Aalborg Universitet

Time for Using Machine Learning for Dose Guidance in Titration of People With Type 2 Diabetes? A Systematic Review of Basal Insulin Dose Guidance

Thomsen, Camilla Heisel Nyholm; Hangaard, Stine; Kronborg, Thomas; Vestergaard, Peter; Heilesen, Ole: Jensen, Morten Hasselstrøm

Published in: Journal of Diabetes Science and Technology

DOI (link to publication from Publisher): 10.1177/19322968221145964

Publication date: 2024

Document Version Accepted author manuscript, peer reviewed version

Link to publication from Aalborg University

Citation for published version (APA):

Thomsen, C. H. N., Hangaard, S., Kronborg, T., Vestergaard, P., Hejlesen, O., & Jensen, M. H. (2024). Time for Using Machine Learning for Dose Guidance in Titration of People With Type 2 Diabetes? A Systematic Review of Basal Insulin Dose Guidance. Journal of Diabetes Science and Technology, 18(5), 1185-1197. https://doi.org/10.1177/19322968221145964

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 You may not further distribute the material or use it for any profit-making activity or commercial gain
 You may freely distribute the URL identifying the publication in the public portal -

Take down policy

If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: July 04, 2025

> Time for using Machine Learning for Dose Guidance in Titration of People with Type 2 Diabetes? A Systematic Review of Basal Insulin Dose Guidance

> Camilla Heisel Nyholm Thomsen, MSc¹, Stine Hangaard, Ph.D.^{1,2}, Thomas Kronborg, Ph.D.^{1,2}, Peter Vestergaard, M.D., Ph.D.^{2,3,4}, Ole Hejlesen, Ph.D.¹, Morten Hasselstrøm Jensen, Ph.D.^{1,2}

> Author Affiliations: ¹Department of Health Science and Technology, Aalborg University, Aalborg, Denmark; ²Steno Diabetes Center North Denmark, Aalborg, Denmark; ³Department of Clinical Medicine, Aalborg University, Aalborg, Denmark; ⁴Department of Endocrinology, Aalborg University Hospital, Aalborg, Denmark

Camilla Thomsen Department of Health Science and Technology Aalborg University Hospitalsbyen 1 9260 Gistrup, Denmark chnt@hst.aau.dk

Stine Hangaard Department of Health Science and Technology Aalborg University Hospitalsbyen 1 9260 Gistrup, Denmark svh@hst.aau.dk

Thomas Kronborg Department of Health Science and Technology Aalborg University Hospitalsbyen 1 9260 Gistrup, Denmark tkl@hst.aau.dk Ole Hejlesen Department of Health Science and Technology Aalborg University Hospitalsbyen 1 9260 Gistrup, Denmark <u>okh@hst.aau.dk</u>

Peter Vestergaard Steno Diabetes Center North Denmark Region North Denmark Søndre Skovvej 3E 9000, Aalborg, Denmark peter.vestergaard@rn.dk

Morten Jensen Department of Health Science and Technology Aalborg University Hospitalsbyen 1 9260 Gistrup, Denmark <u>mhj@hst.aau.dk</u>

> Abbreviations: (T2D) Type 2 diabetes, (PROSPERO) International Prospective Register of Systematic Reviews, (PRISMA) Preferred Reporting Items for Systematic Reviews and Meta-analyses, (JBI) Joanna Briggs Institute, (RCT) randomized controlled trial, (HCP) healthcare professional, (DTSQ) Diabetes Treatment Satisfaction Questionnaire

Keywords: Basal insulin, dose guidance, glycemic control, insulin titration, type 2 diabetes, systematic review

Corresponding Author: Camilla Thomsen, Hospitalsbyen 1, 9260 Gistrup, Denmark, chnt@hst.aau.dk

Funding Source: None

Conflict-of-Interest Disclosure: Author P.V. is head of research at the Steno Diabetes Center North Denmark, funded by the Novo Nordisk Foundation. Author M.H.J is a former Novo Nordisk employee and holds Novo Nordisk shares.

Acknowledgments: Research librarian Connie Skrubbeltrang, who provided competent assistance in the literature search

Figure and table count: 4 figures, 6 tables

1 Abstract:

- 2 Background: Real-world studies of people with Type 2 Diabetes (T2D) have shown
- 3 insufficient dose adjustment during basal insulin titration in clinical practice leading
- 4 to suboptimal treatment. Thus, 60% of people with T2D treated with insulin do not
- 5 reach glycemic targets. This emphasizes a need for methods supporting efficient
- 6 and individualized basal insulin titration of people with T2D. However, no
- 7 systematic review of basal inulin dose guidance for people with T2D has been
- 8 found.
- 9 **Objective:** To provide an overview of basal insulin dose guidance methods that
- 10 support titration of people with T2D and categorize these methods by
- 11 characteristics, effect, and user experience.
- 12 Methods: The review was conducted according to the Preferred Reporting Items for
- 13 Systematic Review and Meta-Analysis (PRISMA) guidelines. Studies about basal
- 14 insulin dose guidance, including adults with T2D on basal insulin analogs published
- 15 before 07/09/2022, were included. Joanna Briggs Institute critical appraisal
- 16 checklist was applied to assess risk of bias.
- 17 Results: In total, 35 studies were included, and three categories of dose guidance
- 18 were identified: paper-based titration algorithms, telehealth solutions, and
- 19 mathematical models. Heterogeneous reporting of glycemic outcomes challenged
- 20 comparison of effect between the three categories. Few studies assessed user
- 21 experience.
- 22 Conclusions: Studies mainly used titration algorithms to titrate basal insulin as
- 23 telehealth or in paper format, except for studies using mathematical models. A
- 24 numerically larger proportion of participants seemed to reach target using

- 25 telehealth solutions compared to paper-based titration algorithms. Exploring
- 26 capabilities of machine learning may provide insights that could pioneer future
- 27 research while focusing on holistic development.

28 1. Introduction

29	Initiation of basal insulin is a complex and time-consuming task associated with
30	clinical inertia ^{$(1-5)$. Thus, approximately 60% of people with T2D treated with insulin}
31	do not reach glycemic targets ^(4,6–8) . Insulin titration is used when determining the
32	optimal dose for an individual ^{$(2,4,9)$} . This is necessary since people with T2D vary in
33	pancreatic insulin production and insulin resistance ^(9,10) . Hence, the optimal dose of
34	basal insulin differs among people with T2D and may change over time due to, e.g.,
35	stress levels, lifestyle changes, and sickness.
36	Suboptimal treatment is partly caused by non-adherence to treatment and failure
37	to initiate or intensify treatment promptly ^(9,11) . Lack of adjustment to insulin
38	treatment is mainly caused by the complexity of the titration process ⁽⁵⁾ . This causes
39	people with T2D to remain on suboptimal insulin doses, leading to less
40	improvement in glycemic control than what could have been accomplished with an
41	optimal dose ^(5,12,13) . In addition, studies based on real-world data have shown both a
42	delay in the initiation of basal insulin and insufficient dose adjustment during
43	titration ^(1,14,15) . Suboptimal insulin titration has been shown in the range of 3-12
44	months after initiation of active titration in clinical practice ^(3,6,16–19) . This elucidates
45	that people with T2D, in some cases, have not reached glycemic target after 3+
46	months of active titration. Failure to achieve glycemic targets during the initial three
47	months of titration is associated with a higher risk of failure to reach glycemic
48	targets two years after the initiation ⁽¹⁵⁾ . This emphasizes the need for dose guidance
49	supporting efficient and individualized basal insulin titration of people with T2D to
50	provide optimal and timely treatment.
51	In recent years, basal insulin dose guidance has been of rapidly growing interest

52 within international research, emphasized by increased publications on the subject.

- 53 Despite this interest and the fact that it has been a research field for several
- 54 decades, a preliminary search of the Cochrane Database of Systematic Reviews and
- 55 Reviews, the International Prospective Register of Systematic Reviews (PROSPERO),
- 56 and Joanna Briggs Institute (JBI) Evidence Synthesis revealed no systematic review
- 57 of basal inulin dose guidance for people with T2D. Therefore, this systematic review
- aims to provide an overview of methods used for basal insulin dose guidance
- 59 supporting titration of people with T2D and categorize these methods by
- 60 characteristics, effect, and user experience.

61 2. Methods

62 2.1 Study Design

- 63 The systematic review was conducted according to the Preferred Reporting Items
- 64 for Systematic Reviews and Meta-analyses (PRISMA) guidelines⁽²⁰⁾. Therefore, a
- 65 protocol was registered in PROSPERO on 19/12/2021 (CRD42021289364), forming
- 66 the review's basis ⁽²¹⁾.

67 2.2 Eligibility Criteria

- 68 Studies evaluating dose guidance methods supporting basal insulin titration of
- 69 people with T2D in any setting, including participants (≤18 years) diagnosed with
- 70 T2D, were considered. Studies investigating populations of mixed diabetes types
- 71 without a transparent subgroup analysis or without a clear statement of diabetes
- 72 types were excluded.
- 73 Studies including participants on basal-bolus regimens, human or intermediate
- 74 insulin, or other injectable antidiabetic treatment were excluded.
- 75 Primary studies reporting any glycemic outcome published in English, Danish,
- 76 Norwegian, or Swedish before 07/09/2022, as peer-reviewed full-text, were

- 77 included. All study designs except study protocols, animal research, expert opinions,
- 78 and case studies were considered.

79 2.3 Information sources and search strategy

- 80 A comprehensive systematic search was performed in PubMed, Embase, and IEEE
- 81 by one author (C.H.N.T) with assistance from a research librarian. Citation and
- 82 reference searches were conducted in Google Scholar. Authors of relevant studies
- 83 were contacted if additional information was needed.
- 84 Unstructured searches in PubMed and Google Scholar were performed to identify
- 85 relevant search terms. The search was adjusted to each database. Search terms
- 86 included different synonyms and spellings. Search functions were applied, including
- 87 thesaurus, Boolean operators, phrase, truncation, free text, and advanced search
- 88 (Supplementary material).

89 2.4 Selection process

- 90 First, studies identified through the systematic search were uploaded to RefWorks
- 91 (version 2.1.0.1). Second, duplicates were removed using the functions *Exact*
- 92 *duplicates* and *Close duplicates*. Third, one reviewer (C.H.N.T.) screened the title
- 93 and abstract of the remaining studies. Fourth, studies deemed eligible were
- 94 retrieved in full text and assessed by one reviewer (C.H.N.T.). Doubt about the
- 95 studies' eligibility was resolved through discussion with co-authors. Reason for
- 96 exclusion of studies was recorded during full-text assessment (Supplementary
- 97 material). The final sample consisted of studies deemed eligible after full-text
- 98 assessment.
- 99 **2.5 Data extraction and synthesis**

100	One author	(C.H.N.T.)	extracted data	using a sheet	in Microsoft Exc	el (2016)
100	One aution	(C.11.1N.1.)		using a sheet		

- 101 Extracted data included study characteristics (title, author, publication year, study
- design, country, sample size, and duration of study), participant characteristics (age,
- sex, BMI, insulin-naïve, and initial HbA1c), characteristics of the dose guidance
- 104 method (setting, description of the method, and type of insulin used), and glycemic
- 105 outcomes.
- 106 A narrative synthesis of extracted data was conducted, and characteristics of
- 107 studies and populations were described. The narrative synthesis focused on
- 108 categorizing dose guidance methods and assessing effect of the interventions and
- 109 user experience according to the categorization.

110 2.6 Risk of bias assessment

- 111 Critical appraisal tools from JBI were applied by study design of the studies to assess
- risk of bias⁽²²⁾. Study design was determined using Andrews and Likis, 2015⁽²³⁾. One
- author (C.H.N.T.) assessed included studies with support from co-authors.
- 114 Before critical appraisal was performed, authors agreed on a scoring system and
- 115 cut-off points per the JBI reviewers manual⁽²⁴⁾. Studies were judged as described in
- 116 Melo et al., 2018⁽²⁵⁾.
- A suitable tool for simulation studies was not found from JBI; therefore, the critical
 appraisal tool from Fone et al., 2003⁽²⁶⁾ was used.
- 119 3. Results
- 120 3.1 Study selection
- 121 A total of 4,363 papers were found. After removing duplicates, 3,327 papers were
- included in title and abstract screening. Of those, 280 papers were found eligible for
- 123 full-text screening. Thirty-one papers met the inclusion criteria and were included in

- 124 the review. Four additional papers were identified through reference and citation
- searches. Thus, 35 articles were included in this review. The selection process is
- 126 presented in Figure 1. Supplementary material contains a tabular overview of data
- 127 extracted from the included studies.
- 128 Some studies seemed eligible but were excluded due to use of human insulin or
- 129 basal-bolus regimen in a subgroup of participants without a transparent subgroup
- analysis of participants treated only with basal insulin analogs or using bolus insulin
- 131 as rescue medication^(13,27–29).
- 132 **Figure 1.** The selection process is illustrated in a PRISMA flowchart⁽²⁰⁾.

Thomsen CHN, Hangaard S, Kronborg T, Vestergaard P, Hejlesen O, Jensen MH.

Time for Using Machine Learning for Dose Guidance in Titration of People With Type 2 Diabetes? A Systematic Review of Basal Insulin Dose Guidance.

J Diabetes Sci Technol. 2022 Dec 23:19322968221145964.

Copyright © 2022 Diabetes Technology Society. https://doi.org/10.1177/19322968221145964

133

134 3.2 Study characteristics

Seven studies were quasi-experimental design^(30–36), 20 studies were randomized
controlled trials (RCT)^(37–56), three studies were mixed method^(57–59), one study was
qualitative design⁽⁶⁰⁾, one study was a cohort⁽⁶¹⁾, and three studies were simulation

138	design ^(8,10,62) . Mixed method studies were a mix of quasi-experimental and
139	qualitative designs. The studies were published from 2006 to 2022 and enrolled
140	19,432 people with T2D. The length of the studies ranged from 28 days to 12
141	months.
142	The studies were conducted in 31 countries across Europa, Asia, North and South
143	America, the Middle East, and Africa. Seven studies did not specify in which country
144	it was conducted ^(8,10,32,48,55,61,62) .
145	3.3 Participant characteristics
146	Characteristics of participants were similar regarding initial BMI, age, and sex
147	distribution. The most significant difference was whether participants were insulin
148	naïve at start-of-trial. Study population in 60% of the studies were insulin
149	naïve ^(8,10,31,34,35,37,39–41,45,46,48–51,53,56–58,61,62) . In 14% of studies, the population
150	continued basal insulin treatment initiated before the study $^{(30,32,33,36,43)}$, and 26% of
151	studies included a study population of both insulin naïve and
152	continuers ^(38,42,44,47,52,54,55,59,60) . Initial HbA1c, duration of diabetes, and whether the
153	study population was insulin naïve are essential factors to consider when comparing
154	the impact on glycemic control from dose guidance interventions ^(15,63–67) . All study
155	populations had initial HbA1c above 7%, and diabetes duration ranged from 2.9-
156	15.9 years.
157	3.4 Characteristics of the dose guidance methods

Twenty-one of identified dose guidance methods were developed for titration of
glargine^(30,32,34,36-39,41,42,44,45,47,49,51,53-56,58,61,62), three for detemir^(40,48,52), five for
degludec^(8,10,31,43,46), one for icodec⁽⁵⁰⁾, and one for glargine and detemir⁽⁵⁹⁾. Four
studies did not specify insulin further than it was basal insulin analogs^(33,35,57,60).

- 162 Approximately 70% of the studies were in an outpatient clinic. The remaining
- 163 studies were in primary care $(^{34,35,42,51,52,61})$ or did not specify the setting $(^{8,10,36,50,62)}$.
- 164 **3.4.1. Categorization of the dose guidance methods**
- 165 Identified dose guidance methods were divided into three categories: paper-based
- titration algorithms, telehealth solutions, and mathematical models (Figure 2).
- 167 Paper-based titration algorithms reflect standard practice at the time of writing.
- 168 The studies investigated algorithms with varying targets and sizes of dose
- adjustment carried out during in-person visits. In total, 20 studies investigated
- 170 paper-based titration algorithms^(32,34,36–38,40–43,46,48–53,56,58,61,62).
- 171 Telehealth solutions covered telemonitoring solutions with titration across a digital
- 172 platform^(30,45,54,57,59,60) and combined with home visits ⁽³⁵⁾, or self-titration decision
- 173 support^(33,39,44,47,55). In contrast to studies addressing paper-based algorithms, the
- 174 organizational setup was altered in these studies. Interactions between participants
- and healthcare professionals (HCP) were primarily handled over distance via phone.
- 176 In total, 12 studies investigated telehealth solutions^(30,33,35,39,44,45,47,54,55,57,59,60).
- 177 Mathematical models were investigated by three studies using used compartment
- 178 modeling and control theory ^(8,10,31). Most of these studies did not specify the use
- 179 case of the method.
- 180 **Figure 2.** Overview of type of dose guidance methods used in the included studies.

Categorization of dose guidance methods

Paper-based titration algorithms

- 181 Dose guidance methods covered both physician- and patient-led methods. The
- 182 distribution was similar for paper-based titration algorithms and telehealth
- 183 solutions, where most approaches based on mathematical models did not specify
- the intended user (Figure 3).
- 185 **Figure 3.** Distribution of the intended user of the identified dose guidance methods
- according to the three main categories: paper-based titration algorithms, telehealth
- 187 solutions, and mathematical models.

188

189 Description of the dose guidance method is presented in Table 1.

190 **Table 1.** Overview of how basal insulin was titrated in the included studies grouped

191 by the titration algorithm used.

Study	Description of dose guidance method	Category
Yuan et al.	2-0-2 titration algorithm according to	Paper-based
2021 ⁽³⁷⁾	three different fasting blood glucose	titration
	targets; 70 <fbg≤100, 100<fbg≤110,="" or<="" td=""><td>algorithm</td></fbg≤100,>	algorithm
	110 <fbg≤126 based="" dl.="" mg="" on<="" td="" titrated=""><td></td></fbg≤126>	
	the lowest of three consecutive fasting	
	SMBG values.	
Zhang et al.	Comparison of the use of a titration	Paper-based
2018 ⁽⁵⁸⁾	algorithm to reach different glycemic	titration
	targets (Group 1: 70 <fbg≤100 dl,<="" mg="" td=""><td>algorithm</td></fbg≤100>	algorithm
	Group 2: 100 <fbg<110 and="" dl,="" group<="" mg="" td=""><td></td></fbg<110>	
	3: 110 <fbg≤126 dl)<="" mg="" td=""><td></td></fbg≤126>	
	The titration algorithm used was a	
	modification of the 2-0-2 algorithm.	
Misra et al.	2-0-2-4 titration algorithm as patient-led	Paper-based
2019 ⁽⁴¹⁾	compared to physician-led. Insulin doses	titration
	were titrated every three days.	algorithm
McGloin et al.	MyMedic hub. Telemonitoring system	Telehealth
2020 ⁽⁵⁷⁾	where people with T2D were titrated	solution

	using a 2-0-2 titration algorithm twice	
	weekly for three weeks and once weekly	
	after that.	
Ngassa Pioti et	Nurse-driven and home-based telehealth	Telehealth
al. 2022 ⁽³⁵⁾	intervention where participants were	solution
	titrated using the <u>2-0-2 titration algorithm</u>	
	to reach the target of 72-126 mg/dL.	
Seufert et al	2-0-2 titration algorithm (adjusted every	Paper-based
2019 ⁽⁶¹⁾	three days) compared to the $2-0-2-4-6-8$	titration
2015	titration algorithm (adjusted over 2.5	algorithm
	ttration algorithm (adjusted every 3-5	algorithm
	days).	
Kadowaki et al.	<u>2-0-2 titration algorithm compared</u> to the	Paper-based
2017 ⁽⁴³⁾	2-0-2-4-6-8 titration algorithm at both	titration
	fixed dosing and flexible dosing.	algorithm
	Adjustments to insulin doses were made	
	weekly.	
Kennedy et al.	Comparison of usual and active insulin	Paper-based
2006 ⁽⁴⁹⁾	titration using the <u>2-0-2-4-6-8 titration</u>	titration
	algorithm. If fasting blood glucose was	algorithm
	below 70 mg/dL insulin dose was	
	decreased to the previous dose.	

Thomsen CHN, Hangaard S, Kronborg T, Vestergaard P, Hejlesen O, Jensen MH. Time for Using Machine Learning for Dose Guidance in Titration of People With Type 2 Diabetes? A Systematic Review of Basal Insulin Dose Guidance. J Diabetes Sci Technol. 2022 Dec 23:19322968221145964.

Copyright © 2022 Diabetes Technology Society. https://doi.org/10.1177/19322968221145964

Yu et al. 2020 ⁽⁴⁰⁾	<u>3-0-3 titration algorithm</u> compared to the	Paper-based
	2-4-6-8 titration algorithm. Titration was	titration
	performed per three days.	algorithm
Blonde et al.	<u>3-0-3 titration algorithm</u> to the target of	Paper-based
2009 ⁽⁴⁸⁾	70-90 mg/dL compared to 79-110 mg/dL.	titration
	Adjustments to insulin doses were made	algorithm
	every three days.	
Meneghini et al.	<u>3-0-3 titration algorithm</u> , where	Paper-based
2007 ⁽⁵²⁾	adjustments were made every three days,	titration
	compared to standard-of-care, where	algorithm
	adjustments were made at the physician's	
	discretion.	
Hsu et al.	Diabetes management program.	Telehealth
2016 ⁽⁴⁵⁾	Telemonitoring system where the <u>3-0-3</u>	solution
	titration algorithm was used to reach the	
	target of 79-110 mg/dL.	
Philis-Tsimikas et	<u>4-0-4 titration algorithm</u> compared to the	Paper-based
al. 2013 ⁽⁴⁶⁾	4-2-0-2-4-6-8 titration algorithm.	titration
	Adjustments of doses were made weekly	algorithm
	based on one and the lowest of three	

		1
	consecutive days of fasting SMBG	
	measure, respectively.	
Lingvay et al	Comparison of four titration algorithms:	Paper-based
Lingvay et al.		Paper-based
2021 ⁽⁵⁰⁾	three for icodec and one for glargine.	titration
		algorithm
	Glargine: <u>4-0-4 titration algorithm</u> to	
	target 79-130 mg/dL	
	Icodec titration A: 21-0-21 titration	
	algorithm to target 79-130 mg/dL	
	Icodec titration B: <u>28-0-28 titration</u>	
	algorithm to target 79-130 mg/dL	
	(equivalent to the titration algorithm used	
	for glargine)	
	Icodec titration C: 28-0-28 titration	
	algorithm to target 70-108 mg/dL	
Garg et al.	2-0-2-4 titration algorithm as patient-led	Paper-based
2015 ⁽⁵¹⁾	compared to physician-led. In the	titration
	physician-led titration, group doses were	algorithm
	adjusted at each visit, whereas doses	
	were adjusted twice weekly in the	
	patient-led titration group.	

Thomsen CHN, Hangaard S, Kronborg T, Vestergaard P, Hejlesen O, Jensen MH. Time for Using Machine Learning for Dose Guidance in Titration of People With Type 2 Diabetes? A Systematic Review of Basal Insulin Dose Guidance. J Diabetes Sci Technol. 2022 Dec 23:19322968221145964.

Copyright © 2022 Diabetes Technology Society. https://doi.org/10.1177/19322968221145964

Sethi et al.	Using the <u>2-0-2-4 titration algorithm</u> to	Paper-based
2022 ⁽³⁶⁾	reach HbA1c<7%.	titration
		algorithm
	The frequency of dose adjustments was	
	made at least weekly and not more than	
	every 3–4 days unless required for safety.	
Ji et al. 2020 ⁽⁵³⁾	2-0-2-4-6 titration algorithm at a standard	Paper-based
	starting dose (0.2 U/kg) or a higher	titration
	starting dose (0.3 U/kg).	algorithm
Bajaj et al.	LTHome/MyStar WebCoach. Decision	Telehealth
2016 ⁽⁴⁴⁾	support system for self-titration using the	solution
	<u>4-2-0-2-4 titration</u> algorithm to the target	
	90-130 mg/dL.	
Davies et al.	MyStar DoseCoach. Decision support	Telehealth
2019 ⁽⁵⁵⁾	system for self-titration using the <u>4-2-0-2-</u>	solution
	<u>4 titration algorithm to reach the 90-130</u>	
	mg/dL target.	
Kim et al.	Decision support system for self-titration	Telehealth
2010 ⁽⁴⁷⁾	using the <u>4-2-0-2-4-6 titration algorithm</u>	solution
	to the target 79-119 mg/dL.	

Thomsen CHN, Hangaard S, Kronborg T, Vestergaard P, Hejlesen O, Jensen MH. Time for Using Machine Learning for Dose Guidance in Titration of People With Type 2 Diabetes? A Systematic Review of Basal Insulin Dose Guidance. J Diabetes Sci Technol. 2022 Dec 23:19322968221145964.

Copyright © 2022 Diabetes Technology Society. https://doi.org/10.1177/19322968221145964

Hu et al. 2021 ⁽³⁹⁾	Self-titration decision support program.	Telehealth
	One in-person visit was followed by five	solution
	phone calls where insulin dose	
	adjustments were made if needed, along	
	with empowering coaching from a nurse.	
	Otherwise, the participants self-titrated.	
	Titration algorithm used: <u>6-4-2-0-2-4-6</u> to	
	target 79-110 mg/dL.	
Levy et al.	Mobile Insulin Titration Intervention	Telehealth
2018 ⁽⁵⁹⁾	(MITI). Telemonitoring system where	solution
	participants were titrated using the <u>2-1-0-</u>	
	2-3-4-5 titration algorithm through	
	weekly phone calls.	
Rogers et al.	MITI. Telemonitoring system where	Telehealth
2019 ⁽⁶⁰⁾	participants were titrated using the <u>2-1-0-</u>	solution
	2-3-4-5 titration algorithm through	
	weekly phone calls to reach the target of	
	79-130 mg/dL.	
Levy et al.	MITI. Telemonitoring system where	Telehealth
2015 ⁽⁵⁴⁾	participants were titrated using the <u>2-1-0-</u>	solution

	2-3-4-5 titration algorithm through	
	weekly phone calls.	
Bae et al. 2022 ⁽³⁸⁾	Comparison of the INSIGHT and EDITION	Paper-based
	titration algorithm.	titration
		algorithm
		algorithm
	INSIGHT: titrate by <u>one unit/day</u> .	
	EDITION: titrate by <u>three units per three</u>	
	<u>days</u> .	
Yale et al.	Comparison of the paper-based titration	Paper-based
2017 ⁽⁴²⁾	algorithm INSIGHT and EDITION.	titration
		algorithm
	In the INSIGHT group, insulin was titrated	
	by one unit/day	
	by <u>one uniquey</u> .	
	In the EDITION group, insulin was titration	
	by <u>three units per three days</u> based on	
	median pre-breakfast SMBG values of the	
	last three days.	
Hasan et al.	ADA/EASD consensus titration algorithm	Paper-based
2018 ⁽³⁴⁾	of 2009. Increased with two units every	titration
	three days until target (70-130 mg/dL)	algorithm

Thomsen CHN, Hangaard S, Kronborg T, Vestergaard P, Hejlesen O, Jensen MH. Time for Using Machine Learning for Dose Guidance in Titration of People With Type 2 Diabetes? A Systematic Review of Basal Insulin Dose Guidance. J Diabetes Sci Technol. 2022 Dec 23:19322968221145964.

Copyright © 2022 Diabetes Technology Society. https://doi.org/10.1177/19322968221145964

	reached. If fasting blood glucose is >180	
	mg/dL, increase by four units every three	
	days; if fasting blood glucose is <70	
	mg/dL, reduce by four units or 10% if >60	
	units.	
Larsen et al.	Electronic diary app to support self-	Telehealth
2010 ⁽³³⁾	titration by increasing dose by two units	solution
	every three days if two of the previous	
	three days' fasting SMBG measures >121	
	mg/dL and no readings were <72 mg/dL.	
Sieber et al.	Comparison of three paper-based	Paper-based
2020 ⁽⁶²⁾	titration algorithms.	titration
		algorithm
	Group 1: titrate by two units per three	
	<u>days</u> to target 90-130 mg/dL.	
	Group 2: titrate by <u>four units per three</u>	
	<u>days</u> and by six units if blood glucose if	
	>180 mg/dL to target 90-130 mg/dL.	
	Group 3: titrate by <u>two units per three</u>	
	days to target 110-150 mg/dL	

Pfützner et al.	Comparison of four paper-based titration	Paper-based
2016 ⁽³²⁾	algorithms.	titration
	1) Target: 90-130 mg/dL. Increase	algorithm
	dose by <u>two units every three</u>	
	<u>days</u> .	
	2) Target: 90-130 mg/dL. Increase	
	the dose by <u>four units every three</u>	
	<u>days</u> if blood glucose is >180	
	mg/dL, then increase by two	
	units.	
	3) Target: 110-150 mg/dL. Increase	
	dose by <u>two units every three</u>	
	<u>days</u> .	
	4) Target: 70-100 mg/dL. Increase	
	dose <u>two units every three days</u> .	
Ishii et al.	Comparison of physician and patient-led	Paper-based
2021 ⁽⁵⁶⁾	titration algorithm.	titration
		algorithm
	Physician-led: <u>0-1-2-3-4</u> and decrease	
	according to the physician's discretion.	
	Patient-led: <u>1-0-1</u> .	
	The frequency of dose adjustments was	
	not specified.	

Tamez-Pérez et	MyDoseCoach. A combination of a mobile	Telehealth
al. 2021 ⁽³⁰⁾	app and a web portal suggested basal	solution
	insulin dose adjustments every three days	
	based on a titration algorithm: 10%	
	increase if SMBG>180 mg/dL, 5% increase	
	if 140 <smbg<180 change="" dl,="" if<="" mg="" no="" td=""><td></td></smbg<180>	
	79 <smbg<140, 5%="" decrease="" if<="" td=""><td></td></smbg<140,>	
	70 <smbg<79 10%="" decrease="" dl,="" if<="" mg="" td=""><td></td></smbg<79>	
	SMBG<70 mg/dL.	
Aradóttir et al.	Titration was performed using a linear	Mathematical
2021 ⁽³¹⁾	dose-response algorithm.	model
	Day 1-4: No insulin.	
	Day 5-9: 10 U insulin.	
	Day 10: Evaluation of whether 10U is	
	sufficient or if the dose should be	
	adjusted with 0.2 U/kg.	
	Day 15: The dose estimation algorithm	
	used CGM data from day 1-14, and 75%	
	of the estimated dose was given to the	
	participant.	
	Day 20-84: titration using stepwise	
	algorithm until target (72-108 mg/dL)	
	reached.	

Krishnamoorthy	Model-free titration approach using	Mathematical
et al. 2021 ⁽¹⁰⁾	recursive least square-based extremum	model
	seeking control.	
Aradóttir et al.	A model predictive control-based dose	Mathematical
2019 ⁽⁶⁸⁾	guidance algorithm.	model

192

193 Table 1 elucidates that all identified dose guidance methods, except in

194 Krishnamoorthy et al., 2021⁽¹⁰⁾ and Aradóttir et al., 2019⁽⁸⁾, used titration algorithms

to titrate basal insulin either in a digital tool or in paper-based format. Aradóttir et

al., 2021⁽³¹⁾ mixed the use of a mathematical model with use of a paper-based

197 titration algorithm. Titration algorithms varied considerably among included

198 studies, as approximately 18 algorithms were used. However, similar titration

algorithms were found in studies investigating paper-based titration algorithms and

telehealth solutions, e.g., the 2-0-2 titration algorithm.

201 **3.4.2. Effect of the dose guidance methods**

202 Studies reported very heterogeneous glycemic outcomes (Supplementary material).

203 The most frequently reported outcome was proportion of participants reaching

204 glycemic target. However, this target differed among studies. Some studies used

205 HbA1c<7% as target, while others used fasting blood glucose within a specific range.

- 206 The difference in how target was defined made it challenging to compare effect
- 207 across studies. To enable a comparison to some degree to elucidate tendencies in
- 208 effect across different dose guidance methods, an overview of the proportion of
- 209 participants reaching target is presented in Figure 4. Approximately 23% of studies

- 210 did not report proportion of participants reaching target at end-of-
- 211 trial^(8,10,33,40,45,57,58,62).
- 212 **Figure 4.** Summary of the proportion of participants that reached a predefined
- 213 glycemic target. Only studies that reported target as either fasting blood glucose
- within the target of 79-130 mg/dL, 90-130 mg/dL, or 72-108 mg/dL or HbA1c<7%
- 215 (marked with *) is included in this figure.

Proportion of participants that reached target at end of trial

216

- 217 Aradóttir et al., 2021⁽³¹⁾ reported that all participants reached target with a mean
- time to target of 44 days (n=8).
- 219 The mean proportion of participants reaching target in studies investigating
- telehealth solutions was 61±20% when considering both targets and 46±29% when
- 221 only considering HbA1c targets. The mean for paper-based titration algorithms was
- 222 41±19% in both cases. This may indicate a tendency for a numerically larger
- 223 proportion of participants titrated using telehealth solutions to reach target
- 224 compared to paper-based titration algorithms.

Thomsen CHN, Hangaard S, Kronborg T, Vestergaard P, Hejlesen O, Jensen MH. Time for Using Machine Learning for Dose Guidance in Titration of People With Type 2 Diabetes? A Systematic Review of Basal Insulin Dose Guidance. J Diabetes Sci Technol. 2022 Dec 23:19322968221145964.

Copyright © 2022 Diabetes Technology Society. https://doi.org/10.1177/19322968221145964

225	Among these studies, few reported time-to-target. None of the studies about
226	paper-based titration algorithms reported time-to-target. Three studies about
227	telehealth solutions reported mean time-to-target, which ranged from 20-66
228	days ^(30,54,59) . It should be noted that two of these studies investigated the same
229	telehealth solution ^(54,59) . Since few studies have reported time-to-target, it is
230	relevant to consider the mean study duration within the three categories to get an
231	indication of time used to reach target. The mean duration of studies addressing
232	paper-based titration algorithms was 22±9 weeks, 16±6 weeks for studies
233	addressing telehealth solutions, and 11±2 weeks for studies addressing
234	mathematical models, of which most were simulations. On average, study duration
235	of studies investigating paper-based titration algorithms was twice as long as for
236	mathematical models and six weeks longer than telehealth studies.
237	3.4.3. User experience of the dose guidance methods
238	User experience was investigated by 14 studies, of which 11
239	studies ^(36,38,41,42,44,45,51,54–57) reported outcomes from standardized questionnaires
240	(e.g., Diabetes Treatment Satisfaction Questionnaire (DTSQ)), three studies ^(35,57,60)
241	reported outcomes from interviews, and three studies ^(35,58,59) reported outcomes
242	from non-standardized questionnaires. Studies addressing mathematical models did
243	not investigate user experience.
244	The studies reporting baseline changes in the DTSQ scores showed varying results
245	(Supplementary material). For telehealth solutions, the change ranged from 0.8-
246	10.1 and from 0.1 to 11.7 for paper-based titration algorithms. This revealed no
247	apparent difference in the change of DTSQ score between the two methods.
248	From non-standardized questionnaires and interviews, HCPs and people with T2D

249 found telehealth solutions convenient and appropriate for titration of basal

250	insulin ^(35,57,59,60) . Two of these studies investigated the same telehealth
251	intervention ^(59,60) . People with T2D found it convenient to have fewer in-person
252	interactions while maintaining contact with HCP via phone. In Rogers et al., 2019 ⁽⁶⁰⁾ ,
253	HCPs found telehealth intervention could reduce the burden of titration. McGloin et
254	al., 2020 ⁽⁵⁷⁾ elucidated an increased workload among HCPs caused by a large
255	amount of generated data.
256	Only the study by Zhang et al., 2018 ⁽⁵⁸⁾ reported qualitative findings on the use of
257	paper-based titration algorithms. The study found a gap between preferences of
258	people with T2D and HCPs when choosing a titration algorithm. People with T2D
259	preferred simple and easy-to-use algorithms. In contrast, HCPs preferred algorithms
260	recommended by guidelines with higher perceived efficacy in lowering blood
261	glucose levels and were known to the HCP.
262	3.5 Critical appraisal of the studies
263	Table 2-6 shows the results of critical appraisal of the included studies.
264	Table 2. Summary of critical appraisal assessed by JBI Critical Appraisal Checklist for
265	Randomized Controlled Trials. U = Unclear, + = Yes, and - = No. Question 3: Red
266	marks visual inspection of between-group differences in baseline characteristics of
267	the population to determine if the groups were similar, and green marks studies
268	that performed statistical tests for the difference between groups. Question 9: Red
269	marks intention-to-treat analysis was carried out but did not describe how lost-to-
270	follow-up was handled. Green indicates that intention-to-treat analysis was carried

														Risk of
Study	1	2	3	4	5	6	7	8	9	10	11	12	13	
														bias

Thomsen CHN, Hangaard S, Kronborg T, Vestergaard P, Hejlesen O, Jensen MH.

Time for Using Machine Learning for Dose Guidance in Titration of People With Type 2 Diabetes? A Systematic Review of Basal Insulin Dose Guidance. J Diabetes Sci Technol. 2022 Dec 23:19322968221145964.

Copyright © 2022 Diabetes Technology Society. https://doi.org/10.1177/19322968221145964

Yuan et al., 2021 ⁽³⁷⁾	+	+	+	-	-	-	+	+	+	+	+	+	+	Low
Bae et al., 2021 ⁽³⁸⁾	U	+	+	-	-	-	+	+	+	+	+	+	+	Moderate
Hu et al., 2021 ⁽³⁹⁾	+	U	+	-	-	-	+	+	-	+	+	+	+	Moderate
Lingvay et al., 2021 ⁽⁵⁰⁾	U	+	+	-	-	-	+	+	+	+	+	+	+	Moderate
Ishii et al., 2021 ⁽⁵⁶⁾	+	U	U	-	-	+	+	+	-	+	+	+	+	Moderate
Yu et al., 2020 ⁽⁴⁰⁾	U	U	+	-	-	-	+	-	-	+	+	-	+	High
Ji et al., 2020 ⁽⁵³⁾	U	U	+	-	-	+	+	+	-	+	+	+	+	Moderate
Misra et al., 2019 ⁽⁴¹⁾	U	+	+	-	-	-	+	+	-	+	+	-	+	Moderate
Davies et al., 2019 ⁽⁵⁵⁾	U	U	+	-	-	-	+	-	+	+	+	-	+	High
Yale et al., 2017 ⁽⁴²⁾	U	U	+	-	-	-	+	+	+	+	+	-	+	Moderate
Kadowaki et al., 2017 ⁽⁴³⁾	U	U	+	-	-	-	+	-	+	+	+	+	+	Moderate
Bajaj et al., 2016 ⁽⁴⁴⁾	U	U	+	-	-	-	+	-	+	+	+	+	+	Moderate
Hsu et al., 2016 ⁽⁴⁵⁾	U	U	+	-	-	-	+	+	+	+	+	+	+	Moderate
Garg et al., 2015 ⁽⁵¹⁾	+	+	+	-	-	-	+	-	+	+	+	+	+	Moderate
Levy et al., 2015 ⁽⁵⁴⁾	+	+	+	-	-	-	+	+	+	+	+	+	+	Low
Philis-Tsimikas et al.,	υ	U	+	-	_	_	+	+	+	+	+	+	+	Moderate
2013 ⁽⁴⁶⁾														
Kim et al., 2010 ⁽⁴⁷⁾	+	U	U	-	-	-	+	+	-	+	+	+	+	Moderate
Blonde et al., 2009 ⁽⁴⁸⁾	U	U	+	-	-	-	+	+	+	+	+	+	+	Moderate
Meneghini et al. 2007 ⁽⁵²⁾	U	U	+	-	-	-	U	-	-	+	+	+	+	High
Kennedy et al., 2006 ⁽⁴⁹⁾	U	U	+	-	-	-	+	+	-	+	+	+	+	Moderate

272

273 **Table 3.** Summary of critical appraisal assessed by JBI Critical Appraisal Checklist for

274 Quasi-experimental studies, including assessment of the qualitative part of mixed-

275 methods studies. U = Unclear, + = Yes, and - = No. Question 2: red marks visual

276 inspection of between-group differences in baseline characteristics of the

277 population to determine if the groups were similar.

Study	1	2	3	4	5	6	7	8	9	Risk of bias
Tamez-Pérez et al., 2021 ⁽³⁰⁾	+	+*	+	-	+	-	+	+	+	Low
Aradóttir et al., 2021 ⁽³¹⁾	+	+*	+	-	+	+	+	+	-	Low
McGloin et al., 2020 ^{(57) m}	+	+*	U	U	+	+	U	+	+	Moderate
Zhang et al., 2018 ^{(58) m}	+	+	+	+	+	-	U	U	+	Moderate
Levy et al., 2018 ⁽⁵⁹⁾	+	+*	+	-	+	+	+	+	+	Low
Hasan et al., 2018 ⁽³⁴⁾	+	+*	+	-	+	-	+	+	+	Low
Pfützner et al., 2016 ⁽³²⁾	+	U	+	U	-	+	+	+	U	Moderate
Larsen et al., 2010 ⁽³³⁾	+	+*	+	-	+	+	+	+	+	Low
Ngassa Piotie et al., 2022 ⁽³⁵⁾	+	+*	+	-	+	+	+	+	+	Low
Sethi et al., 2022 ⁽³⁶⁾	+	+*	+	-	+	+	+	+	-	Low

^m Mixed method study.

279 * Single-arm study.

280 **Table 4.** Summary of critical appraisal assessed by JBI Critical Appraisal Checklist for

281 qualitative studies, including assessment of the qualitative part of mixed-methods

studies. U = Unclear, + = Yes, and - = No.

Study	1	2	3	4	5	6	7	8	9	10	Risk of bias
McGloin et al., 2020 ^{(57) m}	+	+	+	+	+	-	-	+	+	+	Low
Rogers et al., 2019 ⁽⁶⁰⁾	-	U	U	U	U	-	-	+	+	+	High
Zhang et al., 2018 ^{(58) m}	U	U	U	U	U	-	-	U	+	U	High

^m Mixed method study.

Table 5. Summary of critical appraisal assessed by JBI Critical Appraisal Checklist for

cohorts. U = Unclear, + = Yes, and - = No.

1	2	3	4	5	6	7	8	9	10	11	Risk of bias
+	+	+	-	-	+	+	+	U	U	U	Moderate
	1	1 2	1 2 3 + + +	1 2 3 4 + + + -	1 2 3 4 5	1 2 3 4 5 6	1 2 3 4 5 6 7	1 2 3 4 5 6 7 8	1 2 3 4 5 6 7 8 9 + + + + + + U	1 2 3 4 5 6 7 8 9 10 + + + + + + U U	1 2 3 4 5 6 7 8 9 10 11 + + + + + + U U U

286

Table 6. Summary of critical appraisal assessed by the checklist in Fone et al.

288 2003(26) for simulation studies. Scores that can be given to a question; 0, 1, or 2

289 (poor to good). Overall indicated the overall score; A, B, C, or D (high to low risk of

290 bias).

Study	1	2	3	4	5	6	7	8	9	10	Overall
Krishnamoorthy et al., 2021 ⁽¹⁰⁾	2	2	1	2	2	1	1	1	1	1	В
Sieber et al., 2020 ⁽⁶²⁾	2	2	2	1	2	1	1	1	1	2	В
Aradóttir et al., 2019 ⁽⁶⁸⁾	1	2	1	2	2	1	2	1	2	1	В

291

292 4. Discussion

293 4.1 Summary of evidence

294 The review aimed to provide an overview of dose guidance methods supporting

295 basal insulin titration of people with T2D and categorize these according to

296 characteristics, effects, and user experience. Overall results showed three

297 categories of methods: paper-based titration algorithms, telehealth solutions, and

- 298 mathematical models. Most studies investigated implementations of paper-based
- titration algorithms. Studies investigating digital solutions for basal insulin titration
- 300 for people with T2D were limited to simple telehealth solutions and, in one case, a
- 301 mathematical model embedded into a decision support system. In summary, all

Thomsen CHN, Hangaard S, Kronborg T, Vestergaard P, Hejlesen O, Jensen MH.

Time for Using Machine Learning for Dose Guidance in Titration of People With Type 2 Diabetes? A Systematic Review of Basal Insulin Dose Guidance. J Diabetes Sci Technol. 2022 Dec 23:19322968221145964. Copyright © 2022 Diabetes Technology Society. https://doi.org/10.1177/19322968221145964

302	studies used titration	algorithms either	in paper form or	digital, except for the
-----	------------------------	-------------------	------------------	-------------------------

303 mathematical models.

304	Similar findings are seen in Deerochanawong et al., 2017 ⁽¹⁹⁾ , which highlighted use	

- 305 of paper-based titration algorithms and telehealth solutions when investigating
- titration of insulin glargine 100 U/mL in an Asian population. However, use of
- 307 mathematical models was not reported. Furthermore, Kerr et al., 2022⁽⁶⁹⁾ found
- 308 indications for improved glycemic control when using digital solutions to manage
- 309 T2D treatment compared to standard of care. This is further supported by Hangaard
- et al., 2021⁽⁷⁰⁾, which found a significant improvement in HbA1c when using
- telemedicine among people with T2D. These studies did not focus on basal insulin
- 312 titration but overall treatment of people with T2D. However, it is feasible to assume
- that a similar effect may be seen using telemedicine for titrating basal, which aligns
- 314 with the tendency observed in this review.
- 315 User experience was not investigated thoroughly by included studies. Yet, common
- 316 characteristics were the wish of people with T2D for simple and easy-to-use
- 317 solutions and HCPs' attention to effect on workload. Concerning telehealth
- 318 solutions, HCPs, in some cases, uttered concern about increased data being
- 319 generated compared to standard practice affecting workload⁽⁵⁷⁾. None of the
- 320 studies investigating mathematical models looked at user experience. Consideration
- 321 of user experience when developing methods for basal insulin dose guidance is
- 322 essential to ensure a holistic solution aimed at the intended end-user and thereby
- to secure effect in a real-world setting⁽⁷¹⁾. Especially considering solutions aimed at
- 324 people with T2D due to known issues of non-adherence to treatment^(72,73).

325 4.2 Strengths and limitations

326	The broad scope and comprehensive literature strengthen the present systematic
327	review. However, relevant studies may have been overlooked since the search was
328	limited to use of basal insulin analogs and English, Danish, Norwegian, and Swedish
329	language.
330	The heterogeneity of reported glycemic outcomes and differences in study design
331	complicated comparison of effect.
332	Validity of the review is weakened since mainly one reviewer screened the search
333	results. To minimize this effect, co-authors were continuously consulted to clarify
334	doubts about inclusion of studies and during critical appraisal. Furthermore, the
335	review was strengthened since the structured search was performed with
336	assistance from a research librarian, ensuring a thorough search.
337	4.3 Implications for future research
338	Mathematical models were limited to three studies which were mainly evaluated
339	through simulation. Expect a study by Aradóttir et al., 2021 ⁽³¹⁾ where the solution
340	was tested on eight participants showing promising results. Limited use of
341	mathematical models may be due to the complex nature of T2D and heterogeneity
342	of the population caused by varying insulin sensitivity and production. This
343	complicates modelling of insulin's effect on blood glucose. The modelling task is
344	further complicated by the limited available information about people with T2D.
345	Glucose measures are typically performed using glucometers, and frequency of

- 347 In contrast, people with type 1 diabetes more often use continuous glucose
- 348 monitoring to measure blood glucose, enabling more thorough insight into blood

- 349 glucose levels throughout the day^(74–76). Similar challenges have been recognized by
- 350 studies addressing mathematical models^(10,68).
- 351 New technologies enabling improved data collection might ease some challenges in
- 352 modeling insulin's effect on blood glucose levels for people with T2D using
- 353 mathematical models. Kerr et al., 2022⁽⁶⁹⁾ highlight that new technology that
- 354 supports improved data capturing may facilitate better treatment support when
- 355 combined with dose recommendation software. Furthermore, addition of
- automated data-driven dose guidance might help rectify the increased workload for
- 357 HCP that, in some cases, has been reported when introducing new technology⁽⁷⁷⁾.
- 358 At the time of writing, machine learning methods used for problems related to T2D
- 359 have focused on detection or prediction of hypoglycemic events, blood glucose
- 360 levels, and optimal bolus insulin dosing⁽⁷⁸⁾. In the future, exploring the capability of
- 361 machine learning methods for basal insulin dose guidance for people with T2D may
- 362 provide insight into the field that could pioneer future research.

363 5. Conclusions

- 364 Three basal insulin dose guidance categories aimed at people with T2D were
- 365 identified: paper-based titration algorithms, telehealth solutions, and mathematical
- 366 models. Compared to paper-based titration algorithms, a numerically larger
- 367 proportion of participants reached a predefined target using telehealth solutions.
- 368 Few studies investigated user experience. Some studies underlined a possible
- increase in workload when using telehealth solutions due to increased data.
- 370 However, it was found that people with T2D preferred simple and easy-to-use
- 371 solutions and fewer in-person visits.

- 372 Future work might benefit from exploring the capabilities of machine learning
- 373 methods for basal insulin dose guidance for people with T2D, focusing on a simple
- and easy-to-use method that does not increase the workload for HCPs.

375 Acknowledgments

- 376 The authors thank research librarian Connie Skrubbeltrang for competent
- 377 assistance in the literature search.

378 Conflict of interest

- Author P.V. is head of research at Steno Diabetes Center North Denmark, funded by
- 380 the Novo Nordisk Foundation.
- 381 Author M.H.J is a former Novo Nordisk employee and holds Novo Nordisk shares.

382 6. References

- Reach G, Pechtner V, Gentilella R, Corcos A, Ceriello A. Clinical inertia and its impact on treatment intensification in people with type 2 diabetes mellitus.
 Diabetes Metab. 2017 Dec;43(6):501–11.
- Chun J, Strong J, Urquhart S. Insulin Initiation and Titration in Patients With
 Type 2 Diabetes. Diabetes Spectr Publ Am Diabetes Assoc. 2019
 May;32(2):104–11.
- Mocarski M, Yeaw J, Divino V, DeKoven M, Guerrero G, Langer J, et al. Slow
 Titration and Delayed Intensification of Basal Insulin Among Patients with Type
 Diabetes. J Manag Care Spec Pharm. 2018 Apr;24(4):390–400.
- Type 2 Diabetes [Internet]. Dansk Endokrinologisk Selskab. [cited 2022 Sep 12].
 Available from: https://endocrinology.dk/nbv/diabetes-melitus/ behandling-ogkontrol-af-type-2-diabetes/
- Lingvay I, Rhee C, Raskin P. Type 2 Diabetes Mellitus: An Evidence-Based
 Approach to Practical Management. In: Feinglos MN, Bethel MA, editors. Type 2
 Diabetes Mellitus: An Evidence-Based Approach to Practical Management
 [Internet]. Totowa, NJ: Humana Press; 2008 [cited 2022 Sep 12]. p. 151–67.
 (Contemporary Endocrinology). Available from: https://doi.org/10.1007/978-1 60327-043-4_10
- 401 6. Ji L, Zhang P, Zhu D, Li X, Ji J, Lu J, et al. Observational Registry of Basal Insulin
 402 Treatment (ORBIT) in patients with type 2 diabetes uncontrolled with oral

403 404		antihyperglycaemic drugs: Real-life use of basal insulin in China. Diabetes Obes Metab. 2017 Jun;19(6):822–30.
405 406 407 408	7.	Thomsen RW, Baggesen LM, Søgaard M, Pedersen L, Nørrelund H, Buhl ES, et al. Early glycaemic control in metformin users receiving their first add-on therapy: a population-based study of 4,734 people with type 2 diabetes. Diabetologia. 2015 Oct;58(10):2247–53.
409 410 411	8.	Aradóttir TB, Boiroux D, Bengtsson H, Kildegaard J, Jensen ML, Jørgensen JB, et al. Model predictive control for dose guidance in long acting insulin treatment of type 2 diabetes. IFAC J Syst Control. 2019 Sep 30;9:100067.
412 413 414	9.	Khunti K, Gomes MB, Pocock S, Shestakova MV, Pintat S, Fenici P, et al. Therapeutic inertia in the treatment of hyperglycaemia in patients with type 2 diabetes: A systematic review. Diabetes Obes Metab. 2018 Feb;20(2):427–37.
415 416 417	10.	Krishnamoorthy D, Boiroux D, Aradóttir TB, Engell SE, Jørgensen JB. A Model- Free Approach to Automatic Dose Guidance in Long Acting Insulin Treatment of Type 2 Diabetes. IEEE Control Syst Lett. 2021 Dec;5(6):2030–5.
418 419 420	11.	Forst T, Choudhary P, Schneider D, Linetzky B, Pozzilli P. A practical approach to the clinical challenges in initiation of basal insulin therapy in people with type 2 diabetes. Diabetes Metab Res Rev. 2021 Sep;37(6):e3418.
421 422 423	12.	Bode B, Clarke JG, Johnson J. Use of Decision Support Software to Titrate Multiple Daily Injections Yielded Sustained A1c Reductions After 1 Year. J Diabetes Sci Technol. 2018 Jan;12(1):124–8.
424 425 426 427	13.	Bergenstal RM, Johnson M, Passi R, Bhargava A, Young N, Kruger DF, et al. Automated insulin dosing guidance to optimise insulin management in patients with type 2 diabetes: a multicentre, randomised controlled trial. Lancet Lond Engl. 2019 Mar 16;393(10176):1138–48.
428 429 430	14.	Khunti K, Nikolajsen A, Thorsted BL, Andersen M, Davies MJ, Paul SK. Clinical inertia with regard to intensifying therapy in people with type 2 diabetes treated with basal insulin. Diabetes Obes Metab. 2016 Apr;18(4):401–9.
431 432 433	15.	Khunti K, Giorgino F, Berard L, Mauricio D, Harris SB. The importance of the initial period of basal insulin titration in people with diabetes. Diabetes Obes Metab. 2020 May;22(5):722–33.
434 435 436 437	16.	Blonde L, Brunton SA, Chava P, Zhou R, Meyers J, Davis KL, et al. Achievement of Target A1C <7.0% (<53 mmol/mol) by U.S. Type 2 Diabetes Patients Treated With Basal Insulin in Both Randomized Controlled Trials and Clinical Practice. Diabetes Spectr Publ Am Diabetes Assoc. 2019 May;32(2):93–103.
438 439 440 441	17.	Meneghini LF, Mauricio D, Orsi E, Lalic NM, Cali AMG, Westerbacka J, et al. The Diabetes Unmet Need with Basal Insulin Evaluation (DUNE) study in type 2 diabetes: Achieving HbA1c targets with basal insulin in a real-world setting. Diabetes Obes Metab. 2019 Jun;21(6):1429–36.
442 443	18.	Pscherer S, Anderten H, Pfohl M, Fritsche A, Borck A, Pegelow K, et al. Titration of insulin glargine 100 U/mL when added to oral antidiabetic drugs in patients

444 445		with type 2 diabetes: results of the TOP-1 real-world study. Acta Diabetol. 2020 Jan;57(1):89–99.
446 447 448 449	19.	Deerochanawong C, Leelawattana R, Kosachunhanun N, Tantiwong P. Basal Insulin Dose Titration for Glycemic Control in Patients With Type 2 Diabetes Mellitus in Thailand: Results of the REWARDS Real-World Study. Clin Med Insights Endocrinol Diabetes. 2020;13:1179551420935930.
450 451 452	20.	Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ. 2021 Mar 29;372:n71.
453 454 455 456 457 458	21.	Camilla H. N. Thomsen; ; Stine Hangaard; Thomas Kronborg; Ole Hejlesen; Peter Vestergaard; Morten H. Jensen. Dose guidance systems for basal insulin titration of patients with Type 2 Diabetes: A protocol of a systematic review. PROSPERO 2021 CRD42021289364. Available from: https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD4202128936 4
459 460	22.	Critical Appraisal Tools JBI [Internet]. [cited 2022 Sep 12]. Available from: https://jbi.global/critical-appraisal-tools
461 462	23.	Andrews J, Likis FE. Study Design Algorithm. J Low Genit Tract Dis. 2015 Oct;19(4):364–8.
463 464	24.	JBI Manual for Evidence Synthesis - JBI Global Wiki [Internet]. [cited 2022 Sep 12]. Available from: https://jbi-global-wiki.refined.site/space/MANUAL
465 466 467	25.	Melo G, Dutra KL, Rodrigues Filho R, Ortega AOL, Porporatti AL, Dick B, et al. Association between psychotropic medications and presence of sleep bruxism: A systematic review. J Oral Rehabil. 2018;45(7):545–54.
468 469 470 471	26.	Fone D, Hollinghurst S, Temple M, Round A, Lester N, Weightman A, et al. Systematic review of the use and value of computer simulation modelling in population health and health care delivery. J Public Health Med. 2003 Dec;25(4):325–35.
472 473 474	27.	Simon ACR, Holleman F, Gude WT, Hoekstra JBL, Peek N. Safety of a Web-Based Insulin Titration System for Patients with Type 2 Diabetes Mellitus – Pilot study. Qual Life Qual Inf. 2012;731–5.
475 476 477 478 479	28.	Diabetes Insulin Guidance System: a real-world evaluation of new technology (d-Nav) to achieve glycaemic control in insulin-treated type 2 diabetes - Donnelly - 2015 - Practical Diabetes - Wiley Online Library [Internet]. [cited 2022 Sep 30]. Available from: https://wchh.onlinelibrary.wiley.com/doi/full/10.1002/pdi.1966
480 481 482	29.	Cook CB, Mann LJ, King EC, New KM, Vaughn PS, Dames FD, et al. Management of insulin therapy in urban diabetes patients is facilitated by use of an intelligent dosing system. Diabetes Technol Ther. 2004 Jun;6(3):326–35.
483 484	30.	Tamez-Pérez HE, Deceased Author, Cantú-Santos OM, Gutierrez-González D, González-Facio R, Romero-Ibarguengoitia ME. Effect of Digital-Tool-Supported

485 486 487		Basal Insulin Titration Algorithm in Reaching Glycemic Control in Patients with Type 2 Diabetes in Mexico. J Diabetes Sci Technol. 2021 Jul 29;19322968211034532.
488 489 490	31.	Aradóttir TB, Bengtsson H, Jensen ML, Poulsen NK, Boiroux D, Jensen LL, et al. Feasibility of a New Approach to Initiate Insulin in Type 2 Diabetes. J Diabetes Sci Technol. 2021 Mar;15(2):339–45.
491 492 493 494	32.	Pfützner A, Stratmann B, Funke K, Pohlmeier H, Rose L, Sieber J, et al. Real- World Data Collection Regarding Titration Algorithms for Insulin Glargine in Patients With Type 2 Diabetes Mellitus. J Diabetes Sci Technol. 2016 Sep;10(5):1122–9.
495 496	33.	Larsen ME, Turner J, Farmer A, Neil A, Tarassenko L. Telemedicine-supported insulin optimisation in primary care. J Telemed Telecare. 2010;16(8):433–40.
497 498 499	34.	Hasan MI, Amer W, Junaid N. Practical implementation of ADA/EASD consensus algorithm in patients with type 2 diabetes in Pakistan. JPMA J Pak Med Assoc. 2018 Sep;68(9):1304–9.
500 501 502 503	35.	Ngassa Piotie P, Wood P, Muchiri JW, Webb EM, Rheeder P. Using a nurse- driven and home-based telehealth intervention to improve insulin therapy for people with type 2 diabetes in primary care: a feasibility study. J Endocrinol Metab Diabetes South Afr. 2022 Sep 2;27(3):108–16.
504 505 506 507 508	36.	Sethi B, Al-Rubeaan K, Unubol M, Mabunay MA, Berthou B, Pilorget V, et al. Efficacy and Safety of Insulin Glargine 300 U/mL in People with Type 2 Diabetes Uncontrolled on Basal Insulin: The 26-Week Interventional, Single-Arm ARTEMIS-DM Study. Diabetes Ther Res Treat Educ Diabetes Relat Disord. 2022 Jul;13(7):1395–408.
509 510 511 512 513	37.	Yuan, Lu; Fengfei, Li; Zhou, Yue; Gao, Gu; Tang, Yajuan; Dai, Lu; Wu, Jindan; Ma, Jianhua. Fasting Glucose of 6.1 mmol/L as a Possible Optimal Target for Type 2 Diabetic Patients with Insulin Glargine: A Randomized Clinical Trial. [cited 2022 Sep 15]; Available from: https://www.hindawi.com/journals/jdr/2021/5524313/
514 515 516 517	38.	Bae JH, Ahn CH, Yang YS, Moon SJ, Kwak SH, Jung HS, et al. Efficacy and Safety of Self-Titration Algorithms of Insulin Glargine 300 units/mL in Individuals with Uncontrolled Type 2 Diabetes Mellitus (The Korean TITRATION Study): A Randomized Controlled Trial. Diabetes Metab J. 2022 Jan;46(1):71–80.
518 519 520 521	39.	Hu X, Deng H, Zhang Y, Guo X, Cai M, Ling C, et al. Efficacy and Safety of a Decision Support Intervention for Basal Insulin Self-Titration Assisted by the Nurse in Outpatients with T2DM: A Randomized Controlled Trial. Diabetes Metab Syndr Obes Targets Ther. 2021;14:1315–27.
522 523 524 525	40.	Yu HM, Park KS, Hong JH, Park KY, Lee JM, Ku BJ, et al. Comparison of the Efficacy and Safety of Insulin Detemir Administered Once Daily According to Two Titration Algorithms (3-0-3 and 2-4-6-8) in Patients with Type 2 Diabetes Mellitus. Endocrinol Metab Seoul Korea. 2020 Mar;35(1):142–8.

526 527 528 529 530	41.	Misra A, Patel M, Agarwal P, Lodha S, Tandon N, Magdum M, et al. Effectiveness and Safety of Physician-Led Versus Patient-Led Titration of Insulin Glargine in Indian Patients with Type 2 Diabetes Mellitus: A Subanalysis of the Asian Treat to Target Lantus Study (ATLAS). Diabetes Technol Ther. 2019 Nov;21(11):656–64.
531 532 533	42.	Yale JF, Berard L, Groleau M, Javadi P, Stewart J, Harris SB. TITRATION: A Randomized Study to Assess 2 Treatment Algorithms with New Insulin Glargine 300 units/mL. Can J Diabetes. 2017 Oct;41(5):478–84.
534 535 536 537	43.	Kadowaki T, Jinnouchi H, Kaku K, Hersløv ML, Hyllested-Winge J, Nakamura S. Insulin degludec in a simple or stepwise titration algorithm in a Japanese population of patients with type 2 diabetes: a randomized, 26-week, treat-to- target trial. Diabetol Int. 2017 Mar;8(1):87–94.
538 539 540 541	44.	Bajaj HS, Venn K, Ye C, Aronson R. Randomized Trial of Long-Acting Insulin Glargine Titration Web Tool (LTHome) Versus Enhanced Usual Therapy of Glargine Titration (INNOVATE Trial). Diabetes Technol Ther. 2016 Oct;18(10):610–5.
542 543 544 545	45.	Hsu WC, Lau KHK, Huang R, Ghiloni S, Le H, Gilroy S, et al. Utilization of a Cloud- Based Diabetes Management Program for Insulin Initiation and Titration Enables Collaborative Decision Making Between Healthcare Providers and Patients. Diabetes Technol Ther. 2016 Feb;18(2):59–67.
546 547 548	46.	Philis-Tsimikas A, Brod M, Niemeyer M, Ocampo Francisco AM, Rothman J. Insulin degludec once-daily in type 2 diabetes: simple or step-wise titration (BEGIN: once simple use). Adv Ther. 2013 Jun;30(6):607–22.
549 550 551 552	47.	Kim CS, Park SY, Kang JG, Lee SJ, Ihm SH, Choi MG, et al. Insulin dose titration system in diabetes patients using a short messaging service automatically produced by a knowledge matrix. Diabetes Technol Ther. 2010 Aug;12(8):663– 9.
553 554 555 556	48.	Blonde L, Merilainen M, Karwe V, Raskin P, TITRATE Study Group. Patient- directed titration for achieving glycaemic goals using a once-daily basal insulin analogue: an assessment of two different fasting plasma glucose targets - the TITRATE study. Diabetes Obes Metab. 2009 Jun;11(6):623–31.
557 558 559 560 561	49.	Kennedy L, Herman WH, Strange P, Harris A, GOAL AIC Team. Impact of active versus usual algorithmic titration of basal insulin and point-of-care versus laboratory measurement of HbA1c on glycemic control in patients with type 2 diabetes: the Glycemic Optimization with Algorithms and Labs at Point of Care (GOAL A1C) trial. Diabetes Care. 2006 Jan;29(1):1–8.
562 563 564 565	50.	Lingvay I, Buse JB, Franek E, Hansen MV, Koefoed MM, Mathieu C, et al. A Randomized, Open-Label Comparison of Once-Weekly Insulin Icodec Titration Strategies Versus Once-Daily Insulin Glargine U100. Diabetes Care. 2021 Jul;44(7):1595–603.
566 567 568	51.	Garg SK, Admane K, Freemantle N, Odawara M, Pan CY, Misra A, et al. Patient- led versus physician-led titration of insulin glargine in patients with uncontrolled type 2 diabetes: a randomized multinational ATLAS study. Endocr

569 570		Pract Off J Am Coll Endocrinol Am Assoc Clin Endocrinol. 2015 Feb;21(2):143– 57.
571 572 573 574	52.	Meneghini L, Koenen C, Weng W, Selam JL. The usage of a simplified self- titration dosing guideline (303 Algorithm) for insulin detemir in patients with type 2 diabetesresults of the randomized, controlled PREDICTIVE 303 study. Diabetes Obes Metab. 2007 Nov;9(6):902–13.
575 576 577 578	53.	Ji L, Wan H, Wen B, Wang X, Wang J, Bian R, et al. Higher versus standard starting dose of insulin glargine 100 U/mL in overweight or obese Chinese patients with type 2 diabetes: Results of a multicentre, open-label, randomized controlled trial (BEYOND VII). Diabetes Obes Metab. 2020 May;22(5):838–46.
579 580 581 582	54.	Levy N, Moynihan V, Nilo A, Singer K, Bernik LS, Etiebet MA, et al. The Mobile Insulin Titration Intervention (MITI) for Insulin Adjustment in an Urban, Low- Income Population: Randomized Controlled Trial. J Med Internet Res. 2015 Jul 17;17(7):e180.
583 584 585 586 587	55.	Davies M, Bain S, Charpentier G, Flacke F, Goyeau H, Woloschak M, et al. A Randomized Controlled, Treat-to-Target Study Evaluating the Efficacy and Safety of Insulin Glargine 300 U/mL (Gla-300) Administered Using Either Device- Supported or Routine Titration in People With Type 2 Diabetes. J Diabetes Sci Technol. 2019 Sep;13(5):881–9.
588 589 590 591 592	56.	Ishii H, Nakajima H, Kamei N, Uchida D, Suzuki D, Ono Y, et al. Comparison of Patient-Led and Physician-Led Insulin Titration in Japanese Type 2 Diabetes Mellitus Patients Based on Treatment Distress, Satisfaction, and Self-Efficacy: The COMMIT-Patient Study. Diabetes Ther Res Treat Educ Diabetes Relat Disord. 2021 Feb;12(2):595–611.
593 594 595 596 597	57.	McGloin H, O'Connell D, Glacken M, Mc Sharry P, Healy D, Winters-O'Donnell L, et al. Patient Empowerment Using Electronic Telemonitoring With Telephone Support in the Transition to Insulin Therapy in Adults With Type 2 Diabetes: Observational, Pre-Post, Mixed Methods Study. J Med Internet Res. 2020 May 14;22(5):e16161.
598 599 600 601	58.	Zhang T, Zhao Y, Du T, Zhang X, Li X, Liu R, et al. Lack of coordination between partners: investigation of Physician-Preferred and Patient-Preferred (4P) basal insulin titration algorithms in the real world. Patient Prefer Adherence. 2018;12:1253–9.
602 603 604 605	59.	Levy NK, Orzeck-Byrnes NA, Aidasani SR, Moloney DN, Nguyen LH, Park A, et al. Transition of a Text-Based Insulin Titration Program From a Randomized Controlled Trial Into Real-World Settings: Implementation Study. J Med Internet Res. 2018 Mar 19;20(3):e93.
606 607 608 609	60.	Rogers E, Aidasani SR, Friedes R, Hu L, Langford AT, Moloney DN, et al. Barriers and Facilitators to the Implementation of a Mobile Insulin Titration Intervention for Patients With Uncontrolled Diabetes: A Qualitative Analysis. JMIR MHealth UHealth. 2019 Jul 31;7(7):e13906.
610 611	61.	Seufert J, Fritsche A, Pscherer S, Anderten H, Borck A, Pegelow K, et al. Titration and optimization trial for the initiation of insulin glargine 100 U/mL in patients

612 613		with inadequately controlled type 2 diabetes on oral antidiabetic drugs. Diabetes Obes Metab. 2019 Feb;21(2):439–43.
614 6 615 616 617	52.	Sieber J, Weinheimer M, Kongable G, Riddle S, Chang YY, Flacke F. In Silico Examination of Initiation of Long-Acting Insulin Analogs Toujeo Compared to Lantus Under 3 Dosing Titration Rules in Virtual Type 2 Diabetes Subjects. J Diabetes Sci Technol. 2020 Sep;14(5):898–907.
618 6 619 620	53.	Jones AG, Lonergan M, Henley WE, Pearson ER, Hattersley AT, Shields BM. Should Studies of Diabetes Treatment Stratification Correct for Baseline HbA1c? PLoS ONE. 2016 Apr 6;11(4):e0152428.
621 6 622 623	54.	Ko SH, Park SA, Cho JH, Ko SH, Shin KM, Lee SH, et al. Influence of the Duration of Diabetes on the Outcome of a Diabetes Self-Management Education Program. Diabetes Metab J. 2012 Jun;36(3):222–9.
624 6 625 626 627 628	ō5.	Cummings MH, Cao D, Hadjiyianni I, Ilag LL, Tan MH. Characteristics of insulin- Naïve people with type 2 diabetes who successfully respond to insulin glargine U100 after 24 weeks of treatment: a meta-analysis of individual participant data from 3 randomized clinical trials. Clin Diabetes Endocrinol. 2018 May 8;4(1):10.
629 6 630	56.	Lovre D, Fonseca V. Benefits of timely basal insulin control in patients with type 2 diabetes. J Diabetes Complications. 2015 Mar 1;29(2):295–301.
631 6 632 633 634	57.	Aso Y, Suzuki K, Chiba Y, Sato M, Fujita N, Takada Y, et al. Effect of insulin degludec versus insulin glargine on glycemic control and daily fasting blood glucose variability in insulin-naïve Japanese patients with type 2 diabetes: I'D GOT trial. Diabetes Res Clin Pract. 2017 Aug 1;130:237–43.
635 6 636 637	58.	Aradóttir TB, Boiroux D, Bengtsson H, Kildegaard J, Jensen ML, Jørgensen JB, et al. Model predictive control for dose guidance in long acting insulin treatment of type 2 diabetes. IFAC J Syst Control. 2019 Sep 30;9:100067.
638 6 639 640 641	59.	Kerr D, Edelman S, Vespasiani G, Khunti K. New Digital Health Technologies for Insulin Initiation and Optimization for People With Type 2 Diabetes. Endocr Pract Off J Am Coll Endocrinol Am Assoc Clin Endocrinol. 2022 Aug;28(8):811– 21.
642 7 643 644 645	70.	Hangaard S, Laursen SH, Andersen JD, Kronborg T, Vestergaard P, Hejlesen O, et al. The Effectiveness of Telemedicine Solutions for the Management of Type 2 Diabetes: A Systematic Review, Meta-Analysis, and Meta-Regression. J Diabetes Sci Technol. 2021 Dec 26;19322968211064630.
646 7 647 648 649	71.	Fico G, Hernanzez L, Cancela J, Dagliati A, Sacchi L, Martinez-Millana A, et al. What do healthcare professionals need to turn risk models for type 2 diabetes into usable computerized clinical decision support systems? Lessons learned from the MOSAIC project. BMC Med Inform Decis Mak. 2019 Aug 16;19(1):163.
650 7 651	72.	Krass I, Schieback P, Dhippayom T. Adherence to diabetes medication: a systematic review. Diabet Med J Br Diabet Assoc. 2015 Jun;32(6):725–37.

652 653 654	73.	Blackburn DF, Swidrovich J, Lemstra M. Non-adherence in type 2 diabetes: practical considerations for interpreting the literature. Patient Prefer Adherence. 2013 Mar 3;7:183–9.
655 656	74.	Garg SK. Emerging Landscape of Continuous Glucose Monitoring. Diabetes Technol Ther. 2021 Sep;23(S3):S-1.
657 658 659 660 661	75.	Tejaswi Kompala MD, Aaron Neinstein MD. A New Era: Increasing Continuous Glucose Monitoring Use in Type 2 Diabetes. Evid-Based Diabetes Manag [Internet]. 2019 Mar 31 [cited 2022 Nov 7];25(4). Available from: https://www.ajmc.com/view/a-new-era-increasing-continuous-glucose- monitoring-use-in-type-2-diabetes-
662 663	76.	Slattery D, Choudhary P. Clinical Use of Continuous Glucose Monitoring in Adults with Type 1 Diabetes. Diabetes Technol Ther. 2017 May;19(S2):S-55.
664 665 666 667	77.	Simon ACR, Holleman F, Gude WT, Hoekstra JBL, Peute LW, Jaspers MWM, et al. Safety and usability evaluation of a web-based insulin self-titration system for patients with type 2 diabetes mellitus. Artif Intell Med. 2013 Sep 1;59(1):23–31.
668 669	78.	Contreras I, Vehi J. Artificial Intelligence for Diabetes Management and Decision Support: Literature Review. J Med Internet Res. 2018 May 30;20(5):e10775.
670		

670