
Aalborg Universitet

Predicting Fracture Propensity in Amorphous Alumina from Its Static Structure Using
Machine Learning

Du, Tao; Liu, Han; Tang, Longwen; Sørensen, Søren Strandskov; Bauchy, Mathieu;
Smedskjær, Morten Mattrup
Published in:
ACS Nano

DOI (link to publication from Publisher):
10.1021/acsnano.1c05619

Publication date:
2021

Document Version
Accepted author manuscript, peer reviewed version

Link to publication from Aalborg University

Citation for published version (APA):
Du, T., Liu, H., Tang, L., Sørensen, S. S., Bauchy, M., & Smedskjær, M. M. (2021). Predicting Fracture
Propensity in Amorphous Alumina from Its Static Structure Using Machine Learning. ACS Nano, 15(11), 17705-
17716. https://doi.org/10.1021/acsnano.1c05619

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            - Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            - You may not further distribute the material or use it for any profit-making activity or commercial gain
            - You may freely distribute the URL identifying the publication in the public portal -
Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

https://doi.org/10.1021/acsnano.1c05619
https://vbn.aau.dk/en/publications/70e0b980-aea2-4b14-b12f-c42631aa6a25
https://doi.org/10.1021/acsnano.1c05619


Downloaded from vbn.aau.dk on: July 04, 2025



1 

Predicting Fracture Propensity in Amorphous Alumina from Its Static 
Structure Using Machine Learning 

Tao Du1, Han Liu2, Longwen Tang2, Søren S. Sørensen1, Mathieu Bauchy2,*, Morten M. 
Smedskjaer1,* 
1 Department of Chemistry and Bioscience, Aalborg University, Aalborg 9220, Denmark 
2 Physics of AmoRphous and Inorganic Solids Laboratory (PARISlab), Department of Civil and 
Environmental Engineering, University of California, Los Angeles, CA 90095, USA 
* Corresponding authors. email: bauchy@ucla.edu (M.B.), mos@bio.aau.dk (M.M.S.)

Abstract 
Thin films of amorphous alumina (a-Al2O3) have recently been found to deform permanently up to 
100% elongation without fracture at room temperature. If the underlying ductile deformation 
mechanism can be understood at the nanoscale and exploited in bulk samples, it could help to 
facilitate the design of damage-tolerant glassy materials–the holy grail within glass science. Here, 
based on atomistic simulations and classification-based machine learning, we reveal that the 
propensity of a-Al2O3 to exhibit nanoscale ductility is encoded in its static (non-strained) structure. 
By considering the fracture response of a series of a-Al2O3 systems quenched under varying pressure, 
we demonstrate that the degree of nanoductility is correlated with the number of bond switching 
events, specifically the fraction of five- and six-fold coordinated Al atoms, which are able to 
decrease their coordination number under stress. In turn, we find that the tendency for bond 
switching can be predicted based on a non-intuitive structural descriptor calculated based on the 
static structure, namely, the recently developed “softness” metric as determined from machine 
learning. Importantly, the softness metric is here trained from the spontaneous dynamics of the 
system (i.e., under zero strain) but, interestingly, is able to readily predict the fracture behavior of 
the glass (i.e., under strain). That is, lower softness facilitates Al bond switching and the local 
accumulation of high-softness regions leads to rapid crack propagation. These results are helpful 
for designing glass formulations with improved resistance to fracture. 
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Oxide glasses find a range of applications, from window panels and touchscreen displays to optical 
fibers for internet communication and vaccine vials for fighting the COVID-19 pandemic. This is 
due to their desirable properties such as transparency, formability, thermal and chemical durability, 
as well as tailorable composition without stoichiometric requirements. However, oxide glasses are 
usually considered brittle, as they fracture catastrophically without plastic deformation at the 
macroscale, greatly hindering many applications.1–3 It is therefore essential to gain a deeper 
understanding of the deformation and fracture mechanisms of this material family.4 
 
In general, it is possible to induce brittle to ductile transitions in glasses and amorphous materials 
by tailoring their nanostructure through composition modification,5–7 thermal treatments,8,9 
densification,10 etc. In crystalline materials, fracture is affected by the competition between 
dislocations and bond breaking, with plasticity typically being initiated at defects.5 However, the 
origin of ductility remains poorly understood in non-crystalline materials, since there are no well-
defined defects in such materials due to the lack of long-range ordered structure. Even when the 
positions of all atoms in the static structure of a glass are fully known, it remains very challenging 
to identify the soft regions that are vulnerable to rearrangements.11,12 Several models have been 
proposed to account for the plastic properties of glasses, including elastoplastic,13 soft glassy 
rheology,14 and shear transformation zone15,16 models. In metallic glasses, ductility is found to be 
related to the rearrangements of local structure, known as shear transformation zones.17 In contrast, 
the brittle nature of oxide glasses has been attributed to the lack of such regions of plastic 
deformation. Although these theories have proposed the existence of defects in the glass structure, 
they are unfortunately phenomenological and fail to provide a precise definition of these defects, 
thus hindering their identification from first principles.18 Recently, several data-driven models have 
been proposed to forecast the propensity of particles or atoms to rearrange.19–22 However, due to the 
structural complexity of amorphous materials, the correlations between the structure and fracture 
mechanism in oxide glasses remain unknown. 
 
To predict the tendency for crack propagation in oxide glasses based on their initial structure, it is 
necessary to first understand the correlation between structure and local atomic dynamics. Some 
structural descriptors such as local density, free volume, or bond orientational order can be 
correlated with flow defects, but are insufficient for fully predicting glass fracture.18 As a promising 
alternative path, advances within machine learning have made it possible to predict non-intuitive 
structural descriptors using algorithms such as support vector machine (SVM),19 graph neural 
network,23 and convolutional neural network.20 Among these, the non-intuitive structural metric 
termed “softness” derived from SVM is found to be strongly correlated with the dynamics of 
specific atoms only based on their local structural environments. Note that although the order 
parameters used to construct the softness metric are simple two- or three-body order parameter terms, 
we refer to it as non-intuitive as it is calculated from the hyperplane constructed by the SVM 
classifier in the high dimensional space formed by all the order parameters. Generally, the atoms 
with higher softness are more susceptible to rearrange, or equivalently, to be regarded as flow 
defects. The softness descriptor has been successfully adopted in understanding the dynamical 
heterogeneities at the glass transition,22 creep dynamics of gels,21 yielding behavior of disordered 
solids,24 dynamics of grain boundaries in polycrystals,25 thin film glass dynamics,26 and 
crystallization kinetics at the solid-liquid interface.27 Here, inspired by this approach, we explore 
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whether the fracture behavior of amorphous oxides (which is governed by the local propensity of 
atoms to rearrange) is encoded in their static structure, and whether the spontaneous dynamics 
(driven by temperature) has sufficient information encoded to predict the stress-driven dynamics 
during fracture. 
 
By isolating nanoscale features of the glass structure that control the dynamics and mechanics of 
the macroscopic material, the era of nano-engineering of glasses could be unlocked, as inspired by 
the Materials Genome Initiative28 – in strong constrast to the traditional Edisonian trial-and-error 
approach for exploring composition-property relations. As an example, understanding the behavior 
of glasses at the nanoscale has been revealed to facilitate the fabrication of glasses with enhanced 
plastic deformation.29,30 Two other prominent examples include the fracture behaviors of amorphous 
alumina (a-Al2O3) and glassy silica at the nanoscale, which have been intensively studied. For silica, 
a brittle-to-ductile transition can be achieved through pressure quenching,10 reducing the sample 
size to the nanoscale,31 consolidating glassy nanoparticles,32 or exposure to an electron beam.33 For 
a-Al2O3, depending on the loading conditions, some studies indicate plastic deformation at room 
temperature,34–37 while others report a-Al2O3 to behave fully brittle.38–40 Recently, pronounced 
plasticity in flaw-free thin films of a-Al2O3 at high strain rate has been attributed to a viscous creep 
mechanism, which is associated with Al bond switching events, i.e., decreasing or increasing 
coordination number and swapping of oxygen neighbors.37 Such bond switching generates localized 
strain events, which accumulate into macroscopic flow. It is proposed that the bond switching 
activity leading to mechanical relaxation is more likely to occur in nanoscale alumina than in silica, 
partly due to the more compact structure of a-Al2O3.37 Although the nanoscale plasticity in a-Al2O3 

has been ascribed to a viscous creep mechanism, the structural drivers for bond switching have not 
yet been revealed. This seriously limits our ability to exploit this mechanism of plasticity 
enhancement in bulk oxide glasses. That such exploitation at a larger scale is indeed possible has 
been highlighted in our recent study, where we reported a record-high fracture toughness (1.4 MPa 
m0.5) in a bulk oxide glass with high propensity for bond switching.41 As such, an improved 
understanding of deformation and fracture mechanisms of glasses at the nanoscale is needed to 
improve their mechanical performance at the macroscale. 
 
In this study, we investigate the structural origin of the ductile deformation behavior observed in  a-
Al2O3. We do so in different pressure-quenched samples to vary the density, atomic structure, and 
thus propensity for bond switching.37,41 To obtain atomic scale information about the fracture 
mechanism, we use molecular dynamics (MD) simulations to establish our conclusions since in situ 
mapping of atomic rearrangements during fracture are still out of reach experimentally. The 
densified a-Al2O3 samples are then subjected to uniaxial tension and the fracture response is 
compared with bond switching analyses as well as the softness metric determined using SVM. We 
show that the degree of nanoductility in densified a-Al2O3 is related to the decrease in the 
coordination number of five- and six-fold coordinated Al atoms, with the fraction of these units 
increasing with a decrease in the average softness of Al atoms. Specifically, lower softness facilitates 
Al bond switching and the local accumulation of high-softness regions leads to rapid crack 
propagation. 
 
Results and discussion 
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Mechanical response of densified a-Al2O3 

To obtain the datasets needed as input for machine learning, we first simulate the fracture behavior 
of densified a-Al2O3 samples under different loading conditions, since these conditions influence 
the simulated fracture response for a-Al2O3.37 The stress-strain curves of a-Al2O3 under the first 
loading condition (plane stress) is shown in Fig. S1. Consistent with Ref. 37, we find that a-Al2O3 

exhibits a fairly ductile response under this loading condition. The total strain can reach values up 
to 50% without fracture for all the pressures used to pre-densify a-Al2O3. However, this makes it 
difficult to identify the differences in the ability of the densified a-Al2O3 samples to undergo plastic 
deformation. Therefore, we apply the second loading condition (plane strain), as shown in the inset 
of Fig. 1A. The mechanical response is significantly influenced by the loading condition, with all 
the samples exhibiting a fairly brittle response, as manifested by a sudden drop in the stress-strain 
curve upon rapid crack propagation (see Fig. 1A). We note that after reaching the first maximum 
stress, all the a-Al2O3 samples exhibit nearly constant stress with an increase in the strain before 
failure (i.e., yielding regime) due to the existence of plastic deformation. Importantly, with an 
increase in the pressure during quenching, the yielding regime becomes more pronounced, showing 
that the more densified a-Al2O3 samples feature improved nanoductility (see Fig. 1B). Atomic 
snapshots of the fracture evolutions of a-Al2O3 samples densified at 0 and 4 GPa are shown in Fig. 
S2. We note that densification-induced nanoductility has also been observed in amorphous silica.10  
 
We then calculate the cumulative non-affine displacement (D) of each Al atom (see Methods section) 
to understand the carriers of plasticity during fracture under the second loading condition (plane 
strain). Since D represents the irreversible structural rearrangements of each atom, it has been 
successfully applied to identify the activation of STZs of various amorphous systems during 
fracture.42 Figure 1C illustrates how the non-affine displacement captures the rearrangement of the 
particles by isolating the non-affine motion associated with local rearrangements from the best-fit 
affine deformation of its neighborhood. As shown in Fig. 1D, we observe that with an increase in 
pressure during quenching, the Al atoms tend to have larger values of D, indicating an increasing 
extent of structural reorganization during the fracture process. Since the non-affine displacement 
reflects the plasticity events of the atoms under stress,42 densification of a-Al2O3 improves the 
nanoductility by facilitating non-affine reorganizations of the Al atoms. This is reflected through 
the linear growth of plastic energy with the cumulative non-affine displacement D of Al atoms as 
shown in Fig. S3.  
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Fig. 1 (A) Stress-strain curves of densified a-Al2O3 under the second loading condition (plane 
strain); (B) Atomic snapshot of a-Al2O3 at 𝜀𝜀 = 0.35. Al and O atoms are represented by white 
and red spheres, respectively; (C) Schematic showing the non-affine displacement induced by 
applying a shear deformation γ. The non-affine displacement of the central atom in green at strain 
γ is captured by the best-fit affine transformation of the neighboring atoms with reference to the 
initial configuration; (D) Distribution of the cumulative non-affine displacement D of the Al 
atoms during the tensile process for the different densified a-Al2O3 samples. 

 
Stress-induced bond switching events 
In the following, we analyze the bond switching activities as a function of strain to correlate the 
non-affine reorganizations with the bonding state of Al atoms. The bond switching activities are 
defined as the changes in the coordination environment of Al atom, i.e., whether the coordination 
number (CN) decreases or increases or if a neighbor oxygen is swapped by another one compared 
to the non-strained configuration. As shown in Figs. 2A-C, the extent of all three bond switching 
events increases with an increase in strain. This indicates that structural reorganizations can be 
achieved though bond switching, which dissipates the strain energy during fracture.41 When 
comparing the extent of bond switching events under the two different loading conditions, we find 
the main difference to be the fraction of swapped CN at the final strain of 0.5 (see results for the 
first and second loading condition in Fig. S4C and Fig. 2C, respectively). That is, the final swapped 
CN fraction is in the range of 40-55% and 20-35% for first and second loading condition, 
respectively. We also observe that the pressure dependence of the swapped CN fraction in the two 
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loading conditions is inverse, indicating that the swapped CN is related to the loading conditions. 
This is due to the fact that all the bond switching events facilitate nanoductility by allowing the 
structure to reorganize instead of allowing crack propagation. For the first loading condition (plane 
stress), all samples exhibit the same nanoductility by having almost the same number of bond 
switching events (around 90% when considering all the bond switching events). When the sample 
is quenched at a higher pressure, the over-coordinated Al atoms are more prone to decrease their 
CN upon deformation. Consequently, samples quenched at high pressures have a lower fraction of 
the swapped CN events under the first loading condition.  
 
Since the fraction of decreased CN is enhanced by densification for both loading conditions (see 
Figs. 2A and S4A), we infer that the pressure-induced plasticity can be associated with the activities 
related to decreased CN. The accumulated rise in the decreased CN activities in the densified a-
Al2O3 implies that more potential energy has been dissipated through the breakage of Al-O bonds, 
which allows for less stress accumulation in the glass during tensile loading and thus improves 
nanoductility. In the remaining part of this paper, we will focus on understanding the structural 
origin of the densification-induced nanoductility in a-Al2O3 for the second loading condition (plane 
strain), for which the largest differences in fracture response are observed. The atomic snapshots of 
Al atoms undergoing three bond switching activities at ɛ = 0.2 are shown in Fig. 2D. For the a-
Al2O3 sample quenched at 0 GPa, we observe that a crack has already propagated at ɛ = 0.2. By 
analyzing the bond switching activities, we find that Al atoms undergoing decreased CN and 
swapped CN are mainly located in the vicinity of the crack, highlighting the spatial distribution of 
bond switching activities. 
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Fig. 2 Fraction of Al atoms subjected to the bond switching activities under the second loading 
condition. (A) Decreased CN, (B) Increased CN, and (C) Swapped CN relative to the 
coordination environment in the non-strained configuration. (D) Atomic snapshots of bond 
switching activities in a-Al2O3 of 0 GPa upon tension. Top: Example of a decreased CN of Al (in 
yellow): The CN of Al is five at ɛ = 0, and decreases to four at ɛ = 0.2. Middle: Example of an 
increased CN of Al (in yellow): The CN of Al increases from four to five when ɛ increases from 
0 to 0.2. Bottom: Example of a swapped CN of Al (in yellow) first connected to four O atoms 
(number 2, 3, 4 and 5) at ɛ = 0, but as ɛ increases to 0.2, the CN of Al remains four while 
connecting to a new O atom number 1. 

 
The initial configurations of the a-Al2O3 samples are affected by the applied pressure, which in turn 
impacts the fracture response. To investigate this, we first compute the CN of Al atoms of the non-
strained structure, and classify them into decreased CN, increased CN, and swapped CN based on 
the bond switching activities at a strain of 50%. We first observe that the CN states of Al atoms are 
significantly influenced by the applied pressure. The fractions of 5-fold Al atoms (Al5) and 6-fold 
Al atoms (Al6) increase at the expense of 4-fold Al atoms (Al4) with an increase in the quenching 
pressure (Fig. S5). Notably, we observe that the initial state of Al atoms significantly influences the 
bond switching activities during fracture. Specifically, Al6 species exhibit the largest degree of 
decreased CN, while Al4 species exhibit the largest degree of increased or swapped CN upon 
fracture (Fig. 3A). This can be understood from the fact that Al6 units are formed due to the 
application of pressure during cooling, but remain stuck in their overcoordinated state during the 
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final zero pressure relaxation. At this point, these over-coordinated units are in a metastable 
equilibrium state. The following application of a tensile stress then allows them to quickly relax 
toward the more stable 5- or 4-fold coordinated states while dissipating energy within the structure. 
Based on the bond switching results under two loading conditions (Figs. 2A and S4), the pressure-
induced nanoductility is mainly attributed to the decreased CN of Al5 and Al6 atoms, as the fractions 
of Al6 and Al5 species that decrease their CN increase with increasing pressure (Fig. 3A).  
 

 
Fig. 3 (A) Fractions of different Al species subjected to bond switching activities upon fracture 
in the five different densified samples. Here, DC, IC, and SC represent decreased CN, increased 
CN, and swapped CN, respectively. (B) Spatial distribution of the normalized fraction of Al atoms 
with decreased CN, increased CN, and swapped CN. The calculations are based on a-Al2O3 
formed under 0 GPa at ɛ = 0.5. (C,D,E) Distribution of the local stress undergone by (C) Al4, (D) 
Al5, and (E) Al6 atoms under different pressures. The distributions of these different Al species 
are normalized by the total number of Al atoms. 

 
Next, we analyze the spatial distribution of various bond switching events (decreased, increased, 
and swapped CN for Al atoms) in a-Al2O3. As shown in Fig. 3B, bond switching events in the sample 

quenched at 0 GPa mainly occur near the fracture surface, with only a few structural arrangements 
occurring in the bulk glass. Considering the spatial distributions shown in Fig. S6 for the other 
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samples, we find that the distributions of decreased CN (DC) and swapped CN (SC) are influenced 
by the applied quenching pressure. Specifically, DC and SC events tend to concentrate near the 
fracture surface and more DC and SC events occur in the bulk glass with an increase in pressure. 
This allows for local structural arrangements to dissipate stress during the fracture process. However, 
the distribution of increased CN (IC) events shows a uniform distribution in the bulk glass despite 
the change in pressure. Overall, these results suggest densified a-Al2O3 facilitates more structural 
rearrangements to increase its nanoductility.  
 
To describe the formation mechanism of the various types of Al coordination states, we calculate 
the local stress experienced by the Al atoms in the different samples. As shown in Fig. 3C, we 
observe that these internal stresses are influenced by the applied pressure during quenching. With 
an increase in pressure, the stress experienced by Al4 and Al5 atoms increases, which is a 
consequence of their decrease in Voronoi volume under higher pressure. However, for Al6 atoms, 
there is no significant pressure-induced shift in the stress distribution. Consistent with the results 
from Ref. 43, we thus find that the stress on Al increases with CN. This indicates that the maximum 
stress experienced by each Al atom is related to their CN and, as the pressure increases, Al atoms 
will gradually increase their CN in order to balance the external pressure during quenching, 
eventually forcing these Al atoms to remain in their overcoordinated state even after the 0 GPa 
relaxation. When the system is under plastic deformation, the CN of Al atoms will change in order 
to balance the external stress. The relationship between CN and stress of Al atoms indicates that Al 
atoms undergoes DC events, which effectively release the atomic stress. Furthermore, as 7-fold Al 
atoms are not observed, we deduce that an increase in pressure can increase the fraction of Al6 
without influencing the stress distribution. Although the pressure-induced formation of Al6 species 
can increase the extent of decreasing CN events, the most important source of DC events is from 
Al5 species. As shown in Fig. S7, the stress on Al5 atoms in the 0 GPa sample undergoing DC events 
is in the same range as that of the non-DC events (IC, SC, and unchanged CN). Hence, the bond 
switching behavior of Al5 atoms cannot be directly related to the stress analysis. 
 
Atom mobility classification by machine learning 
As described above, the bond switching behavior of Al atoms (especially Al5 atoms) cannot be 
directly related to intuitive structural descriptors of the nonstrained glass structure, such as 
coordination numbers, atomic stress, position, etc. We therefore adopt the machine learning-based 
softness metric to investigate whether the mobility of Al atoms and thus their ability to promote 
plasticity could be encoded in a non-intuitive manner in the spontaneous dynamics of the initial (i.e., 
unstrained) amorphous structure. We also seek to explore how the mobility of Al atoms is related to 
the bond switching events under stress. To this end, we first build the SVM hyperplane (Fig. 4A) 
based on the initial structure of all the a-Al2O3 configurations before any load is applied (see 
Methods section for details). As expected, the classification accuracy greatly depends on the 
structural input used for training. In detail, when solely relying on radial functions, the classification 
accuracy can reach 79% (see Fig. S8), with the first peak of the Al-O pair having the largest 
contribution to the classification as seen from Fig. S9. Notably, we find that this classifier can 
properly classify the Al atoms as mobile or immobile with an accuracy of 84% and 83% for the 
training and test datasets, respectively, with the structural input features of radial and angular 
functions. We also attempted to include the atomic Voronoi volume as an input feature. However, 
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when trained solely on the Voronoi volume, the classifier yields an accuracy of 56%, which is 
considerably lower than using the structural functions. We also notice that the accuracy of the 
classifier does not increase when including both Voronoi volume and structural functions as input, 
indicating that the latter already includes the knowledge of Voronoi volume (see Fig. S8). We find 
that the correlation between softness and Voronoi volume is related to the CN of Al atoms. That is, 
the Voronoi volume decreases with an increase in the CN of the Al atoms. For Al4 and Al5 atoms, 
the Al atoms with larger Voronoi volumes tend to have lower softness (see Fig. S10). This may seem 
counterintuitive, as larger available free volume should be associated with larger propensity to 
rearrange and thus higher softness. However, we ascribe this to how the Al4 and Al5 atoms with 
large Voronoi volumes are in metastable equilibrium state of Al4-to-Al5 and Al5-to-Al6 transitions, 
respectively, that are prone to rearrange over time. When the amorphous structures are under tension 
(e.g., 𝜀𝜀 = 0.1), the softness increases with an increase in the Voronoi volume, but the correlation 
between softness and Voronoi volume remains the same as in the nonstrained state. This suggests 
that even though softness is largely dependent on the Voronoi volume, the other structural features 
are more influential. Moreover, we cannot find a strong correlation between softness and CN (see 
Fig. S11). 
 
Then, we calculate the softness of each Al atom based on the structural descriptors of Al generated 
from the configurations at every strain step. This in done in order to investigate the relationship 
between softness and the fracture process of a-Al2O3. We first evaluate how the average softness 
<S> of the system (i.e., averaged over all the Al atoms) evolves during fracture (Fig. 4B). Overall, 
we find that <S> exhibits an increase with the applied strain to a maximum value followed by a drop 
for all the a-Al2O3 samples. Compared with the stress-strain curves in Fig. 1A, we observe that the 
strain at the maximum <S> agrees well with the strain for which stress starts to decrease rapidly, 
i.e., the onset of crack propagation. Furthermore, we note that the slope of the softness vs. strain 
curve up to the maximum <S> varies with the strain value, which can be correlated to the mechanical 
response. Specifically, as shown in Fig. S12, the slopes are all in the range of 18-26, but can be 
roughly divided into three different regions depending on the strain. In the first region, the slope is 
relatively constant or slightly increasing with strain in the elastic region (ε < 0.07). In the second 
region, the slope rapidly decreases with strain until the structure fully enters the yield region (0.07 
< ε < 0.09), which reflects the initiation of plastic regions. At higher strain, the slope increases with 
some fluctuations, corresponding to the plastic deformation and crack formation in the structure. 
Based on these results, softness can also capture the early-stage mechanical response under 
deformation. This indicates that the dynamics of rearrangement at the nanoscale can be captured by 
the atom-level softness metric (see Fig. S13). We also note that the decrease of <S> continues after 
full fracture, which can be related to the relaxation of the glass, e.g., an increasing amount of IC 
events, even following fracture (see Fig. 2B). 
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Fig. 4 (A) Illustration of the classifier model used to distinguish mobile Al atoms (in yellow) and 
immobile Al atoms (in green) through a SVM hyperplane (blue line). The input features are 
constructed by a combination of radial and angular structure functions (see Eqs. 4 and 5) to 
describe the local environment of each Al atom. (B) Average softness of Al atoms as a function 
of the applied strain in the different densified a-Al2O3 samples. (C) Probability of Al5 to decrease 
its CN during fracture as a function of the average softness <S> in the static (non-strained) a-
Al2O3 samples. 

 
Interestingly, we also observe that the quenching pressure influences the evolution of <S> with 
strain. For the non-strained configurations, <S> exhibits a decrease with increasing pressure as the 
more compact network will give rise to atoms with lower mobility (i.e., lower S). The distribution 
of S in the non-strained structures also suggest an increasing amount of Al atoms with lower S 
induced by densification (see Fig. S14A). When strain is applied, <S> grows monotonically with 
strain until the maximum value, indicating that upon tensile deformation, the atoms gradually 
become “softer” and more prone to reorganization. In contrast, the maximum <S> during fracture 
increases with increasing pressure, indicating that the originally “hard” atoms (i.e., less mobile) can 
absorb more energy and become activated into “soft” atoms with high mobility. However, when 
“soft” atoms absorb energy, they are more likely to transform into irreversible defects, e.g., the 
undercoordinated Al atoms, which exhibit a long tail towards high softness in all the samples upon 
fracture (see Fig. S14B). We have also observed that the initially “harder” atoms are more likely to 
transform into “soft” atoms upon deformation (see Fig. S15), indicating that the less mobile atoms 
are the reservoir of nanoductility. This is consistent with recent work showing that atoms with high 
self-adaptivity (and thus apparently low softness) under stress can help to suppress crack 
formation.44  
 
Linking atom dynamics to bond switching and fracture 
To further establish the relationship between the initial equilibrium, non-strained structure and the 
long-term far-from-equilibrium fracture response, we combine the concepts of bond switching and 
softness to explore the link between the dynamics of the atoms and their propensity to undergo bond 
switching. Based on the results of Fig. 2A, the nanoductility of a-Al2O3 is closely related to the 
events of decreasing CN of Al5 atoms. As such, we have calculated the probability of Al5 to decrease 
its CN (PR) during the entire fracture process. This calculation is achieved by grouping the Al5 atoms 
with similar softness and extracting the fraction of DC events at 𝜀𝜀 = 0.5. We do so to explore the 
relationship between PR and the softness of the non-strained configurations. As shown in Fig. 4C, 
we find that PR exhibits an approximate exponential dependence on <S>, and with a decrease in 
<S>, the Al5 atoms tend to decrease their CN rather than other bond switching behaviors. This 
correlation is significant as it highlights that the far-from-equilibrium response of the glass upon 
fracture is largely encoded in its static, unloaded structure. The exponential dependence of PR on 
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the softness metric S can be reminiscent of an activated procecess as suggested elsewhere,21 with 
softness acting as an effective activation energy for Al5 atoms to decrease their CN. The 
transformation from “hard” to “soft” atoms occurs continuously upon straining and is accompanied 
by the energy absorbing bond switching activities. Combined with the results in Fig. S15, we 
conclude that Al atoms with lower S will experience a larger softness increase after fracture, which 
agrees with the fact that the DC events are the most energy comsuming bond switching activities. 
This can also be understood from the fact that Al atoms with lower S are typically under higher 
atomic stress, while DC activity can effectively release the atomic stress based on the results shown 
in Fig. 3C. We also observe an increasing probability of Al5 to decrease CN in a-Al2O3 samples 
quenched at higher pressure, suggesting that this bond switching event of Al5 is determined by the 
softness of the whole system. Based on the results of Ref.21, the energy barrier of DC activity 
becomes lower with increasing quenching pressure. Interestingly, as <S> of the whole system 
decreases (for increasing quenching pressure), the dependence of PR of Al5 to decrease its CN on 
individual softness becomes less significant (Fig. 4C).  
 
Since the evolution of average softness can capture the crack propagation, we now investigate the 
linkage between the distribution of softness and the corresponding fracture states. To this end, we 
select two systems with widely different degree of nanoductility, namely the samples quenched at 0 
and 4 GPa, to investigate the evolution and the spatial distribution of softness during different 
fracture stages (non-strained state, just prior to fracture, and after fracture, respectively). As shown 
in Figs. 5A,B, we observe that a-Al2O3 quenched at 4 GPa has lower initial softness than the 0 GPa 
sample. Upon tension, the softness of each atom increases monotonically, and most of the atoms 
with high softness (red colored spheres) accumulate in a band when the system is about to fracture. 
The location of the band is found to be related to the origin of fracture, where the atoms exhibit 
large Voronoi volumes. The band width in a-Al2O3 quenched at 4 GPa is larger than that in 0 GPa 
sample, leading to a more rough fracture surface in a-Al2O3 quenched at 4 GPa upon fracture, as 
also reflected in more surface area created by fracture (see Fig. S16).  
 
For comparison, we also attempt to use Voronoi volume as an indicator of crack propagation. To 
this end, we track the evolution of softness and Voronoi volume of Al atoms during the loading 
process. We randomly select the Al atoms with different locations (away from the crack and in the 
crack) as shown in Fig. S17 and observe that softness features an increasing and then decreasing 
trend with strain for all the Al atoms (similarly to what is shown in Fig. 4B). However, the Voronoi 
volume does not systematically follow the same trend, indicating that the increase of softness is not 
only due to the formation of cavities. We have also investigated the clusters of high volume atoms, 
observing that the atom with a high atomic volume does not ensure a high softness (see Fig. S18). 
Although the high-volume atoms also agglomerate upon fracture, the locations of high-softness 
atoms are more concentrated on the crack initiation region, as also reflected by the formation of 
more clusters with smaller sizes upon fracture. These results suggest that the softness metric can be 
used to predict fracture propensity. That is, although the softness metric is trained based on the static 
structure prior to any applied stress, the spatial distribution of softness can capture the initiation as 
well as the propagation of a crack during fracture. 
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Fig. 5 (A,B) Atomic snapshots of a-Al2O3 during the fracture process, where the Al atoms are 
visualized colored according to their softness. Samples quenched at 0 GPa and 4 GPa are shown 
in (A) and (B), respectively. (C) The number and (D) maximum size of the high-softness clusters 
as a function of the applied strain in the different densified a-Al2O3 samples. The inset figures in 
(C) and (D) show the agglomeration and splitting, respectively, of the high-softness Al atoms. 

 
We further investigate the clustering behavior of high-softness Al atoms to understand the 
relationship between the location of high-softness Al atoms and growth of the crack during fracture. 
As shown in Fig. 5C, we observe that initially (at low strain) the high-softness atoms are uniformly 
distributed in the matrix regardless of the densification degree. This is based on the fact that the 
constant number of 648 high-softness Al atoms are distributed in around 120 clusters. Upon fracture, 
the number of high-softness clusters significantly decreases. The samples with a more nanoductile 
fracture response exhibit a decrease in the number of clusters at a relatively higher strain. Fig. 5D 
shows the maximum size of the high-softness clusters during the fracture process. The strain at 
which the maximum cluster size starts to increase corresponds to the drop in stress in the stress-
strain curves (Fig. 1A) after the crack starts to propagate. The maximum high-softness cluster size 
for all the systems is about 600 atoms, which is almost equal to the number of high-softness atoms, 
showing that most of the high-softness atoms agglomerate during fracture. As expected, the end of 
fracture is also captured by this quantity as a sudden drop of the maximum cluster size, as the cluster 
is split into two smaller clusters once the sample is fully fractured. 
 
Conclusions 
In this work, we have identified the origin of the nanoductility in densified a-Al2O3 samples by 
establishing the correlation between the initial static structure and dynamics captured by the so-
called “softness” metric, local bond switching events, and the long-term fracture behavior. We find 
that the origin of nanoductility can be attributed to the increased amount of Al5 and Al6 atoms in the 
densified samples that have high propensity to decrease their coordination number during fracture. 
Based on classification-based machine learning calculations, we reveal that the long-time dynamics 
of the atoms upon fracture are hidden in the initial static structure of a-Al2O3, before any load is 
applied. Although the machine learning model is trained based on the spontaneous dynamics, it 
properly captures the far-from-equilibrium dynamics upon loading. This approach thus allows us to 
predict the propensity for crack propagation in a realistic amorphous oxide based solely on the 
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machine-learned softness metric. In the present case, we show that almost all the Al6 and Al5 atoms 
with lower softness atoms tend to decrease their coordination number during fracture. Our results 
also suggest that the formation of high-mobility regions leads to the failure of the system. Based on 
these observations, we envision that machine learning can help to decode the hidden correlations 
between nanoscale structural features and mechanical properties in disordered materials, and 
consequently help to design tougher oxide glasses by rational design of the atomic structure. 
 
Methods 
Sample preparation 
In this study, we adopted the Large-scale Atomic/Molecular Massively Parallel Simulator 
(LAMMPS) software45 to perform MD simulations of a-Al2O3 with the classical potential of 
Matsui,46 which has been widely used in reproducing the structure and mechanical properties of 
various phases of Al2O3.37,47–49 The long range Coulombic interaction was calculated using the 
Particle-Particle-Mech (PPPM) summation with an accuracy of 10-5.50 The motion of atoms was 
described by the velocity-Verlet integration algorithm with a time step of 1 fs. A Nosé-Hoover 
thermostat and barostat were applied to control the temperature and pressure, respectively, when 
applicable. Periodic boundary conditions were applied in all directions. 
 
We generated the a-Al2O3 configurations through the process introduced by Gutiérrez et al.49 
Specifically, 1620 Al2O3 units (8100 atoms) were placed in an orthorhombic box at a density of 2.75 
g/cm3. Then the systems were melted in the NVT ensemble at 5000 K for 45 ps to ensure the loss of 
any memory of the initial structure. Afterwards the structure was cooled to 3000 K in 10 ps, and 
further equilibrated at 3000 K for 45 ps. The density of the system was changed to 3.175 g/cm3, and 
equilibrated for an additional 45 ps in the NVT ensemble. The next step was to cool the system down 
to 300 K in the NPT ensemble under different pressures (0, 1, 2, 3, and 4 GPa, respectively) over 
650 ps. The systems were then successively relaxed in the NVT and NPT ensembles at 300 K and 0 
pressure for another 35 ps. This process of cooling from high temperature also ensures that the 
samples quenched from different pressures are independent of each other, since the high temperature 
melting removes any memory of the initial structure. The utilized cooling and relaxation processes 
were adopted from Ref.37 and found to be long enough to reproduce the material properties of a-
Al2O3. The structure of a-Al2O3 quenched at 0 GPa after relaxation is shown in Fig. S19A. Although 
the glasses were eventually relaxed at zero pressure, the densification during quenching was 
permanent since the system remains frozen in its densified state once it reaches the glassy state. As 
shown in Fig. S19B, the applied pressure can effectively densify the a-Al2O3 structure, with a linear 
increase in density with pressure. 
 
Fracture simulations 
The deformation and fracture behavior of a-Al2O3 was analyzed by applying a uniaxial tensile 
deformation. We note that the fracture behavior of a-Al2O3 strongly depends on the loading 
conditions as mentioned in Ref.37. Here, we applied two tensile protocols to systematically 
investigate the effect of loading mode on fracture. Before the tensile simulations, the orthorhombic 
a-Al2O3 configurations were duplicated in the x-direction so that the loading was applied to the 
longer direction. The resulting structures (consisting of 16,200 atoms) were equilibrated at 300 K 
and zero pressure in the NPT ensemble for 100 ps before deformation.  
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The first loading condition was adopted from Ref. 37. Specifically, a constant strain rate of 5 × 1010 

s-1 was applied along the x-direction, while the barostat was used to keep the lateral directions at 
zero stress (i.e., “plane stress” conditions). During the tensile simulation, the system was maintained 
at 300 K. The duration of the tensile simulation was 1 ns, leading to a total strain of 50%. The stress-
strain curve was constructed based on the stress component in the x-direction and corresponding 
strain.  
 
The second loading condition was adopted from Ref. 42. In this loading mode, the system along the 
x-direction was deformed by small strain steps of 1%, while the sizes in lateral directions were fixed 
(i.e., “plane strain” conditions). At each step of deformation, the structure was subjected to an initial 
energy minimization and then equilibrated in the NVT ensemble at 300 K for 10 ps before sampling 
the stress. This procedure was iteratively repeated until the structure was fully fractured. 
 
Cumulative non-affine displacement D 
The cumulative non-affine displacement D of each Al atom upon loading was computed to 
investigate the irreversible structural rearrangements, which were responsible for the plasticity 
during the fracture process. D has previously been successfully applied in capturing the number and 
magnitude of the local plastic events occurring in the atomic structure during fracture processes.42 
This concept originates from the non-affine square displacement 𝐷𝐷𝑚𝑚𝑚𝑚𝑚𝑚

2 , which has been widely used 
in identifying the activation of STZs upon deformation.24,51 The quantity 𝐷𝐷𝑚𝑚𝑚𝑚𝑚𝑚

2  describes the degree 
of local reorganization of atoms by subtracting the displacement induced by the affine deformation 
of the simulation box. The degree of local reorganization of each atom in the strained configuration 
can be quantitatively measured by comparing with the non-strained configuration. However, since 
the configuration will experience significant changes once fractured, we instead used a cumulative 
non-affine displacement D, which accounts for the entire fracture process by properly considering 
the local ductile events.42 This quantity is calculated by summing up the non-affine displacements 
at each small strain step s: 

𝐷𝐷 =  ∑ �∆𝐷𝐷𝑠𝑠,𝑚𝑚𝑚𝑚𝑚𝑚
2𝑚𝑚

s=1                                (1) 

where ∆𝐷𝐷𝑠𝑠,𝑚𝑚𝑚𝑚𝑚𝑚
2  is the incremental non-affine square displacement with each increment of strain s 

and n is the total number of strain steps. The cut-off used for the calculation of 𝐷𝐷𝑠𝑠,𝑚𝑚𝑚𝑚𝑚𝑚
2  was set to 

4 Å, which covers the 1st and 2nd coordination shells of Al atoms. 
 
Local atomic stresses 
We calculated the local stress experienced by each Al atom by adopting the formalism of “stress per 
atom”.52 Note that, strictly speaking, stress is ill-defined for individual atoms and can only be 
meaningful when calculated for an ensemble of atoms. To overcome these difficulties, we here adopt 
the concept of “stress per atom” introduced by Egami,53 wherein the local atomic local stress tensor 

σ𝑚𝑚
𝛼𝛼𝛼𝛼 is defined by expressing the contribution of each atom i to the viral of the system, 

𝜎𝜎𝑚𝑚
𝛼𝛼𝛼𝛼𝑉𝑉𝑚𝑚 = ∑ 𝑟𝑟𝑚𝑚𝑖𝑖𝛼𝛼 ∙ 𝐹𝐹𝑚𝑚𝑖𝑖

𝛼𝛼
𝑖𝑖                            (2) 

where 𝑉𝑉𝑚𝑚 is the volume of atom i, 𝑟𝑟𝑚𝑚𝑖𝑖 and 𝐹𝐹𝑚𝑚𝑖𝑖 are the distance and interatomic force, respectively, of 
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atom j applied to atom i, and the indices 𝛼𝛼 and 𝛽𝛽 represent the projections of these vectors along the 
x, y, and z directions. The volume 𝑉𝑉𝑚𝑚  of each atom was calculated based on the Voronoi tessellation. 
The local hydrostatic stress undergone by each atom can be calculated by the trace of the stress 
tensor. By convention, a positive stress denotes a state of local tension, while a negative one refers 
to a state of compression. The presence of local atomic stress does not imply that the system is under 
any macroscopic stress, namely, some atoms are locally under compression whereas others are 
locally under tension and eventually mutually compensate each other so that the whole system can 
still remain under zero pressure. This formalism has previously been successfully adopted to 
amorphous materials.43,44 
 
Coordination number and bond switching analyses 
During the fracture process, plasticity is associated with the atomic arrangements that occur due to 
bond breaking and reformation. We have thus analyzed the changes in coordination number (CN) 
and bond switching activities as a function of the applied tensile strain. To analyze the CNs, we first 
calculated the partial pair distribution functions. The cut-off between Al and O were selected to be 
the distance at the minima after the first peak in the pair distribution function. To this end, partial 
pair distribution functions of Al-O and Al-Al are shown in Fig. S20. The atoms of Al and O are 
considered bonded if they are within the cut-off. The cut-off selected in this study was 2.25 Å for 
Al-O pairs, and the CN of Al was defined as the number O atoms within this cut-off.  
 
The bond switching analysis was carried out by comparing the CN and the identity of the 
neighboring atom of each individual atom with its initial non-strained structure. If the CN has 
decreased or increased, then the atoms were labelled as DC or IC, respectively. If both the CN and 
the neighboring atoms remain unchanged, then the atoms were labelled as UC. Otherwise, the atoms 
were counted as SC, indicating the unchanged CN with at least one different neighboring atom. A 
schematic illustration of these different bond switching events is shown in Fig. S21. Note that the 
time intervals (2 ps) or strain step (0.01) of adjacent frames to calculate bond switching was found 
to be large enough to allow for bond rotation and reconnection.31,37 
 
Machine learning classification 
Following the procedure in Ref. 22 to build the input features of the SVM model, we first analyzed 
the local static, unstrained structure of the system. The output of the SVM model is determined from 
the spontaneous rearrangements of the Al atoms under 300 K (in unstrained conditions). As such, 
the training dataset used to train the SVM model is solely based on the thermal vibrations of non-
strained structures at 300 K.  
 
In detail, the initially non-strained configurations were equilibrated in the NVT ensemble at 300 K 
for 200 ps, while the trajectory was recorded for rearrangement analysis. In order to build up the 
SVM model without any prior knowledge of deformation, the rearrangements of each Al atom were 
calculated by the phop metric proposed by Candelier et al.,56 which has been used extensively to 
identify rearrangements in amorphous materials.22,57 To calculate phop, we used a timescale tR = 6 ps, 
which was found to be commensurate with the time required for rearrangements. For an atom at a 
given time frame t, two time intervals A and B are defined as [t - tR/2, t] and [t, t + tR/2], respectively. 
Then phop of atom i at time t can be calculated as follows: 
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𝑝𝑝hop(𝑡𝑡) =  �⟨(𝑟𝑟𝑚𝑚 − ⟨𝑟𝑟𝑚𝑚⟩B)2⟩A⟨(𝑟𝑟𝑚𝑚 − ⟨𝑟𝑟𝑚𝑚⟩A)2⟩B              (3) 

where ⟨⟩A and ⟨⟩B are averages over the time intervals A and B, respectively. When an atom is caged, 
⟨𝑟𝑟𝑚𝑚⟩A will approximately be equal to ⟨𝑟𝑟𝑚𝑚⟩B, which will result in a phop value comparable to the scale 
of fluctuations within its cage. When phop exceeds a threshold value and exhibits a peak at a duration 
of time t, it represents that the particle has undergone a rearrangement. Here, we took the threshold 
value to be 0.2 Å2, which was found to be large enough for identifying the rearrangement of the Al 
atoms (see Fig. S22A). We find the same trend as in Ref. 22, i.e., the accuracy of identifying mobile 
atoms will saturate when the threshold value is large enough. For example, when increasing the 
threshold to 0.5 Å2, the accuracy can reach 0.85, but then the number of rearrangement events has 
decreased to around 700, which will negatively influence the generalization ability of the SVM 
model. After applying the threshold value of 0.2 Å2 to all the investigated a-Al2O3 samples, we 
accumulated almost 8000 rearrangement events. Since most of the inert atoms have a phop value 
below 0.05 (see Fig. S22B), as also mentioned in Ref. 22, the non-rearrangement events are defined 
as those with phop < 0.05. Meanwhile, we also randomly selected the same number (8000) of events 
without rearrangements.  
 
The inputs in the SVM models are the descriptors of local structures of selected atoms. As described 
in Ref. 19, we used the same radial and angular structure functions to describe the local structure. 

𝐺𝐺(𝑘𝑘; 𝜇𝜇) = ∑ 𝑒𝑒-(rik−𝜇𝜇)2/𝐿𝐿2
𝑚𝑚                       (4) 

Ψ(𝑘𝑘; 𝜉𝜉, 𝜆𝜆, 𝜁𝜁) = ∑ e-�rik
2+rjk

2+rij
2�/ξ2

�1 + 𝜆𝜆 cos𝜃𝜃𝑚𝑚𝑖𝑖𝑖𝑖�
𝜁𝜁

𝑚𝑚,𝑖𝑖            (5) 

Here, 𝑟𝑟𝑚𝑚𝑖𝑖 is the distance between atoms i and k and the range of µ values is selected to be between 
0.6 and 10 Å, with an increment of 0.2 Å. The classification accuracy for different series of µ values 
is presented in Fig. S23, showing that although the first peak of the Al-O radial function has the 
largest contribution, the long-range structure also influences the mobility of the atoms. The window 
parameter L was set to be 0.2 Å. 𝜃𝜃𝑚𝑚𝑖𝑖𝑖𝑖 is the angle between atoms i, j, and k. For the parameters ξ, 𝜆𝜆, 
and 𝜁𝜁 in the angular structure functions, we used a series of combinations to characterize different 
aspects of an atom’s angular environment (see the values in Ref. 19). 
 
Based on the structural descriptors and the corresponding labels (rearranging or non-rearranging), 
we then adopted the linear SVM algorithm by using the LIBSVM package58 to train a classifier, 
which can be used to distinguish the rearranging and non-rearranging atoms based on their 
subsequent local environment. Consistent with the results of Ref. 19, we found the accuracy of the 
classifier to be insensitive to the regularization C parameter of SVM when C > 0.1. The cross-
validation was carried out on random train/test splits while ensuring the independency of the training 
and test sets by avoiding the use of the same atoms in both the training and test processes. We also 
attempted to split the original dataset based on time series, i.e., 0-160 ps for training and 160-200 
ps for testing, and this yielded a similar accuracy result as that from the applied random splitting. 
After cross-validation, we used a C parameter of 1, which yielded accuracies of both the training 
and test sets of around 83%. The softness Si of atom i is defined as the orthogonal distance between 
its position in the feature space and the SVM decision boundary hyperplane (see Fig. 4A).  
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Finally, we also tested the generalization of the SVM model when trained on a partial dataset. As 
shown in Table S1, we found that the generalization does not significantly decrease when using 
partial dataset for training and the rest for testing (decrease from 0.833 to 0.798). The worst case 
yields an accuracy of only 0.693 when using the 0 GPa data as training set and 4 GPa data as test 
set. This highlights the importance of including all the datasets to get the best prediction. 
 
High-mobility cluster analysis 
Here, the Al atoms with high mobility were defined as Al atoms with the top 10% highest softness, 
which was defined dynamically at each strain step. We used the OVITO software59 to visualize and 
perform a cluster analysis of a-Al2O3 configurations during tension. To this end, high-softness 
clusters were defined as a group of n Al atoms with high-softness connected by O atoms, i.e., when 
two Al atoms within a specified cut-off were considered to be connected. As shown above, the 
cluster analysis focused solely on the Al atoms. A cluster is defined as a group of n Al atoms within 
a cut-off of 3.7 Å, which is the minimum after the first peak in the Al-Al partial pair distribution 
function (see Fig. S20B).  
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