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Abstract: Brain–computer interfaces (BCIs) are successfully used for stroke rehabilitation, but the
training is repetitive and patients can lose the motivation to train. Moreover, controlling the BCI
may be difficult, which causes frustration and leads to even worse control. Patients might not adhere
to the regimen due to frustration and lack of motivation/engagement. The aim of this study was
to implement three performance accommodation mechanisms (PAMs) in an online motor imagery-
based BCI to aid people and evaluate their perceived control and frustration. Nineteen healthy
participants controlled a fishing game with a BCI in four conditions: (1) no help, (2) augmented
success (augmented successful BCI-attempt), (3) mitigated failure (turn unsuccessful BCI-attempt
into neutral output), and (4) override input (turn unsuccessful BCI-attempt into successful output).
Each condition was followed-up and assessed with Likert-scale questionnaires and a post-experiment
interview. Perceived control and frustration were best predicted by the amount of positive feedback
the participant received. PAM-help increased perceived control for poor BCI-users but decreased it
for good BCI-users. The input override PAM frustrated the users the most, and they differed in how
they wanted to be helped. By using PAMs, developers have more freedom to create engaging stroke
rehabilitation games.

Keywords: brain–computer interface; motor imagery; gamification; stroke rehabilitation; frustration;
perceived control; performance accommodation mechanisms; game design

1. Introduction

A stroke is globally one of the leading causes of acquired disability among adults [1].
However, the heterogeneity of the injury complicates finding a single treatment that is ef-
fective for all patients and the effects of existing treatment options are limited [2]. However,
in recent years, several new rehabilitation techniques have been proposed, which rely on
the induction of plasticity and motor learning principles [3–5]. One proposed technique
that has shown promising results is the brain–computer interface (BCI) [6–8]. It was shown
in many studies that BCIs can be used for inducing Hebbian-associated plasticity by trig-
gering electrical stimulation [9–12], rehabilitation robots [13,14], or exoskeletons [15] based
on movement-related cortical activities through either motor imagery (MI) or attempted
movements [16]. Improvements in functional scores such as the Fugl-Meyer Score have
consistently been reported for upper and lower limbs (see, e.g., [17,18] for recent reviews).
BCI training can be effective, but as for many other rehabilitation techniques, repetitive
training is needed, and the outcome is likely to be correlated with the amount of performed
training. The repetitive training may cause boredom in the patients, which eventually
can lead to patients not adhering to the regimen [19]. A potential solution to keep the
patients engaged and motivated to maintain the training efforts can be through gamifi-
cation [20], which was used successfully in various other rehabilitation scenarios [21,22].
To introduce gamification in BCI-based rehabilitation, patients need to be able to provide
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input to activate the lesioned brain area to maximize the effect of the rehabilitation [7].
However, 10–30% of all individuals cannot operate a BCI satisfactorily for control and
communication purposes, i.e., when achieving recognition rates less than 70% [23]. It
should be noted though that lower recognition rates still induce plasticity [8], although a
better BCI performance was suggested to improve the induction of plasticity [9]. The BCI
performance may be enhanced in various ways by selecting the optimal pre-processing
techniques [24–26], features [25,27–30], classifiers [29,31], or by focusing on user instruc-
tions and training [23,32,33]. By improving the BCI performance, the patients’ perceived
control and frustration improve as well [34–40], which may help them maintain interest
in the training. Moreover, frustration has a detrimental effect on BCI performance with
increasing frustration leading to worse BCI performance [39]. Despite the use of optimal
signal processing techniques or learning principles, the BCI performance may still be poor
for some users, or other factors may impede the BCI performance, such as incompetence
or fear [41]. A way to tackle this is by injecting concealed, artificial, positive feedback and
in this way improve the perceived BCI performance [34,35]. This approach can only be
implemented in a meaningful way in synchronous BCIs with binary input (MI vs. idle
activity) [35]. Alternatively, game mechanics can be used to assist users, such that they
maintain interest in the training, and the mechanics conceal the actual BCI performance.
The game mechanics represent a type of dynamic difficulty adjustment [42], which regulate
the game’s challenge to accommodate for imperfect user input, and are named performance
accommodation mechanisms (PAMs) [43]. PAMs are used to match the challenge of the
game to the player’s skill level. If the game’s challenge is sufficiently but not too high,
players can enter a flow state in which they feel challenged but will likely succeed in
making the interaction engaging [44]. This could be important in a BCI training context
where there is great variability in the BCI skill levels. Flow was reported to account for a
major part of the enjoyment of playing games [45,46].

A PAM may be defined in the following way: “A game mechanism to increase the player’s
enjoyment by lowering the game’s challenge level to accommodate for poor performance of the player,
input device or system” [43]. PAMs may be divided into five overall groups (although other
smaller and more specific groupings may exist): Augmented success, mitigated failure,
input override, rule change, and shared control [43]. In this study, we focus on the first
three listed PAMs. Augmented success provides the user with an outcome that is better
than what normally can be expected from a successful input, e.g., this mechanism was
implemented as power-ups or boosts in driving games. Mitigated failures transform failed
inputs to outputs that are between failure and success, such that failed inputs are not
penalized but not successful either. An example of this mechanism in a shooting game
could be that a low-performing player is not losing as much health as if the mechanism was
not activated. Input override can replace a failed input with a system-generated successful
input, e.g., this mechanism can be used in a targeting shooting task where failed inputs still
lead to an instant lock on the nearest target. These PAMs could be used to create engaging
games that allow patients with poor BCI control to experience more enjoyable rehabilitation
training sessions. However, it is unknown how these PAMs affect perceived control and
frustration in a BCI context. To that end, this study implements PAMs in an MI-controlled
online BCI game and investigates how each PAM affects the levels of perceived control and
frustration as well as exploring the qualitative aspects of using such PAMs.

2. Materials and Methods
2.1. Participants

A total of 19 healthy participants participated in this study (7 women and 12 men
with a mean age of 27 ± 8 years). All participants provided their informed consent prior to
participation. Prior to the experiment, the participants were instructed on how to perform
kinesthetic or first-person MI [16].
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2.2. Brain–Computer Interface

The BCI in this study was based on kinesthetic MI of a palmar grasp of the right hand
and implemented using the “Motor Imagery BCI” scenario in OpenViBE [47]. A similar
setup was used previously (see, e.g., [15,35,48]). Continuous EEG was recorded using
a cap with sintered Ag/AgCl electrodes (OpenBCI, USA) and amplified using a Cyton
Biosensing Board (OpenBCI, USA). The EEG was recorded from F3, F4, C3, Cz, C4, P3,
and P4 according to the International 10–20 System. The electrodes were grounded at
CPz and referenced to AFz. The EEG was sampled at 250 Hz. The amplified EEG was
transmitted through Bluetooth to a computer running the OpenViBE software. The EEG
was bandpass filtered between 8 and 30 Hz with a 5th-order Butterworth filter to reduce the
electrical activity outside the mu (8–12 Hz) and beta (13–30) frequency ranges for enhancing
the event-related desynchronization [49]. This was followed up with a common spatial
pattern filter that was applied to maximize the difference in spectral power between the
two classes (MI vs. idle activity). The bandpower was obtained from the CSP-filtered
data from each electrode and used as input for a linear discriminant analysis classifier.
The filter coefficients for the CSP filter and the parameters for the decision boundary were
extracted from calibration data. The linear discriminant analysis classifier was trained
using five-fold cross-validation. Every 1/16 s the BCI system calculated a value between
0 and 1, and if the value exceeded a subject-specific threshold of 0.5 s it was considered as
MI. The subject-specific threshold was determined based on the threshold leading to the
highest offline classification threshold. This threshold was used in a short online test of
the BCI system (<5 min) before the actual testing began to adjust it if necessary to obtain a
trade-off between the number of true positive and false positive detections. When MI of a
palmar grasp was detected in the experimental sessions a trigger was sent to unity through
a TCP socket in OpenViBE. Figure 1 visualizes the complete communication relationship
between the BCI and the game.

Figure 1. Data flow from the BCI cap to the fishing game developed in Unity. The BCI only controls
the game when the black cursor is within the input window, marked by the green area on a bar
displayed in the fishing game.

2.3. Game

The participants in this study played a game where three implementations of the
different PAMs/help could be integrated. The participants played a custom-made fishing
game where they controlled a fisherman and had to catch as many fish as possible from
a lake. The player had to move the hook up and down using the up and down keys on a
keyboard, to catch the fish, which swam at three different depths in the lake (visualized in
Figure 2. When the fish swam into the hook, it was hooked and a progress bar was shown.
Then the player had to reel in the fish using kinesthetic MI of a palmar grasp of the right
hand. To avoid conflicting movement-related brain activity associated with pressing the
keys on the keyboard and reeling in the fish with MI, the MI was initiated two seconds
after the last press on the keyboard. Initially, a preparation phase of two seconds was
given (marked with white) followed by a two-second input window where the user had
to perform MI (marked with green). A black cursor moving from left to right indicated
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the timing of the two phases. The input window closed when MI was detected or after
two seconds if no MI was detected. When the input was closed the participants received
feedback in the form of (A) the fish being reeled in (success), (B) the fish unreeling (failure),
or (C) PAM activation (special). It required one to three reels to catch the fish depending on
the fish’s depth in the lake. It required three unreels for the fish to escape.

Figure 2. In the fishing game, participants control a fisherman reeling fish. Participants use arrow
keys to move the hook up and down between three lanes. A fish may appear in a random lane from
either left or right side and may swim into the participant’s hook. The BCI input window then begins
and the participant may then perform MI when the black cursor is within the green area.

2.3.1. Performance Accommodation Mechanisms

The experiment evaluated three PAMs: augmented success, mitigated failure, and in-
put override. The PAMs were implemented in the fishing game as ways to help the player
reel in the fish. In the augmented success PAM condition, the fisherman eats a herb to
make him stronger, which helps the player reel in the fish faster—moving up two lanes
instead of one. Augmented success provides extra positive feedback, equivalent to two
successful reels. In the mitigated failure PAM condition, the fisherman adds a clamp to the
fishing rod such that the fish is prevented from escaping. At the end of a mitigated failure
trial, the fish maintains the same position which can be considered neutral feedback. In
this way, the fish is not caught, but it does not escape either. In the input override PAM
condition, an external computer-controlled avatar in the form of a person comes in and
takes over the fishing rod to reel up the fish on behalf of the fisherman. The input override
provides positive feedback equivalent to a regular single successful reel. We contrasted all
of these PAM conditions with a reference condition labeled as ‘normal’ in which players
only received regular positive and negative feedback based on their input. Table 1 provides
a full overview of the possible outcomes within each condition.

2.3.2. Urn Model

Each condition consisted of 20 trials in which players could attempt to reel in fish by
performing MI. In the reference condition, all trials were controlled by the players’ BCI.
In PAM conditions, normal trials were shuffled with 30% special trials as visualized in
Figure 3. In addition, participants’ trials were rejected if they exceeded 70% control in the
helped condition, to ensure all participants had similar experiences including both positive
and negative feedback. To ensure that participants experienced the target rates, trials had
predefined behaviors, which determined how the trial could end, visualized in the bottom
flow chart in Figure 3. Rejection trials could override successful attempts if more negative
feedback was needed. Special trials could override both successful and rejected attempts,
except for augmented success, which required successful input from the user to augment.
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The order of special trials, normal trials, and rejected trials was determined by an urn
model. The urn model continuously counted how many successful, failed and special trials
players had and evaluate the order of upcoming trials. If the urn model decided that a
player was to receive augmented success in a trial, this would require them to produce
the success. If the player failed to perform MI, the urn model would evaluate the order of
upcoming trials again and place an augmented success in a later trial. Trials designated for
input override and mitigated failure disregarded users’ input and provided help at the end
of the input window instead. This behavior was used for experimental purposes to ensure
enough PAM trials were provided; in real scenarios, input override and mitigated failure
only trigger when players fail to perform MI.

Figure 3. Each condition consisted of 20 trials. In the helped conditions, help trials with predefined
outcomes (blue) were shuffled with normal (no PAM) trials (gray) to provide users with 30% help.
Forced rejections (red) were inserted when people were succeeding above the 70% target control rate.

2.4. Experimental Setup

Initially, the cap was mounted on the participants and the signal quality was checked
to make sure there was good signal quality (see Figure 4). In the calibration session,
the participants were asked to perform MI 30 times. They were instructed to perform
kinesthetic or first-person MI by recalling the sensation of doing a palmar grasp of the
right hand. They were asked to maintain the imaginary contraction for four seconds while
avoiding blinking or making contractions of facial muscles or other muscles. A visual
cue of a red arrow pointing to the right was shown to the participants for four seconds
to indicate when to start and stop the imaginary contraction. Thirty trials of idle activity
were also recorded when the participants were resting, a visual cue with the text “Rest”
was displayed to the participants for four seconds. Each MI trial was followed by an idle
activity trial. After the BCI was calibrated the experiment started. The experiment followed
a within-subject design, where participants played four conditions each (a control condition
without PAM, and one condition per PAM). To avoid any order bias, we used a Latin square
design for PAM conditions. The participants were introduced to one condition at a time.
Prior to each condition, the facilitator introduced the condition by explaining the PAM.

• Control condition: The facilitator explained the core game. This condition was always
the first condition the participants went through.

• Augmented Success: “In this condition, the fisherman will occasionally become stronger.”
• Mitigated Failure: “In this condition, occasionally a clip on the fishing rod will prevent the

fish from escaping.”
• Input Override: “In this condition, a girl will occasionally come to help you.”

In each condition, the participants played for 20 trials and tried to catch as many fish
as possible. For the final fish in each condition, if the participants had no more trials left,
the fish would escape.
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Figure 4. Each participant in the experiment (1) underwent BCI setup and BCI calibration, (2) played
a fishing game in four conditions, starting with the normal condition, followed by (3) three helped
conditions in a shuffled order. Participants were then debriefed about their experiences.

In accordance with previous BCI-related studies, we focused on the user experi-
ence [34–37], and the dependent variables we measured were frustration and perceived
control. After each condition, participants rated on a Likert scale their perceived control
(“I felt I was in control of the fisherman reeling in the fish.”) 1 (Strongly disagree) to 7 (Strongly
agree) and frustration (“How much frustration did you feel in this condition?”) from 1 (Strongly
absent) to 7 (Strongly pronounced). They were informed to do this while considering
the condition as a whole (“Please rate your experience as a whole during this play-through.”).
The participants were kept unaware of their actual BCI performances from their calibration
and test sessions so that they would not influence their ratings.

At the end of the experiment, the participants were debriefed. First, participants were
inquired as to their prior expectations of the experiment, for instance, whether they thought
they would do better or worse, and how it was to control the BCI. Participants elaborated
on any previous experience with BCI, to allow for grouping and rating difference checks
in the analysis. Participants pointed out the hardest and easiest condition, and what their
thoughts were on the PAMs. We went through their Likert scale ratings with them, to check
for potential misunderstandings, i.e., prompting them to explain extreme values, which
were used in the qualitative analysis to reason about outlier data points.

2.5. Data Analysis
2.5.1. Variables

The study collected continuous data and MI detections from the BCI and event data
from the game (e.g., user input and game activity). An overview of the variable pool
can be found in Table 2. Each participant contributed perceived control and frustration
Likert scale item scores for each of the four conditions, which was merged with the game
data and analyzed in R studio. Individual conditions were reviewed to identify potential
abnormalities. From the combined dataset, we selected eight variables (MI conversion
rate, PAM rate, condition, positive feedback, fish caught, fish lost, fish reel, and fish unreel)
to evaluate people’s ratings of perceived control and frustration. Fish unreel, fish reel,
fish lost, and fish caught were included in the analysis because they represent the types
of positive and negative feedback presented in the game. PAM Rate was included to
analyze the impact of introducing help. In addition, we included the condition variable to
analyze for differences between three types of help (augmented success, mitigated failure,
and input override) and the normal condition. MI conversion rate was included to compare
how users’ ability to perform MI to obtain successful trials affected perceived control and
frustration ratings.
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Table 1. Trials were manipulated by the urn model to target 30% help and limit control in help
conditions. The table shows the mean % of how help conditions changed the outcomes as described
in Section 2.3.1, compared to the normal condition (reference condition).

Augmented Success (AS) Input Override (IO) Mitigated Failure (MF) Normal Condition

Negative (No Change) 46% Negative (No Change) 33% Negative (No Change) 30% Negative (No Change) 42%
Positive (No Change) 28% Negative to Positive (IO) 15% Negative to Neutral (MF) 17% Positive (No Change) 57%
Positive to Extra Positive (AS) 14% Positive (No Change) 37% Positive (No Change) 40%
Positive to Negative 12% Positive to Positive (IO) 15% Positive to Neutral (MF) 13%

Table 2. Descriptions of dependent (response) and independent (explanatory) variables used in the
analysis and their minimum (Min) and maximum values (Max), means, and standard deviation(s) (SD).

Variables Min Max Mean SD Description

Response

Perceived Control 0 1 0.46 0.27 Normalized 7-point Likert scale rating by partici-
pants after playing a condition.

Frustration 0 1 0.50 0.29 Normalized 7-point Likert scale rating by partici-
pants after playing a condition.

Explanatory

MI Conv. Rate 0 1 0.54 0.28 Normalized count of trials that were caused by suc-
cessful motor imagery activations in a condition.

Pos. Feedback 0 1 0.52 0.24 Normalized count of how many trials delivered a
positive outcome (reeling fish, catching fish, receiv-
ing help) in a condition, regardless of cause.

Fish Caught 0 8 3.59 2.39 Count of how many fish were reeled all the way up
and caught in a given condition.

Fish Lost 0 6 1.69 1.69 Count of how many fish participants lost when play-
ing a given condition.

Fish Reel 0 20 6.75 3.54 Count of how many times participants managed to
reel a fish closer to them in a condition.

Fish Unreel 0 14 6.54 3.31 Count of how many times the fishing rod unreeled
(the fish trying to escape) in a condition.

PAM rate 0 0.3 0.18 0.13 Normalized count of trials in which participants re-
ceived help in a condition.

Condition - - - - Participants played four conditions: Normal (no
PAM), augmented success, input override, and miti-
gated failure.

2.5.2. Analysis Method

Many of the explanatory variables represent different ways to consider positive feedback
and it is not clear which variables are better at explaining how people rate perceived control and
frustration. To investigate this question, we constructed models from the variables and tested
whether models, which included a variable, were significantly different to a null model without
the variable present. We used cumulative link mixed models from the ordinal package [50]
fitted with Laplace approximation, also known as an ordered response mixed model. We used
cumulative link mixed models in our analysis because they provide a regression framework
that treats observations made in the experiment’s response variables frustration and perceived
control correctly as ordinal data. To counter potential pseudoreplication [51] from our repeated
measures design, we used Participant as the basis for the null model and modeled it as random
intercepts to account for by-subject baseline rating differences. We determined the most suitable
model from our variables by using forward step-wise selection, which added variables based
on the Akaike information criterion (AIC). We tested for significant predictors of frustration and
perceived control, using Likelihood ratio tests with a p-value threshold of 0.05. The variables
were tested as fixed effects and determined based on their known relationship in affecting
control or positive feedback in the experiment.
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Participant Likert scores of perceived control and frustration were summarized visu-
ally through to aid exploratory analysis. In contrast to the cumulative link mixed models,
participants’ Likert scores were normalized from 1–7 to 0–1, treated numerically in tables,
and visualized with linear regression for exploratory analysis.

Qualitative data included participant video recordings, game recordings, and notes
taken during debriefing interviews, which we thematically analyzed for repeated pat-
terns [52]. Due to a mistake in the experimental procedure, Participant 2 had missing data
and was, therefore, excluded from the analysis.

3. Results

Eighteen participants played and scored four conditions, shown in Table 3. In three
conditions, an urn model manipulated their experience, as summarized in Table 1.

Table 3. Participant demographics, individual scores per condition (Likert scales of perceived control
and frustration), MI conversion rate (% of MI events, which resulted in positive outcomes), and
positive feedback (% of trials, which delivered positive feedback). Gray denotes high frustration, low
perceived control, low MI conversion rate, or low positive feedback.

Variable 1 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Gender F M M M M F M M F F F F M M M M M F

Age 27 29 60 27 22 23 24 24 23 22 33 24 22 24 21 28 26 25

Perceived Performance 0.85 0.95 0.35 NA 0.7 0.75 0.2 0.75 0.8 0.075 0.6 0.5 0.15 0.35 0.6 0.35 0.45 0.5

BCI Experience Yes Yes No No Yes Yes Yes Yes Yes Yes No No Yes No No No Yes Yes

Perc. Control 0.67 0.75 0.21 0.37 0.63 0.58 0.29 0.54 0.46 0.04 0.29 0.71 0.11 0.54 0.75 0.42 0.38 0.54

Frustration 0.33 0.13 1.00 0.38 0.54 0.42 0.50 0.58 0.42 1.00 0.54 0.25 0.67 0.50 0.29 0.83 0.54 0.21

MI Conv. Rate 92% 85% 21% 61% 32% 80% 32% 75% 36% 11% 71% 80% 27% 52% 34% 45% 78% 55%

Pos. Feedback 78% 74% 28% 57% 35% 70% 35% 68% 40% 18% 66% 70% 32% 50% 40% 49% 65% 52%

Aug. Success

Perc. Control 0.67 0.83 0.33 0.33 0.50 0.33 0.33 0.17 0.33 0.00 0.17 0.50 0.33 0.67 1.00 0.67 0.17 0.67

Frustration 0.33 0.17 1.00 0.17 0.67 0.50 0.67 0.83 0.33 1.00 0.50 0.17 0.67 0.33 0.17 0.67 0.67 0.17

MI Conv. Rate 95% 80% 15% 60% 15% 90% 50% 30% 35% 15% 85% 75% 35% 65% 45% 45% 85% 55%

Pos. Feedback 65% 60% 15% 50% 15% 55% 35% 20% 25% 15% 70% 50% 30% 50% 45% 45% 60% 45%

Fish Caught 0 6 1 4 1 5 1 0 2 1 8 4 2 6 5 6 5 5

Fish Lost 0 0 5 1 5 2 4 5 4 5 0 2 3 2 3 2 2 2

Input Override

Perc. Control 0.50 0.50 0.17 0.50 0.67 0.67 0.33 0.50 0.50 0.00 0.33 0.67 0.00 0.67 0.83 0.33 0.33 0.33

Frustration 0.50 0.17 1.00 0.50 0.67 0.50 0.33 0.50 0.17 1.00 0.67 0.83 0.50 0.50 0.33 0.83 0.50 0.50

MI Conv. Rate 100% 95% 5% 55% 35% 95% 30% 95% 15% 5% 50% 90% 30% 65% 40% 30% 65% 45%

Pos. Feedback 100% 95% 35% 70% 50% 100% 55% 95% 40% 35% 60% 95% 50% 75% 65% 60% 70% 60%

Fish Caught 0 8 2 6 3 7 5 8 2 2 4 7 3 7 4 4 5 4

Fish Lost 0 0 3 0 2 0 2 0 3 4 1 0 2 0 1 1 0 2

Mit. Failure

Perc. Control 0.50 0.67 0.00 0.33 0.67 0.33 0.33 0.67 0.33 0.17 0.00 0.67 0.50 0.67 0.17 0.33 0.67

Frustration 0.33 0.17 1.00 0.33 0.33 0.50 0.33 0.67 0.50 1.00 0.83 0.00 0.50 0.33 1.00 0.50 0.00

MI Conv. Rate 90% 80% 10% 70% 30% 50% 25% 75% 30% 25% 80% 75% 55% 15% 40% 85% 60%

Pos. Feedback 60% 55% 5% 50% 25% 40% 25% 55% 30% 20% 65% 55% 50% 15% 25% 55% 45%

Fish Caught 0 4 0 4 1 2 1 5 1 1 5 4 3 1 1 4 3

Fish Lost 0 0 4 1 2 1 3 0 2 3 0 0 1 3 2 0 1

Ref. Condition

Perc. Control 1.00 1.00 0.33 0.33 0.67 1.00 0.17 0.83 0.67 0.00 0.67 1.00 0.00 0.33 0.50 0.50 0.67 0.50

Frustration 0.17 0.00 1.00 0.50 0.50 0.17 0.67 0.33 0.67 1.00 0.17 0.00 0.83 0.67 0.33 0.83 0.50 0.17

MI Conv. Rate 85% 85% 55% 60% 50% 85% 25% 100% 65% 0% 70% 80% 15% 25% 35% 65% 75% 60%

Pos. Feedback 85% 85% 55% 60% 50% 85% 25% 100% 65% 0% 70% 80% 15% 25% 35% 65% 75% 60%

Fish Caught 0 6 3 5 4 8 1 8 4 0 6 6 1 2 2 5 7 4

Fish Lost 0 0 2 1 2 0 4 0 0 6 0 0 5 4 3 0 0 2
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3.1. Perceived Control

Forward stepwise selection constructed nine significant models for perceived control,
listed at the top of Table 4. Six of eight explanatory variables resulted in significant
models, where Fish Lost performed best in terms of AIC, ML, and LR when compared
to the null model. Fish Lost was, therefore, chosen as the null model, and to form the
basis for the model construction in the forward stepwise selection, to see if the variable
could be combined with others. Three of the eight fixed effects (Fish Caught, Condition, and
PAM Rate) made significant improvements to the model with Fish Lost. Examination of
the Fish Lost + PAM Rate model resulted in the model outcomes shown at the bottom of
Table 4. Contrary to expectations, PAM Rate was estimated to negatively affect participants’
rating of perceived control (estimate = −7.86, p < 0.001)—when people received more help,
their ratings generally were lower. The examination of the second-best model Fish Lost +
Condition estimated that the negative effect came from the conditions input override and
(estimate = −2.04, p = 0.004) mitigated failure (estimate = −2.08, p = 0.004), while augmented
success’s estimate was marginally positive it did not significantly affect perceived control
(Estimate = 0.2, p = 0.786). The negative effects of input override and mitigated failure are
also evident in the top row of Figure 5, which visualizes the relationship between positive
feedback and perceived control in each condition. From the visual inspection, we observed
that when participants experienced more than 50% of positive feedback, they tended to
favor conditions without help. Only in cases where positive feedback was low (less than
50%), did participants rate help higher in the augmented success condition.

Table 4. (Top) Results of significant likelihood ratio tests predicting perceived control, with the AIC
(Akaike information criterion), ML (maximum likelihood), LR (likelihood ratio), and χ2 (significance).
(Bottom) fixed effect estimates for predicting perceived control in the best model “Fish Lost + PAM
Rate”.

Predicted Fixed Effect AIC ML LR χ2

Perceived Control Fish Lost + PAM Rate 215.82 −98.91 15.61 <0.001
Fish Lost + Condition 219.11 −98.55 16.32 0.001
Fish Lost + Fish Caught 226.70 −104.35 4.72 0.030
Fish Lost 229.43 −106.71 24.05 <0.001
Fish Caught 232.12 −108.06 21.36 <0.001
Pos. Feedback 233.27 −108.63 20.21 <0.001
MI Conv. Rate 237.67 −110.83 15.81 <0.001
Fish Reel 242.10 −113.05 11.38 0.001
Fish Unreel 245.62 −114.81 7.86 0.005

Predicted Fixed Effect Estimate Std. Error z Value p

Perceived Control PAM Rate −7.86 2.14 −3.68 <0.001
Fish Lost −1.39 0.27 −5.11 <0.001
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Figure 5. The relationship between perceived control and positive feedback is shown in the top row
of each of the four conditions, while the relationship between frustration and positive feedback is
shown in the middle row. In the bottom row, the relationship between frustration and perceived
control is shown. AS: augmented success, IO: input override, MF: mitigated failure, and NO: normal
condition without PAM help. Each data point represents the rating of a single participant.

3.2. Frustration

Forward stepwise selection constructed four significant models, using four of the
eight explanatory variables to predict frustration, listed at the top of Table 5. Escaping
fish frustrated the participants (Fish Lost, Estimate = 0.62, p = 0.003), and conversely,
participants were less frustrated when they caught more fish (fish caught, estimate = −0.39,
p < 0.001). However, participants’ frustration ratings were not affected by the type of help
they received. For frustration, no models that included PAM Rate or Condition were different
from the null model. Visual inspections of the middle row plots in Figure 5 show a clear
downward relationship between frustration ratings and positive feedback for all conditions.
Augmented success and normal conditions showed similar relationships while the input
override showed overall higher frustration ratings despite participants receiving more
positive feedback than any other condition on average (M = 0.67, SD = 0.22). Input override
and mitigated failure both showed less decreasing changes in the frustration ratings as
positive feedback increased, indicating that higher control did not make as much of a
difference in people’s frustrations. When plotting frustration and perceived control were
against each other (Figure 5, bottom row), a clear correlation was shown in all conditions
with the exception of input override.

The MI conversion rate was a significant fixed effect in models of perceived control
and frustration, but variables relating to in-game feedback (fish lost, fish caught) resulted in
models with lower AIC, and lower ML (shown in Tables 4 and 5). Participants had widely
different MI conversion rates between 5–100% (M = 0.54, SD = 0.28).
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Table 5. (Top) Results of significant likelihood ratio tests predicting frustration. (Bottom) fixed effect
estimates for predicting frustration in the best model “Fish Lost”.

Predicted Fixed Effect AIC ML LR χ2

Frustration Fish Lost 239.63 −111.82 8.81 0.003
Fish Caught 240.46 −112.23 7.99 0.005
MI Conv. Rate 242.49 −113.25 5.95 0.015
Pos. Feedback 244.20 −114.10 4.24 0.039

Predicted Fixed Effect Estimate Std. Error z Value p

Frustration Fish Lost 0.62 0.21 2.96 0.003

3.3. Qualitative Results

Playing the control condition, several participants (10/19) found it easy to control,
while a few participants (3/19) said they were learning the game in this condition, which
reduced the frustration of a few participants (2/19). The in-game character taking over the
fishing rod in the input override condition was frustrating for most participants (13/19),
because they wanted to solve the task themselves: “I did not want any help from the girl.”
(P7, 11, 17). Input override removed their agency “it doesn’t really feel like my attempt
when someone else was helping.” (P2), and reduced the legitimacy of the reward “it was less
rewarding [to catch the fish] because I got help from the girl.” (P14, 16). The mitigated failure
condition highlighted participants’ failures, as they had another try but frustrated only
very few (3/19). However, few participants (4/19) found the extra try less frustrating, “the
clip [mitigated failure] was encouraging because you got a second try.” (P2). Some participants
(6/19) found augmented success easy to control, as one participant mentioned that the
condition felt less patronizing than the rest. Catching a fish made some participants (7/19)
feel in control of the fisherman reeling in the fish. Not being able to decide when to trigger
the PAMs in the three conditions caused confusion for some participants (5/19). Not being
able to trigger the last action causing the fish to escape frustrated a few participants (4/19).
Losing control caused a few participants (2/19) to feel frustration. P11 felt they had no
control despite having good calibration.

4. Discussion

In this study, three PAMs (augmented success, mitigated failure, and input override)
were implemented in an online MI-BCI to evaluate their effects on perceived control and
frustration. The help from PAMs was perceived differently, but generally, input override
frustrated participants the most since they wanted to perform the tasks by themselves,
or they blamed themselves for not succeeding since they knew they were unable to trigger
the BCI when they received help despite its positive outcome. Moreover, in the mitigated
failure condition, a similar tendency in frustration ratings was seen since the participants
were aware when they were unable to trigger the BCI, although neutral feedback was
provided and that could have caused the participants to blame themselves. Both PAMs
reduced the participants perceived control. The augmented success did not increase
frustration or reduce perceived control. It should be noted that the participants were
explicitly informed about the PAMs before they tried the conditions, so it is possible that
the PAMs could be perceived differently by naive players.

Participants with lower BCI control generally rated their perceived control higher in
the PAM conditions with respect to the normal condition without PAM and vice versa
for participants with better BCI control. The lower ratings of perceived control for the
participants with better BCI performance could be partly explained by the fact that their BCI
performance could be slightly impeded in the PAM conditions. However, the participants
were kept unaware of their actual BCI performance, so they could not be sure about the
potential reduction of their BCI performance in the PAM conditions. They only had their
own experience to judge from. Perceived control negatively correlated with frustration in
all conditions, but with a weaker correlation for the input override PAM, which frustrated
the participants the most. The negative correlation between perceived control and frustra-
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tion is in agreement with our previous findings [34,35]. The findings regarding positive
feedback as a predictor of perceived control and frustration agree with a similar study
using online MI-BCI methodology with fabricated input [35]. Surrogate BCI studies have
also reported that higher levels of positive feedback increase perceived control and reduce
frustration [34,36,37]. Perceived control was rated differently in the PAM conditions for
participants with the lowest and highest BCI performance. A similar finding was reported
for BCI control with biased feedback, where users with poor BCI performances benefited
from biased feedback and users with good BCI performances were impeded by this [53].
It should be noted that in the current study the BCI performance was fairly low with few
participants achieving BCI performances higher than 80%. Thus, the entire spectrum of
the BCI performance has not been covered sufficiently and, hence, it is unknown if similar
ratings of perceived control in PAM conditions are applicable for BCI performances higher
than 80%. The negative correlation between perceived control and frustration in all condi-
tions was expected since it was shown that perceived control and frustration are inversely
correlated in both able-bodied users and people with a stroke [34,35]. However, in the input
override condition, a weaker negative correlation was found. This could be due to the fact
that explicit help overruled the actual control and, hence, reduced the perceived control and
increased frustration, which was also indicated by several participants in the qualitative
analysis. Input override is similar to positive fabricated input, which has previously been
shown to lead to a correlation between perceived control and frustration [35], but the
difference in the current study is that input override is not concealed in the game, and the
participants were informed about the input override PAM prior to the condition. Thus,
it should be considered if input override should be concealed instead of being explicitly
articulated in the interaction, which may reduce the frustration.

4.1. Methodological Considerations

As outlined, the BCI performance in this study was modest and did not cover the
higher end of the spectrum. This does not necessarily mean that the participants were poor
BCI performers but the design of the interaction with only a two-second input window
might have been too challenging. The participants only had two seconds to produce MI,
contrary to our previous study, which allowed for MI during a five-second window, which
yielded a better BCI performance with recognition rates exceeding 90%. The BCI setup,
hardware, and processing were identical to our previous study [35]. In hindsight, two
seconds may be too little time to perform MI (or to perform more than one attempt during
an input window), especially when the participants had to produce MI exceeding a specific
threshold for 0.5 consecutive seconds. In future studies, we would recommend increasing
the duration of the input window up to five seconds. This would increase the likelihood
of a false positive detection being counted as a true positive since a longer input window
means that more false positive detections can occur [12]. This risk, however, could be
reduced by setting a higher threshold that has to be exceeded for a given period of time.
The threshold should be set such that the number of false positive detections is minimized
but that it is still possible for the user to activate the BCI. In some applications/interactions,
it could be desirable to set the threshold such that either more or fewer true and false
positives are accepted. In applications requiring higher thresholds, i.e., a lower number
of true and false positives, PAMs may be more useful since there is more room to help
the user on the contrary to applications with lower thresholds, where a higher number
of true and false positives lead to many successful trials potentially making the PAMs
redundant. Lastly, the BCI performance can be enhanced using other signal processing and
classification methods or training the user in performing MI.

In the current study, healthy users participated, but the intended use of a gamified
MI-BCI system is for stroke rehabilitation. The findings in the current study cannot be
directly transferred to a population of stroke patients, which, besides motor impairments,
may have cognitive impairments and different levels of technological prerequisites. Stroke
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patients are generally above 60 years of age, while the participants in the current study
consisted of able-bodied primarily in their twenties.

4.2. Implications

In this study, we showed that it was possible to integrate different PAMs in a BCI
paradigm that are usable and meaningful for stroke rehabilitation. The PAMs created
different reactions from the users, which could be useful for designing engaging games.
The findings though suggest that the use of explicit input overrides should be considered
carefully to avoid frustration, but it may still be useful to use it to create engaging interac-
tions for the user and stroke patients may perceive help differently than the able-bodied
participants in this study. Augmented success can be used to highlight the successes of
the users, which could strengthen motivation. By using multiple PAMs, different types of
games with various designs can be created, which could support the rehabilitation efforts
to get the patient to train more.

Moreover, PAMs could potentially be used in training sessions to learn to perform MI.
For this application though, it is expected that augmented success and mitigated failure
would be the best choices since input override will provide inaccurate feedback to the user
while augmented success could reinforce the learning and mitigated failure would not
discourage users.

4.3. Future Perspectives

In future studies where the entire performance spectra need to be covered in systematic
ways, researchers could consider using surrogate BCIs that share the same characteristics
as an online MI-BCI but with other more reliable input methods, such as a concealed eye-
tracker (an EEG cap can be mounted and it can be conveyed to the users that blink, as picked
up by the BCI) [34,35]. In this way, there is access to the ground truth and performance can
be artificially controlled, such that users experience different levels of control that can be
similar across the study population. As outlined previously, stroke patients differ from the
participants included in the current study, and it is important to learn how stroke patients
react to different PAMs, so they can be used in the best way for engaging interactions in
rehabilitation. Another aspect that should be tested, is how users react to PAMs when they
attend multiple training sessions. It is expected that the BCI performance could improve as
a result of training and familiarization with the BCI system and interaction. In the current
work, PAMs were rated differently for better-performing users compared to users with
lower BCI performance. Lastly, the type of interaction should be considered if the feedback
should be realistic, e.g., using a humanoid hand or if the feedback can be more abstract [48].
The former is shown to improve the ownership and perceived control over more abstract
feedback, but the latter could result in more engaging or fun interactions by providing the
designers of rehabilitation games with more artistic freedom.

5. Conclusions

This study showed that PAMs could be integrated into an online BCI based on MI,
and the different PAMs could assist the participants. The amount of combined positive
feedback received from regular and PAM-enhanced inputs could explain the perceived
control and frustration of participants. The different PAMs can be used in a more varied and
richer way to aid users with poor BCI performance beyond adding simple extra positive
sham feedback. The condition that explicitly depicted input override frustrated participants
the most, but it is clear that people have different preferences in how they can be helped.
Within the different types of PAMs, game developers can exercise tremendous artistic
freedom to create engaging interactions for BCI training that either directly manipulate the
outcomes of a single action or its effect in a bigger task context.
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