
 

  

 

Aalborg Universitet

Modeling phosphorous dynamics in a wastewater treatment process using Bayesian
optimized LSTM

Hansen, Laura Debel; Stokholm-Bjerregaard, Mikkel; Durdevic, Petar

Published in:
Computers & Chemical Engineering

DOI (link to publication from Publisher):
10.1016/j.compchemeng.2022.107738

Creative Commons License
CC BY 4.0

Publication date:
2022

Document Version
Publisher's PDF, also known as Version of record

Link to publication from Aalborg University

Citation for published version (APA):
Hansen, L. D., Stokholm-Bjerregaard, M., & Durdevic, P. (2022). Modeling phosphorous dynamics in a
wastewater treatment process using Bayesian optimized LSTM. Computers & Chemical Engineering, 160,
[107738]. https://doi.org/10.1016/j.compchemeng.2022.107738

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            - Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            - You may not further distribute the material or use it for any profit-making activity or commercial gain
            - You may freely distribute the URL identifying the publication in the public portal -

Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

https://doi.org/10.1016/j.compchemeng.2022.107738
https://vbn.aau.dk/en/publications/d0723cf6-80c5-4473-b0cf-696ab49bf799
https://doi.org/10.1016/j.compchemeng.2022.107738


Computers and Chemical Engineering 160 (2022) 107738 

Contents lists available at ScienceDirect 

Computers and Chemical Engineering 

journal homepage: www.elsevier.com/locate/compchemeng 

Modeling phosphorous dynamics in a wastewater treatment process 

using Bayesian optimized LSTM 

Laura Debel Hansen 

a , b , ∗, Mikkel Stokholm-Bjerregaard 

b , Petar Durdevic 

a 

a AAU Energy, Aalborg University, Niels Bohrs vej 8, Esbjerg, 6700, Denmark 
b Krüger A/S, Indkildevej 6C, Aalborg Sø, 9210, Denmark 

a r t i c l e i n f o 

Article history: 

Received 25 October 2021 

Revised 2 February 2022 

Accepted 14 February 2022 

Available online 17 February 2022 

Keywords: 

Dynamic model 

Neural networks 

Time series prediction 

Hyperparameter tuning 

Full scale plant data 

Phosphorus 

a b s t r a c t 

This study presents a systematic framework to develop data-driven models for phosphorus concentra- 

tion in a full-scale wastewater treatment plant (WWTP). The dynamics of wastewater treatment exhibit 

nonlinear behavior, and are time varying, non-stationary, and coupled in a complex manner, which makes 

them difficult to predict using mechanistic models. Two long short-term memory (LSTM) models are pro- 

posed. The first estimates the phosphorus concentration using data describing environmental conditions 

and process operation, and the second model which additionally utilizes the previous phosphorus mea- 

surement. Additionally, the hyperparameters are tuned using Bayesian optimization, as this is an effective 

tool to determine the best model and prevent over-fitting and long training duration of the data-driven 

models. The two models show good prediction performances and are suitable to predict up to 24 hours 

into the future, with R 2 close to 0.7-0.8 for data well presented in the training data set. 

© 2022 The Authors. Published by Elsevier Ltd. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

Wastewater treatment plants (WWTP) continuously face new 

hallenges as more stringent effluent standards arises. Mathemati- 

al modeling of WWTPs has, consequently, been widely established 

s a method used for research, plant design, optimization, design 

f control strategies, and general understanding of the processes 

 Garikiparthy et al., 2016; Stentoft et al., 2019 ). Several mechanis- 

ic models ( Henze et al., 20 0 0 ) and benchmark simulation models

 Gernaey et al., 2004; Gernaey and Jeppsson, 2014; Vrecko et al., 

006 ) have been proposed to model the treatment processes of 

WTPs. These mechanistic models, also known as white-box mod- 

ls, are derived by first principles meaning they are ”transpar- 

nt”, as they explicitly explains relations between the model in- 

ut and output. The contrast to the white-box model is the black- 

ox model which is derived solely from measurement data. In 

lack-box models, the structure and the parameters are both deter- 

ined from data, meaning that no prior knowledge of the system 

s needed. 

This paper addresses the use of data-driven modeling (DDM) 

y developing two black-box models to describe the dynamics 

f wastewater treatment processes by utilizing data from a case 
∗ Corresponding author. 

E-mail addresses: ldh@energy.aau.dk (L.D. Hansen), pdl@energy.aau.dk (P. Durde- 

ic). 
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098-1354/© 2022 The Authors. Published by Elsevier Ltd. This is an open access article u
lant. The case study of this work considers removal of phospho- 

us in the form of phosphate ( PO 

3 −
4 

-P ) at a WWTP which utilizes 

he activated sludge process (ASP). This focus point is chosen be- 

ause modeling and understanding the process of phosphorus re- 

oval is of key importance, as phosphorus contributes to eutroph- 

cation effects if led directly out to surrounding surface waters 

 Wilfert et al., 2015 ). Process understanding and accurate simula- 

ion models yields, furthermore, the best foundation for high per- 

ormance process control. 

In this study, we present a systematic approach to model 

astewater processes using data-driven models which are opti- 

ized to determine the best model parameters for the given task. 

urthermore, we wish to discuss how the performance and uti- 

ization of a model depends on which input data is passed to the 

odel. As such, the main contributions of this study are the fol- 

owing: 

1. Using more than one year of measurements from a full-scale 

WWTP, we propose two multivariate LSTM models which esti- 

mates the phosphorus concentration in an ASP. The two models 

takes inputs such as: temperature, flow rate, dissolved oxygen, 

etc. The first model functions as an estimator; hence, its perfor- 

mance does not rely on actual phosphorus measurements for 

future step ahead predictions. The second model differs from 

the first, as previous phosphorus measurements are included 

as an input. This increases the model performance when the 
nder the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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measurements are available and makes the model performance 

dependent on true sensor measurements. With these two op- 

tions for modeling of complex industrial processes, we leave a 

choice for the developer to choose the most appropriate model 

for the desired application. 

2. We propose a systematic approach for dynamic modeling of 

multivariate systems, and suggests that many case studies and 

complex processes could be modeled effectively using this ap- 

proach. 

3. To ensure the optimum structure for the specific application, 

we optimize the architecture and training algorithm of the two 

LSTM models using Bayesian optimization for hyperparameter 

tuning. 

The rest of the paper is organized as follows: A thorough re- 

iew of related literature is presented in Section 2 . The case plant 

s introduced in Section 3 along with the collected data and com- 

uting material. Section 4 presents the basic theory of the LSTM 

nd highlights similarities of the two proposed LSTM networks. 

urthermore, the method of hyperparameter tuning using Bayesian 

ptimization is explained in this section. Section 5 presents exper- 

mental results of the estimation and future step ahead predictions 

sing the proposed LSTM models. The results are compared and 

he two models are discussed both from a modeling and plant op- 

ration point of view. Finally, Section 6 summarizes this paper. 

. Related work 

Modeling of WWTPs has been ongoing for decades with the 

ctivated sludge model (ASM) as one of the first successful at- 

empts to model the ASP ( Henze et al., 2002 ). Mechanistic models 

ike the ASM and the subsequent augmented ASM models (ASM2, 

SM2d, ASM3) have provided a foundation for many WWTP opti- 

ization studies ( Hansen et al., 2021; Aguado et al., 2009; Bon- 

ards, 1999; Cao and Yang, 2018; Dias and Ferreira, 2009; Be- 

harati Fard et al., 2020; Gaya et al., 2013; Han et al., 2018; 

usin et al., 2021; Hwangbo et al., 2021; Keskitalo and Leiviskä, 

015; Meng et al., 2021; Newhart et al., 2019; Pisa et al., 2019b; 

tentoft et al., 2019; Zhao et al., 2020 ). Regarding phosphorus 

ynamics, Kazadi Mbamba et al. presents a simulation study in 

hich phosphorus is modeled using a mechanistic kinetic model 

ased on equilibrium approach of ion speciation and ion pair- 

ng ( Kazadi Mbamba et al., 2016 ). For this study, the benchmark 

imulation model no. 2 (BSM2) was calibrated in five steps and 

sed to model the case plant. Similar studies have been pub- 

ished, where mechanistic models have been calibrated and uti- 

ized for simulation purposes ( Solon et al., 2017; Feldman et al., 

017; Kazadi Mbamba et al., 2019; Flores-Alsina et al., 2021 ). How- 

ver, the problem remains a major challenge in both academia and 

ndustry as the wastewater processes are highly nonlinear, cou- 

led and time-varying dynamic systems containing both physical 

nd biochemical reactions and large time delay features ( Newhart 

t al., 2019; Kazadi Mbamba et al., 2019 ). Furthermore, a major 

rawback using mechanistic models of WWTPs is the complexity 

f the models, demand for prior knowledge and model calibra- 

ion before utilization ( Dias and Ferreira, 2009 ). In order to de- 

cribe coupled biological and chemical processes in the system, 

he mechanistic models often involve a very large number of state 

ariables. To calibrate and utilize known mechanistic models for 

WTPs, the model developer must acquire information obtained 

rom laboratory-scale experiments, full-scale plant data such as 

hose collected by online sensors, and default values from the liter- 

ture ( Stentoft et al., 2019; Kazadi Mbamba et al., 2016; 2019 ). As

hese three types of information can be difficult to collect, the de- 

eloper may be interested in another approach to model the pro- 

esses of the WWTP. 
2 
Data-driven modeling (DDM) and system identification is a re- 

earch area based on computational intelligence (CI) and machine- 

earning (ML) methods with overlapping contributions from ar- 

ificial intelligence (AI), soft computing (SC) and data mining 

DM) ( Solomatine et al., 2008 ). Recent advancements in DDM and 

onlinear system identification provides the developer and the 

astewater industry with an alternative to the mechanistic mod- 

ls ( Newhart et al., 2019 ). As a result, DDM has gained accept-

bility and is increasingly applied to model WWTPs ( Husin et al., 

021; Zhao et al., 2020; Newhart et al., 2019; Dürrenmatt and Gu- 

er, 2012 ). Another reason for the recent increase of applied DDM 

o WWTP may be due to the already existing data acquisition 

ystems. In several countries - especially in Denmark - WWTPs 

re monitored using online sensor measurements of the different 

astewater processes, making DDM very advantageous as models 

an be developed for simulation purposes using only data from 

aily operation of the plant. 

In the field of DDM, the multilayer perceptron (MLP) 

 Nelles, 2020 ) network and recurrent neural networks (RNN) 

 Calderon et al., 1996; Narendra and Parthasarathy, 1990 ) are es- 

ablished methods for DDM. The MLP is the most widely known 

nd used neural network architecture ( Solomatine et al., 2008 ), 

nd referrers to a network of nodes where information is passed 

orward in the structure (known as feed-forward neural networks 

FFNN)). Some of the first examples where DDM is applied to 

WTPs are from the 1990s ( Côté et al., 1995; Bongards, 1999 ); 

owever, with the increasing accession to powerful computers, 

he application of DDM has increased rapidly though the years 

 Zhao et al., 2020 ). The most popular method to model the WWTP 

rocesses using DDM is the FFNN, and has been applied to pilot 

cale and full-scale WWTPs in various studies ( Meng et al., 2021; 

usin et al., 2021; Pisa et al., 2019b; Cao and Yang, 2018; Han 

t al., 2018; Wunsch et al., 2018; Aguado et al., 2009; Gaya et al., 

013; Bongards, 1999; Besharati Fard et al., 2020; Hwangbo et al., 

020; 2021 ). 

In DDM and ML literature, the FFNN has been outperformed 

y the recurrent neural network (RNN) when used for dynamic 

odeling and system identification ( Goodfellow et al., 2016; Sinha 

t al., 20 0 0; Lecun et al., 2015 ). The RNN takes advantage of its

eed-back loop to store past input information ( Wang, 2017 ). As 

 result, the model complexity and number of layers can be re- 

uced, compared to the FFNN. However, the conventional RNN 

also known as a vanilla RNN) is difficult to train as the stored 

nformation over several time intervals is limited in a short-term 

anner due to small or large error feed-back ( Wang, 2017 ). This 

s also known as the vanishing/exploding gradient issue. To solve 

he problem of the vanishing gradient, Hochreiter and Schmid- 

uber proposed the long short-term memory network (LSTM) in 

997 ( Hochreiter and Schmidhuber, 1997 ), which avoids the van- 

shing/exploding gradient issue by using three gated units in the 

euron structure. The LSTM is a very promising neural network ar- 

hitecture with internal dynamics controlled by a forget gate, in- 

ut gate and output gate ( Nelles, 2020; Wang, 2017; Hochreiter 

nd Schmidhuber, 1997; Pascanu et al., 2013 ). Most studies regard- 

ng LSTMs are published after 2015 ( Smagulova and James, 2019 ), 

owever, despite its only recent entry to the field of DDM, the ar- 

hitecture has already shown great performance in modeling and 

rediction of wastewater treatment processes. The LSTM network 

as been used to predict ammonium and total nitrogen concen- 

rations in WWTP benchmark scenarios using BSM2 ( Pisa et al., 

019a; 2019b ), and in full scale case studies to estimate WWTP 

 2 O emissions ( Hwangbo et al., 2021 ) from a univariate regression 

erspective. Published work tend to concern benchmark simulation 

tudies or univariate regression tasks using the LSTM as a predic- 

ion model. Hence, no studies has been found where data from a 

ull scale WWTP is used to test the estimation and prediction per- 
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Fig. 1. Schematic of the flow lines in the system. 
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ormance of the LSTM model performing a multivariate regression 

ask. 

Furthermore, the authors found that few studies regarding DDM 

f WWTPs discuss the hyperparameters of the model. The train- 

ng algorithm of data-driven models has parameters which heav- 

ly affect how the model is optimized to predict the output. Those 

re called hyperparameters, and there exists several methods to 

une and determine the optimum hyperparameters. Manual tun- 

ng is the most basic approach and usually only performs well 

ith good process understanding and expert knowledge within 

he field ( Goodfellow et al., 2016 ). Another approach is auto- 

atic hyperparameter tuning, where several methods exists; Grid 

earch ( Bergstra et al., 2011 ), random search ( Bergstra and Ben- 

io, 2012 ) and model based optimization such as Bayesian opti- 

ization ( Snoek et al., 2012 ). 

. Case study: Kolding WWTP 

The plant of interest is Kolding central WWTP located in Agtrup 

enmark which has a capacity of 125,0 0 0 population equivalent 

PE), and is currently operating with a load of approximately 65.5% 

 Blue Kolding, 2021 ). To remove phosphorus from the wastew- 

ter, the plant utilizes both chemical and biological phosphorus 

emoval. Chemical phosphorus removal (CPR) is the most com- 

on treatment strategy in which phosphorus is removed from 

he wastewater using chemical precipitation, where metal salts are 

dded to the wastewater causing the phosphorus to be incorpo- 

ated into suspended solids (SS) ( Bunce et al., 2018 ). Biological 

hosphorus removal (BPR) is performed using alternating anaer- 

bic and aerobic/anoxic conditions. Notoriously, BPR is one of the 

ore difficult processes to control in WWTPs, which has been ex- 

erienced at several WWTPs where the process suddenly can re- 

ease huge amounts of phosphorus in the effluent for reasons un- 

nown ( Ingildsen et al., 2006 ). 

.1. Operation and design 

The wastewater is led from the primary treatment to the bi- 

logical treatment and distributed via two lines to four tanks in 

hich the ASP takes place. This is illustrated in Fig. 1 . 

The plant is currently monitored and controlled in 

ubgrade TM ( Krüger, 2021 ); an online supervisory control and 

ata acquisition (SCADA) system developed by Krüger 1 . Chemical 

hosphorus removal (CPR) is utilized to precipitate phosphorus 

nto suspended solids (SS) by addition of iron (Fe(III)) at two 

ocations, which is illustrated in Fig. 1 with red arrows. In addi- 

ion to chemical precipitation, the plant also utilizes a particular 

trategy for biological phosphorus removal (BPR) developed by 

rüger. The BPR strategy is enabled when the plant experiences 

ow-load conditions, which is usually at night. During the low- 

oad periods, the BPR control signal (BP R f ocus ) is activated and 
1 www.kruger.dk/english 

l

i  

p

3 
rolonged denitrification periods can be imposed, where anaer- 

bic conditions are obtained to promote BPR. During the anoxic 

one, the phosphorus concentration may rise to a critical value, 

hich enables the control signal BP R sa fe , which enforces aeration 

n the reactors; establishing aerobic conditions to decrease the 

hosphorus concentration in the reactor. 

The SCADA system (Hubgrade TM ) controls all biological an 

hemical processes of the wastewater treatment plant using differ- 

nt modules . Henceforth, the only module of interest is the phos- 

horus module, and a block diagram of the phosphorus control 

ystem with a feed-back controller is shown in Fig. 2 . Metal salts 

re added to the process at two locations (indicated by 1 ©, 2 ©); 1 ©
njects to the mixed liquor of wastewater and sludge at the inlet 

o the biological reactors, and 2 © injects to the effluent from the 

iological treatment process (see Fig. 2 ). The notation used to de- 

ote the flow of chemical precipitant to the biological treatment 

nd the settling process is Q Me,bio and Q Me,set , respectively. 

.2. Data 

Data is acquired through the existing SCADA system, where the 

ample period varies from 1 to 5 minutes. Thus, all data logged 

ith a sampling period longer than 1 minute are up-sampled in 

rder to preserve the signals dynamics. 

Several control signals and sensor measurements are logged, 

hese signals can be categorized in four different types as stated 

elow: 

� Measurements (M) are sensor measurements of the processes. 
� Control signals (C) are signals generated by the current phos- 

phorus control module. Those signals are not included when 

modeling the process, as it would lead to an invalid model, 

should the control strategy be changed or improved in the fu- 

ture. They are however described to present a thorough system 

description. 
� Watchdogs (A) are alarm signals activated when certain signals 

exceed predefined limits. There are watchdogs monitoring the 

phosphorus concentration, inlet flow and set-point generation. 

The activation of a watchdog typically entail a different process 

mode (see below) to start. 
� Process Modes (P) are Boolean signals or integer code depict- 

ing the process mode in action. There are three process modes 

of interest to this work; chemical phosphorus removal, biolog- 

ical phosphorus removal and forced aeration when the phos- 

phorus concentration is too high. 

The current control scheme is shown in Fig. 2 , and available 

ata signals are listed in Table 1 . 

The input vector consists of 22 data signals, including all cru- 

ial watchdogs, process modes and several online measurements. 

s with many wastewater treatment processes, the phosphorus dy- 

amics are not well understood and known to be difficult to model 

ue to its nonlinearities ( Newhart et al., 2019 ). The phosphorus 

oncentration is affected by the wastewater characteristics, oper- 

tion conditions and environmental aspects - which all are con- 

tantly changing. This is evident from Fig. 3 and will be discussed 

ater in the following sections. 

Among the essential control signals are BP R f ocus and BP R sa fe 

long with a phase code, �, describing the conditions governing 

ach biological tank, watchdogs, W D , and the control signal de- 

icting whether or not the CPR strategy is utilized, CP R CT RL . 

All biological processes (nitrification, denitrification and BPR) 

re controlled using integer code to describe the conditions gov- 

rning each biological tank. A four digit code is used in the on- 

ine control system to describe the process for each of the biolog- 

cal lines shown in Fig. 1 . These codes are referred to as biological

hase codes, and they are presumed to have a major impact on 
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Fig. 2. Block diagram of the system. 

Table 1 

Notations used for the data signals. The type describes a measurement (M), control signals (C), alarm signals/watchdogs (A) or process 

modes/control signals (P). 

Symbol Type Description Unit 

P out,sp C Set-point for phosphorus in outlet mg/L 

Q Me,bio,sp C Set-point for flow of chemical precipitant to biology m 

3 /h 

Q Me,set,sp C Set-point for flow of chemical precipitant to settler m 

3 /h 

P out M Phosphorus concentration in outlet mg/L 

P bio M Phosphorus concentration in process tank mg/L 

Q in M Inflow of raw WW and return sludge m 

3 /h 

Q Me,bio M Flow for chemical precipitant to biology m 

3 /h 

Q Me,set M Flow for chemical precipitant to settler m 

3 /h 

T M Temperature. Can have the subscript bio or set 
◦C

DO M Dissolved oxygen mg/L 

pH M pH value of wastewater in biological tank –

SS M Suspended solids in biological tank kg/m 

3 

Q WS M Flow of waste sludge m 

3 /h 

Q RS M Flow of return sludge m 

3 /h 

SS WS M Suspended solids in waste sludge kg/m 

3 

SS RS M Suspended solids in return sludge kg/m 

3 

BPR f ocus P Enables when anoxic zones are created to enhance BPR –

BPR sa fe P Enables when forced aeration is used in BPR –

� P Phase code –

CT RL P Enables when chemical phosphorus removal is used –

W D A Watchdog –

Table 2 

Biological phase codes definition. 

� Description 

�in The tank that wastewater flows into. Takes a value of 1 or 2 

�out The tank that effluent flows from. Takes a value of 1 or 2 

�1 Conditions in tank 1. Takes a value of 0, 1 or 2. 

�2 Conditions in tank 2. Takes a value of 0, 1 or 2. 
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he phosphorus concentration in the reactors, especially when BPR 

s enabled. The meaning of each digit in the phase codes are de- 

cribed in Table 2 . 

As noted in Table 2 , digit �1 and �2 can take values between 

–2. They define the conditions in tank 1 and 2, respectively. The 

hree possible options are: 

0: Anaerobic conditions without aeration and mixing. 

1: Anoxic conditions (denitrification) without aeration and with 

mixing. 

2: Aerobic conditions (nitrification) with aeration and mixing. 

An example could be: The wastewater in biology line 1 flows to 

ank 1 and the effluent out of tank 2. In tank 1 there is nitrification

nd in tank 2 there is denitrification. The phase code, �, for biology 

ine 1 will accordingly be: 

�in �out �1 �2 

�
= 

�
1 2 2 1 

�
. 
4 
Monthly statistical compositions of the measurements (both in- 

uts and the output) are presented in Fig. 3 using boxplots, and a 

ime series plot is shown for the output. Investigating the boxplots 

f inputs ( Fig. 3 (a)-(g)), it is evident that the biochemical processes 

onsist of cyclostationary and strongly varying sub-processes. Fur- 

hermore, the statistical results illustrated in Fig. 3 show there is a 

arge amount of outliers in the data set. This is due to the nature 

f the current control algorithm and the ASP, where the phospho- 

us concentration is driven towards zero while variables such as 

issolved oxygen (DO) and inflow of chemical precipitant is con- 

rolled in a way where they often take a value of zero. 

The process under consideration cannot be actively excited, 

owever, the training data set still has to be designed by select- 

ng a data set from the gathered signals that is as representative 

s possible. With this aim, the entire data set is divided into three 

ubsets of data; training data, validation data and test data , and the 

artitioning is 80%, 10%, 10%, respectively. The data sets are de- 

igned such that a full year of data is utilized for model develop- 

ent (training), which should ensure the most representative data 

et and that information of the cyclostationary processes are incor- 

orated in the model. 

During training of the network, training data is used to opti- 

ize and update weights and biases each iteration while the vali- 

ation data is used to select the best parameters in order to avoid 

verfitting the model to the training data set. Hence, the valida- 

ion data set is not used directly for parameter optimization, but 
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