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Abstract

We introduce a exible spatial point process model for spatial point patterns exhibiting linear structures,
without incorporating a latent line process. The model is given by an underlying sequential point process
model, i.e. each new point is generated given the previous points. Under this model the points can be of
one of three types: a `background point', an `independent cluster point', or a `dependent cluster point'.
The background and independent cluster points are thought to exhibit `complete spatial randomness',
while the conditional distribution of a dependent cluster point giv en the previous points is such that
the dependent cluster point is likely to occur closely to a prev ious cluster point. We demonstrate
the exibility of the model for producing point patterns with lin ear structures, and propose to use
the model as the likelihood in a Bayesian setting when analyzing a spatial point pattern exhibiting
linear structures but where the exact mechanism responsible for the formations of lines is unknown.
We illustrate this methodology by analyzing two spatial point pattern d ata sets (locations of bronze
age graves in Denmark and locations of mountain tops in Spain) without knowi ng which points are
background points, independent cluster points, and dependent cluster points.

Keywords: clustering; Dirichlet tessellation; simulation-based Bayesian inference; spatial point process.

1 Introduction

Many observed spatial point patterns contain points placed roughly on line segments, as exempli�ed by the
locations of barrows shown in Figures 1a and the locations of mountain topsshown in 1b (further details
on these data sets are given in Section 2.3). Such linear structures may be associated to a line segment
process. For example, in Berman (1986) (see also Berman and Diggle (1989) and Foxall and Baddeley
(2002)) both a point process representing copper deposits and a line segment process representing geological
faults are observed and investigated for a possible association. Another example is animal latrines near
territory boundaries modelled by the edges of an unobserved (deformed) Dirichlet (or Voronoi) tessellation
(Blackwell 2001, Blackwell and M�ller 2003, Skare, M�ller and Jensen 2007). However, in many other cases,
including the two data sets in Figure 1, the exact mechanism responsible for the formations of lines is
unknown. Thus the development of tractable and practically useful spatial point process models, capable of
producing point patterns with linear structures|but without introducing an observed or l atent line segment
process|becomes important.

In this paper we introduce a exible point process model with linear structures without incorporating any
line segment process into the model. It is a sequential point process model, i.e. the points has an ordering,
and moreover the points can be of one of three types: a `background point', an `independent cluster point', or

� We are grateful to Kasper Lambert Johansen for providing the bronze age graves dataset and informing us about the details .
Also discussions with Geo� Nicholls and Dietrich Stoyan are acknowledged. The research was supported the Danish Natura l
Science Research Council (grants 272-06-0442 and 09-072331, Point process modelling and statistical inference ) and by the
Centre for Stochastic Geometry and Advanced Bioimaging, fun ded by a grant from the Villum Foundation.

1



a `dependent cluster point'. The background and independent cluster points are thought toexhibit `complete
spatial randomness', while the conditional distribution of a dependent cluster pointgiven the previous points
is such that the dependent cluster point is likely to occur closely to a previous cluster point. The model
turns out to be easy to simulate and interpret. Section 2 provides further details onthe model and shows
simulated realizations.

The joint density for our sequential point process model turns out to be expressiblein closed form and
depends on an unknown parameter� = ( p; q; � ) 2 [0; 1]� [0; 1]� (0; 1 ). Briey, 1 � q;(1 � p)q; pqspecify the
probabilities of the three types a point can be (`background', `independent cluster',or `dependent cluster'
point), while � controls the spread of a dependent cluster point around the previous cluster points. However,
we assume that only the collection of the points is observable within a givenbounded planar regionW (the
observation window) meaning that both the types and the ordering of the points are unknown. Section 3
proposes to treat this `missing data problem' by using a simulation-based Bayesian approach with a prior
on � and incorporating the missing data into the posterior. The usefulness of this methodology is illustrated
by analyzing the two data sets in Figure 1.

2 The sequential point process model

Let W � R2 be a given bounded region of areajW j > 0. We think of W as an observation window, such as
the rectangular regions in Figure 1, and we suppose that a �nite point pattern f x1; : : : ; xn g � W is observed.
For convenience, when introducing the model for cluster points in Section 2.1, we assume that W is convex,
but it is possible to extend our setting to the case whereW is not convex.

In the vast literature on spatial point processes, most models are speci�ed directly as a Poisson process,
a Cox process (i.e. a hierarchical model for a Poisson process conditional on a random intensity function),
a Poisson cluster process, or by a density function which often is of the Markovor Gibbs type, see M�ller
and Waagepetersen (2004), M�ller and Waagepetersen (2007), and the references therein. However, the
recognition of an underlying space-time point process may not only be natural but also lead to a more
tractable model. A particular simple and useful case is sequential point process models, i.e. sequential
constructions with an ordering of the points. Such models include in particular Mat�ern hard core processes
of types II and III and more generally random sequel adsorption models, see M�ller, Huber and Wolpert
(2010) and the references therein, but our particular sequential point process model introduced in the sequel
seems new.

For simplicity and because of lack of information in the applications we have in mind, we ignore modelling
the distribution of both n and the waiting times between point occurrences, i.e. we �xn to be the observed
number of points, and we consider a setting with discrete times. We letxc = ( x1; : : : ; xk ) and xb =
(xk+1 ; : : : ; xn ) denote the ordered cluster points and ordered background points, respectively, where k is
random. Note that these orderings concern not all then points together, so we only have thatx1 and xk are
the �rst and last cluster points, and xk+1 and xn the �rst and last background points. First the model for xc

conditional on k is speci�ed in Section 2.1, and second the full model for (xc; xb) is speci�ed in Section 2.2
such that we do not need to take the ordering of all then points into consideration. Note that both the
subpatterns f x1; : : : ; xk g and f xk+1 ; : : : ; xn g and their orderings are unknown, since onlyf x1; : : : ; xn g is
observed. This missing data problem is �rst treated in Section 3.

2.1 The model for cluster points

We make the following model assumptions for the cluster points, where the number of cluster points k > 0 is
�xed, and p 2 [0; 1] and � > 0 are unknown parameters whose meaning will soon be clear. The �rst cluster
point x1 is uniformly distributed on W , with density

f (x1) = 1 =jW j; x1 2 W:

For i = 2 ; : : : ; k, conditional on the cluster points x1; : : : ; x i � 1, with probability p, the next cluster point x i

becomes a dependent cluster point, with a densityh(x i jf x1; : : : ; x i � 1g; � ) with respect to Lebesgue measure
on W and speci�ed in (2) below; otherwise x i becomes an independent cluster point, which is uniformly

2



distributed on W (and hence independent of the previous cluster points). Sox i conditional on x1; : : : ; x i � 1

follows the mixture density

f (x i jx1; : : : ; x i � 1; p; � ) = ph(x i jf x1; : : : ; x i � 1g; � ) + (1 � p)=jW j; x i 2 W: (1)

For notational convenience, if i = 1, we set f (x i jx1; : : : ; x i � 1; p; � ) = f (x1).
As the notation indicates, h(x i jf x1; : : : ; x i � 1g; � ) will not depend on the ordering of the previous cluster

points x1; : : : ; x i � 1. Speci�cally, for i > 1 and x1; : : : ; x i 2 W ,

h(x i jf x1; : : : ; x i � 1g; � ) =
l2
i exp(� r 2

i =� )
� jW j(1 � exp(� l2

i =� ))
if 0 < r i < l i ; (2)

and h(x i jf x1; : : : ; x i � 1g; � ) = 0 otherwise, where � = 2 � 2, and r i and l i are de�ned as follows. Consider the
Dirichlet (or Voronoi) tessellation of R2 with nuclei x1; : : : ; x i � 1, that is the tessellation with cells

Cj = f � 2 R2 : k� � x j k � k � � x j 0k; j 0 = 1 ; : : : ; i � 1g; j = 1 ; : : : ; i � 1;

where k � k denotes Eucledian distance (see e.g. Okabe, Boots and Sugihara (1992) or M�ller (1994)). Note
that Cj \ W is convex|this is where the assumption that W is convex becomes convenient|and x i belongs
almost surely to a unique Dirichlet cell, sayCj . Then r i = kx i � x j k and l i is the length of the line segment
through x i and with endpoints at x j and the boundary of Cj \ W . See the example in Figure 2a, where
i = 4 and j = 2. Making a change of the variablex i � x j to the polar coordinates (� i ; r i ), we obtain

Z

C j

l2
i exp(� r 2

i =� )
� jW j(1 � exp(� l2

i =� ))
dx i =

Z 2�

0

 Z l i

0

r i l2
i exp(� r 2

i =� )
� jW j(1 � exp(� l2

i =� ))
dr i

!

d� i =
Z 2�

0

l2
i

2jW j
d� i =

jCj j
jW j

:

Consequently, sincejW j =
P i � 1

j =1 jCj \ W j, (2) is indeed a density function with respect to Lebesgue measure
restricted to W . It also follows that x i appears in cellCj with probability pj = jCj \ W j=jW j, and if x i is
conditioned to be in Cj , then x i follows the restriction of N2(x j ; � 2I ) to Cj \ W , where N2(x j ; � 2I ) denotes
the radially symmetric bivariate normal distribution with mean x j and standard deviation � . This justi�es
the terminology `dependent cluster point', but it is perhaps surprising that realizations of the model for
cluster points exhibit linear structures as demonstrated later on.

As explained in the following two paragraphs, an important advantages ofthe model is that neither the
calculation of the distribution p1; : : : ; pi � 1 or the construction of the entire Dirichlet tessellation is needed
when evaluating the density (2) or simulating from this distribution.

To evaluate the density (2) we use the following simple steps, where we exploit the construction of
Dirichlet cells and the fact that Cj \ W is convex for all j < i .

(a) Find the closest point x j to x i with j < i , the half-line L j with endpoint x j and passing throughx i ,
and the intersection point vj betweenL j and the boundary of W . Calculate l j = kvj � x j k.

(b) For each j 0 2 f 1; : : : ; i � 1gnf j g, �nd the line L j 0 passing through (x j + x j 0)=2 and perpendicular to the
line through x j and x j 0. If vj 0 is the intersection point between L j and L j 0 within W , then calculate
l j 0 = kvj 0 � x j k. If L j \ L j 0 \ W = ; , then set l j 0 = 1 .

(c) Return r i = kx i � x j k and l i = min f l1; : : : ; l i � 1g.

Figure 2b shows an example, wherei = 5, step (a) returns j = 4 and l4 = kv4 � x4k, step (b) returns
l1 = kv1 � x4k, l2 = 1 , and l3 = kv3 � x4k, and step (c) returns r 5 = kx5 � x4k and l5 = kv3 � x4k. Since
C4 \ W is the region around x4 bounded by the lines L 1; L 2; L 3 and the boundary of W , (c) returns the
correct result.

Moreover, we can easily make a simulation under (2) by the following steps.

(A) Generate a uniform point yi in W , which is independent ofx1; : : : ; x i � 1.

(B) Find the (almost surely unique) closest point x j to yi (1 � j < i ), the half-line L j through yi and with
end-point x j , and the distance l i from x j to the intersection point between L j and the boundary of
Cj \ W (we calculate l i in the same way as in (a)-(c) above).
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(C) Generate t i from an exponential distribution with parameter 1 =� and restricted to the interval (0 ; l2
i ).

Set r i =
p

t i .

(D) Return x i as the point on L j with distance r i from x j .

Figure 3a shows a simulation ofxc when W and k = 81 are as in Figure 1b (the mountain tops), and
p = 0 :800 and � = 286:4 m are given by the estimated posterior mean obtained by the Bayesian methodin
Section 3 (with q = 1) using the mountain tops data set. Nearly all of the points in Figure 3a are placed
in medium sized linear structures, whereas the point pattern in Figure 1b shows larger linear structures but
also solitary points. As shown in Sections 2.3.2 and 3, the extension in Section 2.2 of the model to the case
with the background points included provides a much better description of the mountain tops data set.

2.2 The model with background points included

We now extend the model by the following assumptions. Conditional on (n; k), xb is independent of xc

and forms a binomial process onW , i.e. the m = n � k background points are independent and uniformly
distributed on W . Further, k conditional on n is binomially distributed with index n and unknown probability
q 2 [0; 1]. So writing xc = ; (the empty set) if k = 0, and xb = ; if m = 0, the density of x = ( xc; xb) is

� (xc; xbjq; p; � ) =
�

n
k

�
qk

�
1 � q
jW j

� m kY

i =1

f (x i jx1; : : : ; x i � 1; p; � ) (3)

with respect to the measure� on [ n
l =0 W l � W n � l given by � =

P n
l =0 � k , where � l is the product of Lebesgue

measure onW l and Lebesgue measure onW n � l (interpreting `Lebesgue measure onW 0 ' as the point measure
concentrated at W 0 = f;g ).

One way of simulating x under (3) is by initially setting xc = ; and xb = ; , generating independent
uniform points y1; : : : ; yn in W , and independently of these points, generating independent identically dis-
tributed random variables j 1; : : : ; j n , where

P(j i = 1) = 1 � q; P(j i = 2) = q(1 � p); P(j i = 3) = pq:

For i = 1 ; : : : ; n, if j i = 1 then yi becomes a background point, meaning thatyi is added to xb; if j i = 2
then yi becomes an independent cluster point, so it is added toxc; if j i = 3 then yi is transformed into a
dependent cluster point in accordance to (B)-(D) in Section 2.1, and this dependent cluster point is then
added to xc.

For practical reasons we have ignored possible edge e�ects caused by unobserved points outside W .
Observe that if n is assumed to be Poisson distributed with parameter� > 0, then y = f y1; : : : ; yn g becomes
a homogeneous Poisson process, and thus the independent division ofy into background points, independent
cluster points, and `points which are later transformed into dependent clusterpoints' as described above form
three independent homogeneous Poisson processes onW given by f yj : i j = 1g, f yj : i j = 2g, f yj : i j = 3g
and with intensities (1 � q)� , q(1 � p)� , pq� , respectively. To eliminate the problem with edge e�ects, we
could extend this to three independent stationary Poisson processes �1; � 2; � 3 on R2, with intensities as
above, and where we attach an arrival time to each cluster point in order to specify a sequential construction
of the dependent cluster points which are obtained by transforming the points in� 3 in exactly the same
way as described above. For instance, these arrival times could be independent and identically distributed
and follow a continuous distribution (as this ensures that the arrival times are almost surely distinct); see
M�ller et al. (2010) for a somewhat similar extension in the case of the Mat�ern hard core process of type III.
The resulting point process would be given by the superpositionX = � 1 [ � 2 [ 	 3, where 	 3 denotes the
point process of dependent cluster points, andX is stationary with intensity � . However, dealing with such
an extended model would make it much harder to perform a detailed statistical analysis, so we refrain any
further in this paper to consider this extension of the model.

2.3 Data examples and simulations

This section provides further details on the data sets given in Figure 1, and discusses some simulations of
our sequential point process model in relation to the data sets.
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2.3.1 Location of barrows

Our �rst data set (Figure 1a) is the location of barrows within a 15 � 15 km region in Western Jutland,
Denmark. Barrows, which are bronze age burial sites resembling small hills,are important sources of
information for archaeologists. Contrary to other areas of Denmark,a relatively large proportion of the
barrows are still present in the Western Jutland due to less intensive agriculture. The spatial distribution
of barrows across Denmark shows a variety of patterns, particularly clustersof points along various lines,
where some lines seem to stretch across the landscape for hundreds of kilometers.

The barrow lines have traditionally been regarded as reecting a prehistoric systemof roads, cf. M•uller
(1904), though there are other potential explanations for this phenomenon, see e.g.Sahlquist (2001). Our
sequential point process model provides an alternative explanation, since it has the following na•�ve interpre-
tation: the barrows are placed according to a `local decision-making rule', where

� the i 'th barrow corresponds to a person who died at a uniformly placed locationyi (independently of
previously generated barrows);

� with probability 1 � pq the survivors bury the person in a barrow at location yi , and conditional on
this event, with probabilities (1 � q)=(1 � pq) and (q � pq)=(1 � pq), yi becomes a background point
respective an independent cluster point;

� otherwise the survivors bury the person in a barrow close to the closest barrow located at a previous
cluster point, and the location of this new barrow becomes a dependent cluster point.

Figure 4 shows a simulated point pattern with the same 15� 15 km region and number of points as in
the barrows data set, and where (q; p; � ) = (0 :758; 0:723; 68:3 m) is the estimated posterior mean obtained
by the Bayesian method in Section 3. Figure 1a (the barrows data set) and Figure 4 (the simulation) have
both some similarities and di�erences. In particular the linear structures in Figure 1a are longer than in
Figure 4; this was also typically observed when we made a number of further simulations (not shown here).
A closer look at Figure 1a reveals a possible reason for this: the longer linear structures have both small
and large gaps between neighboring points, and it is quite possible that themodel `sees' the large gaps
as separating di�erent clusters, so the data is `interpreted' as containing many smaller clusters. This may
suggest to replace the `normal' density function (2) by a density with heavier tails. We shall not pursue this
any further in this paper, but merely note that the current model only �ts some aspects of the barrow data
set.

2.3.2 Location of mountain tops

Our second data set (Figure 1b) is the location of mountain tops (above 2600 mof sea level) in a 7:5 � 10:5
km region in the Pyrenees of Northern Spain. Many of the mountain tops are located along linear structures,
which of course is a consequence of the fact that many tops are located along the mountain ridges. However,
visually the linear structures are somewhat obscured by some tops located o� the ridges. We consider our
sequential point process model only as a exible way of modelling these mountain tops and do not intend to
give an interpretation in terms of the model's sequential construction.

Figure 3b shows a simulated point pattern with the same 7:5 � 10:5 km region and number of points
as in the mountain data set, and where (q; p; � ) = (0 :825; 0:887; 278:1 m) is the estimated posterior mean
obtained by the Bayesian method in Section 3. Comparing with the data in Figure1b, we see no obvious
discrepancies. Both contain medium length linear structures, gaps with no or few points, and quite many
solitary points.

3 Simulation-based Bayesian inference

3.1 Likelihood and missing data

The likelihood function for the observed point pattern f x1; : : : ; xn g can in principle be derived from the
density (3) but it turns out to be too complicated because of the following `missing data' problem. Recall
that (3) is a joint density for xc = ( x1; : : : ; xk ) and xb = ( xk+1 ; : : : ; xn ). Let z = ( z1; : : : ; zn ) denote an
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arbitrary ordering of f x1; : : : ; xn g. De�ne u = ( u1; : : : ; un ) such that ui = 1 if zi is a cluster point, and
ui = 0 if zi is a background point. Given the values ofu1; : : : ; un , de�ne the permutation ! = ( ! 1; : : : ; ! k )
of the sequence of thosei with ui = 1 such that xc = ( z! 1 ; : : : ; z! k ), and the permutation � = ( � 1; : : : ; � m ) of
the sequence of thosei with ui = 0 such that xb = ( z� 1 ; : : : ; z� m ). In other words, z! i is the i 'th cluster point,
and z� j is the j 'th background point. Clearly ( xc; xb) is in a one-to-one correspondence with (z; u; !; � ), so
(u; !; � ) is the missing data, and the density ofz is given by summing in (3) over all (u; !; � ). For �xed ( u; ! ),
(3) does not depend on� , so essentially it is only (u; ! ) which is missing. Hence the number of terms in the
sum reduces to

P n
k=0 n!=k! (the cardinality of the state space of (u; ! )), and apparently the sum cannot be

reduced any further. This number of terms is very huge whenn = 81 as in the mountain tops data set, and
extremely huge whenn = 1147 as in the barrows data set. This makes the likelihood based on the dataz
intractable.

We treat this missing data problem by including (u; ! ) into the posterior considered in Section 3.2. Note
that conditional on z, (u; ! ) is in a one-to-one correspondence with (xc; f xk+1 ; : : : ; xn g), and its probability
mass density is proportional to

~� (u; ! jz; q; p; � ) =
1
k!

qk
�

1 � q
jW j

� m kY

i =1

f (x i jx1; : : : ; x i � 1; p; � ) (4)

for all u = ( u1; : : : ; un ) 2 f 0; 1gn and all permutations ! = ( ! 1; : : : ; ! k ) of the sequence of thosei with
ui = 1. As discussed in Section 3.2, as one ingredient of making simulation-based Bayesian inference, we
make simulations from (4). Incidentally, such simulations would also be needed if we want to determine an
approximate maximum likelihood estimate of � based on a missing data Markov chain Monte Carlo (MCMC)
approach, see Geyer (1999) and M�ller and Waagepetersen (2004).

3.2 Prior assumptions and posterior distribution

As argued in Section 3.1, we shall consider the posterior distribution of the unknown quantities u; !; q; p; � .
By Bayes formula, the posterior density is proportional to the term (4) ti mes the prior density of (q; p; � ).
In the sequel we impose independent and `at' priors on the parametersq, p, and � , where both p and q
follow a uniform distribution on the interval [0 ; 1], while � follows an inverse gamma density� (� ) with shape
parameter 2 and a known scale parameter� > 0. Thereby � has mean value� but an in�nite variance.
These prior assumptions, including the speci�cation of � , seem less important as the posterior distribution
based on either of our two data sets will be dominated by the term (4) as demonstrated in Section 3.3.

The posterior distribution of ( u; !; q; p; � ) given z naturally splits into four `full conditionals', where we
use the generic notation ~� for unnormalized densities:

(I) ( u; ! )j(z; q; p; � ) has unnormalized probability mass density ~� (u; ! jz; p; q; � ) given by (4);

(II) qj(z; u; !; p; � ) is Beta-distributed with parameters k + 1 and m + 1;

(III) pj(z; u; !; q; � ) has unnormalized density

~� (pjz; u; !; q; � ) =
kY

i =1

f (z! i jz! 1 ; : : : ; z! i � 1 ; p; � ); 0 < p < 1; (5)

(IV) � j(z; u; !; q; p ) has unnormalized density

~� (� jz; u; !; q; p ) = � (� )
kY

i =1

f (z! i jz! 1 ; : : : ; z! i � 1 ; p; � ); � > 0: (6)

We presume that the reader has some familiarity to MCMC algorithms, see e.g. Gilks, Richardson and
Spiegelhalter (1996). For simulation of the posterior, we use a �xed scan Metropolis-within-Gibbs algorithm
(also called a hybrid Metropolis-Hastings algorithm) which makes updates from the full conditionals in
(I)-(IV). Details are given in Appendix A.
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3.3 Posterior results

In this section we report on simulation-based posterior results when� = 150; results for other choices of�
look very similar as discussed in Section 3.4. For generating simulations ofthe posterior distributions for
the mountain tops data set, we have used 100,000 steps in the Markov chains, where we have discarded
the �rst 10,000 steps as burn-in. Since the barrows data set is much larger than the mountain tops data
set, and it thus takes more steps to adequately explore the space of missing data,we have used 500,000
steps with a burn-in of 100,000 steps for this data set. For approximating the posterior distributions of the
parameters (q; p; � ), we have used all simulations resulting from this, while for approximating the posterior
distributions of the missing data (u; ! ), we have subsampled the data, only using every 100th sample for the
approximations.

For our two data sets, Figures 5 and 6 show the marginal posterior distributions of the parameters
q, p, and � , and Figures 7 and 8 the bivariate posterior distributions of (q; p), (q; � ), and (p; � ). These
distributions are very di�erent from the at and independent priors assumed in Section 3.2, showing that
the posterior density is dominated by the term (4) and not by the prior density of (q; p; � ).

For the barrows data set, the marginal and posterior distributions of the parameters q; p; � (Figure 6)
and the bivariate posterior distributions of ( q; p), (q; � ), and (p; � ) (Figure 8) are rather close to normal
and bivariate normal distributions. There is a positive correlation between � and q, and between � and
p, while q and p are negatively correlated|this may seem logical for the following reason. As � increases,
the `attraction' of a dependent cluster point towards its closest previous cluster point is relaxed, so both
the mean number of cluster points (i.e.nq) and the probability of a cluster point being a dependent cluster
point (i.e. p) tend to increase but in a way such that mean number of dependent cluster points (i.e.npq) is
not getting too large. For the mountain tops data set, it looks quite di�eren tly, as the marginal posterior
distributions of q and p in Figure 5 are left skewed, and the bivariate distributions in Figure 7 are far from
being normal.

Figure 9 illustrates the usefulness of our Bayesian approach for estimating the linear structures. Each data
point in the �gure is the center of a circle with a radius proportional to the ma rginal posterior probability
of the data point being a cluster point, where in each �gure the largest circle corresponds to a probability of
one. Figure 9a concerns the mountain tops data set, where the type of the points seemto be well-estimated,
since all the points located in the linear formations are marked by largecircles, and the solitary points are
marked by small circles. In Figure 9b (the barrows data set) this is mostly also the case, although some
points may seem to have been `misclassi�ed'.

Figure 10 shows the estimated order in which the cluster points appear in linearstructures using circles
of di�erent radii. More precisely, consider the order (! 1; : : : ; ! k ) of the cluster points, and let oi denote the
number of the point zi in this order, i.e. oi = j if ! j = i , and let �oi denote the average of a sample ofoi

obtained from the Markov chains, disregarding all steps wherezi is a background point. The �gures show
circles centered at the data points with radii proportional to exp(� b�oi ) where b = 0 :004 for the barrows
data set and b = 0 :1 for the mountain tops data set, i.e. large circles in the �gures indicate that points
have appeared early. Theb values have been chosen by trial-and-error to give plots where the di�erent sizes
of the circles can be clearly seen. Note that good choices ofb depends on the number of pointsn and the
con�guration of the points. In Figure 10a we see that the early points are located in the largest cluster,
while the solitary points are usually appearing very late, when they are partof the cluster (they are usually
background points as can be seen by comparing Figure 10a with Figure 9a). Figure 10b shows a di�erent
picture: here the larger clusters can be seen as consisting of many smaller clusters of points appearing roughly
at the same time. This indicates that these are indeed interpreted as many smaller clusters as suggested in
Section 2.3.

3.4 Model checking and sensitivity analysis

In this section, we check how well the model �ts certain aspects of the data, as well as how sensitive the
model is to changes in the prior distribution.
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3.4.1 Model checking

We have already compared the two data sets to simulations visually in Section 2.3. In the present section,
we compare simulated data from the posterior predictive distribution with t he observed data; recall that a
simulation from the posterior predictive distribution is given by simula ting �rst a realization ( p; q; � ) from
the posterior distribution and second a realization of a point pattern generated by our sequential point
process model with parametersp; q; � . We focus on investigating the shape of the linear structures on a
more detailed level than in Section 2.3.

One way of measuring the shape of the linear structures is to use the angle between an arbitrary point
and the two nearest points. Consider the pointzi , and let zj and zk denote its two nearest points. Then
we denote the angle between the vectorszj � zi and zk � zi by ai 2 [0; � ]. An abundance of angles close
to either 0 or � indicates that many points are located on roughly straight lines. In Figure 11, the crosses
correspond to a histogram of such angles for the data grouped into ten equidistant intervals of [0; � ], and
the small horizontal lines correspond to 0.5 %, 2.5 %, 50 %, 97.5 %, and 99.5 % quantiles obtained from 199
posterior predictions. Figure 11a shows no clear discrepancies between the mountain tops data set and the
simulations, although for two values the data lies on the edge of approximated99% interval. In Figure 11b
there some more clear di�erences, in particular the simulations show a higher tendency to produce angles
close to 0 than the barrows data set.

Another kind of model check is based on `squeezedness' de�ned as follows. Consider the Delaunay
triangulation generated by the data, i.e. if zi and zj share a common Dirichlet edge, then they are the end
points of an edge in the Delaunay triangulation (see e.g. Okabe et al. (1992) or M�ller (1994)). Consider
two Delaunay triangles with vertices f zi ; zj ; zk g and f zi ; zj ; zl g, i.e. zi and zj specify a common edgeei;j of
the two triangles. Then

qi;j = 1 � k zi � zj k=minf (kzi � zl k + kzj � zl k)=2; (kzi � zk k + kzj � zk k)=2g

is the squeezedness associated toei;j . This quantity takes values in the interval [ � 1; 1], and it is close to
one if the points zi and zj are clearly part of a linear structure with zk and zl on each side of this structure.
Figure 12a shows the empirical distribution function of qi;j for the mountain tops data set together with
quantiles obtained from 199 posterior predictions. The empirical distribution function for the data resembles
the simulations fairly well and stays within the quantiles, except for a brief excursion around the value
qi;j = 0 :2. Here the empirical distribution function is lower than the simulations, suggesting that the linear
structures in the data is slightly tighter packed than in the simulations. F igure 12b shows a similar picture
for the barrows data set, except here the empirical distribution function for the data is higher than the
simulations around the value qi;j = 0 :5, suggesting more loosely packed linear structures in the data. Note
that the high end of these �gures, i.e. values whereqi;j is close to one, is the most interesting part of the
�gures, since points in linear structures typically will inuence this part of the functi on.

3.4.2 Sensitivity analysis

In this section, we check how sensitive the posterior distributions are to changes in the values of the hyper-
parameters. We focus on� since this parameter has been chosen rather arbitrarily to be 150 in Section 3.3.
For the mountain tops data set we have also tried other values to test whether thischoice has any signi�-
cant inuence on the posterior distributions. Here we compare the values� = 50; 150; 300. The two other
values, � = 50 and � = 300, both give posterior distributions for the parameters that are visually almost
indistinguishable from the ones shown in Figures 5 and 7. The posterior distributions of the missing data
for the di�erent choices of � are even closer; for all three values of� the plots of the posterior distributions
of the missing data are visually the same as the ones given in Figures 9a and 10a.

Since the barrows data set contains many more points than the mountain tops data set, there is much
more information in the data, and we therefore expect the prior distribution t o have even less impact on the
analysis for this data set.

As a further argument that the present choice of prior distributions does not inuence the analysis much,
consider the estimated marginal posteriors in Figures 5 and 6. All of these look very di�erent from the
uniform and inverse gamma distributions used as priors, which indicates that thedata must have a high
impact on the posterior distributions.
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Appendix A: Posterior simulations

This appendix describes how to make MCMC updates from each of the full conditionals (I)-(IV) in Sec-
tion 3.2.

To update q from the Beta-distribution in (II), we simply use a Gibbs update, while we use random walk
Metropolis algorithms in (III)-(IV). Speci�cally, in case of (III), i f p is the current state of the random walk
Metropolis chain, we generate a proposalp0 from the uniform distribution on [ p � �; p + � ] for some �xed
value � > 0, calculate the Hastings ratio H (p; p0) = 1[0 < p 0 < 1]~� (p0jz; u; !; q; � )=~� (pjz; u; !; q; � ) obtained
from (5), accept the proposal with probability min f 1; H (p; p0)g as the next state of the chain, and otherwise
let p be the next state of the chain. Similarly in case of (IV), where if � is the current state of the chain, we
generate a normally distributed proposal� 0 with mean � and some �xed standard deviation � , calculate the
Hastings ratio H (�; � 0) = 1[� 0 > 0]~� (� 0jz; u; !; q; p )=~� (� jz; u; !; q; p ) obtained from (6), and make a similar
accept/rejection step to see if� or � 0 should be the next state.

For (I) we use a Metropolis-within-Gibbs algorithm, with updates of di�erent types as described in the
sequel. Let (u; w) denote a generic `current state of the chain', and letxc and xb be the corresponding
`current states' of the cluster and background processes. Fori = 1 ; : : : ; n, let xk+1 be the �rst zi with ui = 0,
xk+2 the secondzi with ui = 0, and so on. This assignment plays no role as the ordering of background
points is of no importance, cf. Section 3.2. In Sections A1, A2, and A3, we describe updates of type 0, 1,
and i � 2, respectively. Briey, in a type 0 update, we propose that a background point becomes a cluster
point, in a type 1 update, we propose that a cluster point becomes a backgroundpoint, and in a type i � 2
update, we propose to shift the ordering of two succeeding cluster points. Since (4) isa discrete density, it
becomes straightforward to calculate the Hastings ratios. We assume there is an equal probability for doing
either a type 0 or type 1 update, and we use a systematic updating scheme, where we �rst do either a type
0 or type 1 update, and second ifk > 1, make updates of type 2; : : : ; k.

In the analyses in Section 3.3, we have used� = 0 :1 and � = 10 when running the Markov chains. For
the mountain tops data set 100,000 steps with a burn-in of 10,000 steps was used,while the barrows data
set required 500,000 steps with a burn-in of 100,000. The reason for the higher number of steps and the
high burn-in required for the barrows data set is the higher number of points in the data set, which means
that we need many type 0 and 1 updates for adequately exploring the space of the missing data. Apart from
this, the mixing of the Markov chains seems to be good. Note also that the computation time for each step
increases with the number of cluster points.

A1: A background point becomes a cluster point

For a type 0 update, if k = n we do nothing, so suppose thatm = n � k > 0. Uniformly at random we pick
j 2 f 0; : : : ; kg and i 2 f k + 1 ; : : : ; ng, and we propose to updatek by k0 = k + 1, m by m0 = m � 1, xc by

x0
c = ( x0

1; : : : ; x0
k 0) = ( x1; : : : ; x j ; x i ; x j +1 ; : : : ; xk )

and xb by
x0

b = ( x0
k 0+1 ; : : : ; x0

n ) = ( xk+1 ; : : : ; x i � 1; x i +1 ; : : : ; xn ):

In other words, we propose to update (u; ! ) by

u0 = ( u0
1; : : : ; u0

n ) = ( u1; : : : ; ui � 1; 1; ui +1 ; : : : ; un )

and
! 0 = ( ! 0

1; : : : ; ! 0
k+1 ) = ( ! 1; : : : ; ! j ; ! 0

j +1 ; ! j +1 ; : : : ; ! k )

where ! 0
j +1 is de�ned by x i = z! 0

j +1
.

To obtain the Hastings ratio, we start by recalling that ( u; ! ) is a one-to-one correspondence with
(xc; f xk+1 ; : : : ; xn g). When a background point becomes a cluster point, there arem possibilities for choosing
a background point and k + 1 possibilities for choosing a position in the order of the clusters points. For the
reverse update, i.e. when a cluster point becomes a background point (the type 1 update in Section A2), there
are k0 possibilities for choosing a cluster point, and since the order of the background points is irrelevant,
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we do not have to account for the position among the background points. Fromthis and (4) we obtain the
Hastings ratio H0 = r (j; x c; x i ), where

r (j; x c; x i ) =
1
k 0

1
k 0! q

k 0
�

1� q
jW j

� m 0 Q
l � k 0 f (x0

l jx
0
1; : : : ; x0

l � 1)

1
k+1

1
m

1
k ! q

k
�

1� q
jW j

� m Q
l � k f (x l jx1; : : : ; x l � 1)

:

Note that we suppress in the notation that f (x l jx1; : : : ; x l � 1) = f (x l jx1; : : : ; x l � 1; p; � ) and f (x0
l jx

0
1; : : : ; x0

l � 1) =
f (x0

l jx
0
1; : : : ; x0

l � 1; p; � ) both depend on (p; � ). Clearly, the Hastings ratio reduces to

r (j; x c; x i ) =
mqjW j

(k + 1)(1 � q)
f (x i jx1; : : : ; x j )

kY

l = j +1

f (x l jx1; : : : ; x l � 1; x i )
f (x l jx1; : : : ; x l � 1)

:

A2: A cluster point becomes a background point

Type 1 updates are the reverse of type 0 updates. Ifk = 0 we do nothing, so suppose thatk > 0. Uniformly
at random we pick j 2 f 1; : : : ; kg and i 2 f k; : : : ; ng, and proposek0 = k � 1, m0 = m + 1,

x0
c = ( x0

1; : : : ; x0
k 0) = ( x1; : : : ; x j � 1; x j +1 ; : : : ; xk )

and
x0

b = ( x0
k 0+1 ; : : : ; x0

n ) = ( xk+1 ; : : : ; x i ; x j ; x i +1 ; : : : ; xn ):

In other words, we propose

u0 = ( u0
1; : : : ; u0

n ) = ( u1; : : : ; ui � 1; 0; ui ; : : : ; un )

and
! 0 = ( ! 0

1; : : : ; ! 0
k � 1) = ( ! 1; : : : ; ! j � 1; ! j +1 ; : : : ; ! k ):

The Hastings ratio is H1 = 1=r(j � 1; x0
c; x j ).

A3: Shifting the ordering of two succeeding cluster points

When k > 1 and i 2 f 2; : : : ; kg, a type i update is given as follows. Propose to keepx0
b = xb and replacexc

by
x0

c = ( x0
1; : : : ; x0

k ) = ( x1; : : : ; x i � 2; x i ; x i � 1; x i +1 ; : : : ; xk ):

In other words, proposeu0 = u and

! 0 = ( ! 0
1; : : : ; ! 0

k ) = ( ! 1; : : : ; ! i � 2; ! i ; ! i � 1; ! i +1 ; : : : ; ! k ):

By (4), the Hastings ratio is

H i =
f (x i jx1; : : : ; x i � 2)f (x i � 1jx1; : : : ; x i � 2; x i )

f (x i � 1jx1; : : : ; x i � 2)f (x i jx1; : : : ; x i � 1)
:
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(a) (b)

Figure 1: (a): The locations of 1147 barrows (bronze age burial sites) in a15 � 15 km region. (b): The
locations of 81 mountain tops in a 7:5 � 10:5 km region.
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Figure 2: (a): Example with a rectangular window W , i = 4, three cluster points x1, x2, x3, and their
respective Dirichlet cells C1, C2, C3 within W . The new cluster point x i and the distancesl i and r i are
shown. (b): Example with i = 5, showing four cluster points x1; : : : ; x4 and a new cluster point x i (�lled
circles), wherex i is closest tox4. The half line L 4 (dashed line), the linesL 1; L 2; L 3 (solid lines), and the
intersection points v1, v3 and v4 (empty circles) are also shown.
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(a) (b)

Figure 3: (a): A simulated point pattern of k = 81 cluster points when p = 0 :800, � = 286:4 m, and W
is a 7:5 � 10:5 km region. (b): A simulated point pattern of n = 81 cluster and background points, where
q = 0 :825, p = 0 :887, � = 278:1 m, and W is a 7:5 � 10:5 km region.

Figure 4: A simulated point pattern of n = 1147 cluster and background points, whereq = 0 :758, p = 0 :723,
� = 68:3 m, and W is a 15� 15 km region.
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Figure 5: Histograms showing the marginal posterior distributions ofq, p, and � for the mountain tops data
set.
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Figure 6: Histograms showing the marginal posterior distributions ofq, p, and � for the barrows data set
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Figure 7: Scatter plots showing the marginal posterior distributions of (q; p), (q; � ), and (p; � ) for the
mountain tops data set. In each plot the dots are obtained by subsampling from an MCMC sample obtained
by taking every 50th sample.
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Figure 8: Scatter plots showing the marginal posterior distributions of (q; p), (q; � ), and (p; � ) for the barrows
data set. In each plot the dots are obtained by subsampling from an MCMC sampleobtained by taking
every 50th sample.
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