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Abstract
Recent research has shown promising results for estimat-
ing structural area, volume, and population from Sentinel 1 
and 2 data at a 10 by 10-m spatial resolution. These stud-
ies were, however, conducted in homogeneous countries 
in Northern Europe. This study presents a deep learning 
methodology for population estimation in areas geographi-
cally distinct from Northern Europe. The two case study 
areas are Ghana and Egypt's Mediterranean coast, with 
supplementary ground truth data collected from Uganda, 
Kenya, Tanzania, Palestine, and Israel. This study aims 
to answer the question: How can we use Deep Learning 
to map structural area and type to derive population es-
timates for Ghana and Egypt based on Sentinel data? At 
10 by 10-m resolution, the accuracy of the presented area 
predictions is similar to the Google Open Buildings dataset. 
An intercomparison of the presented population predic-
tions is made with global state-of-the-art spatial population 
estimates, and the results are promising, with the proposed 
methodology showing comparable or better results than 
the state-of-the-art for the study areas.
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1  | INTRODUC TION

People are increasingly living in cities, and urbanization is taking place rapidly. By 2050, the UN projects that 68% 
of the world's population will live in urban areas compared with 30% in 1950 (United Nations, 2019). While cities 
only cover 0.5% of the world's land, this has doubled since 1975. In Northern Africa, land occupied by cities has 
quadrupled since 1975, and in sub-Saharan Africa, it has tripled (Dijkstra et al., 2021). Urban areas are the causes 
of a significant amount of global carbon emissions (Moran et al., 2018), but while living in dense cities, generally 
reduces the carbon footprint of the individual, different urban structures impact the environment in distinct ways 
(Høyer & Holden, 2003; Li et al., 2013). Global maps of human settlements with population estimates enable spa-
tial modeling of household emissions, consumption, and service levels (Jiang & O'Neill, 2017).

This study is a continuation of the work described in Fibæk, Keßler, et al. (2021), which presents a multisen-
sor approach that can reach high levels of accuracy for mapping the area, volume, and population of structures 
in Denmark. That research, in turn, builds on Frantz et al.  (2021) and Haberl et al.  (2021), which showed that 
Sentinel imagery could be used to predict the height of structures, as well as Corbane et al. (2020) and the Global 
Human Settlement Layers' S2-NET, which has been used to create global maps of built-up areas extracted using 
the Sentinel 2 satellites and Deep Learning. The European Space Agency and Esri have also published global land 
cover classifications for 2020 based on Sentinel data, which features a built-up class (ESA,  2020; Esri,  2020). 
These datasets feature binary classifications of built-up areas and do not predict the physical characteristics of 
the present structures nor estimate the population.

Training deep learning models in areas where significant ground truth data are available, such as Denmark, 
and adapting them to different local contexts could reduce the information inequalities and improve decision-
making (Fibæk, Laufer, et al.,  2021). Sentinel 1 and 2 data is well suited for far-field applications as global 
data are openly and freely available. The spatial resolution of the Sentinel satellites' data products allow the 
mapping of individual structures and characteristics, such as area, volume (Haberl et al., 2021) and estimated 
population (Fibæk, Keßler, et al.,  2021; Schug et al.,  2021), where structures refer to buildings and other 
human-made space-enclosing structures. However, current approaches to structure mapping from Sentinel 
data have either not shown applicability in data-poor regions (Fibæk, Keßler, et al., 2021; Schug et al., 2021) or 
do not utilize the full potential of multisensor approaches nor all the spectral bands available from the Sentinel 
2 satellite (Corbane et al., 2020).

Multiple studies have been conducted on extracting building footprints from very high-resolution sat-
ellite imagery using deep learning models (Weijia Li et al., 2019) and made available through humanitarian 
programs—such as “Google Open Buildings” (Sirko et al., 2021), Meta (Facebook) “Data for Good” population 
estimates (Meta, 2022) and Microsoft “AI for Good” (Microsoft, 2021). Using the proposed models and gath-
ering the required very high-resolution satellite imagery at the country or global scale to extract structural 
information can be infeasible due to processing requirements, low temporal resolution, or financial costs 
unless supported by donations or not continuously updated. Furthermore, the results section shows that 
they currently do not detect a significant number of structures and population clusters in the study areas, 
especially in self-organized areas.

WorldPop has created global population maps at different scales using a combination of approaches, including 
one based on building footprints from Ecopia and Maxar Technologies made available at 100 by 100 m resolution 
(Ecopia,  2021; Stevens et al.,  2015). Meta provides 30 by 30-m resolution predictions based on counting the 
number of buildings per pixel derived from very high-resolution imagery (Meta, 2022). The WorldPop data pro-
vide many different aggregates of the human population, such as constraining the predictions to UN population 
forecasts. For parts of the study areas, the data used to generate the cloud-free mosaics of very high-resolution 
satellite imagery underpinning the models is dated or missing, which can cause significant planning issues consid-
ering the pace of changes in urban settlements. Current population estimates from WorldPop and Meta do not 
differentiate between daytime and nighttime population (Foley, 1954) for the study areas, which is important for 
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mapping population dynamics. WorldPop has mapped population dynamics in France through cellphone tower ac-
tivity, but not through Earth Observation alone (Deville et al., 2014), which is investigated in this study. The results 
section of this study compares the WorldPop, and Meta population estimates and the Sentinel derived population 
estimates presented in this study, nicknamed SenPop.
The main contribution of this article can be summarized as follows:

•	 Shows a viable multisensor approach for predicting structural area at a 10 by 10-m spatial resolution applied in 
Ghana and Egypt.

•	 Provides a methodology for converting the structural characteristics and census data into day- and night-time 
population maps.

•	 Shows the viability of training Earth observation deep learning models on ground truth data from Denmark to 
locations where less ground truth data is available, using minor amounts of additional local training data.

The remainder of this article is organized in the following way: Section 2 introduces the study areas and the data-
sets used to generate labels. Section 3 describes the preprocessing and data augmentation steps taken to ready 
the data for ingestion into the deep learning model. Section 4 describes the methodology behind the predic-
tions: (1) Structural area per pixel, (2) Structure type, (3) Population per pixel, and (4) Structural volume per pixel. 
Section 5 presents the results and comparisons with other datasets on structural area and population estimates. 
Section 6 discusses the results, and Section 7 summarizes the article's conclusions.

2  | STUDY ARE A

The two study areas are Ghana and Egypt's Mediterranean coast. Training and testing data were collected from 
Ghana, Denmark, Gaza, and parts of Egypt, Israel, Palestine, Tanzania, Kenya, and Uganda. Predictions on area, 
structure type, and population were made for the two primary study areas. The choice of including Danish ground 
truth data is due to the availability of complete ground truth data and the previous application of Sentinel data to 
map structural characteristics in Denmark (Fibæk, Keßler, et al., 2021; GeoDenmark, 2021). Including data from 
Northern, Western, and Eastern Africa ensures the applicability of the models in diverse contexts. All the data 
used as training data were sensed between Q2 and Q4 2021. Table 1 shows the origin of the training data col-
lected on structural footprints. Figures showing the case study areas, and areas where supplementary training and 
test data were collected, are included in Appendix A.

2.1 | Ghana

Ghana is a West African country sharing borders with Burkina Faso to the North, Cote d'Ivoire to the West, Togo 
to the East and the Gulf of Guinea and the Atlantic Ocean to the South. The country has a population of 30.8 
million people (Ghana Statistic Office, 2021) and covers 239,567 km2. According to the updated Köppen-Geiger 
classification, Ghana consists of two climate zones, tropical monsoon in the southwest and tropical Savannah 
elsewhere (Peel et al., 2007). Having different climate zones in the study area means that any deep learning model 
trained to predict structural characteristics needs to be able to generalize across climate types. Going from the 
South to the North as it nears the Sahel Region, Ghana is increasingly arid. The main population centers are the 
Metropolitan areas of Accra and Kumasi. The coastal region has highly consistent cloud cover, especially the west-
ern parts of the coastline from Cape Coast toward the Cote d'Ivoire border. A new population and housing Census 
was conducted in 2021, which serves as the basis for the population distribution of the models. The census was 
initially scheduled for 2020 but postponed due to the outbreak of Covid-19,
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2.2 | Mediterranean Egypt

Egypt's Mediterranean coast is home to the Nile Delta, the City of Alexandria, the Suez Canal, and diverse climate 
zones. The area is home to approximately 40 million people, and the Egyptian Government is currently undertak-
ing projects on Integrated Coastal Zone Management as the area is susceptible to sea inundation, erosion, and 
saltwater intrusion (Abou-Mahmoud, 2021; Fabbri, 1998; NIRAS, 2021). A high-resolution map of structures and 
populations could provide a better outset for urban growth planning, economic and environmental impact assess-
ments, and insurance valuations. Creating such maps using Sentinel data could be incorporated into continuous 
coastal zone monitoring efforts (Elnabwy et al., 2020).

Training data were collected along the entirety of Egypt's Mediterranean coast. Previous predictions of urban 
structures in Egypt, made using very high-resolution satellite Earth observation, have shown that it can be a chal-
lenging area to extract building footprints, likely due to the building materials used, the proximity of structures 
and walled courtyards (Sirko et al., 2021). The last census in Egypt was conducted in 2017, and the population 
estimates used in the study are based on UN forecasts from the 2017 census.

2.3 | Eastern Africa

In Eastern Africa, data were collected from Tanzania, the Zanzibar Archipelago, and the Tanzania border region of 
Kenya, and Uganda. The areas were chosen as they represent a mix of settlement types and diverse geographies and 
range from the mountainous Kilimanjaro foothills on the border of Tanzania and Kenya to the densely populated urban 
centers of Dar es Salaam, Tanzania and Kampala, Uganda. Mwanza, on the coast of Lake Victoria, also called the City 
of Rocks, was chosen due to its rocky landscape, which is often difficult to map using Earth Observations and Deep 
Learning (Sirko et al., 2021). The difficulty comes from the size, shadows cast, and the spectral and radar backscatter 
signature of rocky landscapes resembling housing, especially housing constructed using natural materials.

TA B L E  1 Study areas and training material

Country Area Purpose
Structures 
count (M)

Structures 
area (km2)

Training 
area (km2) Data capture

Ghana Distributed nationally Training 0.40 46.77 4283 2021: Q3–Q4

" Distributed nationally Test 0.09 5.01 94 2021: Q3–Q4

" Distributed nationally Student Varies Varies 785 2021: Q3–Q4

Egypt Mediterranean Coast Training 0.05 8.80 469 2022: Q1

Egypt Mediterranean Coast Test 0.004 0.60 10 2022: Q1

Palestine Gaza Training 0.03 6.36 28 2022: Q1

Israel Coast and the Negev Training 0.05 21.90 323 2022: Q1

Tanzania, 
Kenya

Kilimanjaro Foothills Training 0.77 46.29 10,552 2021: Q4

" Mwanzaa Training 0.42 31.60 1322 2021: Q3–Q4

" Kigoma, Tanganyika Coast Training 0.09 3.26 3523 2021: Q4

" Dar es Salaam & Zanzibar Training 1.41 139.25 2613 2021: Q3–Q4

Uganda Kampala, Entebbe & Jinjaa Training 1.46 120.09 3130 2021: Q3–Q4

Denmark Alla Training 5.69 726.35 42,933 2021: Q1–Q4

Total (sum) 10.41 1156.28 69,596

aMultiple timestamps used. (M) Refer to “millions”.
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Tanzania and Uganda were initially chosen due to Microsoft releasing their building footprints dataset for 
those two countries (Microsoft,  2021). Then, areas within Tanzania and Uganda were selected that had good 
coverage of OpenStreetMap building footprints and provided diverse physical characteristics and geographies.

2.4 | Gaza, Palestine, and Israel

Supplementary training data were collected from Gaza, Palestine, and Israel. Gaza was chosen as a visual inspec-
tion showed a very high degree of coverage of OpenStreetMap (OSM) structures, which is potentially due to the 
efforts of Humanitarian OpenStreetMap (https://wiki.opens​treet​map.org/wiki/Human​itari​an_OSM_Team/Gaza). 
Like Gaza, Israel, and Palestine were selected due to Egypt's geographical proximity and the good OSM coverage 
along the coast and the hilly areas around Jerusalem.

2.5 | Denmark

Denmark was chosen due to the ease of accessing high-quality ground truth for the country for multiple seasons. 
Denmark is a largely geographically homogenous area, meaning that the far-field application areas of models for predict-
ing structural characteristics trained on Danish data are likely to perform poorly without additional local training data.

3  | DATA COLLEC TION AND PREPROCESSING

All input and ground truth data were processed using the Buteo, Orfeo, and ESA SNAP toolboxes through Python 
(Agency European Space, 2021; Fibaek, 2022; Grizonnet et al., 2017).

3.1 | Ground truth data

Ground truth data came from a mixture of predominantly OpenStreetMap and GeoDenmark data, supplemented 
with data from Google Open Buildings, using the 90% precision threshold (Sirko et al., 2021), and Microsoft Buildings 
for Tanzania and Uganda. All training sites were manually inspected, and missing structures were digitized using the 
latest available imagery from Google Earth and Microsoft Bing Maps. Ground truth data in Ghana was collected in 
collaboration with the Center for Remote Sensing and Geographic Information Services at the University of Ghana, 
Legon. Ground truth data for Egypt was gathered in cooperation with the University of Alexandria.

The vector training sites and buildings were rasterized to a 20 by 20 cm resolution, with 1.0 assigned to build-
ings and 0.0 otherwise. The resulting rasters were then resampled to 10 by 10 m cells using the average and 
multiplied by 100, resulting in the approximate m2 coverage of structures within each pixel. Ground truth data 
on population came from the 2021 Ghana Population and Housing Census (Ghana Statistic Office, 2021) and the 
2017 Egypt e-census and UN-Population projections (CAPMAS, 2017; United Nations Population Fund, 2021).

3.2 | Sentinel data

All available Sentinel 2 data with less than 20% cloud cover was downloaded for the data capture periods specified 
in Table 1 through ESA SciHub and the Onda DIAS. Sentinel 1 data were captured for 1 month in the middle of the 
Sentinel 2 data capture period. If it was not possible to generate a cloud-free mosaic with the downloaded imagery, 

https://wiki.openstreetmap.org/wiki/Humanitarian_OSM_Team/Gaza
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the allowed cloud percentage was increased, and new data was downloaded iteratively until a cloud-free mosaic 
could be produced. The Sentinel 1 Ground Range Detected (GRD) data were processed through a standard GRD 
to Backscatter (dB) workflow in the Graph Processing Tool of ESA SNAP. The Sentinel 1 images were merged using 
the Buteo Toolbox, where multitemporal speckle filtering was done through the weighted median of an ellipsoidal 
kernel shown in Figure 1. Each pixel is weighted according to the overlap with an ellipsoid centered around the most 

F I G U R E  1  (a) Ellipsoidal 3 × 3 × 7 kernel. (b) Ellipsoidal 5 × 5 × 7 kernel. Figures show the kernels used 
in the weighted median preprocessing step. The shaded values (0–1) signify the attributed weights before 
normalization, and (0–7) represent imagery and timestamps, with the central timestamp located at 3 to 4.
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temporally central image. The weighted median is then calculated from the values and weights using linear interpo-
lation of the sorted and weighted values. The borders between the Sentinel 1 images were feathered using a 2 km 
distance. 32 × 32 pixel tiles were extracted from the resulting mosaics with 10 additional overlaps at different pixel 
offsets. The preprocessed VV and VH polarizations were normalized to [0, 1] after converting to dB and thresholding 
the images between −30 and 20 dB. The Sentinel 1 imagery was aligned with the Sentinel 2 images before tile creation.

The Sentinel 2 level 2A (atmospherically corrected, bottom-of-atmosphere reflectance) images were mosaiced 
using the Buteo toolbox, where a quality estimate image is made for each Sentinel 2 image, after which they are 
merged to ensure the highest overall quality with as few images used in the mosaic as possible. Images temporally 
further away than the image with the highest quality have their overall quality reduced with the temporal distance 
at the pace of a 1% quality reduction per week. The borders between images were feathered with a 1 km distance 
buffer. The images were normalized to [0, 1] after thresholding the images to between 0 and 10,000. 32 × 32 pixel 
tiles were extracted from the 10 m bands, and 16 × 16 pixel tiles were extracted for the 20 m bands covering the 
same areas as the 10 m bands.

The Sentinel products used are shown in Table 2:

4  | METHODOLOGY

The method used for extracting the various structural characteristics follows a modified approach to the work 
presented in Fibæk, Keßler, et al. (2021). This modified approach adds noisy student training steps for the model 
(Xie et al., 2020) and minor changes to the model design pre- and post-processing steps. The semi-supervised 
noisy student iterations were implemented, as shown in Figure 2.

The first iteration of the noisy student training steps yielded a 6% improvement for the validation loss over 
Ghana. The second iteration yielded a 1.5% improvement, after which iterations were stopped.

The multisensor deep learning model is based on a modified Inception-ResNet approach (Szegedy et al., 2017) 
with multiple repeated inception blocks and a total of 13.4 million parameters. Mean squared error loss (MSE) 
was chosen as it optimizes toward the mean, which is beneficial when many tiles contain few to no structures 
(Hyndman & Athanasopoulos,  2018). While Fibæk, Keßler, et al.  (2021) suggest using stepwise learning rate 
decay—modifying the implementation to iteratively increase the batch size while keeping the learning rate con-
stant consistently gave better results, which corresponds to the findings of Smith et al., 2018. The area model was 
modified by clipping the output to ensure values always fall between 0 and 100 and adding batch normalization 

TA B L E  2 Sentinel products used. Data collected from Sentinel 1A, 1B, 2A, and 2B

Source Data product Band/pol Pixel size

Sentinel 1 GRD VV 10 m

" " VH "

Sentinel 2 2A Band 2 "

" " Band 3 "

" " Band 4 "

" " Band 8 "

" " Band 5 20 m

" " Band 6 "

" " Band 7 "

" " Band 11 "

" " Band 12 "
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and 2D spatial dropout before each concatenate block. The final model design is available in the data availability 
statement.

Eleven predictions from distinct overlaps were made for each pixel. These predictions were merged using 
“Median Absolute Deviation (MAD) Interval Merging” with the naïve implementation being:

1.	 Select the value with the most adjacent values within one median absolute deviation (MAD) as the Center
2.	 Take all the values within one MAD of the center, and create weights based on each value's own number of 

adjacent values within one MAD
3.	 Take the weighted median of all the values in step 2

Changing the algorithm for merging predictions from average to the median, to mad interval merging leads to 
reduced noise in the final classification at the cost of increased post-processing time. An implementation of mad 
interval merging is available in the Buteo toolbox, and an example comparison is shown in Figure 3.

4.1 | Structure type

Four classes were used to segment the structure types. 1. “Residential”, 2. “Residential (self-organized),” 3. 
“Nonresidential,” and 4. “No structure.” The self-organized class was included to test the separability of the classes 
and the usefulness of the model in slum mapping. After training the model to extract structural area, the model 
was frozen except for the last inception block and the tail layers. The unfrozen layers were then retrained, and the 
activation function changed to SoftMax. The model design is shown in Figure 4.

The ground truth data for structural classes was based on Owusu et al. (2021) accessed through slumm​ap.net, 
which served as the basis for collecting the ground truth classes for Ghana. The data were digitized using the 
newest available imagery from Google Earth and Microsoft Bing. Structures that were highly likely to be nonres-
idential, such as gas stations and marketplaces were classed as such – but mixed-use was not classified in Ghana. 

F I G U R E  2 Semi-supervised noisy student training steps.

http://slummap.net
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There is significant room for improvement in ground truth collection for the classes. With the full release of the 
2021 Ghana Census, it might be possible to improve the dataset considerably. While some structure type informa-
tion was available in Egypt from CAPMAS (CAPMAS, 2017), no structural type classification was done there—the 
population predictions for Egypt are based on an unweighted approach. The approach presented for Ghana is 
likely applicable to Egypt as well.

4.2 | Population

Tatem (2017) and Tiecke et al. (2017) have shown that it is possible to generate population estimates using struc-
tural footprints, census data, and UN population forecasts. The two methods used very high-resolution satel-
lite imagery to extract the building footprints, whereas this study uses Sentinel data and structural area and 
type instead of structure count. As people move throughout the day population is not static. When people leave 

F I G U R E  3 Comparison of different methods of merging predictions. mad refers to the MAD interval merging 
method. Top: Area predictions for eastern Alexandria, Egypt. Bottom: Comparison of prediction merging for 
sample distributions of three skewed normal distributions of random size. Mad interval merge produces less 
noise than mean and median merging. The effect is more apparent at the full resolution of the figure.
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for work during the daytime, the suburbs will be less densely populated than in the mornings and the evenings 
(Foley,  1954). This study generates daytime and nighttime population estimates by combining structural area 
estimates with structure classifications. Census data for population counts are often only available at the regional 

F I G U R E  4 Design of the transfer learning structural classification model.
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level, and as censuses are usually only conducted every 10 years, it is necessary to use population projections to 
estimate the population. The population estimates were calculated as illustrated in Equations  (1)–(4) from the 
census, structure type, and area predictions.

where c1ij is the probability of pixel i,j belonging to class 1; cxij is the probability of pixel i,j belonging to class x; csij 
is the sum of the class probabilities not “no structure”; �fp is the floating-point epsilon; pij is the structure in m2 pr. 
person; aij is the structure coverage predicted for the pixel in m2; rijr is the ratio between area in m2 and popula-
tion per m2 in the region; pcx ij is the unscaled population of the class; wx is the weight given to class x; poptu is the 
unscaled weighted population of the raster; and popt is the scaled weighted population of the raster.

The square meter of structure per person was calculated using the 2021 census for Ghana and the 2017 
census for Egypt (CAPMAS,  2017; Statistical Service Ghana,  2021), and the weights were set as shown in 
Table 3.

The weights were chosen to serve as a conservative baseline for further investigation. Future studies should 
investigate the relationship between different urban structures and temporal populations. The borders between 
the estimates of structural area pr. person for each smallest available census zone were feathered using the av-
erage value of a 2.5 km circular buffer to create a smoother transition and then scaled back to the original sum.

4.3 | Model training and requirements

The area extraction model was trained on a Dell XPS 157590 computer with the following specifications:

CPU Intel i9 9980HK 8/16 cores

RAM 64GB

OS Windows 11

GPU Nvidia GeForce RTX 3090 - 24GB Ram (External)

(1)csij =
(

c1ij + c2ij + c3ij

)

+ �fp

(2)pcxij =
cxij

cs
∗ rij ∗wx

(2.1)rij =
aij

pij

(3)poptu =
∑

pc1 +
∑

pc2 +
∑

pc3

(4)popt =
tp

poptu
∗poptu

TA B L E  3  Initial weights used for daytime/nighttime estimates

Type Residential Residential self-organized Nonresidential

Unweighted 1.0 1.0 1.0

Nighttime 1.25 1.35 0.4

Daytime 1.05 1.15 0.8
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The model uses 16-bit floating-point operations, and at least 24 GB GPU Ram is required to train the model. The 
training time was approximately 50 hours for the initial area extraction model. It is possible to make model predic-
tions without a GPU, but at least 8 GB of GPU RAM is recommended to make predictions for areas larger than a 
city block.

5  | RESULTS

The following section shows the results from the three predictions of area, type of structure and the derived 
population estimates named SenPop. All predictions were made using 10 additional offset overlaps and merged 
using MAD interval merging.

5.1 | Structural area

Comparisons to Google Open Buildings (Sirko et al., 2021) were made for the predicted area per pixel to assess 
the relative accuracy of the structural area predictions. Binary comparisons were made to the Global Human 
Settlement Layer S2-Net (Corbane et al., 2020), OpenStreetMap (Keßler, 2015), and ESA World Cover (ESA, 2020). 
A comparison of area per pixel accuracy for Uganda and Tanzania could likewise be made to the Microsoft Open 
Buildings dataset (Microsoft, 2021); however, only the target study areas were evaluated.

Sixteen test sites were distributed across Ghana, covering 94.5 km2, not overlapping any training, test or stu-
dent sites used in training the models and in Egypt, four test sites were used. The TPE accuracy metric is defined 
as the ratio between the predictions' sum and the labels' sum expressed in per cent—with 100% being the ideal 
value. A default threshold of 0.5 m2 of structures was used for Sentinel and Google Predictions for the binary 
comparisons.

Tables 4–7 show accuracy comparisons for the structural area predictions over Ghana and Mediterranean 
Egypt at 10 × 10 m and 100 × 100 m resolution. Figure 5 shows an example prediction for Accra—Ghana, and com-
pares them with the ground truth data and the Google Open Buildings at different precision intervals. Figures 6 
and 7 show the area predictions over Mediterranean Egypt and compare them with Google Earth Imagery. 
Figure 8 compares area predictions when resampled to 100 × 100 m resolution using the sum method. rTPE and 
bTPE refer to the Total Percentage Error for the regression and binary data. The total percentage error is the sum 
of the predicted values divided by the sum of the label values expressed as a percentage.

There is a clear tendency to create smooth predictions using the Sentinel-based area predictions. The Google 
Open Buildings 50% layer performs better or on par with the Sentinel predictions for most metrics. The Google 
Open Buildings is based on much higher resolution input data, which explains its tendency to produce sharper 
predictions. However, the Sentinel predictions model outperforms the other models in estimating the total area 
of structures present. The over smoothing of the Sentinel predictions results can be alleviated by resampling to a 
lower resolution, as shown in Table 5. The binary classifications were resampled by the mode, whereas the other 
products were resampled by the average.

When investigating the resampled data, the Sentinel-based predictions outperform the Google estimates at all 
precision intervals for area predictions. The binary predictions are close—with the Sentinel predictions performing 
better when comparing the total predicted sums. Having accurate sums enables reliable predictions of population 
using the structural area predictions.

The comparison between the Sentinel predictions and the Google products is only provided to highlight rela-
tive accuracy. Parts of the Google Open Buildings Dataset, along with Open Street Map, were incorporated into 
the creation process of the ground truth datasets, which means that the accuracy metrics for OpenStreetMap and 
Google Open Buildings might be overestimated.
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The Sentinel predictions for Egypt's Mediterranean Coast perform similarly to Ghana but perform better rela-
tive to the comparison datasets. Egypt has many structures in very close proximity, which are difficult to separate 
for the model. Furthermore, roads and the sides of canals are sometimes misclassified as structures—which hap-
pens less in Ghana. All the models significantly underestimate the total area of structures in Egypt. The reason 
seems to be underestimation in dense urban cores.

At the 100 m scale, the relative accuracy of the Sentinel Predictions increases, as seen in the Ghana case. 
While the model underestimates the total area per tile, it does better than other state-of-the-art methods.

Visually inspecting the results shows the tendency to create too “smooth” results using the Sentinel-based 
predictions at 10 × 10 m resolution. While the patterns and buildings are visible—the individual structures are 
awarded too low an area value. It does well at mapping self-organized areas where the Google Open Buildings 
layers have trouble, as seen in the bottom right corner of Figure 11. In rural areas, the same pattern is visible, in 
that a similar count of structures is predicted, but the predictions are less sharp.

In Mediterranean Egypt, there is also a tendency to over smooth the results at the native 10 × 10 m resolution 
of the predictions. Some roads are misclassified as structures, especially if the road has sharp embankments. The 
model does well at expressing the location and general density of structures, as shown in the flat coastal areas 
along the Nile Delta Estuaries in Egypt. Inland, in the rocky, hilly areas, the model performs worse, sometimes 
confusing rising rock faces with structures. This is likely due to the double bounce effect on the Sentinel 1 satel-
lites (Koppel et al., 2017).

Comparing the results at the resampled 100 × 100 m resolution show that the performance of the Sentinel 
predictions increases when the tendency to over smooth is alleviated by resampling. The patterns and total sum 
of area are generally very close to the patterns expressed by the ground truth data.

F I G U R E  5 Comparison between Google open buildings and the sentinel extracted buildings. Accra—West 
Legon.
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An important distinction between the methodologies is that the Minimum mapping unit of the Sentinel predic-
tion model is 10 by 10 m. In contrast, Google Open Buildings provides vectors derived from very high-resolution 
imagery.

Mapping the area of structures instead of binary classification of built-up areas allows better comparison of 
different types of urbanization over time. It enables the estimations of locations where cities are getting denser 
and where urban sprawl is increasing—a distinction key to many studies such as Moran et al. (2018).

5.2 | Structure classification

A classification of structures was made to create a translation layer between daytime and nighttime population lay-
ers based on the change in population patterns throughout the day and year (Foley, 1954). While the area, or ideally 

F I G U R E  6 Comparison of sentinel area predictions and Google earth along the Mediterranean coast of 
Egypt.
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the volume of structures, and census data or forecasts can be used to estimate population, they do not consider 
the temporal aspects of population estimation (Tatem, 2017). Using the model trained to extract structural area 
and deep transfer learning to classify structures can enhance the population estimates. The classes were balanced 
by taking the majority class of each 32 × 32 tile in the training sites and oversampling underrepresented classes to 
reach 10,000 tiles for each class. In Ghana, Google Earth and Microsoft Bing imagery was used to create the training 
data. Figure 9 shows the confusion matrix for the classification of 6500 separate test tiles in Ghana. While

The labels consisted of the overlap of structures belonging to each class within the pixel. As such, each label 
was a 32 × 32 × 4 matrix, with the last four values corresponding to the ratio of the pixel covered by the given class 
from zero to one, with the values totalling one. Categorical cross-entropy was used as the loss function. The model 
generally predicted the majority class well, with “uninhabited/no structures” often being mistaken. Equation (1) 
redistributes the probability of class 1 to the other three classes, reducing the impact of this misclassification. 
Table 8 shows an example pixel, where the structural area prediction model predicted 24 m2 of structures and the 

F I G U R E  7 Example sentinel area prediction for cities and villages in the Nile Delta and along the 
Mediterranean coast, Egypt.



20  |    FIBÆK et al.

F I G U R E  9 Confusion matrix of the structural classifications in Ghana.

F I G U R E  8 Comparing the results at the 100 by 100 m per pixel resolution Accra, Ghana.

TA B L E  8 Example processing of pixel from structural classification to area type per pixel

Type Uninhabited Residential Nonresidential Residential (self)

Probability 50% 35% 5% 10%

Weight 0.0% 100% 100% 100%

Probability (adj) 0% 70% 10% 20%

Area of type 0.0 * 24 = 0 m2 0.7 * 24 = 16.8 m2 0.1 * 24 = 2.4 m2 0.2 * 24 = 4.8 m2
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probabilities were distributed as shown in Table 8. Note that while the highest probability is uninhabited, some 
residential area is still added to the pixel.

Figure 10 show an RGB render of the predicted classes containing structures.

5.3 | Population (SenPop)

Population estimates were made by combining the UN forecasts with the census data from 2021 for Ghana and 
2017 for Egypt. The smallest population zones available for the authors was the regional level.

Figure 11 shows the population predictions in Accra, Ghana and the difference between estimated daytime 
and nighttime populations as described in Section 4.2. Tables 9 and 10 and Figures 12 and 13 show the relative 
population predictions intercompared with WorldPop and Meta estimates. Figures 14 and 15 visualize the differ-
ences between the different population predictions.

6  | DISCUSSION

Globally, there is an increasing amount of training data available for structures and efforts to make large deep 
learning models accessible through cloud computing, knowledge distillation, and public training datasets (Hamed 
Alemohammad, 2019). This means that methods such as the ones described in this study are becoming increas-
ingly accessible. The population predictions presented in this study show that a Sentinel-based approach to 
population estimation is feasible for Africa, Western Asia, and Europe and provides a baseline for future studies.

F I G U R E  1 0 Accra East & Tema, Ghana. Structure type. RGB render. Black is uninhabited.
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The population predictions have a higher spatial resolution than currently offered globally, and the reliance on 
Sentinel data means that the potential temporal resolution is high. As it is only possible to do an intercomparison 
of population estimates, assessing the absolute accuracy of the estimates is not possible without collecting addi-
tional ground truth data. The produced population estimates differ from the current state-of-the-art, both by rely-
ing on significantly lower resolution data and building on the area of structures instead of the count (Tatem, 2017). 
The addition of structural classifications allows the estimation of daytime and nighttime population, which fur-
thers the granularity offered by the models. An interesting topic for further research is temporary populations, 
such as traffic hotspots and commuting routes. Such estimates could be made using extracted road networks from 
Sentinel imagery and points of interest data from OpenStreetMap.

Fibæk, Keßler, et al. (2021) and Frantz et al. (2021) show that it is possible to estimate the building height and 
volumes of structures in Northern Europe using Sentinel 1 and 2 imagery. Using the volume instead of the area 
for the population estimates would increase the robustness of the predictions, especially in dense urban areas 
and clusters with industrial or high-rise buildings. While training data on the structural volume is available for 
Denmark, no such data was available for the case study areas. A far-field application of the Danish model to Ghana 
was attempted but did not yield promising results.

Relying on Sentinel data means the proposed methodology has a high temporal resolution. For many areas in 
Africa, Sentinel data are only available from one orbital direction. Fibæk, Keßler, and Arsanjani (2021) investigated 
the effects of this on the accuracy of structural predictions and found a significant decrease in accuracy. If both 
orbital directions become available, it will likely be possible to reduce the number of errors caused by the align-
ment of structures and natural features (Koppel et al., 2017). Introducing data from a terrain model, such as the 

F I G U R E  11 Accra—Tema industrial belt. Comparison of population scaled by daytime. (Top) Unweighted, 
(middle) daytime, and (bottom) nighttime.
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TA B L E  9 Comparison of population predictions Ghana—People per location normalized

Location UW
Night 
(%)

Day 
(%)

WP 
(%)

WP-C 
(%)

WP UN 
(%)

WP 
UN-C (%)

Meta 
(%)

1. Aburaso 17,664 103.5 96.3 30.7 64.3 28.9 60.5 74.5

2. Agogo 44,887 101.0 98.9 18.0 50.3 16.9 47.3 55.8

3. Agona Swedru 125,585 103.0 96.9 57.4 88.1 54.0 82.9 120.4

4. Ashaiman 63,163 104.4 100.5 69.9 92.9 65.7 87.4 33.5

5. Bolgatanga Center 11,110 90.7 109.5 47.0 51.6 44.2 48.6 76.2

6. Buya 4553 103.1 96.7 15.9 75.0 15.0 70.6 142.2

7. Ejura 40,330 101.2 98.7 18.4 47.3 17.3 44.5 89.8

8. Fort Orange 41,105 95.6 105.0 216.2 202.7 203.3 190.6 156.9

9. Gbadzeme 1212 102.4 97.4 45.6 111.7 42.9 105.0 124.6

10. Kotei 76,554 102.4 97.4 188.2 239.4 177.0 225.2 551.4

11. Mamekrobo 11,190 101.7 98.3 24.5 93.2 23.0 87.7 129.3

12. Olemuni 1227 104.0 95.8 19.1 95.9 17.9 90.2 252.4

13. Sakasaka 27,556 100.6 99.2 40.9 36.4 38.5 34.2 26.6

14. Tema & Industrial 48,234 62.9 137.4 80.8 78.4 76.0 73.7 29.6

15. Tinga 12,315 103.7 96.1 7.2 34.1 6.8 32.1 45.5

16. Wa 170,367 101.5 98.3 26.9 37.6 25.3 35.4 53.6

17. Wulugu 8831 102.8 97.1 21.8 71.1 20.5 66.8 128.6

18. Yeji 67,536 102.5 97.4 17.5 57.3 16.5 53.9 60.2

773,421 99.3 101.0 63.4 86.9 59.6 81.7 121.3

Note: Unweighted SenPop predictions were used as the baseline.
Abbreviations: C, constrained; UN, UN-adjusted; UW, unweighted; WP, WorldPop.

TA B L E  1 0 Comparison of population predictions Egypt—People per location normalized

Location UW WP (%)
WP-C 
(%)

WP UN 
(%)

WP UN-C 
(%)

Meta 
(%)

1. Dugmayrah 19,359 61.8 68.9 65.7 73.3 78.7

2. Tanta Metro 677,648 99.9 107.7 106.4 114.6 91.1

3. El-Agamy 509,736 102.1 102.8 108.7 109.4 88.9

4. El Dabaa 72,759 24.5 27.6 26.1 29.3 15.0

5. El Manzala & Suburbs 242,245 88.6 94.2 94.3 100.3 78.2

6. Bir El-Abd 87,513 25.9 22.6 27.6 24.1 35.6

7. Baltim Summar 36,663 94.6 94.2 100.7 100.3 132.2

8. Izbat Villages 47,412 106.5 116.4 113.4 123.9 110.9

9. Ad Dilinjat Agriculture 26,008 65.8 88.5 70.1 94.3 80.3

10. Desouk 228,030 101.2 111.6 107.8 118.8 86.9

1,947,374 92.3 97.7 98.3 104.0 84.1

Note: Unweighted SenPop predictions were used as the baseline.
Abbreviations: C, constrained; UN, UN-adjusted; UW, unweighted; WP, WorldPop.
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Copernicus Global DEM, into the deep learning model itself might further reduce the errors caused by the single 
orbital direction. The Sentinel 1 data used in the study was processed with the SRTM DEM, which should also be 
updated to use the Copernicus Global DEM.

The described methodology is trained and produces predictions based on single timestamps from merged 
mosaics: Changing the method to work on time series might further increase the accuracy of the estimates, 

F I G U R E  1 3  Intercomparison of population estimates in Egypt. Normalized to the unweighted sentinel 
predictions. Locations are defined in Table 10.

F I G U R E  1 2  Intercomparison of population estimates in Ghana. Normalized to the unweighted sentinel 
predictions. Locations are defined in Table 9.
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as might including metadata from the image capture into the model. Updating the model design to incorpo-
rate Partial Convolution-Based Padding would likely reduce the post-processing time required by the overlaps 
and mad interval merging approach by reducing or removing the border noise produced by the zero-padding 

F I G U R E  14 Visual intercomparison of population estimates at their native resolutions. Cities, suburbs, and 
villages in Ghana.



26  |    FIBÆK et al.

convolution boundaries (Liu et al.,  2018). Creating additional synthetic Sentinel imagery for training using 
Generative Adversarial Networks could ensure the robustness of the model across multiple seasons without the 
need for collecting a large amount of input data (Mohandoss et al., 2020).

Significantly less labeled data were created for Ghana (47 km2) and Egypt (9 km2) than what was used to train 
the initial Danish models (42,933 km2 over two seasons; see Table 1). The amount of training data required to 
use the proposed methodology in new areas would depend on the geographical likeness to the areas included 
within the study. No additional training data may be necessary for highly similar regions, like northern Germany 
to Denmark or Togo to Ghana. Besides the singular peak of Mount Kilimanjaro, none of the study areas have 
covered mountainous terrains. Mountainous terrain would significantly impact shadows, and radar backscatter—
including a modern terrain model into the model design could improve its ability to generalize to these areas. 
Without including DEM data, significant additional training data are likely needed to apply the methodology to 

F I G U R E  1 5  Intercomparison between the WorldPop constrained UN-adjusted layer, meta population 
predictions, and SenPop. SenPop and meta predictions were resampled to 100 × 100 m for comparison. Accra, 
Ghana.
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such geographies. Only 9 km2 of labels were gathered to create the predictions for Egypt's Mediterranean Coast, 
which can serve as a tentative lower bound of the required local data necessary for successful predictions.

7  | CONCLUSION

Our findings show that it is possible to create population predictions from Sentinel data. The models, trained 
predominantly on Danish data, work well once fitted with minor amounts of local data. The area predictions com-
pare well with state-of-the-art methods that use very high-resolution satellite imagery, although with a minimum 
mapping unit of 10 m. The area prediction model serves as the foundation of the methodology enabling struc-
tural type classifications through transfer learning, which in turn can be converted to population estimates. The 
intercomparison of population estimates shows that the SenPop prediction exhibits the same spatial tendencies 
as the global offerings at a higher spatial resolution, good performance in self-organized areas, and state-of-the-
art performance at the 100 × 100 m resolution. Sentinel data as the model input data means that the produced 
models are scalable and globally applicable, and with the availability of annual global Sentinel 1 and 2 mosaics, it 
is possible to create global maps of the structural area and population estimates using the deep learning methods 
presented. The area prediction model can serve as a baseline for further studies investigating energy needs, emis-
sions, disaster management, and service levels, which are central to tracking and guiding the progress toward the 
UN Sustainable Development Goals.
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