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a b s t r a c t 

This study presents a systematic framework to develop data-driven models for phosphorus concentra- 

tion in a full-scale wastewater treatment plant (WWTP). The dynamics of wastewater treatment exhibit 

nonlinear behavior, and are time varying, non-stationary, and coupled in a complex manner, which makes 

them difficult to predict using mechanistic models. Two long short-term memory (LSTM) models are pro- 

posed. The first estimates the phosphorus concentration using data describing environmental conditions 

and process operation, and the second model which additionally utilizes the previous phosphorus mea- 

surement. Additionally, the hyperparameters are tuned using Bayesian optimization, as this is an effective 

tool to determine the best model and prevent over-fitting and long training duration of the data-driven 

models. The two models show good prediction performances and are suitable to predict up to 24 hours 

into the future, with R 2 close to 0.7-0.8 for data well presented in the training data set. 

© 2022 The Authors. Published by Elsevier Ltd. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 

1. Introduction 

Wastewater treatment plants (WWTP) continuously face new 

challenges as more stringent effluent standards arises. Mathemati- 

cal modeling of WWTPs has, consequently, been widely established 

as a method used for research, plant design, optimization, design 

of control strategies, and general understanding of the processes 

( Garikiparthy et al., 2016; Stentoft et al., 2019 ). Several mechanis- 

tic models ( Henze et al., 20 0 0 ) and benchmark simulation models 

( Gernaey et al., 2004; Gernaey and Jeppsson, 2014; Vrecko et al., 

2006 ) have been proposed to model the treatment processes of 

WWTPs. These mechanistic models, also known as white-box mod- 

els, are derived by first principles meaning they are ”transpar- 

ent”, as they explicitly explains relations between the model in- 

put and output. The contrast to the white-box model is the black- 

box model which is derived solely from measurement data. In 

black-box models, the structure and the parameters are both deter- 

mined from data, meaning that no prior knowledge of the system 

is needed. 

This paper addresses the use of data-driven modeling (DDM) 

by developing two black-box models to describe the dynamics 

of wastewater treatment processes by utilizing data from a case 
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plant. The case study of this work considers removal of phospho- 

rus in the form of phosphate ( PO 

3 −
4 

-P ) at a WWTP which utilizes 

the activated sludge process (ASP). This focus point is chosen be- 

cause modeling and understanding the process of phosphorus re- 

moval is of key importance, as phosphorus contributes to eutroph- 

ication effects if led directly out to surrounding surface waters 

( Wilfert et al., 2015 ). Process understanding and accurate simula- 

tion models yields, furthermore, the best foundation for high per- 

formance process control. 

In this study, we present a systematic approach to model 

wastewater processes using data-driven models which are opti- 

mized to determine the best model parameters for the given task. 

Furthermore, we wish to discuss how the performance and uti- 

lization of a model depends on which input data is passed to the 

model. As such, the main contributions of this study are the fol- 

lowing: 

1. Using more than one year of measurements from a full-scale 

WWTP, we propose two multivariate LSTM models which esti- 

mates the phosphorus concentration in an ASP. The two models 

takes inputs such as: temperature, flow rate, dissolved oxygen, 

etc. The first model functions as an estimator; hence, its perfor- 

mance does not rely on actual phosphorus measurements for 

future step ahead predictions. The second model differs from 

the first, as previous phosphorus measurements are included 

as an input. This increases the model performance when the 
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measurements are available and makes the model performance 

dependent on true sensor measurements. With these two op- 

tions for modeling of complex industrial processes, we leave a 

choice for the developer to choose the most appropriate model 

for the desired application. 

2. We propose a systematic approach for dynamic modeling of 

multivariate systems, and suggests that many case studies and 

complex processes could be modeled effectively using this ap- 

proach. 

3. To ensure the optimum structure for the specific application, 

we optimize the architecture and training algorithm of the two 

LSTM models using Bayesian optimization for hyperparameter 

tuning. 

The rest of the paper is organized as follows: A thorough re- 

view of related literature is presented in Section 2 . The case plant 

is introduced in Section 3 along with the collected data and com- 

puting material. Section 4 presents the basic theory of the LSTM 

and highlights similarities of the two proposed LSTM networks. 

Furthermore, the method of hyperparameter tuning using Bayesian 

optimization is explained in this section. Section 5 presents exper- 

imental results of the estimation and future step ahead predictions 

using the proposed LSTM models. The results are compared and 

the two models are discussed both from a modeling and plant op- 

eration point of view. Finally, Section 6 summarizes this paper. 

2. Related work 

Modeling of WWTPs has been ongoing for decades with the 

activated sludge model (ASM) as one of the first successful at- 

tempts to model the ASP ( Henze et al., 2002 ). Mechanistic models 

like the ASM and the subsequent augmented ASM models (ASM2, 

ASM2d, ASM3) have provided a foundation for many WWTP opti- 

mization studies ( Hansen et al., 2021; Aguado et al., 2009; Bon- 

gards, 1999; Cao and Yang, 2018; Dias and Ferreira, 2009; Be- 

sharati Fard et al., 2020; Gaya et al., 2013; Han et al., 2018; 

Husin et al., 2021; Hwangbo et al., 2021; Keskitalo and Leiviskä, 

2015; Meng et al., 2021; Newhart et al., 2019; Pisa et al., 2019b; 

Stentoft et al., 2019; Zhao et al., 2020 ). Regarding phosphorus 

dynamics, Kazadi Mbamba et al. presents a simulation study in 

which phosphorus is modeled using a mechanistic kinetic model 

based on equilibrium approach of ion speciation and ion pair- 

ing ( Kazadi Mbamba et al., 2016 ). For this study, the benchmark 

simulation model no. 2 (BSM2) was calibrated in five steps and 

used to model the case plant. Similar studies have been pub- 

lished, where mechanistic models have been calibrated and uti- 

lized for simulation purposes ( Solon et al., 2017; Feldman et al., 

2017; Kazadi Mbamba et al., 2019; Flores-Alsina et al., 2021 ). How- 

ever, the problem remains a major challenge in both academia and 

industry as the wastewater processes are highly nonlinear, cou- 

pled and time-varying dynamic systems containing both physical 

and biochemical reactions and large time delay features ( Newhart 

et al., 2019; Kazadi Mbamba et al., 2019 ). Furthermore, a major 

drawback using mechanistic models of WWTPs is the complexity 

of the models, demand for prior knowledge and model calibra- 

tion before utilization ( Dias and Ferreira, 2009 ). In order to de- 

scribe coupled biological and chemical processes in the system, 

the mechanistic models often involve a very large number of state 

variables. To calibrate and utilize known mechanistic models for 

WWTPs, the model developer must acquire information obtained 

from laboratory-scale experiments, full-scale plant data such as 

those collected by online sensors, and default values from the liter- 

ature ( Stentoft et al., 2019; Kazadi Mbamba et al., 2016; 2019 ). As 

these three types of information can be difficult to collect, the de- 

veloper may be interested in another approach to model the pro- 

cesses of the WWTP. 

Data-driven modeling (DDM) and system identification is a re- 

search area based on computational intelligence (CI) and machine- 

learning (ML) methods with overlapping contributions from ar- 

tificial intelligence (AI), soft computing (SC) and data mining 

(DM) ( Solomatine et al., 2008 ). Recent advancements in DDM and 

nonlinear system identification provides the developer and the 

wastewater industry with an alternative to the mechanistic mod- 

els ( Newhart et al., 2019 ). As a result, DDM has gained accept- 

ability and is increasingly applied to model WWTPs ( Husin et al., 

2021; Zhao et al., 2020; Newhart et al., 2019; Dürrenmatt and Gu- 

jer, 2012 ). Another reason for the recent increase of applied DDM 

to WWTP may be due to the already existing data acquisition 

systems. In several countries - especially in Denmark - WWTPs 

are monitored using online sensor measurements of the different 

wastewater processes, making DDM very advantageous as models 

can be developed for simulation purposes using only data from 

daily operation of the plant. 

In the field of DDM, the multilayer perceptron (MLP) 

( Nelles, 2020 ) network and recurrent neural networks (RNN) 

( Calderon et al., 1996; Narendra and Parthasarathy, 1990 ) are es- 

tablished methods for DDM. The MLP is the most widely known 

and used neural network architecture ( Solomatine et al., 2008 ), 

and referrers to a network of nodes where information is passed 

forward in the structure (known as feed-forward neural networks 

(FFNN)). Some of the first examples where DDM is applied to 

WWTPs are from the 1990s ( Côté et al., 1995; Bongards, 1999 ); 

however, with the increasing accession to powerful computers, 

the application of DDM has increased rapidly though the years 

( Zhao et al., 2020 ). The most popular method to model the WWTP 

processes using DDM is the FFNN, and has been applied to pilot 

scale and full-scale WWTPs in various studies ( Meng et al., 2021; 

Husin et al., 2021; Pisa et al., 2019b; Cao and Yang, 2018; Han 

et al., 2018; Wunsch et al., 2018; Aguado et al., 2009; Gaya et al., 

2013; Bongards, 1999; Besharati Fard et al., 2020; Hwangbo et al., 

2020; 2021 ). 

In DDM and ML literature, the FFNN has been outperformed 

by the recurrent neural network (RNN) when used for dynamic 

modeling and system identification ( Goodfellow et al., 2016; Sinha 

et al., 20 0 0; Lecun et al., 2015 ). The RNN takes advantage of its 

feed-back loop to store past input information ( Wang, 2017 ). As 

a result, the model complexity and number of layers can be re- 

duced, compared to the FFNN. However, the conventional RNN 

(also known as a vanilla RNN) is difficult to train as the stored 

information over several time intervals is limited in a short-term 

manner due to small or large error feed-back ( Wang, 2017 ). This 

is also known as the vanishing/exploding gradient issue. To solve 

the problem of the vanishing gradient, Hochreiter and Schmid- 

huber proposed the long short-term memory network (LSTM) in 

1997 ( Hochreiter and Schmidhuber, 1997 ), which avoids the van- 

ishing/exploding gradient issue by using three gated units in the 

neuron structure. The LSTM is a very promising neural network ar- 

chitecture with internal dynamics controlled by a forget gate, in- 

put gate and output gate ( Nelles, 2020; Wang, 2017; Hochreiter 

and Schmidhuber, 1997; Pascanu et al., 2013 ). Most studies regard- 

ing LSTMs are published after 2015 ( Smagulova and James, 2019 ), 

however, despite its only recent entry to the field of DDM, the ar- 

chitecture has already shown great performance in modeling and 

prediction of wastewater treatment processes. The LSTM network 

has been used to predict ammonium and total nitrogen concen- 

trations in WWTP benchmark scenarios using BSM2 ( Pisa et al., 

2019a; 2019b ), and in full scale case studies to estimate WWTP 

N 2 O emissions ( Hwangbo et al., 2021 ) from a univariate regression 

perspective. Published work tend to concern benchmark simulation 

studies or univariate regression tasks using the LSTM as a predic- 

tion model. Hence, no studies has been found where data from a 

full scale WWTP is used to test the estimation and prediction per- 
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Fig. 1. Schematic of the flow lines in the system. 

formance of the LSTM model performing a multivariate regression 

task. 

Furthermore, the authors found that few studies regarding DDM 

of WWTPs discuss the hyperparameters of the model. The train- 

ing algorithm of data-driven models has parameters which heav- 

ily affect how the model is optimized to predict the output. Those 

are called hyperparameters, and there exists several methods to 

tune and determine the optimum hyperparameters. Manual tun- 

ing is the most basic approach and usually only performs well 

with good process understanding and expert knowledge within 

the field ( Goodfellow et al., 2016 ). Another approach is auto- 

matic hyperparameter tuning, where several methods exists; Grid 

search ( Bergstra et al., 2011 ), random search ( Bergstra and Ben- 

gio, 2012 ) and model based optimization such as Bayesian opti- 

mization ( Snoek et al., 2012 ). 

3. Case study: Kolding WWTP 

The plant of interest is Kolding central WWTP located in Agtrup 

Denmark which has a capacity of 125,0 0 0 population equivalent 

(PE), and is currently operating with a load of approximately 65.5% 

( Blue Kolding, 2021 ). To remove phosphorus from the wastew- 

ater, the plant utilizes both chemical and biological phosphorus 

removal. Chemical phosphorus removal (CPR) is the most com- 

mon treatment strategy in which phosphorus is removed from 

the wastewater using chemical precipitation, where metal salts are 

added to the wastewater causing the phosphorus to be incorpo- 

rated into suspended solids (SS) ( Bunce et al., 2018 ). Biological 

phosphorus removal (BPR) is performed using alternating anaer- 

obic and aerobic/anoxic conditions. Notoriously, BPR is one of the 

more difficult processes to control in WWTPs, which has been ex- 

perienced at several WWTPs where the process suddenly can re- 

lease huge amounts of phosphorus in the effluent for reasons un- 

known ( Ingildsen et al., 2006 ). 

3.1. Operation and design 

The wastewater is led from the primary treatment to the bi- 

ological treatment and distributed via two lines to four tanks in 

which the ASP takes place. This is illustrated in Fig. 1 . 

The plant is currently monitored and controlled in 

Hubgrade TM ( Krüger, 2021 ); an online supervisory control and 

data acquisition (SCADA) system developed by Krüger 1 . Chemical 

phosphorus removal (CPR) is utilized to precipitate phosphorus 

into suspended solids (SS) by addition of iron (Fe(III)) at two 

locations, which is illustrated in Fig. 1 with red arrows. In addi- 

tion to chemical precipitation, the plant also utilizes a particular 

strategy for biological phosphorus removal (BPR) developed by 

Krüger. The BPR strategy is enabled when the plant experiences 

low-load conditions, which is usually at night. During the low- 

load periods, the BPR control signal (BP R f ocus ) is activated and 

1 www.kruger.dk/english 

prolonged denitrification periods can be imposed, where anaer- 

obic conditions are obtained to promote BPR. During the anoxic 

zone, the phosphorus concentration may rise to a critical value, 

which enables the control signal BP R sa fe , which enforces aeration 

in the reactors; establishing aerobic conditions to decrease the 

phosphorus concentration in the reactor. 

The SCADA system (Hubgrade TM ) controls all biological an 

chemical processes of the wastewater treatment plant using differ- 

ent modules . Henceforth, the only module of interest is the phos- 

phorus module, and a block diagram of the phosphorus control 

system with a feed-back controller is shown in Fig. 2 . Metal salts 

are added to the process at two locations (indicated by 1 ©, 2 ©); 1 ©
injects to the mixed liquor of wastewater and sludge at the inlet 

to the biological reactors, and 2 © injects to the effluent from the 

biological treatment process (see Fig. 2 ). The notation used to de- 

note the flow of chemical precipitant to the biological treatment 

and the settling process is Q Me,bio and Q Me,set , respectively. 

3.2. Data 

Data is acquired through the existing SCADA system, where the 

sample period varies from 1 to 5 minutes. Thus, all data logged 

with a sampling period longer than 1 minute are up-sampled in 

order to preserve the signals dynamics. 

Several control signals and sensor measurements are logged, 

these signals can be categorized in four different types as stated 

below: 

• Measurements (M) are sensor measurements of the processes. 
• Control signals (C) are signals generated by the current phos- 

phorus control module. Those signals are not included when 

modeling the process, as it would lead to an invalid model, 

should the control strategy be changed or improved in the fu- 

ture. They are however described to present a thorough system 

description. 
• Watchdogs (A) are alarm signals activated when certain signals 

exceed predefined limits. There are watchdogs monitoring the 

phosphorus concentration, inlet flow and set-point generation. 

The activation of a watchdog typically entail a different process 

mode (see below) to start. 
• Process Modes (P) are Boolean signals or integer code depict- 

ing the process mode in action. There are three process modes 

of interest to this work; chemical phosphorus removal, biolog- 

ical phosphorus removal and forced aeration when the phos- 

phorus concentration is too high. 

The current control scheme is shown in Fig. 2 , and available 

data signals are listed in Table 1 . 

The input vector consists of 22 data signals, including all cru- 

cial watchdogs, process modes and several online measurements. 

As with many wastewater treatment processes, the phosphorus dy- 

namics are not well understood and known to be difficult to model 

due to its nonlinearities ( Newhart et al., 2019 ). The phosphorus 

concentration is affected by the wastewater characteristics, oper- 

ation conditions and environmental aspects - which all are con- 

stantly changing. This is evident from Fig. 3 and will be discussed 

later in the following sections. 

Among the essential control signals are BP R f ocus and BP R sa fe 

along with a phase code, φ, describing the conditions governing 

each biological tank, watchdogs, W D , and the control signal de- 

picting whether or not the CPR strategy is utilized, CP R CT RL . 

All biological processes (nitrification, denitrification and BPR) 

are controlled using integer code to describe the conditions gov- 

erning each biological tank. A four digit code is used in the on- 

line control system to describe the process for each of the biolog- 

ical lines shown in Fig. 1 . These codes are referred to as biological 

phase codes, and they are presumed to have a major impact on 

3 
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Fig. 2. Block diagram of the system. 

Table 1 

Notations used for the data signals. The type describes a measurement (M), control signals (C), alarm signals/watchdogs (A) or process 

modes/control signals (P). 

Symbol Type Description Unit 

P out,sp C Set-point for phosphorus in outlet mg/L 

Q Me,bio,sp C Set-point for flow of chemical precipitant to biology m 

3 /h 

Q Me,set,sp C Set-point for flow of chemical precipitant to settler m 

3 /h 

P out M Phosphorus concentration in outlet mg/L 

P bio M Phosphorus concentration in process tank mg/L 

Q in M Inflow of raw WW and return sludge m 

3 /h 

Q Me,bio M Flow for chemical precipitant to biology m 

3 /h 

Q Me,set M Flow for chemical precipitant to settler m 

3 /h 

T M Temperature. Can have the subscript bio or set 
◦C

DO M Dissolved oxygen mg/L 

pH M pH value of wastewater in biological tank –

SS M Suspended solids in biological tank kg/m 

3 

Q WS M Flow of waste sludge m 

3 /h 

Q RS M Flow of return sludge m 

3 /h 

SS WS M Suspended solids in waste sludge kg/m 

3 

SS RS M Suspended solids in return sludge kg/m 

3 

BPR f ocus P Enables when anoxic zones are created to enhance BPR –

BPR sa fe P Enables when forced aeration is used in BPR –

φ P Phase code –

CT RL P Enables when chemical phosphorus removal is used –

W D A Watchdog –

Table 2 

Biological phase codes definition. 

φ Description 

φin The tank that wastewater flows into. Takes a value of 1 or 2 

φout The tank that effluent flows from. Takes a value of 1 or 2 

φ1 Conditions in tank 1. Takes a value of 0, 1 or 2. 

φ2 Conditions in tank 2. Takes a value of 0, 1 or 2. 

the phosphorus concentration in the reactors, especially when BPR 

is enabled. The meaning of each digit in the phase codes are de- 

scribed in Table 2 . 

As noted in Table 2 , digit φ1 and φ2 can take values between 

0–2. They define the conditions in tank 1 and 2, respectively. The 

three possible options are: 

0: Anaerobic conditions without aeration and mixing. 

1: Anoxic conditions (denitrification) without aeration and with 

mixing. 

2: Aerobic conditions (nitrification) with aeration and mixing. 

An example could be: The wastewater in biology line 1 flows to 

tank 1 and the effluent out of tank 2. In tank 1 there is nitrification 

and in tank 2 there is denitrification. The phase code, φ, for biology 

line 1 will accordingly be: [
φin φout φ1 φ2 

]
= 

[
1 2 2 1 

]
. 

Monthly statistical compositions of the measurements (both in- 

puts and the output) are presented in Fig. 3 using boxplots, and a 

time series plot is shown for the output. Investigating the boxplots 

of inputs ( Fig. 3 (a)-(g)), it is evident that the biochemical processes 

consist of cyclostationary and strongly varying sub-processes. Fur- 

thermore, the statistical results illustrated in Fig. 3 show there is a 

large amount of outliers in the data set. This is due to the nature 

of the current control algorithm and the ASP, where the phospho- 

rus concentration is driven towards zero while variables such as 

dissolved oxygen (DO) and inflow of chemical precipitant is con- 

trolled in a way where they often take a value of zero. 

The process under consideration cannot be actively excited, 

however, the training data set still has to be designed by select- 

ing a data set from the gathered signals that is as representative 

as possible. With this aim, the entire data set is divided into three 

subsets of data; training data, validation data and test data , and the 

partitioning is 80%, 10%, 10%, respectively. The data sets are de- 

signed such that a full year of data is utilized for model develop- 

ment (training), which should ensure the most representative data 

set and that information of the cyclostationary processes are incor- 

porated in the model. 

During training of the network, training data is used to opti- 

mize and update weights and biases each iteration while the vali- 

dation data is used to select the best parameters in order to avoid 

overfitting the model to the training data set. Hence, the valida- 

tion data set is not used directly for parameter optimization, but 

4 
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Fig. 3. Graphical descriptions of sensor data from July 2020 to August 2021; (a) - (g): boxplots of inputs, (h): boxplot of the output, and (i): time series plot of the output. 

solely to achieve generalizability of the model. The test data set is 

excluded from the training process and used to evaluate the model 

performance on new data. If the recovered models shows great 

performance on new data which is previously unseen, the model 

is generalizable. 

3.3. Software and hardware 

The software used in this work is MATLAB R2020b, where the 

Deep Learning Toolbox ( MathWorks, a ) is used to train and vali- 

date the neural network while the Statistics and Machine Learning 

Toolbox ( MathWorks, b ) is used for the Bayesian Optimization of 

the hyperparameters. The framework of the machine learning and 

statistics toolbox ( MathWorks, b ) is used to perform the Bayesian 

optimization on the LSTM model using the function bayesopt . Com- 

putations are performed on a device with Intel Core i7-6820HQ 

Quad Core 2.70GHz, 3.60GHz Turbo, 8MB 45W , with a graphics chip 

Nvidia Quadro M30 0 0M w/4GB GDDR5 dedicated memory . 

4. Theory and methods 

Two dynamic models with different purpose and applicability 

are proposed in this work; one to use as an estimator and an- 

other to predict the phosphorus concentration using previous sen- 

sor measurements. This section describes the structure of the LSTM 

model, a special type of RNN with gated units that incorporates 

long term memory to the model, which is used to model the mul- 

tivariate system. Finally, the Bayesian optimization used for hyper- 

parameter tuning of the LSTM is described. 

4.1. Dynamic model 

LSTMs are designed to learn long-term dependencies and are 

widely used for tasks such as speech recognition, natural language 

processing and other pattern recognition applications. Over the last 

decade, the LSTM has also been applied for system identification 

( Wang, 2017; Hwangbo et al., 2021; Lanzetti et al., 2019 ), where 

it has shown to outperform more established methods like the 

vanilla RNN and MLP. The mathematical formulation of a LSTM 

cell at time t with input x t and hidden states h t is given in 

equation (1) . 

f t = σ (W f h t−1 + U f x t + b f ) 
i t = σ (W i h t−1 + U i x t + b i ) 
g t = tanh (W g h t−1 + U g x t + b g ) 
c t = f t ◦ c t−1 + i t ◦ g t 

o t = σ (W h h t−1 + U o x t + b o ) 
h t = o t ◦ tanh c t 

(1) 

5 
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Fig. 4. The LSTM cell architecture. 

The matrices W ∗ and U ∗ contain the weights of the input and 

recurrent connections where the subscript ∗ can either be the for- 

get gate ( f ), input gate ( i ), output gate ( o) or cell update ( g). The 

bias is described by b ∗, the cell state by c t and the operator ◦ de- 

notes the element-wise multiplication of two vectors while σ is a 

sigmoid function. Fig. 4 presents the inner architecture of an LSTM 

cell. 

The two proposed models differ in structure as Model 1 utilizes 

the input vector given in Eq. (2) while Model 2 uses the input 

vector given in Eq. (3) . 

x t = 

[
u t 

]
(2) 

x t = 

[
u t 

y t−d 

]
(3) 

In Eqs. (2) and (3) , u t denotes a vector of the 22 data signals 

described in Section 3.2 , while y t−d denotes the d’th past process 

output, i.e. the d’th past phosphorus measurement. 

In all simplicity, Model 2 is an augmentation of Model 1, where 

previous sensor measurements of the process output is used as an 

input, hence making the Model 2 more sensitive to measurement 

noise, and leaving a demand for a sensor. 

In control literature, d is commonly chosen to be 1 to simu- 

late a discrete dynamic model. However, the phosphorus measure- 

ments are sampled with 1 minute intervals even though the sensor 

only provide new measurements every 4–5 minutes. As a result, 

the signal is up-sampled using zero-order hold, meaning that up 

to 5 consecutive data points are identical. This issue expresses that 

y t = y t−1 most of the time, meaning that the risk of training a per- 

sistence model using d = 1 is very high. To work around this issue 

and ensure that y t � = y t−d , we use d = 5 in this work. The reader is 

referred to Section 5 for a further discussion on the issue of devel- 

oping a persistence model and the advantages and limitations to 

the two specific models. 

Similar to all other neural networks, the LSTM network can be 

constructed as deep neural networks, meaning that several LSTM 

layers can be stacked and connected internally. This yields two 

structure-related tuning parameters for the LSTM: 

• Number of hidden layers 
• Number of units in each layer 

A model’s capacity describes the ability to fit a wide variety of 

functions, and the number of layers and number of hidden units in 

a layer are two hyperparameters that affects both the training pro- 

cess and the model capacity. However, a high model capacity is not 

necessarily preferred, as high capacity may overfit and memorize 

properties of the training data. Contrary, a model with low capac- 

ity may struggle to fit to the training data. In this work, the num- 

ber of hidden layers and number of hidden units in each layer are 

included in a Bayesian optimization algorithm along with several 

other hyperparameters. The aim is to select optimum hyperparam- 

eters of the LSTM models, and build the models with a capacity 

that matches the complexity of the task. 

4.2. Hyperparameter tuning 

As is the case with most deep learning algorithms, the LSTM 

network has several hyperparameters that affects many aspects of 

the algorithm’s behavior. Some hyperparameters affect the need 

for computational power, time or memory cost of running the al- 

gorithm. Other hyperparameters affect the performance of the re- 

covered model and its ability to predict accurate results when de- 

ployed on new data. Usually, neural networks have between 10–50 

hyperparameters, depending on how the model is parameterized 

and how many parameters the developer has chosen to fix at a 

default value ( Bergstra et al., 2011 ). In any case, the task of tuning 

the hyperparameters can be time-consuming and difficult, if done 

manually, as it requires understanding of how each hyperparame- 

ter affects the algorithms and how neural network models achieve 

good generalization ( Goodfellow et al., 2016 ). Hence, there is great 

appeal for automatic tuning of hyperparameters, which in many 

cases is preferred if the computational power is available. 

Automatic hyperparameter selection reduces the need for ex- 

pert knowledge and rules of thumb, but they often require much 

more computational power ( Goodfellow et al., 2016 ). Henceforth 

the term hyperparameter optimization is used to describe the au- 

tomatic tuning of hyperparameters for the LSTM models. Sev- 

eral methods exists for automatic tuning of hyperparameters; grid 

search ( Bergstra et al., 2011 ), random search ( Bergstra and Ben- 

gio, 2012 ) and model based optimization such as Bayesian op- 

timization ( Snoek et al., 2012 ) are some of the commonly used 

methods. Common for all the automatic hyperparameter tuning 

strategies is that they wrap an optimization algorithm around 

the problem, hence hides the hyperparameters for the developer. 

Bayesian optimization is applied in this work to identify the best 

hyperparameters of an LSTM network, as it has shown great perfor- 

mance in research studies ( Victoria and Maragatham, 2021; Snoek 

et al., 2012 ). Bayesian optimization is especially advantageous for 

problems where function evaluation is expensive (high duration), 

not easily differentiable or expressive. 

There are many hyperparameters which can be included to op- 

timize the training and performance of the recovered model. A 

thorough evaluation of different hyperparameters of the LSTM is 

presented in ( Reimers and Gurevych, 2017 ) where several LSTM 

networks for sequence labeling tasks are presented. Contrary to 

many other studies where the focus lies on identifying the spe- 

cific configuration that performs best on the given task, the study 

by Reimers and Gurevych focus on finding design choices that per- 

form robustly. This means that the results are not task specific, but 

yields good performance when the architecture is applied to new 

tasks or new domains. In this study, we benefit from the study of 

hyperparameters ( Reimers and Gurevych, 2017 ), such that we can 

reduce the number of hyperparameters to be tuned, and focus on 

five important parameters: 

• Learning rate 
• Number of layers 
• Number of hidden units 
• Weight decay coefficient ( L 2 regularization) 
• Minibatch size 

One of the hyperparameters set to default values are the solver, 

where adam has shown to produce stable and better results than 

other solvers ( Reimers and Gurevych, 2017 ). Similarly, dropout reg- 

ularization is implemented as it has show superior to no-dropout 
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( Reimers and Gurevych, 2017 ), and is implementable in the soft- 

ware used in this work. 

Bayesian optimization attempts to minimize an objective func- 

tion, f (x ) in a bounded domain for x . For the task of regression, 

mean squared error (MSE) is often chosen as the objective func- 

tion, and is also used in this work. The three key elements to 

Bayesian optimization: 

1. A Gaussian process (GP) model of the objective function. It is 

assumed that the objective function values are drawn from a 

Gaussian process so that the observations { x n , y n } N n =1 are of the 

form: 

y n ∼ N ( f (x n ) , ν) (4) 

In which x contains the hyperparameters to be optimized and 

ν is the variance of the noise introduced into the observations. 

2. A Bayesian update procedure at each new evaluation of the ob- 

jective function. 

3. An acquisition function, a (x ) , that determines the next point 

x next to be evaluated as x next = argmax x ∈X a (x ) . 

The covariance function is a crucial element of the GP prior, 

as it expresses the similarity between two function values; f (x i ) 

and f (x j ) . The covariance function (also known as kernel func- 

tion ) can be expressed as k (x i , x j | θ ) , where θ is a vector of ker- 

nel parameters. Together, the kernel function and acquisition func- 

tion constitute two important choices for the Bayesian optimiza- 

tion algorithm. Expected-improvement-per-second-plus is utilized as 

acquisition function, as serves as the default option in MATLAB 

and, furthermore, show great performance for machine learning 

applications ( Snoek et al., 2012 ). The automatic relevance determi- 

nation (ARD) Matérn 5/2 kernel function is chosen for this work, as 

it has shown to outperform other (MATLAB built-in) kernel func- 

tions such as: squared exponential, ARD squared exponential , and 

ARD Matern 3/2 ( Snoek et al., 2012 ). 

With all choices established, the algorithm is then executed as 

follows: 

1. Evaluate y i = f (x i ) for a random point x i taken within the hy- 

perparameter bounds. 

2. Update the Gaussian process model of f (x ) to obtain a poste- 

rior over functions. 

3. Find the new point that maximizes the acquisition function, 

a (x ) 

Step 2 and 3 are repeated until a specified stopping criterion, 

such as fixed number of iterations or a fixed time is reached. The 

objective function is defined to take the following steps for each 

iteration, k ; 

1. Take the values of the hyperparameters as inputs. The bayesopt 

function calls the objective function with the current values, x k 
of the hyperparameters. 

2. Define the network with the x k hyperparameters. 

3. Train and validate the network. 

4. Save the validation error and the used hyperparameters x k . 

5. Return the validation error. 

5. Results and discussion 

Firstly, Bayesian optimization is applied to determine the op- 

timum hyperparameters for the two models. Secondly, the LSTM 

models are trained on the training data set and evaluated on a test 

data set, starting with Model 1, which functions as an estimator 

and can be used for process predictions - continuing to Model 2, 

which can only be used for process predictions. Lastly, the perfor- 

mance of the two models is compared and evaluated while advan- 

tages and disadvantages of both models are discussed. 

Table 3 

Hyperparameters that are included in the optimization algorithm and the corre- 

sponding search bounds. 

Hyperparameter Optimization range 

L 2 regularization coef. [1 · 10 −10 0 . 01] 

Learning rate [0 . 01 1] 

Mini-batch size [[4320 28800]] 

Hidden Layers [1 5] 

Hidden units in each hidden layer [50 400] 

Table 4 

Optimum hyperparameter values determined using Bayesian optimization. 

Hyperparameter Model 1 Model 2 

L 2 regularization coefficient 1 . 34 · 10 −10 1 . 14 · 10 −9 

Learning rate 0.0101 0.0162 

Mini-batch size 8066 5167 

Hidden Layers 4 2 

Hidden units 82 92 

5.1. Bayesian optimization 

Bayesian hyperparameter tuning is applied to obtain an opti- 

mum LSTM structure with a capacity that matches the complex- 

ity of the task. The learning rate, weight decay, mini-batch size 

and depth and width of the network are included in the optimiza- 

tion algorithm, and the appertaining search ranges, where the op- 

timum values are to be found within, are given in Table 3 . De- 

fault values are defined for the solver and the dropout value; Adam 

( Kingma and Lei Ba, 2017 ) is chosen as the solver and the dropout 

probability is set to 0.5. 

The optimization range for the mini-batch size is chosen so that 

the data batches are containing between 3 and 20 days of data. 

To best utilize the power of Bayesian optimization, at 

least 30 objective function evaluations should be performed 

( MathWorks, b ). The minimum objective of each iteration is 

tracked and shown in Fig. 5 . For both models, we see that the lo- 

cal minimum of the cost function; the optimum hyperparameters; 

were found no later than iteration 15. However, from Fig. 5 a, it is 

evident that the search space is much more unpredictable com- 

pared to Fig. 5 b, since the estimated minimum objective oscillates 

and rarely predicts correctly. This indicates that for the optimiza- 

tion of Model 1, the choice of hyperparameter values impact the 

performance of the model less than predicted. 

A subset of approximately 4 days is used to perform the 

Bayesian optimization. The minimum objective was achieved with 

the hyperparameter values listed in Table 4 . 

5.2. Model dynamics 

Two models are proposed in this work, with a different 

desired purpose and available input information, as shown in 

equations (2) and (3) . Model 1 was trained and tested with the 

available plant data. The benefit of this model is that it does not 

include the phosphorus measurement as an input, meaning that 

this model functions as an estimator. 

Model 2 was trained and tested on the same data as Model 

1, and the performance of the two models is evaluated and com- 

pared. The second model is presumed to perform better than the 

first, but with the disadvantage of relying on true phosphorus sen- 

sor measurements as input to the model. 

The model quality is typically measured as a function of the er- 

ror between the (disturbed) process output and the model output 

( Nelles, 2020 ). In this work, the optimum LSTM network structures 

determined using Bayesian optimization will be evaluated based 

on the following performance measures: 
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Fig. 5. Bayesian optimization of hyperparameters in the LSTM; (a) for Model 1 and (b) for Model 2. 

Fig. 6. Training and test performance of Model 1. This figure shows (a): a section of the training data set and (b):the entire test data set. 

• Mean squared error (MSE) 
• Goodness of fit (GoF) given by normalized root mean squared 

error (NRMSE): GoF = 1 - NRMSE) 
• Coefficient of determination ( R 2 ) 
• Time series plots 
• Cross-correlograms 

5.2.1. Model 1: Without P as input 

The first model is trained and tested on the data set, and a sec- 

tion of the training data is shown in Fig. 6 a. Fig. 6 a(top) shows a 

time series plot of 5 month to visualize the varying system dynam- 

ics over longer periods, and how the model in some periods fails 

to estimate high phosphorus concentrations in the outer range of 

the data spectrum. In Fig. 6 a(top), two periods are marked with 

blue and red background color, respectively, and these periods are 

shown in Fig. 6 a(bottom left and right) with corresponding back- 

ground. The two zoomed plots illustrate how the model captures 

the dynamics of the system. In the period February 13, 0 0:0 0 - 

12:00, the data shows a significantly higher magnitude of phos- 

phorus concentration compared to the model estimate, indicating 

unmodeled dynamics. 

The model is evaluated on the test data set which is previously 

unseen to the model, and results are shown in Fig. 6 (b). Similarly 

to the evaluation on the training data set, the model is consider- 

ably fit to estimate low concentrations, but lacks precision when 

the concentration is high. 

Note that there are two periods in the test data set, which dif- 

fers significantly from the rest of the data set. This is the 1-day 

period from July 29th to July 30th and also the 2-day period from 

August 7th to august 9th. In those periods the phosphorus con- 

centration is very low ( ≤ 0 . 1 [mg/L]) and very high ( ≥ 3 . 3 [mg/L]), 

respectively. The explanation of this is that heavy rainfall was oc- 

curring thus activating a watchdog called storm water mode . During 

the two periods, the plant has lead wastewater in and out through 

tank 2, only performing mechanical treatment of the wastewater 

(and hence no biological treatment). The phase code for both peri- 

ods was constant at: 

[
φin φout φ1 φ2 

]
= 

[
2 2 0 0 

]
. 
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Table 5 

Statistics for the estimation performance on test data. 

MSE GoF R 2 

Model 1 0.22 0.10 0.19 

Model 2 0.037 0.37 0.87 

Fig. 7. Cross-correlation between target value and estimate for Model 1. 

The two periods represent rare cases of +24 hours with criti- 

cal conditions (heavy rainfall), where the nutrient removal strategy 

is given a lower priority. Hence, this kind of system behavior is 

not represented in the training data, and it can therefore not be 

described by the model. To obtain a well performing data-driven 

model, all possible process behavior must be represented within 

the training data set. 

Investigating Fig. 6 , it is clear that the process is oscillating with 

higher amplitudes than the model estimate, which indicates that 

the model does not receive the necessary information in the in- 

puts to estimate the oscillating behavior properly. The information 

which triggers the concentration is clearly available for the model, 

as the model estimate overall follows the dynamic behavior of the 

process. Since all measurable properties of the wastewater com- 

position are already included for the estimation, it is presumed 

to lack information about the wastewater fauna which is not yet 

available through sensor measurements - supporting the claim that 

the process is complicated and difficult to model. 

Several statistics are given in Table 5 to use as performance 

measures. The table show performance measures only for the test 

data (excluding the two rare cases with heavy rainfall described 

above), and serves as a tool for comparing model estimation for 

both Model 1 and Model 2. 

The cross-correlation between two signals provides a measure 

of similarity, and can be used to evaluate the performance of the 

model and detect if the model lags or leads the target value. A 

peak at lag 0 imply that the model estimate follows the dynamic 

behavior without any lead or lag, and a normalized maximum 

cross-correlation of 1 indicates proportionality between the model 

estimate and the target values. 

A cross-correlogram of the target value and estimate using 

Model 1 is shown in Fig. 7 . As the dynamics of the process are 

rather slow compared to the sampling interval of the signals (1 

minute), the cross-correlation is naturally high around lag 0. Nev- 

ertheless, the maximum cross-correlation of the two signals is 

found at lags 0 where it takes the normalized value of 0.61, in- 

dicating that the model neither leads nor lags the actual process 

dynamics. 

5.2.2. Model 2: With P as input 

To properly compare the two network structures, Model 2 is 

trained and evaluated similarly to Model 1. Fig. 8 a(top) shows a 

time series plot of 5 months to visualize the varying system dy- 

namics over longer periods, and the zoomed plots in the bottom 

left and right corner shows the same periods as depicted in Fig. 6 . 

Contrary to Model 1, Model 2 performs well on both low and high 

concentrations of phosphorus. Investigating the test data perfor- 

mance in Fig. 8 (b) supports the immediate indication that Model 

2 outperforms Model 1. 

Table 5 shows the statistics for the estimation on test data. The 

performance measures clearly show an increased model perfor- 

mance when comparing Model 2 to Model 1. The MSE is reduced 

while the GoF and R 2 have increased. 

When training a neural network where a previous system out- 

put ( y t−d ) is used as an input to the model, it can result in a per- 

sistence model, where the estimate, ˆ y t is simply given as y t−d . Ex- 

amining Fig. 8 b(bottom left), we see that the model estimate seem 

to lag the target signal. 

Plotting the cross-correlation between the target and estimated 

value in Fig. 9 , we see a maximum cross-correlation value close to 

1 at time lag -5. 

The combination of high sampling frequency, low sensor reso- 

lution of the phosphorus measurement and slow system dynamics 

all contribute to the overall high cross-correlation around lag 0 in 

Fig. 9 . However, the maximum cross-correlation occurring at time 

lag -5 indicates that the model uses the previous value as estimate 

for the next value, or at least depend heavily upon it. The validity 

of this statement is tested by utilizing the model for future predic- 

tions of phosphorus concentration where the sensor measurement 

is not available. Assuming that all future inputs except the phos- 

phorus concentration are known in the prediction period, Model 2 

is then applied to perform k-step ahead predictions by substituting 

y t−d in equation (3) with the previous model prediction, ˆ y t−d . 

The input vector consists of roughly two types of inputs; (1) ac- 

tuators, which are altered by the SCADA system to control the pro- 

cess, and (2) known disturbances, which are conditions that cannot 

be controlled by the SCADA system (pH, temperature, etc.) but are 

measured to monitor the process. The assumption that all future 

inputs are known in the prediction time period is acceptable for 

the following reasons: 

• Actuators are naturally known and can be controlled freely 

within practical limitations. 
• Known disturbances can either be presumed constant for a 

short time period, or presumed predicted using supplemen- 

tary/additional dynamic models. 

For this work, the known disturbances are presumed predicted 

using dynamic models with a 100% accuracy. We leave the task 

of developing those models to future work, and assume ”perfect”

models. 

Predictive performance of the model is evaluated with data 

from four periods of the data set, chosen arbitrarily among periods 

of normal operation without any (known) problems. In Fig. 10 , the 

prediction performance of the two models are compared by utiliz- 

ing the models to predict 720 and 1440 time steps ahead corre- 

sponding to 12 and 24 hours, respectively. Statistical measures for 

the four periods shown in Fig. 10 are given in Table 6 . During two 

of the periods (shown in Figs. 10 (b) and 10 (d)), the storm-water- 

mode is partly activated. Those periods are included to evaluate 

the model performance when the water flow has increased due to 

rainfall. 

In Fig. 10 , the first two hours show estimation of the phospho- 

rus concentration, where Model 2 uses true PO 

3 −
4 

-P measurements 

as inputs. The stippled vertical line indicates the transition from 

estimation to prediction, where in prediction, ˆ y t−d is used to pre- 

dict the current concentration, y t . 

Figure 10 (a) shows a period where the two models both strug- 

gle to estimate the true amplitude of the phosphorus concentration 

in the first 4 hours of the timeline. However, when the measured 

concentration decreases to around 1 mg/L, the two models predict 

the concentration with high accuracy; hence, indicating that peri- 

ods of high phosphorus concentration are not well represented in 

the training data set. This statement is, furthermore, supported by 

the nature of the current control module, which aims to reduce 

the phosphorus concentration. 
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Fig. 8. Training and test performance of Model 2. This figure shows (a): a section of the training data set and (b):the entire test data set. 

Table 6 

Statistics for the four periods in Fig. 10 . For convenience, the best performing model for each period with respect to the given metric is 

marked with bold font. 

MSE GoF R 2 

Model 1 Model 2 Model 1 Model 2 Model 1 Model 2 

Period (a) 0.044 0.045 0.27 0.26 0.46 0.46 

Period (b) 0.30 0.24 0.33 0.40 0.55 0.64 

Period (c) 0.18 0.31 0.12 –0.16 0.22 –0.35 

Period (d) 0.15 0.094 0.42 0.54 0.66 0.79 

Fig. 9. Cross-correlation between target value and estimate for Model 2. 

The period shown in Fig. 10 (b) appears to be well represented 

in the training data, as the two models show high prediction per- 

formance for this region. The only exception is at the time period 

06:0 0-08:0 0, where both models fail to predict the high concen- 

tration. In the same period, Model 2 predicts slower dynamics than 

Model 1 and the real process, hence indicating that Model 2 does 

not truly capture the effect of the chemical precipitant, and de- 

pends heavily on the previous phosphorus measurement. 

In Fig. 10 (c), both models show poor prediction performance 

(the worst of the four periods shown in Fig. 10 ). The figure indi- 

cates that the two models are triggered by the same conditions, 

as we observe concentration increase and decrease simultaneously. 

Contrary to the evaluation of period (a), Model 1 seem to estimate 

the amplitude better than Model 2 in period (c). 

A 24 h period where both models show great performance is 

presented in Fig. 10 (d). Similar to period (b), we see high perfor- 

mance metrics in Table 6 . However, as observed in period (b), the 

predictions of Model 2 show slower dynamics compared to the ob- 

served dynamics and estimates using Model 1. 

From Fig. 10 we see that the model performances depends 

mainly on the true system behavior in the period it is used to pre- 

dict, thus is less affected by the duration of the prediction horizon 

or even the model structure. Table 6 supports this statement, as 

there is no model which is clearly superior to the other over the 

four different regions. 

The regions presented in Fig. 10 (a) and Fig. 10 (c) contains dy- 

namic behavior which is unmodeled, possibly caused by an unusu- 

ally large load of phosphorus in the influent from industry or due 

to the majority of the data set representing low phosphors concen- 

tration as a result of the control module. Regardless, this indicates 

that the training data is not representative for the test data set. 

The two models presented in this work perform similarly on 

the test data set; however, a major advantage of Model 1 is that 
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Fig. 10. Predicting phosphorus concentration 12 hours (720 time steps) and 24 hours (1440 time steps) into the future using Model 2. The stippled line indicates the 

transition from estimation to prediction using Model 2. 

the phosphorus sensor is not needed to initiate the model. Hence, 

Model 1 has the highest prospects of usage seen from a plant oper- 

ation perspective, as this model can be used to estimate phospho- 

rus concentrations in tanks, where there are no sensor installed 

yet. As a result, Model 1 can decrease the expense related to phos- 

phorus modeling and control and provide a method to monitor all 

ASP tanks in the plant. 

A whole year of data is used for training in this work, thus in- 

dicating that a single cycle of data is not adequate to model a cy- 

clostationary system while assuring consistently good model per- 

formance. It is assumed that at least 2–3 years of training data 

is required to achieve high model performance as obtained in 

Figs. 10 (b) and 10 (d). 

6. Conclusion 

Two models are proposed in this work; one which estimates 

the phosphorus concentration solely by use of data describing en- 

vironmental conditions and process operation, and one which uti- 

lizes past phosphorus measurements along with information about 

environmental conditions and process operation. The LSTM hy- 

perparameters are optimized using Bayesian optimization, yield- 

ing two different model structures. The resulting LSTM models are 

suitable for estimation and predictions of phosphorus concentra- 

tions up to 24 hours into the future with R 2 = 0 . 79 for dynamics 

well represented in the training data set. 

Using the same set of test data, the two models are evaluated 

based on performance metrics such as MSE, GoF and R 2 . Model 1, 

which serves as an estimator, captures the dynamics of the sys- 

tem but struggles to estimate the amplitude of the system. For the 

task of estimation, Model 1 is outperformed by Model 2, which uti- 

lizes past phosphorus measurements in the model. Results show 

that the two models have similar predictive performance, where 

the two models both show high performance for certain periods. 

Some periods with low model performance can be related to the 

dynamics not being represented in the training data set - suggest- 

ing a simple but necessary improvement strategy for the task of 

WWTP modeling: include more data in the training procedure. Uti- 

lizing 2–3 years of data is expected to solve this problem. 

Although we present two equally applicable dynamic models, 

the first choice for modeling the process seen from a plant opera- 

tive point of view, is Model 1. This model has the benefit of not 

including phosphorus measurements to predict the future phos- 

phorus concentrations. Hence, it is not affected by sensor noise or 

bad measurement quality, and expenses concerning the phospho- 

rus sensor can be saved. 
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