, tensions emerged in the team due to clashes in
expectations and mismatches of styles of work. While the team leadership exercised
control over the team and displayed an expectation of “no bad news, only good news,”
the team members wanted more leeway to influence and safety to raise their concerns.
These conditions rendered collaboration inefficient, and the lack of a psychologically
safe environment resulted in disengaged and less caring developers.

We start by reviewing relevant literature in Section 2. Then we describe our methods in
Section 3. Section 4 is devoted to the analysis and interpretation of the data. We validated
our findings and report the results in Section 5. We discuss the implications of our findings
in Section 6 and make recommendations for organizations seeking to implement Scrum to
elevate their teams’ abilities to achieve software quality. We highlight the limitations and
assumptions of the study in Section 7. Section 8 is devoted to discussing threats to validity.
We conclude in Section 9.

2 RelatedWork

We reviewed the literature to relate our study to the ongoing work in software engineer-
ing, identify gaps, and provide a benchmark for comparing our results with other findings
(Creswell and Poth 2016). In line with this goal and with traditions in qualitative research
(e.g., Alami and Paasivaara 2021; Alami et al. 2022; Prechelt et al. 2016), the focus of this
literature review was selective, in contrast focus systematic literature reviews, which aim
at systematically identifying, analyzing, and interpreting all available evidence on a topic
(Kitchenham et al. 2009).

We used combinations of keywords to identify related work. We searched several
research databases including Scopus, Web of Science, IEEE Xplore, ScienceDirect and
Google Scholar. We used combinations of these keywords in our search, “software quality”,
“quality assurance”, “quality”, “agile”, “agile methods”, “Scrum”, “extreme programing”,
and “XP.” We assessed the relevance of the identified work by reading the title, then the
abstract. In some cases, that was not sufficient to determine the relevance of the work. When
that was the case, we read the findings section to inform our decisions.

The question of whether Scrum adoption has significance in achieving software quality
has attracted some interest in both the information systems and the software engineering
community. Most of the available work investigates this question by assessing changes in
product quality before and after Scrum implementation (e.g., Abbas et al. 2010a; Li et al.
2010) or by comparing plan-driven and agile teams (e.g., Tarhan and Yilmaz 2014; Williams
et al. 2011; Layman et al. 2004). Using the number of defects as an indicator of software
quality, these studies show that Scrum and other agile methods can help teams to achieve
higher software quality (e.g., Abbas et al. 2010a; Li et al. 2010; Layman et al. 2004). Still,
with few exceptions (e.g. Prechelt et al. 2016), the available literature has not examined in
what way or manner or by what means Scrum makes a difference.

Throughout the past decades, research on the relationship between agile methods and
software quality has focused on comparison studies (Tarhan and Yilmaz 2014; Layman

 165 Page 6 of 68 Empir Software Eng (2022) 27:165

et al. 2004; Williams et al. 2011), the impact of the adoption of an agile method on soft-
ware quality (Li et al. 2010; Abbas et al. 2010a; Green 2011), in-depth examination of how
software team(s) achieve software quality using agile methods (Prechelt et al. 2016) and
the effect of geographical dispersion on quality in agile teams. Methodologically, most of
these studies opted for case studies to carry out their research, with few instances of survey
research (Abbas et al. 2010a; Krancher 2020) and research relying on survey and archival
data (Green 2011). The preference for case studies is understandable as this method pro-
vides access to a particular setting with the purpose of examining it in depth to enrich our
understanding of the problem being investigated (Yin 2018). Below we present and discuss
the related work chronologically. At the end of the section, we summarize the outcome of
this review in Table 1 and highlight the delta with our work.

2.1 Early 2000�s

This period saw the emergence of early work on the topic, especially (Layman et al. 2004)
work. They conducted a longitudinal case study to examine the impact of Extreme Program-
ming (XP) practices on software quality. They evaluated and compared two releases of the
product, where the first used XP and the second did not (Layman et al. 2004). For the XP
release, the defect rate was reduced by 65% pre-release, and 35% post-release, well below
the industry average ((Layman et al. 2004). Although the team in Layman et al.’s study used
XP and not Scrum, XP and Scrum are both based on agile principles, suggesting that paral-
lels between teams using the two methods can be drawn. Even though not directly related
to software quality, Hanssen and Fægri (2006) report a case study of a team transitioning
to agile methods. They found that enhanced customer participation yielded benefits such as
improved understanding of users’ problems, which may have benefited software quality.

Sutherland et al. (2009) investigated a distributed software development team using
Scrum to assess its performance and defect rates. The team was co-located in the Nether-
lands prior to the company making the decision to relocate part of the team’s activities to
India. The study used data reported prior to the team becoming distributed to compare defect
rates pre and post relocation. For productivity, they used previously reported data (Cohn
2004) of co-located Scrum teams as a point of reference.

After the team became distributed, open defects during the course of the project remained
unchanged, and the number of open defects per KLOC has decreased. In addition, 90% of
the defects found were resolved in the same iteration in which they were found or introduced
(Sutherland et al. 2009). For productivity, they used the number of lines of code, function
points (FP), and FP per month. Compared to Cohn’s study (2004), even distributed, team
productivity matches co-located Scrum teams (Sutherland et al. 2009). The point made by
this study is that a rigorous implementation of Scrum reduces barriers inherent to the nature
of distributed teams. Scrum enhanced communication, coordination and helped reduce the
impact of cultural differences. These social qualities helped the team to maintain its pro-
ductivity level and the quality of the software they delivered (Sutherland et al. 2009). Our
study further unfolds how Scrum influences a team’s ability to achieve software quality.

Even though this early work did not make strong conclusions about the impact of agile
methods on software quality, it inspired subsequent work. After 2010, new work (e.g.,
Williams et al. 2011) continued in the same line, i.e., comparing the effect of agile meth-
ods implementation on software quality to plan-driven approaches. In addition, researchers
(e.g., Abbas et al. 2010a; Li et al. 2010; Green 2011) during this period, became interested
in evaluating the improvement in software quality before and after the adoption of agile
methods.

Empir Software Eng (2022) 27:165 Page 7 of 68 165

Table 1 Related work and the differences to our work

Period Related work Differences to this study

Early Layman et al. (2004), These works are concerned with the outcome (i.e., does the

2000’s Hanssen and Fægri software quality improve?) and not in what way or manner

(2006), Sutherland et al. agile methods help. Our work sheds some light on how

(2009), Cohn (2004) Scrum adds value to teams pursuit for better quality. We

conclude that Scrum brings about social qualities, such as

collaboration and transparency, to the team. These qualities

promote behaviors such as knowledge sharing and voluntary

inspections which have subsequent effects on improving quality.

After 2010 Abbas et al. (2010a), These works evaluate quality before and after the adoption

Li et al. (2010), of agile methods. These studies concur with the work cited

Green (2011), above, i.e., agile methods can make a difference when it

Williams et al. (2011), comes to software quality. Still, examining only the outcome

Hoda et al. (2011) (i.e., does the software quality improve?) has inherent

limitations; we still do not know what agile methods bring

into the table to create the effect of improving quality and in

particular why some teams fail to achieve similar outcome.

In addition to showing how Scrum adds value to achieving

software quality, our work also identified potential constraints

that hinder teams ability to do so.

After 2014 Tarhan and Yilmaz These work highlight the importance of frequent feedback,

(2014), Prechelt et al. including from the end users in order to improve software

(2016) quality in agile methods. These works have parallels to ours.

Our work builds on these studies and shows additional social

and process enablers promoted by Scrum which help advancing

teams’ quest for better quality. Some of our findings (e.g.,

psychological safety, accountability and transparency) have not

been reported previously to influence software quality.

After 2018 Krancher (2020) Software quality was not the focus on the study. The study shows

that different agile practices may have different effects on

software quality and that the effects can depend on requirements

risk. Thus, these works highlights the need to understand in

greater depth how and why agile methods impact software quality

and how these effects depend on project conditions.

Our work addresses these two issues through RQ2 and RQ3.

2.2 After 2010

During this period, three studies (Abbas et al. 2010a; Li et al. 2010; Green 2011) looked at
the impact of agile methods adoption on software quality. While Abbas et al. (2010a) and
Green (2011) reported a noticeable improvement in quality, Li et al.’s (2010) conclusions are
not entirely aligned with the former. They suggested that Scrum influenced the efficiency
of the team, including their quality assurance processes, but had no “significant” impact on
defect density.

 165 Page 8 of 68 Empir Software Eng (2022) 27:165

Abbas et al. (2010a) conducted a survey study to investigate the impact of “agile projects
governance” on quality. Their overall conclusion is that software quality improves with the
use of agile methods. Organizations that achieved higher software quality sought frequent
customer feedback and had more efficient and impactful retrospectives (Abbas et al. 2010a).
They also found a positive correlation between agile experience in the organization and
code quality, 67% of the respondents reported experiencing high code quality. Organizations
showing more mature agile implementation had a slightly higher rate of 79% (Abbas et al.
2010a).

Green (2011) investigated the results of Scrum adoption at Adobe Systems using a sur-
vey and historical defects data. The author investigated nine teams with available historical
defects data. Seven of the nine teams experienced improvements in defect rates after the
transition to Scrum. One particular team did not follow the pattern observed in other teams.
This team also reported low satisfaction with their Scrum implementation. The author con-
cludes that improvements in defect rates are highly correlated with teams’ satisfaction with
their Scrum implementations (Green 2011).

Li et al. (2010) conducted a longitudinal case study of a software development team
to investigate changes in software quality before and after the transition to Scrum. The
study concluded that after the transition to Scrum, the team did not experience “a signifi-
cant reduction of defect densities”; however, there was an improvement in the efficiency of
quality assurance processes used by the team. They found that applying Scrum ensured that
defects were dealt with within reasonable timeframes. Early testing reduced code defects by
42%. As a consequence, the team felt that Scrum reduced the amount of time wasted. They
attributed the enhancement in quality assurance efficiency to some Scrum practices (e.g.,
short sprints) that mitigated the risk of not resolving issues promptly and to the daily Scrum
meetings, which allowed immediate feedback (Li et al. 2010).

Williams et al. (2011) compared three software teams at Microsoft, investigating whether
the teams managed to improve the quality of their products using Scrum. They used a pre-
vious study (Maximilien and Williams 2003) as a reference point for their comparison.
This study also concluded that agile methods can help teams to improve the quality of their
products.

Hoda et al. (2011) performed a grounded-theory study in 16 organizations that relied on
self-organizing teams using agile methods. Although software quality was not the focus of
their study, they found that difficulties in mobilizing sufficient customer involvement led to
delayed feedback and rework (Hoda et al. 2011), which surfaced in defects and, hence, in
software quality issues.

Noticeably, these studies, including early 2000s, provide evidence that the adoption of
agile methods can elevate a team’s ability to achieve quality and that feedback processes
play an important role in this realm. Although in both periods researchers used different
approaches, comparing agile to plan-driven projects and evaluating quality before and after
the adoption respectively, they have a similar limitation. They provide limited insights into
the question of how and why some teams achieve higher quality with agile methods while
others do not. Practitioners would benefit from a more comprehensive understanding of how
they can leverage Scrum to achieve results similar to those reported in successful cases.

2.3 After 2014

After 2014, researchers continued to show interest in comparative studies (e.g., Tarhan and
Yilmaz 2014), but more importantly, we found work (i.e., Prechelt et al. 2016) that has
explicitly examined how quality is assured in agile teams.

Empir Software Eng (2022) 27:165 Page 9 of 68 165

Tarhan and Yilmaz (2014) conducted a multiple-case study of two similar software devel-
opment projects. The study’s purpose was to compare and contrast the plan-driven method
with agile in regards to process performance and product quality. The defect density in the
system test phase was 14% higher in the plan-driven than in the agile development project.
In the customer testing phase, the defect density was five times higher than in the agile
project (Tarhan and Yilmaz 2014).

Prechelt et al. (2016) performed an exploratory holistic, multiple-case study to explic-
itly examine how quality was assured in three agile project teams. They focused on teams
that did not have a dedicated tester role and on the advantages and disadvantages of not
using testers. All three teams worked on the same domain, which was in-house develop-
ment of a single, large web portal. All three teams had similarities as follows: millions of
users, different user types, individual customers accounting for only a small part of the
revenue stream, and complex functionality, scalability, and access channels (Prechelt et al.
2016). Prechelt et al. (2016) propose “Quality Experience”, a mode of quality assurance and
deployment where each team member feels fully responsible for the quality of their software
and receives feedback about its quality. Such feedback is quick, realistic, and contributes
to the repair of deficiencies. They further report that empowerment was associated with
increased responsibility, especially the responsibility for building automated tests. Develop-
ers also participated in the requirements definition based on their increased understanding
of the domain from increased feedback from the field and high motivation. Quick, direct
and realistic feedback enabled the practice and capability of “Rapid Repair” (Prechelt et al.
2016). Frequent deployment was also a benefit of agile practices, even as often as several
times a week. Frequent deployments made not having separate testers bearable because
failures were short-lived. Debugging was simpler because changes were smaller, realis-
tic feedback was more available, and better strategies emerged for achieving larger goals
(Prechelt et al. 2016).

In summary, Prechet et al.’s study emphasizes the importance of frequent feedback,
including feedback from customers, as one important mechanism for achieving quality in
agile methods. Moreover, the study shows that modular architecture, comprehensive test
automation, and deployment automation can help ensure quality even without designated
testers (2016). Especially Prechelt et al.’s study has considerable synergy with ours. Some of
the agile influencing factors reported in this study, e.g., feedback, and “feeling responsible”
(2016), appear in our conclusions. We build on some of these findings by exploring addi-
tional social and process-related benefits, how these benefits materialize in teams, and how
they affect quality. We build on this work by combining data from practitioners and case
studies with testers with data from teams not using testers. Moreover, extending Prechelt et
al.’s work, we also focus on how and why the social processes for quality may break down
in certain cases and why some Scrum teams do not achieve results similar to what was
reported by the first and second streams discussed above.

2.4 RecentWork�After 2018

Arcos-Medina and Mauricio (2019) conducted a systematic review of the agile literature on
quality. The review shows that software quality is influenced by various factors in agile soft-
ware development (Arcos-Medina and Mauricio 2019). They identified five critical success
factors, teamwork practices, engineering practices, management practices, documentation
practices, and testing practices. However, as for most studies reported in this review, qual-
ity was not the primary topic of investigation (Arcos-Medina and Mauricio 2019). This

 165 Page 10 of 68 Empir Software Eng (2022) 27:165

literature study shows that more empirical work is needed to investigate how agile methods
assist and influence teams’ ability to attain better software quality.

Jain et al. (2018) analyzed the impact of agile, as an approach to software development,
on software quality. They mapped several agile practices to software quality attributes.
This mapping shows how agile practices can contribute to fulfilling some software quality
attributes (e.g., reliability and maintainability). They suggest that Scrum Sprints contribute
to improving software reliability and maintainability. Presenting business requirements in a
User Story format allows effective reviews and subsequently improvement in reducing func-
tionality defects and performance (Jain et al. 2018). However, this study is not empirical;
the conclusions are based on the authors’ assumptions and hypothesizing.

Krancher (2020) conducted a survey study among sponsors and developers in 60 out-
sourced software projects to examine how the use of specific agile practices correlates with
quality (or effectiveness in his terms). He found insignificant effects of continuous integra-
tion and joint decision-making and a significant negative effect of continuous analysis on
quality. He also found that the impact of agile practices on quality depended requirements
risk such that continuous integration was more beneficial and continuous analysis less detri-
mental in projects that had more uncertain requirements. Although this study shows that
different agile practices can have different effects on quality, it does not answer the question
of how (i.e., through which causal mechanisms) these agile practices affect quality. More-
over, while it highlights that circumstances and conditions, such as requirements risk, may
affect how agile methods affect quality, it focuses on one condition only, leaving upon the
question of what other conditions may impede or enable teams to increase software quality
using agile methods (i.e., our RQ3) (Krancher 2020).

Table 1 summarizes the related work on software quality and discusses the variations
from our work. The current work supports the claim that the adoption of Scrum (or other
agile methods) enhances a team’s ability to achieve software quality. However, we know
little about how Scrum adds value to the quest for quality. In order to support teams in their
efforts to better capitalize on the strengths of Scrum to elevate their capabilities to achieve
quality, we propose to decipher how Scrum values, principles, process activities, and events
help in the pursuit of quality. Our work examined extensively how 39 Scrum practitioners
experienced enhanced software quality and why two cases failed to do so.

3 Methods

Figure 1 depicts the research process we carried out in this study. This study is a mixed-
method study implemented in two phases. In the first phase, we focused on the successful
implementation of Scrum (RQ2). We recruited practitioners who experienced good results
in achieving software quality using Scrum. We relied on semi-structured interviews to cap-
ture practitioners’ experiences. In the second phase of the study, we selected two companies
that use Scrum. For some reason, both companies were not successful in capitalizing on
the method to improve the quality of the software they were producing (RQ3). Phase two
aimed to identify the variance in unsuccessful cases, which helped us further understand the
patterns and trends observed in the first phase. Patton (1999) suggests that the understand-
ing of the phenomena being studied expands when negative cases are considered. Including
data from cases that contradict previously drawn conclusions strengthens the qualitative
inquiry’s validity and enriches the results (Hanson 2017). Furthermore, combining posi-
tive and negative cases prevents survival bias; relying only on positive cases may generate

Empir Software Eng (2022) 27:165 Page 11 of 68 165

Fig. 1 Research process

overly optimistic conclusions. We used data from both phases to answer RQ1. While the
first phase provided us with a working definition, in the second phase we synced the def-
inition with perceptions of software quality in the two cases. As shown in Fig. 1, Phase 1
findings served as an analytical tool to understand and explain Phase 2 cases. We synthe-
sized and presented the findings of both phases as part of the writing process. This allowed
us to tell a cohesive and integrated narrative.

3.1 Phase 1 (RQ1 & RQ2)

We recruited Scrum practitioners with experience using Scrum. Knowledge creation using
informants’ or practitioners’ experiences is widely used in all sciences, and it is a valid
source of data. We sought to understand the practitioners’ experiences regarding how they
managed to use Scrum to elevate their teams’ ability to achieve software quality. We used
information and knowledge held by Scrum practitioners who successfully capitalized on
the method and its values and principles to achieve quality. Practitioners have an emic per-
spective; they have insider information or knowledge about Scrum implementation and its
ability to achieve quality. This knowledge is difficult to obtain otherwise. In addition, using
this type of knowledge means reducing the tension between theory and practice.

3.1.1 Participants Characteristics

There are limitations when relying on one particular type of participant (e.g., developer
only) and not the others. We could end up with conclusions that are one-sided or biased.
To counter this drawback, we preferred using different roles to achieve a complete view.
We aimed for a sample that favored subjects at the front line of influencing the end product
quality, i.e., software developers and quality assurance analysts (QA). These roles made
up 56% of our sample. We used five different roles to shape our sample: management,
product owners, Scrum Masters, quality assurance analysts and software developers. Below,
we discuss the relevance of these roles to our study.

 165 Page 12 of 68 Empir Software Eng (2022) 27:165

– Management: Managers evaluate the organization’s investment in their resources, pro-
cesses, and methods. The investment in Scrum is meant to achieve productivity and
enhanced software quality. The management perspective is relevant to assess whether
their goals have been met.

– Product Owners: The Product Owner (PO) represents the needs and expectations of
business stakeholders. Software quality can significantly impact end-user satisfaction,
cost of ownership, and software life expectancy. In order to align the stakeholders’
expectations on quality, the Product Owner continuously communicates those expec-
tations to the team. This perspective is vital because product owners have intimate
encounters regarding whether the expectations of their stakeholders on quality are met
and influenced by Scrum implementation.

– Scrum Masters: The Scrum Master’s role is to ensure that Scrum practices are adhered
to by the team. They also have the “bird’s eye view” of the process and the output. They
have intimate knowledge to know if the process has any impact on achieving better
software quality.

– Quality Assurance Analysts: The responsibility of quality assurance analysts (QAs)
is to apply quality assurance practices and principles throughout the software develop-
ment process. They are the gatekeepers of quality. They assess whether the software
meets the expectations on quality. Their perspective is relevant because they have first-
hand experience regarding the ability of Scrum to enable achieving better software
quality. Although some studies (e.g., Prechelt et al. 2016) reported that some Scrum
teams do not use QAs. However, in our search for participants, we encountered a sig-
nificant number of QAs as part of Scrum teams. In addition, one of the Phase 2 cases
used QAs to control and assure quality expectations. Our search for participants and
cases for Phase 2 showed that the QA role remains relevant and important to most agile
teams, even though some choose to carry out quality assurance activities without QAs.
Disregarding this role in our sample may lead to conclusions skewed toward developers
and other non-development roles’ claims.

– Software developers: This is an obvious choice. Software developers write the code
and produce the structure or internal workings of the software. They have the “nuts and
bolts” knowledge to know how Scrum helps them to achieve quality.

3.1.2 Sampling

We used three sampling techniques for selecting the participants for Phase 1: (1) purposive
sampling, (2) snowballing and (3) convenience sampling.

Purposive Sampling Purposive sampling is the deliberate choice of an informant due to
the qualities which the informant possesses (Patton 2014). This non-probability sampling
technique is most effective when the researcher needs to study a particular phenomenon
using experts (Patton 2014). The inherent bias of the method contributes to its efficiency.
The criteria used by the researcher to select potential participants lead to more proficient
and well-informed participants (Patton 2014). We defined the qualities which practitioners
should have, keeping in mind the competency of our participants in our selection. Table 2
describes the criteria that we set and explains why we used them. These criteria have been
used for all our sampling techniques of Phase 1. We used LinkedIn to find potential par-
ticipants by using the “search people” feature to search for Scrum practitioners. We used
various combinations of these keywords: “Scrum”, “Agile”, “Software Developer”, “Scrum

Empir Software Eng (2022) 27:165 Page 13 of 68 165

Table 2 Selection criteria used to identify and recruit phase 1 participants

Selection criteria How we used the selection criteria in our recruitment process

Five years minimum Purposive sampling We used the potential participant’s

experience working LinkedIn profile to validate this requirement

part of a Scrum team before we sent the invite to participate. After

or overseeing a software we established contact, we sent pre-selection

delivery function that questions (see Table 3) to further assess their

uses Scrum (e.g., CTO suitability for the study, we used similar process

or Program Manager) for all sampling methods.

Convenience Once a potential participant was recommended

sampling by our contacts in the industry, we sent an email

with questions to assess his/her suitability for

the study. We also asked for a copy of the resume

or the link to their LinkedIn profile to confirm.

The participant has been Snowball While participants recruited using convenience

part of a Scrum team sampling sampling were recommended by our industry

successfully that has contacts, we used snowballing to recruit additional

helped to produce participants by asking participants already

quality software interviewed to indicate further potential participants.

Once a potential participant was recommended,

we made a preliminary contact via email and sent

questions to assess their suitability for the study. We

also asked for a copy of the resume or the link to

their LinkedIn profile to confirm.

All sampling After we established contact with a potential

techniques participant, we asked via email or LinkedIn chat

about whether Scrum has helped their teams to

achieve software quality. Only respondents who

positively confirmed and praised Scrum for helping

achieve quality were asked to participate (see

Table 3 for pre-selection questions).

Master”, “Product Owner”, “Quality Assurance”, “Program Manager”, “Project Manager”,
“CTO”, “Head of IT”, and “Software Manager”. We relied on the “About” section of pro-
files to assess the participant’s suitability. For example, participant 8 has in his “About”
section: “track record of driving Lean/Agile improvements at scale across product and tech-
nology.” Some of these search combinations resulted in over 5 million profiles. We sent
“InMail” invites to 213 potential participants over three months. After further selection (see
Table 3), we recruited 27 participants.

Snowballing We used snowballing to recruit further participants. After the interviews, we
sent an email to thank the participant for taking part in our study. In the email, we asked
whether they could refer us to another participant. We received 13 contacts from our partic-
ipants (already interviewed). We contacted all 13 and successfully recruited three additional
participants.

 165 Page 14 of 68 Empir Software Eng (2022) 27:165

Table 3 Phase 1 participants selection questions

Pre-selection questions sent via email or LinkedIn InMail to potential participants

SQ1 How many years of experience do you have in software development?

SQ2 How many years of experience do you have working in Scrum team, implementing Scrum or

overseeing a delivery capability with Scrum teams?

SQ3 Do you think Scrum helped your team or organization to improve the quality of their software?

SQ4 Can you, briefly, explain how does Scrum help your team or organization to improve software

quality?

Convenience Sampling Both methods described above yielded only five software devel-
opers in the sample. Given that this role plays a crucial role in shaping the quality of
the software, we used convenience sampling to recruit additional participants. We used
our industry contacts to refer us to software developers and received 12 referrals. We
successfully interviewed nine participants after the selection process.

Prior to recruiting a participant for Phase 1, we sent either an email or a LinkedIn InMail
with the questions listed in Table 3. The answers to these questions allowed us to assess and
validate their suitability to participate in the first phase of the study. This process was used
for all sampling techniques (Tables 2 and 4).

Table 5 summarizes the characteristics of our sample. We used the role as labeled in their
LinkedIn profile or resume. Experience indicates the total number of years the participant
spent working in the software development industry (i.e., column Soft. Dev.) and the number
of years in a Scrum environment (i.e., Scrum column). Affiliation describes the organization
in which our participants work. The type of business and the number of employees (i.e., No

Table 4 Key parts of the interview’s questions

Introduction questions

Can you please introduce yourself and talk about your experience?

What do you think of agile? What is your opinion of it?

How do you define “software quality” in the context of agile software development?

Core questions

Can you describe your Scrum environment? For example, how do you work as a team? How do you use

Scrum?

Do you think this Scrum implementation is working for your team and why?

What do you do to assure software quality in this Scrum process?

Do you think this Scrum implementation produces quality software and how?

How does, for example, your Scrum implementation help to find bugs?

How does, for example, your Scrum implementation help to produce high quality code? How does your

Scrum environment motivate you to achieve code quality? (For software developers only) Can you

take me through the journey of a requirement/feature/user story in your Scrum implementation and

explain how you ensure quality throughout the journey?

Probing questions

Can you share with me an example when working on Scrum motivated you to write better code?

Can you share with me an example from your experience on how Scrum helped achieving software

quality?

Empir Software Eng (2022) 27:165 Page 15 of 68 165

Ta
bl
e
5

T
he

st
ud

y
sa

m
pl

e

#
Sa

m
pl

in
g

R
ol

e
E

xp
er

ie
nc

e
E

du
ca

tio
n

A
ff

ili
at

io
n

C
ou

nt
ry

So
ft

.D
ev

.
Sc

ru
m

Ty
pe

of
bu

si
ne

ss
N

o.
E

m
p.

M
an

ag
em

en
t

P1
Pu

rp
os

iv
e

Se
ni

or
Pr

oj
ec

tM
an

ag
er

7
7

B
ac

he
lo

r’
s

in
pr

oj
ec

tm
an

ag
em

en
t

In
fo

rm
at

io
n

Te
ch

no
lo

gy
63

0
B

el
gi

um

P2
Pu

rp
os

iv
e

H
ea

d
of

IT
17

10
M

as
te

r’
s

in
co

m
pu

te
r

sc
ie

nc
e

In
fo

rm
at

io
n

Te
ch

no
lo

gy
53

7
U

K

P3
Pu

rp
os

iv
e

Se
ni

or
Pr

og
ra

m
M

an
ag

er
8

6
B

ac
he

lo
r’

s
in

co
m

pu
te

r
sc

ie
nc

e
In

fo
rm

at
io

n
Te

ch
no

lo
gy

20
5,

85
7

U
SA

P4
Pu

rp
os

iv
e

Pr
og

ra
m

M
an

ag
er

13
8

B
ac

he
lo

r’
s

in
el

ec
tr

ic
al

en
gi

ne
er

in
g

H
os

pi
ta

l&
H

ea
lth

C
ar

e
38

,2
33

In
di

a

P5
Pu

rp
os

iv
e

Pr
og

ra
m

M
an

ag
er

8
8

M
as

te
r’

s
in

co
m

pu
te

r
sc

ie
nc

e
Te

ch
no

lo
gy

St
ar

tu
p

11
7

U
SA

P6
Pu

rp
os

iv
e

So
ft

w
ar

e
D

el
iv

er
y

M
an

ag
er

10
10

B
ac

he
lo

r’
s

in
so

ft
w

ar
e

en
gi

ne
er

in
g

Fi
na

nc
ia

lS
er

vi
ce

s
23

3
U

SA

P7
Pu

rp
os

iv
e

Pr
og

ra
m

M
an

ag
er

20
11

Ph
D

in
co

m
pu

te
r

sc
ie

nc
e

In
fo

rm
at

io
n

Te
ch

no
lo

gy
11

0
T

ur
ke

y

P8
Pu

rp
os

iv
e

So
ft

w
ar

e
D

el
iv

er
y

M
an

ag
er

7
7

B
ac

he
lo

r’
s

in
co

m
pu

te
r

sc
ie

nc
e

B
io

te
ch

no
lo

gy
29

2
Se

rb
ia

Pr
od

uc
tO

w
ne

r

P9
Sn

ow
ba

lli
ng

Pr
od

uc
tO

w
ne

r
10

7
B

ac
he

lo
r’

s
in

co
m

pu
te

r
sc

ie
nc

e
R

ea
lE

st
at

e
15

3
In

di
a

P1
0

Sn
ow

ba
lli

ng
Pr

od
uc

tO
w

ne
r

15
12

M
as

te
r’

s
in

pr
oj

ec
tm

an
ag

em
en

t
Fi

na
nc

ia
lS

er
vi

ce
s

10
,9

55
R

us
si

a

P1
1

Pu
rp

os
iv

e
Pr

od
uc

tO
w

ne
r

6
6

M
as

te
r’

s
in

co
m

pu
te

r
sc

ie
nc

e
A

ir
lin

es
51

,6
01

C
an

ad
a

Sc
ru

m
M

as
te

r

P1
2

Pu
rp

os
iv

e
Sc

ru
m

M
as

te
r

6
6

B
ac

he
lo

r’
s

in
co

m
pu

te
r

sc
ie

nc
e

In
fo

rm
at

io
n

Te
ch

no
lo

gy
1,

50
4

U
K

P1
3

Pu
rp

os
iv

e
Sc

ru
m

M
as

te
r

5
5

B
ac

he
lo

r’
s

in
so

ft
w

ar
e

en
gi

ne
er

in
g

Sp
or

tin
g

G
oo

ds
M

an
uf

ac
tu

re
r

41
,2

76
U

K

P1
4

Pu
rp

os
iv

e
Sc

ru
m

M
as

te
r

19
10

B
ac

he
lo

r’
s

in
co

m
pu

te
r

sc
ie

nc
e

In
fo

rm
at

io
n

Te
ch

no
lo

gy
1,

07
6

Ir
el

an
d

P1
5

Pu
rp

os
iv

e
Sc

ru
m

M
as

te
r

12
7

B
ac

he
lo

r’
s

in
in

fo
rm

at
io

n
te

ch
no

lo
gy

C
ap

ita
l&

Pr
iv

at
e

E
qu

ity
50

4
U

SA

P1
6

Pu
rp

os
iv

e
Sc

ru
m

M
as

te
r

14
9

B
ac

he
lo

r’
s

in
co

m
pu

te
r

sc
ie

nc
e

In
fo

rm
at

io
n

Te
ch

no
lo

gy
47

1,
51

2
U

K

P1
7

Pu
rp

os
iv

e
Sc

ru
m

M
as

te
r

8
8

M
as

te
r’

s
in

co
m

pu
te

r
sc

ie
nc

e
B

an
ki

ng
5,

44
3

N
et

he
rl

an
ds

Q
ua

lit
y

A
ss

ur
an

ce

P1
8

Pu
rp

os
iv

e
Q

A
Te

am
L

ea
d

6
6

M
as

te
r’

s
in

te
le

co
m

m
un

ic
at

io
ns

en
gi

ne
er

in
g

O
nl

in
e

M
ed

ia
Se

rv
ic

es
43

1
Se

rb
ia

P1
9

Pu
rp

os
iv

e
Q

A
E

ng
in

ee
r

8
8

B
ac

he
lo

r’
s

in
co

m
pu

te
r

sc
ie

nc
e

In
fo

rm
at

io
n

Te
ch

no
lo

gy
11

4
U

K

 165 Page 16 of 68 Empir Software Eng (2022) 27:165

Ta
bl
e
5

(c
on

tin
ue

d)

#
Sa

m
pl

in
g

R
ol

e
E

xp
er

ie
nc

e
E

du
ca

tio
n

A
ff

ili
at

io
n

C
ou

nt
ry

So
ft

.D
ev

.
Sc

ru
m

Ty
pe

of
bu

si
ne

ss
N

o.
E

m
p.

P2
0

Pu
rp

os
iv

e
Q

A
E

ng
in

ee
r

7
7

M
as

te
r’

s
in

da
ta

sc
ie

nc
e

N
on

-p
ro

fi
tO

rg
an

iz
at

io
n

33
8

A
us

tr
al

ia

P2
1

Pu
rp

os
iv

e
Q

A
E

ng
in

ee
r

9
8

B
ac

he
lo

r’
s

in
in

fo
rm

at
ic

s
G

am
es

D
ev

el
op

m
en

t
3,

93
9

A
us

tr
al

ia

P2
2

Pu
rp

os
iv

e
Q

A
E

ng
in

ee
r

11
9

B
ac

he
lo

r’
s

in
el

ec
tr

on
ic

s
In

fo
rm

at
io

n
Te

ch
no

lo
gy

53
2,

42
1

G
er

m
an

y

P2
3

Pu
rp

os
iv

e
Q

A
Te

am
L

ea
d

11
10

B
ac

he
lo

r’
s

so
ft

w
ar

e
en

gi
ne

er
in

g
In

fo
rm

at
io

n
Te

ch
no

lo
gy

48
7

U
SA

P2
4

Pu
rp

os
iv

e
Q

A
Te

am
L

ea
d

6
6

B
ac

he
lo

r’
s

in
el

ec
tr

ic
al

en
gi

ne
er

in
g

A
ut

om
ot

iv
e

M
an

uf
ac

tu
re

r
4,

65
4

Sw
ed

en

P2
5

Pu
rp

os
iv

e
Q

A
Te

am
L

ea
d

11
9

B
ac

he
lo

r’
s

in
co

m
m

un
ic

at
io

ns
en

gi
ne

er
in

g
In

fo
rm

at
io

n
Te

ch
no

lo
gy

87
7

In
di

a

So
ft

w
ar

e
D

ev
el

op
m

en
t

P2
6

Pu
rp

os
iv

e
Se

ni
or

N
od

e.
js

D
ev

el
op

er
16

12
B

ac
he

lo
r’

s
in

co
m

pu
te

r
sc

ie
nc

e
Te

ch
no

lo
gy

St
ar

tu
p

13
4

Po
la

nd

P2
7

Pu
rp

os
iv

e
Se

ni
or

So
ft

w
ar

e
D

ev
el

op
er

20
10

B
ac

he
lo

r’
s

in
co

m
pu

te
r

sc
ie

nc
e

B
io

te
ch

no
lo

gy
24

7
U

SA

P2
8

Pu
rp

os
iv

e
So

ft
w

ar
e

D
ev

el
op

er
5

5
M

as
te

r’
s

in
co

m
pu

te
r

sc
ie

nc
e

In
du

st
ri

al
E

ng
in

ee
ri

ng
98

2
It

al
y

P2
9

Pu
rp

os
iv

e
Se

ni
or

So
ft

w
ar

e
D

ev
el

op
er

8
8

B
ac

he
lo

r’
s

in
so

ft
w

ar
e

en
gi

ne
er

in
g

Fi
na

nc
ia

lS
er

vi
ce

s
14

,1
57

U
SA

P3
0

C
on

ve
ni

en
ce

So
ft

w
ar

e
E

ng
in

ee
r

7
7

B
ac

he
lo

r’
s

in
co

m
pu

te
r

sc
ie

nc
e

Te
ch

no
lo

gy
St

ar
tu

p
26

U
K

P3
1

C
on

ve
ni

en
ce

Se
ni

or
So

ft
w

ar
e

D
ev

el
op

er
17

12
M

as
te

r’
s

in
so

ft
w

ar
e

de
ve

lo
pm

en
t

In
fo

rm
at

io
n

Te
ch

no
lo

gy
16

1
D

en
m

ar
k

P3
2

C
on

ve
ni

en
ce

Se
ni

or
So

ft
w

ar
e

D
ev

el
op

er
11

11
B

ac
he

lo
r’

s
in

co
m

pu
te

r
sc

ie
nc

e
In

fo
rm

at
io

n
Te

ch
no

lo
gy

54
3

U
K

P3
3

C
on

ve
ni

en
ce

Se
ni

or
So

ft
w

ar
e

E
ng

in
ee

r
30

10
B

ac
he

lo
r’

s
in

co
m

pu
te

r
sc

ie
nc

e
Fi

na
nc

ia
lS

er
vi

ce
s

52
,2

27
U

K

P3
4

C
on

ve
ni

en
ce

So
ft

w
ar

e
E

ng
in

ee
r

5
5

B
ac

he
lo

r’
s

in
el

ec
tr

on
ic

s
en

gi
ne

er
in

g
In

fo
rm

at
io

n
Te

ch
no

lo
gy

5,
93

4
In

di
a

P3
5

C
on

ve
ni

en
ce

So
ft

w
ar

e
E

ng
in

ee
r

5
5

M
as

te
r’

s
in

co
m

pu
te

r
sc

ie
nc

e
E

le
ct

ro
ni

c
M

an
uf

ac
tu

ri
ng

8,
19

2
U

K

P3
6

C
on

ve
ni

en
ce

Se
ni

or
So

ft
w

ar
e

E
ng

in
ee

r
17

12
M

as
te

r’
s

in
co

m
pu

te
r

sc
ie

nc
e

In
fo

rm
at

io
n

Te
ch

no
lo

gy
75

,3
55

U
K

P3
7

C
on

ve
ni

en
ce

Se
ni

or
So

ft
w

ar
e

E
ng

in
ee

r
17

9
B

ac
he

lo
r’

s
in

so
ft

w
ar

e
en

gi
ne

er
in

g
Te

ch
no

lo
gy

St
ar

tu
p

11
9

A
us

tr
al

ia

P3
8

C
on

ve
ni

en
ce

B
ac

kE
nd

D
ev

el
op

er
15

12
B

ac
he

lo
r’

s
in

co
m

pu
te

r
sc

ie
nc

e
E

du
ca

tio
n

3,
54

0
U

K

P3
9

Sn
ow

ba
lli

ng
Se

ni
or

So
ft

w
ar

e
E

ng
in

ee
r

13
10

B
ac

he
lo

r’
s

in
co

m
pu

te
r

sc
ie

nc
e

In
fo

rm
at

io
n

Te
ch

no
lo

gy
47

1,
51

2
In

di
a

Empir Software Eng (2022) 27:165 Page 17 of 68 165

Emp) were taken from the company’s websites or LinkedIn profiles. The country column is
where the participant is located and works.

3.1.3 Data Collection

We used semi-structured interviews to collect the data for this phase of the study (see evi-
dence from the field, Fig. 5 in Appendix 1). This form of interview is flexible, allowing
new questions to be brought up during the discussion in addition to a predefined interview
guide. This flexibility allowed us to enhance the depth of the conversations. We structured
the guide into three categories: introductory, core, and probing questions, see Table 4. The
introductory questions were for starting the conversation and building up to the core topic of
the interview. The core questions were aimed at gathering data related to our research ques-
tions. The probing questions helped us make the conversations more detailed and concrete.
We also asked other probing questions (not in the table) about achieving quality in a Scrum
environment because the probing questions varied across participants and were influenced
by the interview dynamics.

Our participants were distributed geographically, so all interviews were conducted using
Zoom, an audio-video conferencing tool. The interviews lasted 40–90 min with a total of 41
hours and 22 min of audios. The audios generated a total of 683 pages verbatim after tran-
scribing (an average of 17 pages per interview). The first author conducted the interviews
in the period between January and August 2020. We used “Temi”, an online transcription
tool, to transcribe the interviews. However, this method does not always yield accurate tran-
scription. Hence, we manually checked the transcripts and made the necessary corrections.
Once an interview transcription became available, we sent the transcript to the participant
for review. This step of the process was intended to validate the transcripts by our partici-
pants. This technique empowers the participants to check, “is that what I said?” (Mero-Jaffe
2011). Twenty-one participants advised no corrections, and four came up with clarifications
for some of their statements. Some of the remaining participants either advised no need to
check (eleven) or did not respond (seven). We anonymized1 the interviews and made them
available here.2

3.2 Phase 2 (RQ1 & RQ3)

In Phase 1, we collected Scrum practitioners’ perspectives and experiences with a focus
on positive outcomes. Subsequently, in Phase 2, we aimed to corroborate and validate the
claims made by Phase 1 participants using negative cases, i.e., cases in which the outcome
was not positive; “not all ravens are black”, i.e., why some Scrum software development
teams do not achieve better software quality? Considering positive and negative cases with
different outcomes makes study design more rigorous and enhances the conclusions’ valid-
ity (Emigh 1997; Hanson 2017). This method is more powerful than using only agreements
because the divergent outcome permits causal conclusions (Emigh 1997). Variants of nega-
tive case methodology are commonly used in social research (Emigh 1997); however, this
is not common in software engineering qualitative research. Furthermore, when negative
cases are explained, the general explanation of successful cases is strengthened (Mahoney
and Goertz 2004).

1All Phase 1 participants agree for their anonymized interviews to be made available part to the study report.
2https://doi.org/10.5281/zenodo.6624063

https://doi.org/10.5281/zenodo.6624063
https://doi.org/10.5281/zenodo.6624063

 165 Page 18 of 68 Empir Software Eng (2022) 27:165

We opted for case studies for this phase. The purpose of a case study is to understand
complex social phenomena, focusing on specific cases in depth, and to retain a holistic,
real-world perspective (Yin 2018; Runeson and Höst 2009). The purpose of Phase 2 is
explanatory, seeking an explanation of a particular phenomenon in its natural setting (Rune-
son and Höst 2009). We sought to understand why two Scrum teams did not achieve better
software quality.

In Phase 1, the method followed was indirect. The researcher did not have any means
to examine the accuracy of the data supplied by the participants. Participants chose how
to answer the questions and shared their experiences related to the questions with the
researcher. On the other hand, in observations, the observer can directly check the accuracy
when observing. In studying negative cases, observations are more reliable than interviews
or questionnaires, requiring less active cooperation and respondents’ willingness (Mahoney
and Goertz 2004). Often some respondents do not like to speak about their problems, strug-
gles and failures to an outsider. This reluctance of respondents is much less likely to occur
when the researcher spends some time together with the people being studied as they go
about their daily activities, for the researcher may observe things that might not be reported
in an interview (Mahoney and Goertz 2004). Thus, observational research can provide a
richer understanding of software engineering practice, especially of its collaborative, social
and human aspects (Sharp et al. 2016). The cases subject to this phase study are two soft-
ware development projects carried out by two companies: an information technology and
services provider and a technology startup. Both projects used Scrum for the projects to
deliver software for external clients. Our units of analysis are the projects’ teams and their
processes. The contexts are the two companies.

3.2.1 Case Selection

Our cases are “typical.” Yin (2018) explains that a “typical” case study exemplifies the
investigated phenomenon and represents similar cases. The study’s objective is to look
within the case instead of comparing it with other cases (Yin 2018). Cases are often selected
based on availability (Benbasat et al. 1987; Runeson and Höst 2009). We selected two com-
panies as the subject of our Phase 2 study. In this study, we will refer to the two companies
as Kolkata (located in India) and Phoenix (located in the USA) in this report. We opted
to name them by the names of their respective cities to maintain their anonymity. For the
selection of companies, we approached a “consulting firm” (i.e., the recruiter) specialized
in assisting software development companies in implementing an “agile transformation”
or improving an agile implementation that is not performing satisfactorily or according to
expectations. They helped us recruit Kolkata and Phoenix. Relevant variables should be
used in case selection (Runeson and Höst 2009). We informed our recruiter regarding our
selection requirements, which are described in Table 6. The “+” sign in the second and
third columns indicates that the selection requirement is met. In the last column, we share
the evidence used to validate the selection criteria.

As a part of the recruitment process, we had two separate meetings with the CTO of
Phoenix and a program manager from Kolkata. When asked about their respective Scrum
implementation, the CTO replied, “could be better”, and the program manager answered,
“we are struggling ... We are learning and trying to find what works for us.” When asked
whether Scrum had helped achieve or improve software quality, the CTO said: “the same
problems still exist. More and more bugs appear in UAT [User Acceptance Testing]”, and the
program manager replied: “we are not better than before [adopting Scrum] ... We produce
so many bugs during the Sprints and our clients find more bugs in UAT [User Acceptance

Empir Software Eng (2022) 27:165 Page 19 of 68 165

Table 6 Selection requirements for the cases

Selection requirements Kolkata Phoenix Evidence used to validate the selection requirements

The company uses Scrum + + The recruiter confirmed this requirement. During

for software development the initial recruitment meeting with the companies,

projects they confirmed to us that they are using Scrum.

The company has been using + (2 + (3 Prior to the recruitment meetings with the

Scrum for at least two years years) years) companies, the recruiter confirmed this requirement.

We validated this information during the recruitment

meetings.

Scrum implementation has not + + The recruiter advised us that the companies’

helped to elevate achieving objectives were to improve the quality of their

better software quality products and their teams’ efficiency using Scrum.

During the recruitment meetings, both companies

indicated that their Scrum implementations did not

help them to achieve these objectives.

Testing].” Their testimony raised our confidence in the suitability of both cases for the
purpose of Phase 2.

The scope of our engagements with both cases was to gain access to the teams and
become observant of their daily activities, ceremonies and collaboration channels (e.g.,
Skype (Phoenix) and Microsoft Teams (Kolkata)). Part of the agreement also allowed us
access to the team’s software development tools (i.e., JIRA (Phoenix) and Azure DevOps
(Kolkata)). The first author carried out all observation activities. Both companies asked
him to sign a non-disclosure agreement (NDA) that specified that no information or
data collected during the study could be released publicly except anonymized quotes and
screenshots.

3.2.2 Case Description

Kolkata Kolkata is a privately owned company incorporated on 8th January 2010 in
Kolkata, India. Directors and key management of the company have authorized a capital of
US$10M to finance the operations. The services performed by the company include soft-
ware development advisory, software migration, and hosting to support and elevate the core
competitiveness of businesses. The company offers software development services to var-
ious industries, including finance, logistics, marketing, business development, and human
resources. The company has 225 employees with “sale” teams located in the US, UK, and
Australia.

We were assigned to a project in progress. The project was about developing new soft-
ware for an external client. We commenced the team’s observations at the start of the 36th
Sprint and continued for three months. The client was an American multinational corpora-
tion incorporated in the USA and founded in 1906. It produces starch, glucose syrup, and
high fructose syrup. Its annual revenue is US$5.84 billion (in 2019), with a gross income
of US$703 million and net income of US$454 million. The total assets of the company are
estimated at US$5.73 billion with total equity of US$2.41 billion. It has 11,000 employees
and operates in 44 different locations around the world.

 165 Page 20 of 68 Empir Software Eng (2022) 27:165

This client commissioned Kolkata to develop software to manage its workflows used to
produce customed ingredients solutions, e.g., sweeteners, starches, nutrition ingredients and
biomaterials that manufacturers use in everyday products from foods, beverages to paper
and pharmaceuticals.

Phoenix Phoenix is a company based in Phoenix, Arizona (USA). It is a technology
startup. It has thirty-five employees, and it generates US$1.33M in sales, according to Dun
and Bradstreet. The company was incorporated on 9th May 2008. It develops and maintains
software for clients from diverse industries.

We were assigned to a new project that had not been launched then. We started the obser-
vations from the beginning of the project. The client was a digital media company operating
from Austin (USA) with 50 employees. It began its operations in 2001. The company devel-
ops digital solutions for their clients across the US. The engagement with Phoenix consisted
of developing a Mobile App to become a desired destination for wine lovers to discover and
purchase wine.

3.2.3 Data Collection

Qualitative data are frequently used in case studies because it allows the collection of
detailed and extensive descriptions (Runeson and Höst 2009). We used two data collection
methods: direct observations and software development artifacts analysis (e.g., User Stories,
Sprint Planning Board and defects reports).3 We made the data analysis available

Direct Observation The first author conducted the observation activities for three months
(November 2020 to January 2021). These observations were a “low degree of interaction
by the researcher” (Runeson and Höst 2009). In this type of interaction, the researcher is
perceived as an “observing participant” by the subjects, with the latter having “high aware-
ness of being observed” (Runeson and Höst 2009). The researcher attended various project
meetings and Scrum ceremonies. In addition, he was given access to the teams’ discussion
channels (i.e., Skype (Phoenix) and Microsoft Teams (Kolkata)). All meetings and Scrum
ceremonies were audio-recorded, and immediately after the event, the researcher would lis-
ten to the recording and compile a field note for each event. This allowed the researcher
to focus on what happened during the event and reflect on it later while writing the field
notes. During this period, the USA and India were experiencing “lockdowns” due to the
COVID-19 pandemic. Both teams were working from home and using virtual meeting tools
to collaborate and communicate. Hence, the researcher was able to conduct the observa-
tions from Copenhagen (Denmark). In addition, both companies were in two different time
zones, which facilitated the observations to be carried out in parallel. Table 7 summarizes
the events observed and the number of occurrences, i.e., how many times the researcher
observed a particular event.4

3The agreements entered by the first author with both Phase 2 companies prevent us from making Phase 2
data and analysis available.
4An agreement with both cases was reached to engage, record and use informal conversations with team
members. Kolkata communicated this agreement to the team via email and Phoenix in an introduction
meeting of the researcher to the team. At the start of each informal conversation, the researcher made the
participant aware of the recording of the conversation and her right to object to participation and/or recording.
The researcher also read a brief statement of how the conversation data shall be used in the research process.

Empir Software Eng (2022) 27:165 Page 21 of 68 165

Table 7 List of direct observations

Cases Events No. of Examples from

observations fieldwork

Kolkata Daily Scrum Stand-up 48 Fig. 6 in Appendix 1

Sprint Planning 9 –

Sprint Retrospective 10 Fig. 7 in Appendix 1

Requirements Clarification Sessions 21 –

Teams’ discussion channels (Ms Teams) 38 –

Software Development Artifacts (Ms Azure tools) 24 –

Informal conversations with team members 36 –

Phoenix Team Huddle (similar to Scrum Stand-ups) 32 –

Sprint Planning 11 –

Sprint Retrospective 7 –

Teams’ discussion channels (Skype) 41 –

Software Development Artifacts 18 Fig. 8 in Appendix 1

Informal conversations with team members 24 –

Internal Product Demos 11 Fig. 9 in Appendix 1

Software Development Artifacts The first author was given access to software develop-
ment artifacts and tools used in both cases. Kolkata uses Microsoft Azure products, and
Phoenix uses Atlassian5 products. For Kolkata, the first author had access to these tools:
Azure DevOps,6 used by the team to track work progress, share code and release software;
Azure Boards, used for tracking work plans, activities and discussing work among the team,
and Azure Test Plan, used to plan testing and report defects. For Phoenix, the first author
was given access to these tools: JIRA, used by the team to create user stories and issues,
plan sprints, and collaborate around tasks; Confluence, used by the team to store and col-
laborate on knowledge artifacts (e.g., requirements document, “How to do” documents) and
Zypher, used for software testing. Frequently, the researcher examined the content of these
tools and compiled field notes accordingly. A systematic examination of these tools was not
necessary, as the content was not updated frequently.7

3.3 Data Analysis

3.3.1 Phase 1 & Phase 2 Qualitative Data

We collected qualitative data during both phases: interviews and field notes. Therefore, our
analysis method is the same for both data sets. We opted to use Miles et al. (2014) and
Saldaña (2021) guidelines. We made this choice because the guidelines are comprehensive

5https://www.atlassian.com/
6https://azure.microsoft.com/en-us/services/devops/
7The researcher continued to have access to the projects artifacts (e.g., Jira and Azure Boards) which has been
agreed with both companies, to remain updated with the project progress until the closure of the projects.
The agreements with both cases also covered continuous access to team members for occasional informal
conversations until the end of the projects. Even though, the observations ceased in January 2021, the first
author had frequent contact with the companies through the point of contacts for projects’ updates.

https://www.atlassian.com/
https://azure.microsoft.com/en-us/services/devops/

 165 Page 22 of 68 Empir Software Eng (2022) 27:165

and enable deeper analysis. Miles et al. (2014) and Saldaña (2021) propose two stages of
analysis: (1) First Cycle and (2) Second Cycle. The data analysis of both phases is available
her.8

First Cycle During this coding phase, codes are assigned to data “chunks” (Miles et al.
2014). Coding is the “condensing” of data into meaningful labels relating to a particular
research question (Miles et al. 2014). The purpose of this phase is to assign codes initially.
Then, in the subsequent phase, they are used to identify reoccurring patterns. We used an
inductive approach to our coding. This is a ground-up approach where we derived our codes
from the data without preconceived notions of what the codes should be. We opted for
“descriptive”, “In Vivo”, “process coding”, “value coding”, and “causation coding” methods
(also referred to as code types) (Miles et al. 2014).

As Miles et al. (2014) explain: “a descriptive code assigns labels to data to summarize
in a word or short phrase.” On the other hand, in “In Vivo”, codes use the participant’s own
words (Miles et al. 2014). The intent is to preserve the authentic meaning of what the partic-
ipant has conveyed. “Process coding” conveys action in the data. The labeling of these codes
typically are gerunds that end with “ing.” Miles et al. (2014) explain that “value coding”
identifies participants’ values, attitudes, and beliefs. A value is the importance that a partic-
ipant attaches to ideas and other things (Miles et al. 2014). An attitude is how a participant
thinks and feels about ideas or things (Miles et al. 2014). A belief includes a participant’s
knowledge, experience, opinions, and interpretations of the social world around the par-
ticipant. We also used “causation coding” to locate, extract, and infer causal beliefs from
our qualitative data. Miles et al. state: “this method [causation coding] extracts attributes or
causal beliefs from participant data about not just how but why the particular outcome came
about. The analyst searches for combinations of antecedent and mediating variables that
lead toward a certain pathway” (further details on how we used this method are explained in
the Causal explanations section below). We opted for this combination of coding methods
because our initial examination of the data (i.e., reading through the data to get a sense of
what it looks like) indicated that our participants, in some instances, used words to directly
refer to an existing construct in software engineering or Scrum (e.g. Fit for purpose, collab-
oration and accountability) while, in other instances, they discussed a concept by explaining
it or providing examples. They also implied actions in their accounts of their experiences.
Miles et al. (2014) suggest further coding methods, e.g., “emotion coding” and “magnitude
coding.” However, these are not relevant to the data we collected.

The first author conducted the first round of coding. Then, the second author reviewed
the codes and provided feedback and suggestions for additional codes. Subsequently, the
first author reviewed and decided on a final list of codes; this allowed us to probe the first
coding round and consolidate our decisions on codes. Miles et al. (2014) explain that this
is a “reliability check” where researchers must reconcile their differences for more credible
conclusions.

Second Cycle Saldaña (2021) explains that this cycle synthesizes the various codes of the
first cycle into a more comprehensive and unified scheme. This cycle is referred to as “pat-
tern coding” (Miles et al. 2014; Saldaña 2021). It is a process of grouping codes into a
smaller number of “meta-codes” (Miles et al. 2014; Saldaña 2021). First Cycle codes are
“transformed” into pattern codes. These patterns are clustered either by code types or by

8https://doi.org/10.5281/zenodo.6624063

https://doi.org/10.5281/zenodo.6624063
https://doi.org/10.5281/zenodo.6624063

Empir Software Eng (2022) 27:165 Page 23 of 68 165

codes on the same topics, concepts, or logically mean the same thing (Miles et al. 2014).
Table 8 shows RQ1 Pattern Codes, some of their corresponding First Cycle codes, and
examples from the data.

Causal Explanations Our research question RQ2 aims at exploring whether the Scrum
method and its principles and values (e.g., transparency and accountability) as promoted in
the Scrum guide (Schwaber and Sutherland 2017), enable, in any shape or form, achieving
software quality. This implies testing whether Scrum, as a process and system of values,
exerts an influence on achieving software quality and in particular how and to what extent.
Maxwell (2012) asserts that causal explanation is a “legitimate” and significant goal for
qualitative research. Miles et al. (2014) explain that causation is identified during coding
by looking for combinations of antecedents, mediating variables and outcomes, i.e., “casual
chain”. It is a three-part sequential process: antecedent → mediating variable → outcome
(Miles et al. 2014). Seeking causal explanations is an iterative exercise (Miles et al. 2014).
We mapped the initial causal chains in the First Cycle of coding, and then in the Second
Cycle, we refined them. We did so because the three variables of the causal chains can either

Table 8 Example of RQ1 pattern codes

Pattern codes First cycle codes Examples from the data

External Conformity to “Okay, quality to me. The biggest one is that it does what the
business needs user wants it to do. And I don’t mean this behind the hood,

I mean, just sort of like it produces the end result.” (P32).
Free of defects “I think external quality is a product free of defects and It’s the

ability to fulfil and meet the requirements of the end user” (P3).

Usability “Then there’s the sort of external facing quality, which is more,
I suppose, a perceived perception of quality ... which could be
from anything from UX experience through to performance.
How clients actually interact with the system and perceive the

system ...” (P37).
Add business value “The software should add value to the business” P(19).

Internal Sustainable design “Agile is keen also on internal quality because we believe in
responding to change. So, we like to have good code quality and
a sustainable design to cater for future changes” P(26).

Clean code “Quality on long term projects might also mean that you are
able to handover your part of the project to someone else in a
clean manner. So, the code is commented, the code is beautiful,
I would say, this might mean for them quality code. Because if
they keep bringing on new programmers, and there’s no quality
code, after a while the project will crash from start from zero”
P(36).

Code maintainability “I think it’s important to have something that is reasonably
elegant from a maintainability and extensibility perspective. So, if
we then the question boils down to if we consider maintainability
and extensibility aspects that determine quality or improved
quality, then yes, I would say that it’s true” P(33).

 165 Page 24 of 68 Empir Software Eng (2022) 27:165

be a code (First Cycle output) or a Pattern code (Second Cycle output). We use this annota-
tion antecedent → mediating variable → outcome in Section 4.2 of the findings to present
the causal chains we identified in response to RQ2. For example, we found that collab-
oration (i.e., antecedent) promotes knowledge sharing (mediating variable) with an effect
on software quality (outcome), Collaboration → Knowledge sharing → Software quality.
Every causality is presented and explained in detail in Section 4.2. Our analysis of RQ3
expanded this causal analysis by exploring how contextual conditions hamper each of the
causal links uncovered in Phase 1. To code these effects, we used tables (see, e.g., Table 10)
that mapped, for each case, how the causal paths uncovered in phase 1 were affected by
contextual conditions salient in the case.

3.4 Validating the Findings

Miles et al. (2014) use the term “testing or confirming the findings”, while other authors pre-
fer “validity.” We opted to validate our findings using “feedback from participants” (Miles
et al. 2014), also known as “member checking” (Creswell and Miller 2000). Lincoln and
Guba (1985) describe this technique as “the most crucial technique for establishing credi-
bility” of qualitative studies (Lincoln and Guba 1985). This process consists of presenting
the interpretations back to the participants in the study to provide them with the opportunity
to confirm the validity of the findings. We compiled a set of MS PowerPoint slides with a
detailed description of the findings of Phase 1. Then, we organized two focus groups with
developers and other participants from Phase 1 to discuss the findings. The details of this
process are fleshed out in Section 5.

4 Findings

In this section we use N to make reference to the number of mentions in total in the data for
a particular causal chain.

4.1 RQ1: De�ning Software Quality from Scrum Practitioners� Perspective

Our informants extensively discussed two aspects of software quality: “external” and
“internal”. While the external aspect relates to the impact on end-users, the internal aspect
is defined by the qualities of the software design and the code and its ability to sustain future
changes and adapt to business needs.

4.1.1 External Quality

Our participants used this categorization to refer to the correctness and the value of the soft-
ware as perceived by the end-users. Two salient attributes were used to characterize this
aspect of software quality: conformity to business needs (N = 35) and absence of defects
(N = 32). Participant 33 provided a close to a textbook definition for conformity. He stated:
“but I think quality can best [be understood as] ... does the artifact or the product you devel-
oping achieve the required, the desired requirements, both functional and non-functional
requirements expected by the target users?” (P33). Some participants stressed adding value
(e.g., P2 and P5) as an additional attribute to this category. Participant 2 has even made a
clear demarcation between conformity and adding value, e.g., “product quality can be sim-
ply defined as being defects free and add a business value or at least meets the user needs”

Empir Software Eng (2022) 27:165 Page 25 of 68 165

(P2). This may imply the expectations of additional features or economic value that the
software adds to the business, its processes and services.

Across the board, there is an almost universal agreement that the absence of defects
is a fundamental attribute of external quality. Participant 31 used “obvious” to stress this
attribute embodiment. He asserted: “so, if you asked me what quality is, I mean, the obvious
thing that people think about when they talk about software quality is probably bugs. So,
there’s something goes wrong, computer does something you didn’t expect, and so on. That’s
the obvious, quality mission” (P31). Participant 35 claimed an uttermost endorsement of
this attribute, “we have a zero-bug policy preferably we try to stick” (P35).

4.1.2 Internal Quality

This category was used to refer to the internal workings of the software, which is often not
visible to the end-users. Some of our participants used the term “structural” (e.g., P11, P20
and P21) to define internal quality. Participant 2 explained: “internal quality has to do with
the way that the software has been constructed or built. It has much more concrete attributes
like clean code, simplicity, component reuse and flexible design.” Participant 32 used the
analogy “behind the hood” to imply software qualities not visible to the end-users. There
was a consensus amongst Phase 1 participants that internal quality should at least exhibit
two traits: sustainable design and code quality.

Even though various terms were used to imply sustainable software design, e.g., “scal-
ability”, “extensibility”, and “flexible design”, most participants did not come short of
defining it. Accommodating changing business needs is the end goal of a sustainable soft-
ware design, “so, we like to have good code quality and a sustainable design to cater for
future changes” (P26).

Phase 1 participants used different terms and emphasize different dimensions of code
quality. Some used “clean code” instead of code quality to imply the same thing, e.g., “we
focus on code quality or clean code” (P29). Other participants made the effort to cite some
of the desired features of code quality, such as “readable”, “maintainable”, and “simple.”
Still, there was no consensus on which of these features are more important to code qual-
ity. For example, while participant 32 emphasized readability of the code, participant 37
stressed maintainability. Participant 32 explained: “but it is the biggest important one, if
we’re moving to looking like behind the hood, the biggest important thing with like quality
code to me is making sure number one, that it’s readable” (P32). “One is the quality that
comes from not introducing any more bugs into a system, as well as continually improving
your system without introducing any more issues. So that’s sort of the quiet code quality
SDLC maintenance quality aspects” (P37).

While external quality was a prominent theme in the data from both Phase 1 and Phase
2, internal quality was more prominent in Phase 1 data, with Phase 2 observations showing
little insight into perceptions of internal quality in the two cases (Kolkata and Phoenix).
Still, we observed that Kolkata’s team was keen on code review, which is a practice to assure
code quality and identify defects early on the development process. In comparison, Phoenix
relied only on documented code standards to promote writing quality code amongst its soft-
ware developers. Overall, both cases focused on meeting the client’s expectations on quality,
which evidently accentuates the end-user perspectives. This focus on external quality was
also influenced by the contractual agreement with the clients. In both cases, Kolkata and
Phoenix, the requirements specification documents and the test cases covered some non-
functional requirements such as “performance” and “security” but no mention, for example,
of internal quality properties such as code quality, maintainability or scalable design.

 165 Page 26 of 68 Empir Software Eng (2022) 27:165

4.1.3 Comparing our Findings to Industry Standards

It is insightful to compare these categories to established standards and definitions of qual-
ity. ISO/IEC 25010 defines software quality as “the degree to which the system satisfies
the stated and implied needs of its various stakeholders, and thus provides value” (ISO/IEC
2011). This definition focuses on the external quality aspect of software quality suggested
by our participants. The ISO/IEC 25010 model also proposes additional characteristics
relevant to external or internal quality not present in our data. The model suggests eight
categories for product quality: “functional suitability”, “performance efficiency”, “compat-
ibility”, “usability”, “reliability”, “security”, “maintainability”, and “portability” (ISO/IEC
2011). Without diving into the discussion and the definition of these categories, as they
are self-explanatory for a software engineering audience, we would like to point out that
some of the model categories, i.e., “compatibility”, “reliability”, and “portability”, were not
discussed by Phase 1 participants nor were they observed in Phase 2 cases.

Against the emphasis on external quality in the ISO/IEC 25010 model, it is remarkable
how strongly our participants in Phase 1 emphasized internal quality, especially sustainable
software design and, thus, code that supports the continuity of the software. Participant 30
explains: “when you give one developer the work that was done by another developer, it
[should] scale[s]. It takes so much time for that new developer to understand what’s being
done. And something that is supposed to take us through our weekly sprint, takes about two
weeks just because a new developer is trying to understand what was before. So, for us, code
quality also means scalability. If we grow this team, or if we grow the product, it doesn’t
start crumbling.” Although sustainable software design may be related to the maintainabil-
ity dimension of the ISO/IEC 25010 model, the interview statement highlights that facets
of sustainable software design, such as easily understandable code, matter not only during
maintenance but also during development. This may be partly due to the high amount of
change and flexibility needed during development, as valued in “Principle 2” of the agile
manifesto (Beck et al. 2001), which states: “welcome changing requirements, even late in
development. Agile processes harness change for the customer’s competitive advantage.”
This explains the affinity to accommodate future business needs by having a sustain-
able software design. The strong emphasis on sustainable design may also be inspired by
“Principle 9”, which states: “continuous attention to technical excellence and good design
enhances agility.” Even though “good design” is vague, practitioners seem to interpret this
recommendation in the right direction to accommodate the requirement of “Principle 2.”

The purpose of RQ1 was not to “reinvent the wheel” but to establish a reliable and
relatable definition as a foundation for examining RQ2 & RQ3. In addition, we wanted to
explore how definitions evolved in light of changes in the ways software is developed when
teams use Scrum. Our key finding in this regard is the strengthened focus among Scrum
practitioners on internal quality, especially on sustainable software design, although we also
observed that the projects examined in Phase 2 did not share this focus. It is interesting
to note that, despite the abundant literature on the topic and numerous industry standards
and definitions, some of our participants (e.g., P1, P3 and P5) maintained that software
quality remains a subjective end result. Some even claimed, “I know it when I see it” (P3)
and “but to be honest with you in reality, we don’t know it until we see it and agree this
is the quality we want” (P22). Still, our Phase 1 participants did not shy from defining it;
they asserted that the core attributes are conformity to business needs and free of defects.
This has become apparent in Phase 2 data; both Kolkata’s and Phoenix’s teams aimed
at meeting their client’s expectations for quality, defects reported during the Sprints were
mainly misalignments with the stated business needs.

Empir Software Eng (2022) 27:165 Page 27 of 68 165

4.2 RQ2: The Value-Add of Scrum for Achieving Software Quality

Recall, RQ2 seeks to understand how Scrum values, principles and prescribed events and
activities enable teams to achieve software quality in any shape or form. Our analysis
suggests that Scrum enables this in two major ways. First, Scrum values and principles sup-
port four social antecedents that strengthen the team’s ability to produce quality software.
These antecedents are collaboration, psychological safety, accountability, and transparency.
Second, the events and activities prescribed by Scrum yield two process-induced advan-
tages that help achieve software quality: iterative development and formal inspection and
adaption.

All the social antecedents and process-induced advantages have emerged inductively in
our analysis. That is, we did not use a pre-defined theory or known constructs relevant to
Scrum or agile in order to find these antecedents and how they influence achieving soft-
ware quality. We opted for an emergent strategy instead of testing known constructs in the
literature to allow findings to emerge from the frequent, dominant and significant themes
inherent in the raw data, without the restraints imposed by existing theories. This strategy
allows flexibility and the freedom to create new knowledge (Miles et al. 2014). Even though
most of the antecedents are discussed in the agile literature, the inductive approach facili-
tated the discovery of their effects on software quality, i.e., causal chains, which, to the best
of our knowledge, have not been reported previously.

4.2.1 Social Antecedents of Software Quality

A social antecedent refers to a quality exhibited at the individual, team, or organizational
levels. It also entails any process, practice or ceremony that is not technical (e.g., tools) or
pertaining to software engineering practices (e.g., continuous integration) or known qual-
ity assurance practices (e.g., code review). Contrary to quality assurance and engineering
practices, these social antecedents are complementary. Rather, for example, than intercept-
ing defects or identifying possible violations of coding standards, they enable achieving
software quality socially. This social enabling entails that each antecedent advances achiev-
ing quality by promoting a particular behavior, which has a consequent effect on achieving
software quality (i.e., Social antecedent → Behavior → Software quality). For example,
in the case of psychological safety, a social antecedent of software quality, the behavior is
that team members care about quality by speaking out about quality and making efforts to
increase quality without fear or feeling of guilt. The resulting effect is that errors and defects
are pointed out and that the efforts necessary for achieving quality are invested.

Figure 2 depicts this synergy. Each social antecedent advances the ability of Scrum teams
to achieve quality by promoting a behavior. The combined effect further advances the ability
of the team to achieve software quality. Their absence, however, does not imply a categorical
absence of quality, but rather the absence of a social trait that could further the team’s
ability to achieve quality. These social antecedents do not undermine or replace traditional
software engineering and quality assurance practices (e.g., unit testing, static analyzers and
continuous integration) for assuring quality but rather complement them. This Scrum value-
add elevates the team’s ability to achieve quality socially.

Figure 2 shows four causal chains, i.e., v1...v4. Each causal chain depicts the effect of one
social antecedent and how it advances achieving software quality in Scrum teams. For exam-
ple, transparency in Scrum teams promotes voluntary inspections of deliverables. These
inspections produce an effect, i.e., feedback, which is invested in correcting and improv-
ing the deliverable. This causal chain is labeled v4 in the diagram. We will use these labels

 165 Page 28 of 68 Empir Software Eng (2022) 27:165

Fig. 2 Scrum value-add for advancing software quality—social antecedents of software quality

(v1...v4) in the upcoming text to make reference to the causal chains. We will also use them
in reporting RQ3 results to sync RQ2 & RQ3 and demonstrate how these causal chains
failed to materialize in both case studies.

Table 9 lists the causal chains we identified in our data. While the last column shows the
total number of occurrences of each causal chain in the data (N), columns Mgt, PO, SM, QA
and SD represent the spread of N across the various perspectives in our sample. For brevity,
we used Mgt for management, PO for product owners, SM for Scrum Masters, QA for qual-
ity assurance and SD for software developers. Moreover, we used SWQ instead of software
quality and inspection & adaptation without formal. The numbers evidence that our partic-
ipants placed the greatest emphasis on collaboration and formal inspection and adaptation.
The numbers also show that some antecedents are more relevant to some perspectives than
to others. For example, software developers focused strongly on the effect of accountability
on quality while product owners, scrum masters, and QAs did not discuss the theme. Simi-
larly, it was almost only QAs and developers who highlighted the effects of process-induced
advantages on quality. These numbers convey a message which is that quality assurance

Empir Software Eng (2022) 27:165 Page 29 of 68 165

Table 9 The causal chains and the number of their occurrences in the data

Causal chains Number of occurrences in the data

Mgt PO SM QA SD Total

Social Antecedents

v1 Collaboration → Knowledgesharing → SWQ 5 2 4 6 13 30

v2 Psychologicalsafety → Caringaboutquality → SWQ 1 0 2 1 1 5

v3 Accountability → Meetingexpectationsforquality → SWQ 2 0 0 0 7 9

v4 Transparency → Voluntaryinspections → SWQ 2 2 0 0 3 7

Process-induced advantages

v5 Iterativedevelopment → Modularization → SWQ 0 0 0 0 6 6

v6 Inspection&adaptation → Continuousfeedback → SWQ 0 0 1 7 8 16

professionals and software developers experience and appreciate the benefits of a develop-
ment environment where these antecedents thrive.

We organized this section by social antecedents and their respective causal chains.
We start a causal chain sub-section with a heading with a causal notation, i.e.,
Social antecedent → Behavior → Software quality. Then, we present each causal chain
effect in Scrum teams and support it with data. At the end of each causal chain sub-section,
we present a summary in gray boxes to concisely summarize the discussion.

Collaboration −→ Knowledge sharing −→ Software quality

Collaboration is an instinctive and well-established practice in Scrum teams. It takes
place through various prescribed ceremonies (e.g., stand-ups and retrospectives). The cer-
emonies are not the only medium to collaborate. Our participants explained that Scrum
helped them work “well together.” For example, participant 12 attributed his team’s success
partly to collaboration, amongst other qualities. He stated: “we were successful primarily
because we worked together extremely well” (P12). A similar claim was made by partic-
ipant 28, “Scrum helps us to work very well together” (P28). Collaboration is advocated
by the Scrum guide (Schwaber and Sutherland 2020, p. 11 & p. 14). It is further pro-
moted by the prescribed “events”, e.g., “Daily Scrum” and “Sprint Review.” Our data show
that in practice, software development teams interpret the intent of Scrum events as a
requirement for collaboration to achieve a better outcome. This is apparent in participant
11’s assertion: “Scrum cannot be successful without team collaboration and teamwork.
Even if one person wants to work in isolation, it becomes pretty difficult for that person.
Scrum is a very inclusive process” (P11). In line with this statement, many statements from
Phase 1 participants documented that team interactions and knowledge sharing increased
with the use of Scrum.

To decode this phenomenon, we looked in the data for a more granular explanation of
collaboration. When our participants implied collaboration, they described a process where
team members were expected to participate actively and engage equally. Scrum ceremonies
encourage individuals to come out of their “bubbles” (P37) and silos, thus promoting
access to and exchange of knowledge to ensure high quality of the software. Participant
37 explained: “it’s great to have developers sitting there and inside their own little bubble,

 165 Page 30 of 68 Empir Software Eng (2022) 27:165

developing code. If you’re not able to talk to peers and get ideas on how to structure your
code, and how best to solve problems, one, you can end up developing the wrong thing. You
can end up writing code that, while it might achieve a goal, ... might be totally unmain-
tainable going forward. You might end up writing very inefficient procedures or stored
procedures that are just ridiculous. You might end up spending days on a problem that your
teammates could help you solve in one hour. ... For example, in talking with the team, espe-
cially the testers, they might help you pinpoint places in code that you haven’t paid attention
to ... Even when you’re talking about your developments in your stand-ups, the testing team
can also think of other ideas, the things they need to be testing. So, they’re not in a bubble,
either. I mean, there’s all sorts of benefits to collaboration ... Or you definitely become bet-
ter at writing code. You also become better at helping others write code, and helping, sort of
helping the team work better together” (P37). Equal and early engagement of all roles in the
team also helps break the “bubbles” (P37) and create fluidity in exchanging information,
“so being able to sort of open that that fluidity between the different pods, helps the whole
work better” (P37). Participant 19 (a QA engineer) explained the outcome of early engage-
ment of the QAs in the process: “we become better knowledgeable about the requirements,
and we participate in the user stories. This collaboration helps us to know what to test and
we catch more bugs” (P19). Participant 38 summarized the synergy of this phenomenon: “I
mean, that in Agile, you have one team, and all knowledge is circulated within this team,
and there is no need to pass this information. It’s inside, it might be no formal documents, it
might not be some website on Confluence [Knowledge sharing tool], or wiki. And you store
that information inside as a team, and there is not any information loss when you move
further” (P38).

The rounded rectangle v1 of Fig. 2 pieces together this social phenomenon. Scrum
encourages cross-functional participation and equal engagement. For example, the Scrum
guide describes the team as “a cohesive unit of professionals focused on one objective
at a time, the Product Goal” (Schwaber and Sutherland 2020, p. 5). Our data show that
Scrum organically promotes this “cohesive unit” by breaking barriers between functions,
e.g., developers → QAs and business users → QAs. Scrum ceremonies help teams
break barriers by transforming them into a unified and cohesive unit. Participation becomes
second nature for all team members when it comes to interaction, for example, in the daily
Stand-Ups. Equal engagement in Sprint planning (i.e., every team member participates)
creates inclusiveness. This social climate results in fluid knowledge sharing and has three
distinct dimensions affecting software quality: feedback from the business, understanding
of the requirements and peer-to-peer learning and support.

Feedback from the business users. Feedback from business users can be provided either
through formal channels, e.g., during the Sprint reviews and the “client demos” (e.g., P11
& P19), or through informal interaction with users. The accessibility of the end-users,
either via the product owner (PO) proxy or directly participating in the Scrum team,
allows the team to have access to early feedback. The team capitalizes on this feedback to
rectify errors and align the developed features with business expectations. Participant 31
explained: “so, it’s my experience is that the feedback impact on quality and on features is
greater when you have access to the actual customer rather than someone who is simply
the actual user, compared to someone who is the just the owner of the product. I think
that’s, that’s very helpful if you can get access to the actual user and get quick feedback,
loops, quick feedback cycles. So that definitely helps the product quality, because they
also, always find something that you’re rarely the main expert in whatever the application

Empir Software Eng (2022) 27:165 Page 31 of 68 165

is supposed to be doing. If you’re working on the same thing over many years, you may
become one and get the sense of what the user needs. But typically, you need to have
an actual user who has domain knowledge to point out the things you missed, which is
also easier to do the sooner you get the feedback. This feedback helps to improve quality,
errors are identified sooner then corrected” (P31).
Understanding of the requirements. The interaction with the business representatives per-
mits continuous learning about the business needs, either through formal ceremonies,
e.g., Sprint planning and Backlog grooming, or informally in daily encounters. Develop-
ers and quality assurance specialists (QAs) alike are less inclined to make assumptions
about the requirements. Because of the participation of the business in the process and
the fluidity of knowledge exchange, they are willing to validate their understanding of
the requirements instead of making assumptions that could lead to defects. Hence, the
effect of this behavior is preventive, i.e., it prevents defects by reducing the gap in under-
standing the requirements. Participants 4 & 6 assertions cement this interpretation, “they
[QAs] become intimately knowledgeable of the business requirements and the expectations.
This helps testing the real users’ expectations rather than making assumptions. This
knowledge helps identifying and reducing bugs” (P4), and “I think the most impor-
tant thing about Scrum is it brings people to collaborate better. I used the example of
Sprint planning. During this meeting, the client, the developers and the QAs discuss and
align their understanding of the requirements and expectations on quality. This significantly
reduces bugs; developers know what to develop. They do not make assumptions and the
QAs know what to test. Here you have it; a product with less bugs, that’s quality” (P6).
Peer-to-peer learning and support. Once barriers within the same function and cross-
functions are reduced or even broken, individuals become more willing to help and less
hesitant to ask for help. This fluidity creates peer-to-peer knowledge flow, which would
remain largely untapped if people worked in silos. Then, a joint intellectual effort is
invested in helping each other. This contributes to better coding and design decisions
and helps tackle complex problems. Participant 37 explained this synergy passionately:
“If you didn’t have that sort of knowledge sharing, they’d be sitting in a vacuum trying
to figure things out, getting things wrong over and over and over again. And clients are
just screaming. In the meantime, where we had some absolutely idiotic bugs just because
people wouldn’t talk to each other” (P37). Participant 28 worked for a pharmaceuti-
cal manufacturing provider. He explained that his team develops “complex” software.
Collaboration helped his team to overcome the complexity and had far-reaching effects;
they collectively came up with enhanced coding decisions and design. He stated: “Scrum
helps us to work very well together. The product we developing is complex, so knowledge
and how to deal with complex problem is important to us. We always discuss how to go
about things and we come up with the most efficient solutions. You know, we develop
automation software for pharmaceutical manufacturing; it can be complex. When we talk
and learn from each other’s we come up with better design and better code” (P28).

To recapitulate, this social antecedent enables achieving software quality by making knowl-
edge more accessible and shared voluntarily within the team. Then, the knowledge is invested
in developing features aligned with the users’ expectations and tested accurately. Knowledge
sharing benefits the software’s external quality (see RQ1) and contributes to the betterment
of the internal quality when peer-to-peer learning occurs. Our participants reported that
better decisions were made when the team invested their collective intellectual effort.

 165 Page 32 of 68 Empir Software Eng (2022) 27:165

1
Collaboration Knowledge sharing Software quality

Collaboration is intrinsic to the Scrum method; it facilitates better knowledge sharing. The
collaborative climate in Scrum teams accentuates the exchange of knowledge fluidly and
frequently. This state helps advancing quality in several ways. The collaboration with the
end users provides the team members with access to frequent feedback and better under-
standing of the requirements. While the former helps the team to take corrective measures
to the features being developed to align the software with the business needs, the latter,
reduce the tendency of the team to make assumptions about either missing information or
their interpretations of the requirements. As claimed by our participants, this eventually
reduces defects as assumptions can be wrong. The other aspect of collaboration is peer to
peer exchange of knowledge. Our participants reported that the joined intellectual effort
resulting from these interactions helps quality by collectively assisting each other’s in figur-
ing out the best decision for coding, design and resolving complex design and coding tasks.

PsychologicalSafety −→ Caringaboutquality −→ Softwarequality
Psychological safety is a shared belief that individuals feel safe about the interpersonal

risks that arise concerning their behaviors in a team context (Edmondson 2018). Our partic-
ipants used words like “less afraid of failure” (P3) and “they feel it is safe to do so” (P5), to
imply the presence of this social antecedent in their teams. They reported that psychological
safety influences the behavior of developers. In a psychologically safe climate, two effects
emerge and advance achieving software quality: developers invest further effort on quality
and speak out when quality is not within the expectations set by the team. These two effects
are inherent to the behavior of caring about quality.

Our data suggests that developers care about quality and invest further effort to ensure
it when they feel safe to do so. Project constraints such as schedule may exercise pressure
to meet deadlines and compromise quality. However, when developers feel safe, they invest
effort and time to ensure their deliverables’ quality. This claim is evident in participant 5’s
assertion: “developers invest on quality when they feel it is safe to do so. For example, if
you blame them for not meeting the deadlines and you don’t give them enough time to work
on the quality to start with, then they will compromise quality to meet the schedule and
avoid the blame. I’ve seen it happening; developers become disengaged and uninterested;
then they produce crappy code” (P5). This effect is not only observed within developers.
Similar behavior is also observed amongst the QAs, according to participant 12 account: “it
does [psychological safety helps achieving quality]! What I have observed is developers and
QAs for example take initiative more and invest on the success of the product including its
quality. For example, developers put more effort and time on writing better code. The QAs
become invested and care about the quality of the software, even the relationship between
developers and QAs improves. They communicate better and share information faster to
understand bugs. The team becomes more efficient at assuring quality. I saw improvement
on the quality” (P12).

Our participant also pointed to another benefit that psychological safety brings for soft-
ware quality: Team members speak out when they think the quality of a deliverable is not
within their expectations or the team’s expectations and they feel psychologically safe. Par-
ticipant 21 explained: “but we are encouraged to speak our mind without fear. This helps a
lot. For example, when I see work with lower quality than I expect or the whole team expect,
then I’m not afraid to say it. If you were with a team, like if you work in a team that’s engaged
and people like care about what they’re doing, then there’s that psychological safety where

Empir Software Eng (2022) 27:165 Page 33 of 68 165

sometimes you can make mistakes or other people make mistakes and know that that’s okay.
That’s definitely a better feeling. Not only mentally, but I’ve seen people attitudes changes.
They care about the quality of the product and this helps for better quality” (P21). Pointing
out quality issues in a peers’ deliverable may create a feeling of guilt. However, it is not the
case in a psychologically safe environment because the relationships are “stronger.” This
was discussed by participant 29: “bugs are found and communicated without fear or feeling
of guilt. The team operate better, because our relationships are strong. We feel very close to
each other’s and minimum power over us. We invest more effort on quality and we produce
code with less bugs” (P29).

Promoting psychological safety in the development environment brings social qualities
to the team, thus advancing its ability to achieve software quality. Developers invest effort
in the quality of their work, and team members feel no fear to speak out when quality is not
according to the expectations. However, this extent on quality is not unique to psychological
safety. A simple gesture like involving the developers in the discussions with the client has
a similar effect. Participant 30 explained: “meeting [with the client] helps them [developers
and QAs] feel part of the project and they’re more willing to give that extra effort. It makes
them more keen on ensuring quality because they don’t feel like it’s does some work I have
to do. They’re more, they feel let me do a good job” (P30). He later reaffirmed the effect of
not fearing the consequences on his productivity and producing “better quality”. He said:
“when things don’t work as well, I don’t feel like oh, no, it was my fault. Everything went
bad because I made a mistake. It’s like, because we’re all in this environment of review.
That review doesn’t mean why did you get this wrong? It means I can see you didn’t think
about this. Next time let’s do this. I don’t feel attacked for being wrong. If that makes any
sense. I feel less inclined to feel attacked. So, I’m more productive, because I can just focus
on doing what I can to be more productive and better quality” (P30).

The rounded rectangle v2 of Fig. 2 summarizes this effect. The absence of fear from the
eventual consequences of one’s actions forges a behavior of caring about quality. This care
implies investing the necessary effort to meet quality expectations. For example, developers
spend sufficient time looking after the quality of their code because they are not afraid to
do so. To speak out when the quality is not up to the expected standards is the result of
being concerned which is an attribute of caring. For example, QAs do not feel the “guilt”
of raising defects. Neither do developers because the risk of offending or implying blame
diminishes when this sense of safety prevails. While investing effort in looking after quality
has a preventive impact the software quality, i.e., prevent defects or unmaintainable code,
on the other hand, speaking out has a corrective impact. The errors become known, and
adjustments are carried out accordingly. Participant 32 explained it more agreeably: “if
you’re living in fear of like the manager cracking the whip on you, you’re living in fear of
the manager cracking the whip on you. And that’s not going to encourage you to do your
best that’s going to encourage you to cut corners including quality” (P32).

Although some of our participants’ accounts (e.g., P3, P13 & P21) suggest that psycho-
logical safety cannot be attributed to the use of Scrum, it can be argued otherwise. There
is a parallel between “to be less afraid of failure” (P3) and “courage”, which is advocated
in the Scrum guide (Schwaber and Sutherland 2020, p. 4). It states: “Scrum Team members
have the courage to do the right thing” (Schwaber and Sutherland 2020, p. 4). Moreover, the
Scrum values of “respect” and “openness” (Schwaber and Sutherland 2020, p. 4) call for
a team environment in which disagreements are dealt with in a constructive way, implying
that team members need not be afraid of blame or offenses as a result of disagreements.
Although endorsement of Scrum values may thus promote psychological safety, Participant
32’s account indicates that these qualities are also the outcome of individual and team-level

 165 Page 34 of 68 Empir Software Eng (2022) 27:165

learning processes: “but I find that there is a, there’s a taboo, when it comes to retrospec-
tives around talking about the bad. And you can find yourself under fire quite a lot for being
the person that has the courage to talk about the bad. Because unfortunately, people don’t
like to hear bad things. But one of the key things that I’ve learned in life is that talking about
the bad things helps you grow and improve. That’s the whole point of agile, you can proba-
bly see that I apply agile to like my own life at this point. Like I’m a bit of a nutter when it
comes to that” (P32).

2
Psychological Safety Caring about quality Software quality

Our participants reported that psychological safety in Scrum environments empowers team
members to speak out and motivate them to invest efforts in meeting quality expectations.
Speaking out entails providing voluntary feedback on the quality of the software artifacts
and pointing out errors without experiencing tension by both parties. According to our
participants, both the receiver and the provider of the feedback do not experience the
feeling of guilt and are at ease to talk about shortcomings in quality. This advances quality
because errors are pointed out and talked about. In addition the feeling of safety propels
developers to invest the necessary effort on assuring the quality of their work. According to
our participants, developers are motivated to produce quality deliverable, when there are no
repercussions to do so.

Accountability −→ Meeting expectations for quality −→ Software quality

Accountability, as it emerged in our data, implies assuming responsibility for one’s work
and its quality. It also implies taking ownership and shared obligations, e.g., “you are
accountable to the rest of the team. See, the culture is that everyone is accountable for
everyone. The rest of the team is accountable for you. And you hold accountability for other
people too” (P2) and “they [team members] take ownership of the work they do and its qual-
ity” (P5). As per participant 2 and 5 quotes, this social antecedent has two dimensions; while
the former refers to collective accountability, the latter points to individual accountability.

Some of our participants implied that accountability is the product of being a self-
governing team, e.g., “I think it’s [self-governing team] very powerful, but you’re suddenly
more, you’re not responsible, you’re accountable, you’re more accountable to your col-
leagues, rather than to your manager. Because that’s the whole technical and reputational
thing in it as well” (P31) and “what Agile does is takes that responsibility and hands it to the
team. Now, because the developers, the testers, the business analysts feel valued, because
they know they an instrumental part of delivering this and this, they’re not just worker bees.
They take a personal responsibility and therefore provide a personal commitment in ensur-
ing that whatever they do is improved quality. At least I’m speaking for myself, but I’ve
seen this overall, within projects over the years” (P33) or simply a commitment to a value
advocated by Scrum, e.g., “when the culture is that everyone is accountable for everyone,
developers feel accountable to meet the team’s expectations on quality” (P2). Either way,
this Scrum value has a positive effect on achieving software quality. It brings about the
behavior of wanting to meet the team’s expectations on quality. Our participants described
this effect as not “letting the team down” (P2), “reflection on them” (P33) and “you don’t
want to make team looking bad” (P38) when the expectations are not met. This antecedent

Empir Software Eng (2022) 27:165 Page 35 of 68 165

may have more influence on software developers than other roles in the Scrum team. It
appeared more prominently in the interviews with developers (N (developers) = 7 out of N
(all sample) = 9) than in interviews with other roles (e.g., P2 and P5).

The rounded rectangle v3 of Fig. 2 depicts how accountability influences advancing
software quality based on our data. The behavior resulting from this antecedent has two
strands: maintaining technical integrity and supporting the collective effort of the team to
achieve quality. While the desire to maintain technical integrity stems from the individ-
ual feeling accountable, supporting a collective effort is related to collective accountability.
Maintaining technical integrity, for example, was implied by developers using references to
“personal pride” (P36) and “reputation” (P31). This desire to maintain technical integrity
incentivizes developers “writing good quality code” (P38) and aiming for “better quality”
(P33). Supporting the team in its pursuit for quality is the other strand of this behavior, e.g.,
not “letting the team down” (P2). In order to contribute to the team’s endeavor to achieve
quality, developers are incentivized to meet the expectations. Participants 36 and 31 endorse
these conclusions, “yes, it does [Scrum motivate me to write better code]. Personal pride
for the retrospective and you present your results. And we are actually quite proud of your
code, checks all the boxes. It’s beautiful. It runs, it provides results. Because it was a sim-
ple task, you have a high chance of success to check all these boxes. You estimated enough
time to perform all the required steps for the formatting, the commenting, the testing, the
rechecking, and you actually are proud of your code. And that brings value your personal
value, increases your morale, which helps you actually evolve and do better and better code
all the time” (P36), and “if I’m in a team of peers, and I deliver something that has way too
many defects compared to the others, it reflects poorly on me in the eyes of my peers” (P31).

Scrum explicitly advocates for accountability. The Scrum guide states that “the entire
Scrum Team is accountable for creating a valuable, useful Increment every Sprint”
(Schwaber and Sutherland 2020, p. 5). Although accountability for the quality of the “incre-
ment” is not definite in the guide, it is somehow implied. The guide further states, “holding
each other [developers] accountable as professional” (Schwaber and Sutherland 2020, p. 5).
Developers in Phase 1 of our study explained that they account for the quality of their work
because they believe it showcases their professionalism. This was explained by participant
31: “technical and reputational thing” (P31). The technical reputation is compromised,
e.g., “a reflection on them”, if she does not meet the team’s expectations on quality.

3
Accountability Meeting expectations for quality Software quality

Our participants (mostly the developers) reported feeling accountable for their work, in
Scrum environments. Some explained that this quality is inherent to some level of self-
governing they experienced or simply because of the empowerment promoted by equal
participation and engagement. This quality implies taking ownership and responsibility of
one’s work. Developers, in our sample, explained that they become incentivized to maintain
their technical integrity and support the collective pursuit for achieving quality. Developers
equate the quality of their code to their professionalism, integrity and showcasing their
competences to gain peer recognition. The other implication of feeling accountable is the
desire to not “let the team down.” Meeting the expectations of the team on quality becomes
a driver for developers to contribute to the collective endeavour to achieve quality.

 165 Page 36 of 68 Empir Software Eng (2022) 27:165

Transparency −→ Voluntary inspections −→ Software quality

As we understand it from our data, transparency is the equal access and visibility of
work information and progress. According to our participants, Scrum teams aim to com-
municate openly, and honestly to make information flow freely within the team. Participant
37 described his team environment as “open” and “frank”, “it’s very open. It’s very frank”
(P37). Transparency is one of Scrum’s “pillars”, in addition to inspection and adaptation
(Schwaber and Sutherland 2020, p. 3). According to the Scrum Guide, transparency is
intended to allow inspections of the team’s deliverables. The guide states: “transparency
enables inspection. Inspection without transparency is misleading and wasteful” (Schwaber
and Sutherland 2020, p. 4). Our data showed that this intent is materialized in practice, as
reported by our participants. Transparency advances software quality in Scrum teams by
allowing team members to inspect the quality of each other’s deliverables.

Scrum ceremonies facilitate this social antecedent. For example, during stand-ups, team
members become aware of each other’s tasks. When an artifact is available for review and
retrospectives, it allows for in-depth inspection of Sprint’s achievements. Our participants
implied that transparency is an inherent quality of Scrum. Once the Scrum method is oper-
ationalized and adhered to, transparency becomes intrinsic to the team’s work environment.
Participants 1 and 31 described this phenomenon as not being able to “hide”, implying that
team members’ deliverables, including their quality, are visible. Participant 1 stated: “in
Scrum, you don’t have the luxury of hiding for six months” (P1). Participant 31 added: “so,
it gets harder to sort of hide behind and make excuses for bad performance as well, in this
case. It quickly becomes more apparent if people in the team aren’t pulling their weight, say
or if they’re doing subpar work” (P31).

This antecedent encourages voluntary and informal inspection of the quality of deliv-
erables, which advances the quality of the software. Participant 3 explained the effect of
transparency on his team after they adopted Scrum: “I think the Scrum environment helps
in that way because everyone was more transparent. Everyone was less protective over
their code. We also had one product backlog, one repository, everyone could see anyone’s
code or change anyone’s code. That also helped with quality. Let’s say I code something,
and my code has mistakes or whatever, anyone was empowered to comment on my code
and help on my code and submit approve request to better it. Of course, the person who
wrote it would have to approve it but generally it would be approved” (P3). Participant
28 affirms this claim: “people can comment on my work anytime and criticize my coding
and design decisions. This helps the quality of my work and I learned extensively from my
teammates feedback. As I said I’m the youngest and less experienced in the team” (P28).
The effect of this social antecedent on software quality is corrective. Whether deviations
from code standards or specifications, errors are identified by peers and then pointed out for
adjustments.

4
Transparency Voluntary inspections Software quality

Transparency is materialized in Scrum teams when all team members have equal access
and visibility to software artifacts, deliverable, decisions and the daily operations of the
process (e.g., user stories progress, code released for review, architectural decisions and
changes, etc.). Our participants experienced that this quality instigates team members to
voluntarily comments, provide feedback and suggestion to improve quality, whether it is
the code quality, a design decision or how to resolve a particular defect.

Empir Software Eng (2022) 27:165 Page 37 of 68 165

4.2.2 Process Induced Advantages

The essence of Scrum is an incremental approach to software development. It advocates
creating value through iterative increments to accommodate unpredictability and miti-
gate potential risks. Scrum also recommends frequent inspections to identify and address
deviations from the customers’ expectations, i.e., adaptation. Our data show that these
process-specific propositions induce advantages that stimulate achieving software quality.
While the social antecedents arise from a team espousing Scrum values and principles, iter-
ative development and formal inspection and adaptation arise from teams following the
activities and events recommended by Scrum. Once operationalized, they become ingrained
practices. Figure 3 illustrates how the process antecedents promote advancing software qual-
ity. Similarly to Fig. 2, we used v5 and v6 to label the causal chains of iterative development
and formal inspection and adaptation. In the subsequent text, we shall use these labels for
references.

Iterative development −→ Modularization −→ Software quality

Iterative Development Scrum recommends that the product should be developed in itera-
tive Sprints. Each Sprint has a specific goal with the purpose to “increase the product value”
(Schwaber and Sutherland 2020, p. 8). Our participants, especially software developers,
praised the effect of this style of development. They explained that it brings modularity to
the tasks, which gives the developers more control and stronger focus over a contained part
of the code and its quality. As a result, developers become more confident and willing to
consider and implement actions that elevate the quality of the code. Participant 32 explained:
“it’s like it [iterative development] creates this implicit relationship between good readable
code and quality code where it’s sort of like, you know, saying, like, create this one bit that
does this one thing, it is separate from everything else. Because, you know, this was that
was the term I’m looking for. It’s back to that sort of like the temptation to just lump things
all together in the same index file or whatever. And then you end up with like, very messy

Fig. 3 Scrum value-add for advancing software quality—process induced advantages

	How Scrum adds value to achieving software quality?
	Abstract
	Introduction

