Aalborg Universitet

Precise orbit determination and accelerometer data modelling of the GRACE Follow-On mission

Papanikolaou, Thomas

DOI (link to publication from Publisher): 10.5194/gstm2022-90

Creative Commons License CC BY 4.0

Publication date: 2022

Document Version Publisher's PDF, also known as Version of record

Link to publication from Aalborg University

Citation for published version (APA):

Papanikolaou, T. (2022). Precise orbit determination and accelerometer data modelling of the GRACE Follow-On mission. Abstract from GRACE/GRACE-FO Science Team Meeting 2022, Potsdam, Germany. https://doi.org/10.5194/gstm2022-90

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
 You may freely distribute the URL identifying the publication in the public portal -

Take down policy If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to the work immediately and investigate your claim.

Precise orbit determination and accelerometer data modelling of the GRACE Follow-On mission

Thomas Loudis Papanikolaou

Aalborg University, Copenhagen, Denmark (thomasp@plan.aau.dk)

GRACE/GRACE-FO Science Team Meeting 2022 18 – 20 October 2022, GFZ Potsdam, Germany

<u>Outline</u>

- Dynamic Orbit Determination application to GRACE-FO
- GRACE-FO acceleromer calibration modelling
- Empirical parameter estimation (acclerations, 1-CPR)
- LRI intersatellite ranging data analysis

Principles of Orbit Determination

EOP: Earth Orientation Parameters

Orbit modelling

GRACE-FO orbital dynamics and Accelerometer calibration modelling	
Orbit arc length	Daily orbit arcs
Earth Orientation	IERS Conventions 2010 (Petit and Luzum 2010) and updates
EOP	IERS 08 C04; IAU2006/200A
Numerical Integrator	Gauss-Jackson 12 th order; RKN7(6)-8 start integrator (Papanikolaou and Tsoulis 2016)
Integration step	10 sec
Pseudo-Observations	Kinematic Orbit XYZ (Suesser-Rechberger et al. 2020)
Gravity Model (d/o)	GOCO06s (Kvas et al. 2019)
Planetary/Lunar Ephemeris	DE423 (Folkner et al. 2009)
Solid Earth Tides	IERS Conventions 2010 (Petit and Luzum 2010)
Ocean Tides	FES2014b model (Lyard et al. 2021)
Pole Tide	Solid Earth Pole Tide and Ocean Pole Tide (IERS Conventions 2010)
Atmosphere and Ocean De-Aliasing effects	AOD1b RL06 data processing (Dobslaw et al. 2017)
Relativistic effects	IERS Conventions 2010 (Petit and Luzum 2010)
Accelerometers	ACC1B data (McCullough et al. 2019) + estimated parameters: Full Scale matrix (9 parameters), Bias (XYZ), (optional: Bias drift 1 st and 2 nd order)
Empirical Forces of periodic terms	One-Cycle per revolution (1-CPR) accelerations
Empirical accelerations (bias)	Piecewise Accelerations per 1 revolution with interval 15 min in orbital frame (RTN) or spacecraft frame (SRF)
Intersatellite range-rate data	Laser Ranging Interferometry LRI1B (as observations and external validation tool) K-Band Ranging KBR1B (as external accuracy assessment)
External Orbit Comparison	GNV1B orbit data (Wen et al. 2019)

GRACE-FO accelerometer calibration modelling

• Calibration modelling: Bias, Full Scale matrix (9 parameters), Bias Drift (1st and 2nd derivatives) as optional estimation (replaced via estimation of empirical parameters)

- Empirical accelerations: Piecewise-Constant accelerations per 1rev/1h, time interval 15 to 30 min
- Periodic accelerations: 1 cycle per revolution (sin and cos terms)
- Reference Frame: Orbital frame (RTN or TN) or Spacecraft frame (SRF)

$$\mathbf{f_{non-grav}} = \mathbf{f_{acc}} + \mathbf{a_{bias}} + \mathbf{a_{CPR}}$$

$$\mathbf{f}_{acc} = \mathbf{b} + \mathbf{R} * ACC_{1B} + (\dot{b}t + \ddot{b}t^2)$$

$$\mathbf{a_{bias}}(t) = \sum_{i} \delta(t - t_i) \cdot \mathbf{a_{t_i}} \quad \text{at predefined epoch} \\ t_i^0 < t_i \le t_i^0 + \Delta t$$

GRACE Follow-on mission (Credit: NASA)

 $a_{CPR}^{e} = C_{e} \cos(u) + S_{e} \sin(u)$

GFO Orbit Determination GRACE-FO orbit residuals: Weekly analysis

RMS: 8.8 mm

RMS: 9.7 mm

GFO Orbit Determination

GRACE-FO external orbit comparison

Intersatellite observations

GRACE-FO LRI range & range-rate data

RMS: $1.5 \mu m/sec$

RMS: 1.3 mm

Scientific software & Tools

GEORB (GEodetic ORBit analysis)

- Precise Orbit Determination of LEOs
- Data analysis of satellite gravity missions (GRACE-FO, GRACE, GOCE)
- Orbit Design of future satellite missions
- References: Papanikolaou (2022; 2012), Papanikolaou and Tsoulis (2018)
- Release as open source (<u>https://github.com/Thomas-Loudis/georb</u>)

Summary and Future steps

- GRACE-FO orbit determination (few mm to cm)
- Acclerometer calibration modelling (calibration parameters and empirical bias accelerations per revolution)
- LRI range-rate residuals at few µm/sec
- LRI range-rate to be applied as observations (preliminary results show improvement)
- LRI range-rate as constraints of the accelerometer calibration parameters over the along-track (and normal track) direction

Thank you for your attention