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Fault detection and diagnosis in refrigeration systems using machine 
learning algorithms 
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d’apprentissage machine 

Zahra Soltani *,a, Kresten Kjær Sørensen b, John Leth a, Jan Dimon Bendtsen a 

a Department of electronic systems, Aalborg University, Fredrik Bajers vej 7, Aalborg, 9220, Denmark 
b Department of Transport, Bitzer Electronics, Kærvej 77, Sønderborg, 6400, Denmark   

A R T I C L E  I N F O   

Keywords: 
Refrigeration 
Fault detection 
Machine learning 
Dimensionality reduction 
Sensor 
Mots clés: 
Froid [artificiel] 
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A B S T R A C T   

The functionality of industrial refrigeration systems is important for environment-friendly companies and or
ganizations, since faulty systems can impact human health by lowering food quality, cause pollution, and even 
lead to increased global warming. Therefore, in this industry, there is a high demand among manufacturers for 
early and automatic fault diagnosis. In this paper, different machine learning classifiers are tested to find the best 
solution for diagnosing twenty faults possibly encountered in such systems. All sensor faults and some relevant 
component faults are simulated in a high fidelity Matlab/Simscape model of the system, which has previously 
been used for controller development and verification. In this work, Convolutional Neural Networks, Support 
Vector Machines (SVM), Principal Components Analysis-SVM, Linear Discriminant Analysis-SVM, and Linear 
Discriminant Analysis classifiers are compared. The results indicate that the fault detection reliability of the 
algorithms highly depends on how well the training data covers the operation regime. Furthermore, it is found 
that a well-trained SVM can simultaneously classify twenty types of fault with 95% accuracy when the verifi
cation data is taken from different system configurations.   

1. Introduction 

Machine Learning (ML) is a common term for many processing 
methods used for data-driven tasks. The main intention of ML is to 
enable computers to learn, predict, or decide on an unseen data without 
human assistance (Saravanan and Sujatha, 2018). In the 2010s, rapid 
development of processors, IoT, and an increasing amount of generated 
data paved the way for large improvements in ML capabilities. Thus, the 
popularity of ML increased exponentially in many industries. Machine 
learning is used in various contexts, such as computer vision, text clas
sification, fault detection, language processing, image recognition, and 
so forth. 

The idea of using ML for fault detection and diagnosis dates back to 
the 1980s where the existing ML methods were not as efficient as 
specialized experts. However, the technologies have been improved, and 
as of today, the availability of powerful programming tools and 

algorithms for self-learning allow computers to make strategic decisions 
and even diagnose new events (Gauglitz, 2019). 

In particular, ML-based methods have been studied for fault detec
tion and diagnosis (FDD) in different fields with promising results. For 
instance, ML is used for fault detection in brushless synchronous gen
erators in Rahnama et al. (2019), in water distribution network (Qui
ñones-Grueiro et al., 2021), in age intelligence systems (Liu et al., 2021), 
and in high-temperature super conducting DC power cables (Choi et al., 
2021). In Hajji et al. (2021), several supervised ML algorithms are 
compared for FDD in photovoltaic systems. In Hajji et al. (2021), data 
from non-faulty condition and five different faulty conditions are used 
both for training and test; and the results confirm that supervised 
learning algorithms can be used for fault detection and ease the FDD 
procedure. Moreover, machine learning models are compared for sensor 
fault detection in Sana Ullah et al. (2021), in which five types of sensor 
faults are emulated, namely, drift, bias, precision degradation, spike, 
and stuck faults. 
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For fault detection in office building systems, various data mining 
methods, in particular, Principal Component Analysis (PCA), Linear 
Discriminant Analysis (LDA), Kernelized Discriminant Analysis (KDA), 
semi-supervised LDA, and semi-supervised KDA have been compared in 
Shioya et al. (2015). In Choudhary et al. (2021), different component 
faults in a rotating machine are classified using a Convolutional Neural 
Network (CNN) algorithm. According to Lo et al. (2019), in many in
dustrial applications, good system models are difficult or even impos
sible to obtain due to the system’s complexity or large numbers of 
configurations involved in the production process. The refrigeration 
industry is not an exception, as the system configuration varies based on 
different owners’ demands. Hence, model based FDD is often sensitive to 
model parameters in such a way that small changes in the system may 
lead to a poor fault detection response. In such cases, ML can be a viable 
approach to handling unseen situations when well trained. 

In Soltani et al. (2020), a CNN model is used for evaporator fan fault 
detection in supermarket refrigeration systems. The same system 
configuration and information are used in Soltani et al. (2021) to classify 
the same fault and investigate the robustness of the fault detection 
model. However, instead of CNN, shallow learning Support Vector 
Machines SVM and PCA-SVM classifiers are used. In Han et al. (2010), 
SVM and PCA-SVM are studied for the detection of 8 type of faults in a 

simulated vapour-compression refrigeration system in which PCA-SVM 
achieved a better result compared to SVM and back-propagation neu
ral network. 

In the refrigeration industry, good performance of a fault detection 
algorithm can be defined as high classification accuracy, low compu
tation time, and low false positive rate. High classification accuracy 
ensures an accurate fault description for the technicians for quick 
troubleshooting, while low computation time is important because it 
lowers the detection time and the hardware cost. A low false positive 
rate increases the reliability of the fault detection model and results in 
lower expenses regarding service call rate. Therefore, it is essential to 
evaluate the FDD algorithms based on these factors. 

Because of increasing usage of digitalization in refrigeration systems 
(RS), many companies aim for improving existing FDD performance by 
utilising various data. As mentioned above, FDD algorithms perform 
satisfactorily in many other applications; thus, data driven FDD algo
rithms are selected and evaluated in this work. That is, we evaluate and 
optimize various FDD algorithms for the purpose of selecting the best 
classifier for use in RS industry applications. 

The main contributions of this study is summarized below: 

Nomenclature 

Latin symbols 
f activation function 
n number of samples 
c number of feature vectors 
W weight matrix in CNN 
x input sub-matrix in CNN 
b bias 
S number of the neurons in the last layer 
y output neuron 
ŷ predicted output 
Y output of each hidden layer 
L loss function 
S variance 
V matrix of all eigenvectors 
v eigenvectors 
r transformed sample 
w weight vector 
H hyper plane 
x input vector in SVM and LDA 
C regularization parameter for ζ 
T temperature (∘C) 
P pressure (Pa) 
V speed (percentage of full speed) 
vexp expansion valve opening degree (%) 
p power (W) 
X input 

Greek symbols 
ρ density in suction line ( kg

m3) 
ν number of classes 
χ feature vector 
μ mean 
Ω transformation matrix 
λ eigenvalue 
α number of selected eigenvectors 
ζ slack variable 
Φ GRBF function 
γ GRBF multiplier 

Subscripts and superscripts 
j jth sample 
B between-class 
s within-class 
φ φth vector 
κ κth class 
room cooling room 
amb ambient 
suc suction gas 
dis discharge 
ret returned air 
sup supplied air 
0 evaporation 
FC frequency converter 
C condensing 
sh superheat (∘K) 
cpr compressor 
evap evaporator fan 
cond condenser fan 
real value before applying the fault 
fault value after applying the fault 
offset value for fault emulation 

Abbreviations 
GRBF Gaussian Radial Basis Function 
MLP Multi Layer Perceptron 
OVO One Versus One 
OVR One Versus Rest 
KDA Kernel Discriminant Analysis 
PCA Principal Component Analysis 
LDA Linear Discriminant Analysis 
SVM Support Vector Machine 
CNN Convolutional Neural Network 
FDD Fault Detection and Diagnosis 
ML Machine Learning 
RS Refrigeration Systems 
DC Direct current 
IoT internet of things  
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• A deep learning and several shallow learning classifiers are proposed 
for detecting and diagnosing twenty types of faults in RS.  

• Importance of training data qualification regarding data variation 
and features selection is illustrated.  

• All of the proposed classifiers are compared regarding classification 
accuracy, computation time and false positive rate.  

• The best approach from an industrial perspective is proposed to 
detect a faulty system and localize the fault. 

In this study, all sensor faults and some component faults are simu
lated using a high fidelity RS model. The model is already in use at Bitzer 
Electronics to develop and verify control algorithms. Notice that we will 
restrict our attention to steady state operating conditions, which are 
commonly encountered in industrial application such as reefer con
tainers, cold storage houses and so on. It is acknowledged that transient 
operation is important in many applications as well, e.g., in supermarket 
refrigeration systems. However, transient behavior presents its own set 
of unique challenges, and is considered out of scope of this work. 

The faults include positive and negative offsets in sensors as well as 
specific component faults; the faults are detailed in section 2. Three 
classifiers, namely CNN, SVM, and LDA, are compared to diagnose every 
selected fault. For pre-processing of the input data LDA and PCA are 
compared. 

The results indicate that the SVM classifier is the superior method, 
being able to diagnose all classes with 100% classification accuracy 
except non-faulty and malfunctioning of expansion valve conditions 
which are diagnosed with 98% and 96% classification accuracy, 
respectively. The LDA and LDA-SVM classifiers are capable of detecting 
the faulty condition with 100% classification accuracy. However, these 
models have poor performance regarding robustness as a significant 
drop in classification accuracy is observed. Finally, CNN and PCA-SVM 
show a general lack in performance. 

The remainder of this paper are structured as follows. First, refrig
eration systems background and specification, as well as data acquisi
tion and its specification, are introduced in section 2. Then, in section 3, 
the mathematical approaches of the classifiers mentioned above are 
explained. Afterwards, the specification of each model and the result of 
the classification is presented in section 4. Finally, the work is concluded 
in section 5. 

2. Background 

In general, RS are used to cool down the goods inside of an insulated 

room, which is called a cold room, by transferring the heat to the 
environment. Fig. 1 illustrates a RS in which the refrigerant runs through 
the pipes. In each refrigeration cycle, heat is absorbed and dissipated. 
The compressor receives low pressure, low temperature refrigerant gas 
and releases high pressure, high temperature gas to the inlet of the 
condenser. The condenser is responsible for dissipating the refrigerant 
heat to the ambient environment, and finally gives out liquid refrigerant 
at high pressure while the temperature decreases. Afterwards, an 
expansion valve decreases the pressure of the refrigerant. Low pressure, 
low temperature refrigerant enters the evaporator pipes in order to 
absorb the heat from the cold room environment. Thus, the refrigerant 
changes phase from liquid to gas before reaching the compressor. 

Defective components or sensors in RS lead to high power con
sumption, air pollution, wear and tear of the components, and/or food 
waste. RS have the best efficiency when everything is nominal. Thus, 
when faults occur, the system might deviate from the peak efficiency 
point. By some of the fault, the system runs outside of its permitted 
envelope, some of the faults lead to wear and tear of the components due 
to high temperature, too little lubrication, and too high pressure on the 
components. Late fault detection may cause the temperature of the 
refrigerated goods to exceed the permitted limits. Therefore, early fault 
detection in RS ensures maintaining the required quality of refrigerated 
goods such as food products or medicine, and preventing excessive 
maintenance and spoilage cost. 

The high fidelity model used by Bitzer Electronics is presented in 
Fig. 2. In this model, a two-stage semi-hermetic reciprocating 
compressor is simulated with operating speed in the range 25-87 Hz. 
Here, compressor cooling capacity (Vcpr) is defined as compressor 
operating speed in percentage. Therefore, compressor speed under 25 
Hz and full speed operation of 87 Hz are defined as 0% and 100% 
compressor cooling capacity, respectively. The refrigerant type is 
R134a, and an electrical expansion valve is simulated. Maximum cool
ing capacity of the cold room is 17 kW at 10 ∘C ambient temperature 
(Tamb) and 5 ∘C cold room temperature (Troom). The controller is designed 
so as it controls over opening degree of expansion valve (vexp) using 
superheat temperature (Tsh) measurements as an input. Tsh is the dif
ference between the refrigerant evaporation temperature (T0) and suc
tion gas temperature (Tsuc). In addition, Vcpr, evaporator fan speed 
(Vevap), condenser fan speed (Vcond), are controlled using the mentioned 
controller inputs in Fig. 2. In this paper the supply temperature (Tsup) is 
the same as cold room temperature (Troom) and used as set point in the 
simulation model. Thus, set point is the temperature of the air after 
transferring heat to the refrigerant. 

Fig. 1. Schematic of a refrigeration system.  
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In Fig. 2, the main components of the model are presented with grey 
blocks. The red blocks indicate some of the fault inputs which are added 
to the corresponding parameters. Twenty types of faults are simulated, 
including positive and negative offsets in sensors as well as a number of 
component faults; the faults are described in Table 1. When collecting a 
data set, the model is first run with no effect of the red blocks, thus 
producing non-faulty data. After logging sufficient non-faulty samples, 
one fault is applied to the model and data collection continues. Simu
lation of some of the faults such as pressure sensors offset and Tdis sensor 
offset, are not visible in Fig. 2, since they are simulated inside of the 
relevant block diagrams. 

2.1. Data acquisition 

Machine learning models learn based on input information. Thus, the 
quality of training data is an essential factor. The training data should 
contain sufficient information to have a generic algorithm to make a 
correct decision when receiving a new observation. Using simulated 
data for training phase can, in fact, improve the verification result since 
it firstly allows data collection in different operating conditions, and 
secondly, data of specific faults can be correctly labeled, and finally, we 
ensure that the training data is not taken from an already faulty system 
with unwanted or unknown fault. 

To prevent overfitting the model, the input data needs to be taken 
from various operating conditions in an acceptable range and under the 
same operation conditions for each fault. That is, the model has to be 
able to deal with operational variations. Generally, in RS, operations 
vary based on several factors, such as required temperature set point, 
compressor cooling capacity or heat load, compressor type, ambient 
temperature, etc. In this work, various data sets from different operating 
conditions are taken as training data. As shown in Fig. 3, the set point is 
changed in the range 0 to 15 ∘C, and the heat load in the cooling room 
varies in the range 3 to 20 kW to obtain compressor speeds variation. 
Another data set is taken in which, besides set point and heat load, the 
Tamb is varied; therefore, the data is referred to as having large operation 
condition range. In this data set, Tamb is varied in the range 10 to 30 ∘C to 
investigate how the classification accuracy differs if training data in
cludes more variations. Then, the verification data set is collected using 
different operating conditions from the training conditions to investi
gate how the model performs classification in an unseen operation 
condition, see the blue block in Fig. 3. 

Each fault in the system is considered a class. As introduced in 
Table 1, twenty faults are taken into account in this work which are all 
observed in the real systems. Therefore, twenty-one classes are studied, 
including non-faulty condition. In particular, the expansion valve faults 
are modeled as wrong valve positions compared to the command signal. 
In fault 8, the actual valve position is 120 % of the command signal, 
while in fault 18, the valve opens 80% of the command signal. Fig. 4 
represents four examples of data sets taken from the same model and 
under the same conditions. These examples represent a non-faulty 
condition, a suction pressure sensor fault with 0.2 bar positive offset 
indicating fault 6, a loose expansion valve fault where it reacts 20% 

Fig. 2. The grey blocks indicate the main components of the RS. The red blocks are the faults or offsets that can be applied to each variable.  

Table 1 
fault types and descriptions.  

Label Component Fault limits 

1 Tsuc sensors positive offset 2∘C more than expected value 
2 Tsup sensors positive offset 2∘C more than expected value 
3 Tret sensors positive offset 2∘C more than expected value 
4 Tdis sensors positive offset 2∘C more than expected value 
5 Pdis sensor positive offset 100000 Pa more than expected value 
6 Psuc sensor positive offset 20000 Pa more than expected value 
7 compressor low less than 80% of the  

performance expected mass flow 
8 loose more than 120% of the  

expansion valve commanded opening degree 
9 evaporator fan less than 80% of the  

low performance commanded fan speed 
10 condenser fan less than 80% of the  

low performance commanded fan speed 
11 Tsuc sensors negative offset 2∘C less than expected value 
12 Tsup sensors negative offset 2∘C less than expected value 
13 Tret sensors negative offset 2∘C less than expected value 
14 Tdis sensors negative offset 2∘C less than expected value 
15 Pdis sensor negative offset 100000 Pa less than expected value 
16 Psuc sensor negative offset 20000 Pa less than expected value 
17 broken less than 20% of the  

compressor expected mass flow 
18 blocked less than 80% of the  

expansion valve commanded opening degree 
19 broken less than 20% of the  

evaporator fan commanded fan speed 
20 blocked less than 20% of the  

condenser fan commanded fan speed  

Z. Soltani et al.                                                                                                                                                                                                                                  



International Journal of Refrigeration 144 (2022) 34–45

38

more than the commanded value from the controller indicating fault 8, 
and a blocked expansion valve that reacts 20% less than the commanded 
value. During data acquisition, the model is run in non-faulty condition 
until sample 6000. Then, each fault is introduced from sample 6001 to 
12000 as seen in Fig. 4. It is observed that in some cases, such as fault 8, 
the data looks very similar to some of the other faulty or non-faulty data. 
Changes in condensing temperature (TC) is compensated by condenser 
fan work, because there is a feedback control on condenser fan to keep 
constant pressure relative to Tamb and the controller controls Vcpr based 
on Tsup. Thus, it is hard to observe any visual changes in the data char
acteristics during steady state response. However, in some other cases, 
the fault affects the controller response immediately, and the changes 
can be observed in the data easily. For example, fault 6, which is shown 
in Fig. 4, clearly gives rise to variations in Tdis, and Vcpr. The compressor 

works based on the controller command. In the case of fault 6, ρ and/or 
Psuc which are fed into the controller are measurements of the faulty 
sensor. Therefore, the compressor behavior is based on the faulty sensor 
measurement. However, as the real Psuc is less than required, it causes 
drop in mass flow rate. In Fig. 2, the Psuc offset is applied only to the 
sensor reading. The controller controls both expansion valve opening 
degree and compressor speed to reach a desired pressure, and when the 
reading is positively offset the controller must lower the actual suction 
pressure to reach the desired reading. 

2.2. Data specification and dimensionality reduction 

The idea behind dimensionality reduction techniques is to remove 
dependent and redundant features from original data by projecting data 

Fig. 3. An overview of data collection and ML setup. The red section indicates the training phase where data is collected and used for training of the ML model. The 
blue section shows verification data specification and classification. 

Fig. 4. Four examples of data set from different classes which have the same system configuration. The set point to Tsup = Troom is set to 7 ∘C, heat load in the cooling 
room is 13 kW at the ambient temperature of 25 ∘C. 
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to a lower-dimensional space, which holds only essential information. 
These approaches deal with noisy data and reduce the computation load 
for classification purposes (Soltani et al., 2021). In this work, the input 
data has 14 feature vectors or dimensions, including sensor signals, and 
some of the variables from RS controller, including superheat temper
ature, saturated evaporation temperature, compressor cooling capaci
ty/speed, condenser fan speed, and vapour density. Statistical 
approaches such as PCA and LDA are used to reduce the input data di
mensions before passing them through the classifiers. In this paper, all 
transient part of the data is removed, both for training and validation 
data. The 14-dimensional data is reduced to 2-dimensional data using 
PCA as the input to the SVM. LDA is also used for dimensionality 
reduction and transfers the data into a 6-dimensional data set before 
sending the data into the SVM classifier. Moreover, CNN and SVM are 
also applied to the 14-dimensional data set. For SVM and LDA classifi
cation, each class of data contains 1200 samples, and for the CNN 
classifier, 18000 samples with a sample rate of 1 Hz. Remark that LDA 
and SVM are shallow learning neural networks which, as an advantage, 
do not require as many samples as CNN. Too many samples result in too 
high computation load and low classification accuracy. As described in 
2.1, the training data of each class contains various RS operating con
ditions. These varieties prevent overfitting and increase the model’s 
capability for the classification of unseen operating conditions. 

3. Methods 

SVM, LDA, and CNN are all supervised learning methods which are 
sub-fields of the linear classifiers (Saravanan and Sujatha, 2018). Su
pervised ML classifiers categorize a new data set using a pre-trained 
model. Thus, the model is first trained using input data and defined 
labels. 

CNN is a deep learning classifier commonly used for image pro
cessing purposes. A CNN is comprised of two phases of feature extraction 
and classification. The input data consists of feature vectors χφ ∈ Rn×1,

φ = 1,⋯, c which are gathered in data matrices Xκ ∈ Rn×c, one for each 
class κ, κ = 1,…, ν. The numbers n = nκ and c quantify the number of 
samples in each class and the number of features, respectively. For 
convenience, it is assumed that all the data matrices have the same di
mensions, although this is not a strict requirement. 

In the feature extraction phase, the CNN makes use of so-called 
neurons which take data matrices Xκ as input and return (neuron) 

output yk
κ ∈ Rn′

×c′ , k = 1,⋯,S, where S is the number of neurons (see 
Fig. 5). Each neuron has a weight matrix Wk ∈ Rn×c and a bias matrix bk ∈

Rn×c associated with it. For each κ, Xκ is partitioned into n′c′ (possibly 
overlapping) submatrices (xκ)ij ∈ Rn×c, i = 1,…,n′

, j = 1,…,c′ . Then the 
neuron output yk

κ is a matrix whose entries are defined as: 
(
yk

κ

)

ij = f
(

1T
(

Wk ⊙ (xκ)ij − bk
)

1
)

(1)  

where ⊙ denote element-wise multiplication of matrices, 1 denotes a 

vector of ones, and f : R→R is an activation function. 
It is noted that the size n × c and number S of Wk’s are hyper- 

parameters, which can be tuned during the design of the CNN model 
to optimally filter different information of the input. 

As illustrated in Fig. 6, the output of the feature extraction phase 
contains the essential information of the input data. This output is then 

vectorized as Y0 = col[yk
κ ] ∈ Rn′ c′ Sν×1 before being used as input to the 

classification phase, which is a fully connected Multi-layer Perceptron, 
see Geidarov (2017), and Bishop (2006) with NMLP fully connected 
layers. The output vector of each MLP layer Yl ∈ Rnl×1 is computed 
recursively as 

Yl = f̂
(
Wl Yl− 1 + bl

)
, l = 1,…,NMLP (2)  

where Wl ∈ Rnl×nl− 1 is a layer weight matrix, bl ∈ Rnl×1 is a bias vector, 
f̂ : Rnl →Rnl is the l’th layer’s neuron activation function, and nNMLP = ν. 

The output ŷ ∈ Rν of the CNN is generated by the so-called Softmax 
activation function where the κth coordinate of ŷ is given by: 

ŷκ =
exp

(
YNMLP

κ

)

∑ν
j=1 exp

(
YNMLP

j
) (3)  

with YNMLP
κ being the κth coordinate of YNMLP . 

Here, it is noted that since the CNN output is normalized (
∑ν

κ=1 ŷκ =

1), ŷκ may be considered as the probability of a new input X belonging 
to class κ. 

During the training process, the estimation of the classes are 
compared with the true labels yκ using a loss function. The loss function 
is also a hyper parameter that needs to be determined for the model; a 
common loss function is cross entropy: 

L = −
∑ν

κ=1
yκ ln(ŷκ). (4) 

The training process aims at adjusting the weights in such a way that 
better prediction of the correct class is achieved. In other words, the 
minimum loss is obtained. 

Minimization of the loss function can be done using different opti
mization techniques; the most common being Backpropagation (Bishop, 
2006), which is a variant of gradient descent. Once the weights have 
been adjusted to yield the optimal output for a validation data set, this 
model can be used to classify unlabeled, new data. 

3.1. LDA classifier 

Linear discriminant analysis (LDA) can be used both for dimen
sionality reduction and classification purposes. In LDA, as it is depicted 
in Fig. 7, linear separation of classes is done after projecting data onto 
another space. LDA seeks a large separation between transformed clas
ses compared to the original one after the dimension of the transformed 
data is reduced. A transformation matrix is obtained by use of the 
between-classes variance and the variance within each class (Bishop, 
2006). 

The variance between classes SB ∈ Rc×c is calculated as follows: 

SB =
∑ν

κ=1
(μκ − μ)T

(μκ − μ) (5)  

where μκ ∈ R1×c is the mean value of class κ, and μ ∈ R1×c is mean of all 
μκ. Afterwards, the within-class variance Ss ∈ Rc×c is calculated by 

Ss =
∑ν

κ=1

∑n

j=1

(
(Xκ)j − μκ

)T(
(Xκ)j − μκ

)
(6)  

where (Xκ)j is the jth row (or sample) in Xκ. 
Ss and SB are used to find the transformation matrix Ω ∈ Rc×c defined 

Fig. 5. A feature extraction layer of CNN, a sub-matrix (xκ)ij is convolved with 
each weight matrix Wk, resulting in a number of matrices as the output of 
the layer. 
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as 

Ω = S− 1
s SB (7)  

Afterwards, this transformation matrix is used to generate data in 
another space in which the classes are linearly separable. In order to 
reduce the dimensions of the data in the new space, eigenvectors and 
eigenvalues of Ω are obtained. The eigenvectors with higher eigenvalues 
carry more information of the data distribution (Tharwat et al., 2017). 
Order the eigenvalues of Ω in decreasing order λ1 ≥ λ2 ≥ ⋯ ≥ λc, choose 
the first α ≤ c corresponding eigenvectors and organize them in a new 
matrix V = [v1 v2⋯vα] ∈ Rc×α. The lower-dimensional samples rj ∈

R1×α, j = 1,⋯, n in class κ are then the rows of the matrix product XκV. 

3.2. SVM classifier 

Support vector machine (SVM) is a supervised machine learning 
method and linear classifier which classifies data into two or more 
classes. In the sequel we focus on the case of two classes. 

Consider the two classes Xκ, κ = 1, 2 containing the samples as rows 
and set yj = − 1 or yj = 1 if xj ∈ R1×c is a row in X1 or a row in X2, 
respectively. Assume that the two classes are linearly separable, that is, 
the samples of each class can be separated by a (linear) hyper plane. 
Then there exists a hyper plane 

H =
{

x ∈ Rc
⃒
⃒ xwT + b = 0

}

with weight w ∈ R1×c and bias b ∈ R such that 1/ ‖ w ‖ is the distance 
from H to the nearest sample in class 1 and class 2. These nearest sam
ples are usually called support vectors (see Fig. 8). Moreover, w and b 
may be found as the solution to the optimisation problem 

min
w,b

1
2
‖ w ‖2 (8a)  

s.t.
yj
(
xjwT + b

)
≥ 1, j = 1,⋯, n (8b) 

The optimal (or hard) margin (that is, 1/ ‖ w ‖ with w the solution to 
(8)) may not always lead to the best result when feeding unseen data to 
the model. The optimal margin might result in overfitting or margin 
violations. In particular, outliers can fall into the wrong class and be 
misclassified (Murty and Raghava, 2016). In practice, the classifier is 
allowed to do small misclassifications during the training, which is 
called soft margin (shown in Fig. 8). To do so, a slack variable ζ is added 
to the optimization problems: 

min
w,b,ζ

1
2
‖ w ‖2 + C

∑n

j=1
ζj (9a)  

s.t.
yj
(
xjwT + b

)
≥ 1 − ζj

(9b)  

ζj ≥ 0, j = 1,⋯, n (9c)  

where C is a hyper parameter that determines the size of the allowed 
misclassification. The size of the parameter C is tuned by software such 
that the classification accuracy of unseen data is high. 

Fig. 6. General CNN structure for ν classes.  

Fig. 7. LDA visualisation for dimensionality reduction from two to one- 
dimensional space. 

Fig. 8. Finding a classification hyperplane.  
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In many classification problems a linear classification is not possible. 
The kernel trick is a method for dealing with this case. It yields a 
transformation of the input space, that is the space which the samples 
belong to, into another higher dimensional space, in which the samples 
are linearly separable (Murty and Raghava, 2016). This new space is 
typically called the feature space. The kernel trick relies on the use of 
kernel function. In this work we consider a special class of kernel 
function, called the Gaussian Radial Basis Functions (GRBF) given by 

Φ(x, x′

) = exp( − γ ‖ x − x
′

‖2) (10)  

The hyper parameter γ > 0 determines the influence of each sample on 
selecting the hyper plane during training. It should be noted that 
choosing γ too big results in overfitting and choosing γ too small leads to 
under-fitting of the model (Bishop, 2006). 

3.3. Multi-class classification 

In the case of more than two classes, the problem can be solved using 
two approaches. The first one is to consider each class against the rest of 
the classes and is called One Versus the Rest (OVR). For the model 
training using OVR, one binary classifier is used for each class against all 
the other classes as the second category. Therefore, for a data set 
including ν classes, ν binary classifiers are created. For unseen data 
classification, each classifier is tested to determine to which class the 
new sample belongs. However, in many cases, the result of OVR is 
inconsistent as the sample can belong to either more than one class or 
none of them, illustrated as the gray stars in Fig. 9. Since, OVR picks one 
class against all other classes together, the number of samples in the 
corresponding class is typically a lot fewer than the rest of the classes. 
Therefore, the big difference between the number of samples often im
pacts the decision boundary (Bishop, 2006). 

The second multi-class classification approach takes each class 
versus another and is called the One Versus One (OVO) approach. Thus, 
for each pair of classes, one classifier is trained. Finally, ν(ν− 1)

2 classifiers 
determine each class boundaries as shown in Fig. 9. 

The OVO approach is not as computationally effective as OVR due to 
using more classifiers. Moreover, the OVO approach has a tendency to 
overfit (Platt et al., 2000). However, in the end, a certain amount of trial 
and error is unavoidable in selecting a multi-class SVM classifier, as it 
depends on the input data and feature space. 

4. Experiments 

In this work, PCA and LDA are built in Python for dimensionality 
reduction purposes. It is advantageous to use lower-dimensional input 
data if it reduces the computation time of the classification and/or in
creases accuracy by removing redundant information in the data set 
such as noise, etc. This work tests and compares PCA-SVM and LDA-SVM 
models to the SVM classifier with full-dimensional data. The algorithms 
are built using the scikit-learn library in python which provides 
many efficient algorithms in ML, dimensionality reduction and classi
fication. In Aurélien (2019), the ways of implementing aforementioned 
ML techniques in the scikit-learn library are described. In this 

work, the label -1 is assigned to non-faulty data, while other labels are 
specified in Table 1. Moreover, the classifiers are fed with two sets of 
training data which are described in section 2, in order to evaluate the 
qualification of the training data. 

4.1. Full-dimensional classifiers 

The input data used for the SVM model includes n = 1200 samples of 
14 feature vectors for each class. In addition, the input data contains 
samples from different system configurations. Each sample is labelled 
with one of the labels in Table 1. The SVM classifier performs OVO 
classification using C = 1000, and γ = 0.01 (see section 3.2); the 
hyperparameters were found by trial-and-error. The result of classifi
cation is represented in Fig. 10. True labels are the labels assigned to each 
class during the training phase, while Predicted labels refers to the pre
diction of the classifier during the training process. Thus, the diagonal 
values represent correct classifications. In this test, 250 samples with 1 
Hz sample rate are selected for prediction. 

The SVM result shows high classification accuracy for most of the 
classes, and there are no false positives. At 93% accuracy, the broken 
compressor with label 17 in Table 1 is the only fault that is misclassified. 

As mentioned in section 3, LDA can be used both for dimensionality 
reduction and classification purposes. Here, LDA is used to classify all 21 
classes of data while reducing the dimensions of the input data from 14 
to 5. As shown in Fig. 10, the response of the LDA classifier is very 
similar to SVM classification, exhibiting 100% classification accuracy 
for most of the classes and no false positives. The only misclassification 
of about 3% is the broken compressor, which is mistaken for either Psuc 
sensor negative offset or broken evaporator fan. 

CNN is a deep learning model and needs more samples compared to 
LDA or SVM. In the CNN model experiment, the data set for each class 
contains 12000 samples of all 14 feature vectors. The classification 
response of the training is represented in Fig. 11. The CNN classifier 
obtained a total accuracy of 94% and could classify most of the faults 
with 100% accuracy. The noticeable drawback is the false positive rate 
of 58%. The non-faulty condition was misclassified as classes with labels 
8 and 18, which are both expansion valve malfunctions. 

4.2. Reduced-dimension classifiers 

In this part, PCA and LDA are used to reduce the input dimension
ality. These approaches are investigated to see whether PCA or LDA can 
improve classification results. In addition, it is vital to study whether 
low dimensional inputs can reduce training computation time in the case 
of PCA and LDA. 

After feeding data into PCA and transforming to the new space, it 
appears that the first two dimensions of the transformed data contain 
more than 80% of the variations in the new space, as seen in Fig. 12. 
Therefore, the first two principal components are used as the inputs to 
the SVM instead of 14-dimensional data. Fig. 13 shows the response of 
the PCA-SVM classifier with C = 1000, γ = 0.01, and OVO decision 
function. 

The result of PCA-SVM shows misclassification of most of the classes. 
PCA causes classes to overlap as the most uncorrelated information is 
squeezed into the first two principal components. The result of PCA-SVM 
classification is not satisfactory for the multi-class classification even 
though it represents satisfactory results for binary classification in Sol
tani et al. (2021). 

LDA is already used for classification, as shown in Fig. 13. However, 
it can also be used only for dimensionality reduction; then, the trans
formed lower dimensional data is used in a classification algorithm such 
as SVM. The first five eigenvectors corresponding to the first highest 
eigenvalues indicate that LDA reduces the input dimensions from eleven 
to five. A LDA-SVM classifier is built using C = 1000,γ = 0.01, and OVO 
decision function for the SVM part. The LDA-SVM classifier performs 
satisfactorily for many of the classes shown in Fig. 13. However, the 

Fig. 9. multi-class data classification using OVR at the left and OVO at 
the right. 
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model cannot easily distinguish the Non-faulty, loose expansion valve 
fault, and blocked expansion valve fault. Therefore, these three classes 
have low accuracy and a false positive rate of 18%, which is not a 
satisfactory result. 

4.3. Model comparison 

In this part, all five models described above are compared regarding 
input dimensions, total accuracy, false positive rate, training time, and 
prediction time. Training time is the computation time a model requires 
to be trained, including the time for dimensionality reduction in the 
cases where the input dimension is reduced. The prediction time is the 
computation time that a trained model uses to classify a test data set. 
Here, test data and training data are collected from the same system 
configuration and operation. The results in Table 2 represents the per
formance of the training process. 

As seen in Table 2, SVM and LDA achieved the best results, with high 
accuracy and no false positives. However, the prediction time is rela
tively low for the LDA classifier compared to SVM, PCA-SVM, and LDA- 
SVM. On the other hand, the CNN classifier has the lowest prediction 
time, but the false positive rate is unacceptable. Therefore, LDA is found 
as the best model for multi-fault classification. Afterwards, more 
investigation is done on SVM, LDA and LDA-SVM, which perform better 
during the training phase. 

4.4. The classifiers verification 

In this part, the validation data is specified with a set point, heat load 
and ambient temperature which is different from what are used for the 
training set. In this data set, Tset is 4 ∘C, heat load is 13 kW and ambient 
temperature is 17 ∘C. Fig. 14 shows the response of SVM, LDA, and LDA- 
SVM classifier trained with the first training data set, with variations in 
set point and heat load. The overview of the results in Table 3 indicates 
that even though the classifiers did a good job during the training and 
test, they can not deal with the new data which are taken from a system 
in a new operating condition. Therefore, the classification results are not 
satisfactory, especially when looking at the false positive rate. 

4.5. Effect of data variation 

To deal with the challenge of misclassification of unseen data, a new 
training data set is fed into the same model, which contains more 
excitation by varying the RS operation around ambient temperature 

Fig. 10. LDA and SVM response for classification of 21 classes.  

Fig. 11. Training response of the CNN classifier.  

Fig. 12. The first two principle components contain the most variation among 
all 14 principle components. 
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from 10 to 30 ∘C, set point from 0 to 12 ∘C, and heat load from 3 to 18 
kW. In addition, to obtain better results, all 14 feature vectors are tested 
to see if one can affect misclassification. Thus, three features of input 

data, namely, Psuc, compressor power consumption and density that 
were already used, are removed from the training and validation data set 
as they adversely affect the classification accuracy. The results are 
depicted in Fig. 15. 

The overview of the results in Table 4 shows that the SVM classifier 
obtains more accurate results after training with more excited training 
data and removing the three mentioned feature vectors. However, for 
the LDA-SVM and LDA classifiers, the most accurate results are obtained 
when just the power consumption of the compressor and density are 
removed. Using this adjustment, the false positive percentage is 
improved a lot and SVM stands alone regarding the diagnosis of all faults 
simultaneously with high accuracy. 

5. Conclusion 

In this work, different classifiers are compared to diagnose twenty 
types of faults simultaneously and non-faulty condition in the industrial 
RS. The training data is taken from a simulation model which has been 
used in the development of system control in Bitzer. First, five classifiers, 
namely CNN, SVM, LDA, LDA-SVM, and PCA-SVM are compared. The 
training data contains information about the different systems operating 
through variation of set point and heat load of the cooling room. The test 
results show that CNN and PCA-SVM do not satisfactorily diagnose the 

Fig. 13. PCA-SVM and LDA-SVM response for classifying 21 classes.  

Table 2 
Comparison of different classifiers.  

model dimensions accuracy false 
positive 

training 
time 

prediction 
time 

SVM 14 99.6% 0% 1.1 s 1 s 
LDA 14 to 5 99.8% 0% 3.2 s 0.3 s 
CNN 14 94% 68% 112.5 s 0.1 s 
PCA- 

SVM 
14 to 2 55.4% 24% 7.2 s 5.6 s 

LDA- 
SVM 

14 to 5 96.6% 18% 1 s 1.1 s  

Table 3 
Robustness of classifiers against different operating conditions.  

model accuracy false positive prediction time 

SVM 76% 92% 3.1 s 
LDA 52% 100% 0.2 s 
LDA-SVM 57% 100% 2.1 s  

Fig. 14. Three classification responses of validation data with different system operating condition.  
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faults. In addition, SVM, LDA, and LDA-SVM can not properly deal with 
the verification data set taken from different system operations than 
training data. On the other hand, training data with more excitation can 
help the classification results when the new training data contains the 
variations in ambient temperature, set point, and heat load. LDA and 
LDA-SVM are improved regarding false positive rate to 0%, but these 
classifiers do not provide the satisfactory classification results of the 
other classes. 

It is seen that SVM has the highest classification accuracy of 95% 
with a 4% false positive rate. The only class which SVM does not di
agnose is the blocked expansion valve, which is misclassified with the 
loose expansion valve. Therefore, even though this fault is misclassified, 
we can still trust that the malfunctioning valve needs to be checked by 
the technicians. 

From an industrial point of view, it is very beneficial to have one 
classifier that can diagnose twenty one classes. Moreover, the classifiers 
considered in this work can be trained off-line. Off-line training may 
have two advantages. First, It is possible to train the classifier with 
simulation data and use the trained classifier for classification of real 
data to ensure that we do not train the classifier with the real data which 
are wrongly labeled. Second, the trained classifier would be computa
tionally lighter compared if the training process were to be executed on 
embedded software as well. This is an advantage when the capacity of 
the processor of typical refrigeration systems is considered. The SVM 
model obtained the best classification accuracy at the algorithms tested. 
If a lower false positive percentage is considered, LDA can be used with a 
0% false positive rate only for distinguishing the non-faulty class from 
the other faulty classes. Therefore, the system could benefit from having 
two classifiers, to make the diagnosis result more reliable. Before 
implementation of the classifier on real refrigeration systems, verifica
tion of the trained classifier by using real data from the field will be done 
in the future work. 
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