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A B S T R A C T   

This paper investigates the impact of applying optimisation and simulation approaches for energy system 
modelling and scenario design in a municipal context. In doing so, the previous understanding of what consti-
tutes “optimisation” and “simulation” is expanded with further distinctions and it is documented how the out-
lined modelling approaches are applied in the existing literature. In a practical comparison, it is tested how the 
choice of modelling approach influences the design of future energy system scenarios for a municipal case study. 
The energy system scenarios and results obtained from a proposed stepwise simulation approach are compared to 
an established multi-objective optimisation approach. The results show that for the investigated municipal case it 
is possible to obtain results with a simulation-based approach that are comparable to the results obtained from 
multi-objective optimisation. Ultimately, the choice of modelling approach is a complex issue in which modellers 
must consider the necessary degree of modelling freedom, stakeholder involvement, and available system 
knowledge. Modellers need to consider not only what tool to use, but also how it is used; a tool can be used for 
both optimisation and simulation, and both can be valid approaches for developing future energy system 
scenarios.   

1. Introduction 

Energy system scenarios are increasingly a part of energy planning 
on all scales ranging from the national level [1] to the regional and 
municipal level [2], and even at an urban scale [3]. The use of scenarios 
for national energy planning is a well-established practice, and many 
relevant tools and models exist for developing such scenarios [4]. It 
however varies significantly how scenarios are used, as seen in the study 
by Braunreiter and Blumer [5], where it is found that two distinct types 
of users exist; sailors and divers. Sailors predominantly use scenarios as 
guidance toward a possible energy future, whereas divers use the sce-
narios as a deep dive into quantitative assumptions which can be applied 
in their calculations and scenarios. 

Energy system scenarios are typically developed based on modelling 
of the associated energy system. Energy system modelling approaches 
can generally be divided into simulation-based and optimisation-based 
approaches, each with different modelling characteristics and result-
ing outcomes. Lund et al. [6] compare these two approaches, further 

defining the two approaches as archetypes of energy modelling, and 
arguing that optimisation aims to establish a “prescriptive investment 
optimisation or optimal solutions approach”, and simulation is an 
“analytical simulation or alternatives assessment approach”. 

In their comparison of simulation and optimisation approaches, Lund 
et al. [6] clarify differences between the models applied, the results 
produced, and provide a theoretical foundation for interpreting results. 
It is argued that one of the fundamental differences between the models 
is how investment optimisation is implemented. Therefore, what in 
short in the present study is referred to as “optimisation models”, are 
models which include endogenous investment optimisation, as seen in 
models such as HOMER [7], TIMES/Markal [8], and Balmorel [9], 
meaning that investment optimisation is done within the model. Simu-
lation models, such as EnergyPLAN [10] or energyPRO [11] are instead 
based on exogenous investment optimisation, where investment opti-
misation is done outside of the model. 

Optimisation methodologies are generally by nature very structured 
in their approach to arriving at optimal scenarios, but the underlying 
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process is not necessarily obvious to the user, and intermediate steps in 
the calculation sequence do not necessarily reflect distinct energy sys-
tem choices. Simulation approaches on the other hand may appear more 
unstructured as the energy system modelling is guided largely by the 
modeller. This also means that the steps towards the optimum scenario 
will reflect actual distinct energy system choices. 

Municipal and city energy system modelling is an area of increasing 
interest from both energy practitioners and modellers and is becoming 
an important part of strategic energy planning in municipalities [12]. 
While cities and municipalities show an interest in developing energy 
scenarios, as part of their energy planning, there is a lack of appropriate 
tools and methods for doing so [13]. It is not that tools do not exist that 
can conduct municipal energy system analysis, they do, but Weinand 
et al. [14] argue that these are generally targeted at energy system 
modelling experts and a central planning perspective, as opposed to 
energy planning practitioners in cities and municipalities. Furthermore, 
in addition to the practical knowledge needed to operate existing tools, 
substantial know-how is required to develop meaningful scenarios and 
results, as generalised methodologies are not well-established [15]. 

To provide an overview of challenges commonly experienced in 
energy system modelling, Prina et al. [16] present a classification 
scheme for bottom-up energy system modelling. In this, the authors 
present a matrix of challenges within the fields of resolution in time, 
space, techno-economic detail, and sector coupling. In the study it is 
concluded that no current models achieve high resolution in all fields, 
leaving users and planners with important decisions both in terms of 
model or tool selection and methodology when modelling energy 
scenarios. 

Simoes et al. [12] determine challenges found specifically within 

urban energy system modelling, arguing that planning efforts so far in 
cities have been fragmented and that integrated planning is not widely 
applied for energy planning. The authors find that determining the 
extent to which cities can implement measures for transitioning the 
energy system is a challenge, as several systemic changes e.g., on the 
supply side or in the industrial sector are beyond the scope of what a city 
is reasonably able to influence. To negate these challenges the INSMART 
approach based on the TIMES model and multi-criteria decision analysis 
is presented as an optimisation model combining qualitative and 
quantitative criteria. 

Ferrari et al. [17] present the main features of a selection of 17 tools 
including a combination of simulation and optimisation tools. The study 
focuses on six tools relevant for urban energy planning based on their 
user-friendliness and summarises technical characteristics of these tools. 
A similar study by Klemm and Venneman compare 145 different energy 
system models for urban districts, finding a general lack of tools suitable 
for multi-energy systems [18]. However, the studies do not provide 
practical insights into how the tools should be applied for developing 
future scenarios in a municipal or urban context and do not discuss 
differences in the applicability of simulation and optimisation 
approaches. 

It is common for both simulation and optimisation-based energy 
system modelling case studies to present their general methodology and 
the applied modelling tool, but rarely are alternative approaches 
considered, especially alternatives belonging to a different school of 
modelling. This is exemplified in both optimisation-based case studies 
employing multi-objective optimisation (MOO) methods [19,20], and in 
simulation-based case studies [21,22]. Some researchers have attempted 
to correlate optimisation-based scenarios to simulation-based scenarios 

Table 1 
Simulation and optimisation modelling approaches applied for modelling future scenarios.  

Degree of 
freedom of 
approach 

Approach Illustration Participatory processes Examples 

High 

Expert-based simulation Early and ongoing participation is 
needed to determine objectives. 

[24–26] 

Stepwise simulation Early and ongoing participation is 
needed to align design principles 
and objectives. 

[22,27,28] 

Low 

Near-optimal solutions Participation in post-processing 
and filtering based on additional 
criteria. 

[29,30,a,31],a 

Multi-objective optimisation Participation in post-processing is 
needed for weighing the value of 
objectives. 

[32–35] 

Single-objective optimisation Limited participation is needed 
during objective selection; no 
filtering is needed. 

[36,37] 

Optimal solutions. 
Near-optimal solutions. 

Other solutions. 
a Only considers modelling of the electricity system. 
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established by other researchers, finding that the two approaches can 
arrive at similar results [23]. However, the authors only compare the 
final simulation-based scenario to the Pareto front established by MOO 
and do not provide insights into the process through which the simu-
lation scenario was established. 

1.1. Scope and structure 

Existing literature on energy system scenarios in a municipal context 
contains several reviews and technical classifications of existing tools, 
supplemented by an array of literature with case-specific scenarios. 
Limited comparison and discussion on the applicability of simulation 
and optimisation approaches exist, and authors do not appear to 
explicitly consider potential consequences of their choice of modelling 
approach. 

This paper compares two distinctively different approaches to energy 
system modelling in the context of municipal energy system scenarios – 
i.e., the optimisation and the simulation approach. This expands on 
previous work with an emphasis on tool reviews and case studies with 
limited attention to the modelling approaches applied for developing 
future scenarios. Defining modelling approaches is a topic that extends 
beyond individual tools, as it is largely a process guided by the user and 
modeller. 

In this paper we first conduct a review of existing modelling and 
scenario design approaches, expanding the concept of simulation and 
optimisation models to include sub-categories of the two archetypes. We 
then apply a proposed stepwise simulation approach and an established 
MOO approach to a case study, to uncover practical implications of the 
choice of modelling approach when developing future energy system 
scenarios. 

In Section 2 an overview of existing energy system modelling ap-
proaches is presented, followed by the proposal of a stepwise simulation- 
based scenario development approach. In Section 3 the primary methods 
of the study are presented, including an introduction to the modelled 
case area, the modelling tool and approaches applied, and the investi-
gated decision variables. In Section 4 results are presented for the case 
area for both the stepwise simulation approach and the MOO approach, 
and the two approaches are compared. In Section 5 the applicability of 
simulation and optimisation methods is discussed followed by the 
conclusion of the study in Section 6. 

2. Simulation and optimisation approaches 

Different approaches to energy system modelling exist, even if these 
are generally not explicitly defined and differentiated in literature. 
Therefore, we establish five specific approaches to energy system 
modelling in Table 1, functioning as a framework for categorising ap-
proaches. Naturally, not all studies are solely committed to one specific 
approach and may apply several approaches, or even a combination of 
the outlined approaches. Nevertheless, we believe that the five ap-
proaches presented below serve as a general outline of applied ap-
proaches and as a suitable framework for further discussion of scenario 
design, approaches, and principles. The examples below are categorised 
based on our assessment; the authors have not necessarily within the 
studies positioned themselves as part of a specific approach. 

In Table 1 several defining characteristics for the five determined 
modelling approaches are shown. The concept “degree of freedom” is 
introduced as a measure of the extent to which the modelling ap-
proaches are based on defined rules and constraints, sorting the ap-
proaches from “high” to “low” relative to each other, not based on an 
absolute quantification. 

In single-objective optimisation, the degree of freedom for policy-
makers or participatory processes with modellers is low, as the output is 
only one optimal solution. Multi-objective optimisation allows mod-
ellers to establish participatory processes with policymakers when 
choosing between scenarios, and thereby a higher degree of freedom 

compared to single-objective optimisation. The near-optimal solution 
approach is the optimisation approach with the highest level of freedom 
as it allows modellers to establish an open participatory process with 
policymakers who can make decisions based not only on costs and CO2 
emissions but also on other indicators through which is possible to filter 
the cloud of near-optimal solutions. In the simulation approaches (both 
stepwise and expert-based) the level of freedom is even higher because 
the participatory processes can be executed with multiple and different 
iterative steps between the modellers and the policymakers. 

The five established modelling approaches are presented in greater 
detail in the following. 

2.1. Expert-based simulation 

In the expert-based simulation approach, modelling and scenario 
design are generally based on prior knowledge, “rules of thumb”, and 
otherwise established principles of energy system modelling. These are 
then combined and applied in a “trial and error”-approach where 
different energy system scenarios are compared and explored. This 
makes it possible to investigate vastly different scenarios with a rela-
tively limited number of simulations (n < 50) due to the number of 
changes that can be implemented with each simulation. 

The modelling approach may be documented in the form of general 
principles which have formed the basis of the established scenario(s); 
however, it can be difficult to replicate the exact process undergone by 
the modeller from reference to the suggested future scenario. This is not 
to say, that suggested future scenarios cannot be well-documented and 
replicable – it most often is – but the path undergone to reach a sug-
gested future scenario is typically not transparent. This is also in Table 1 
illustrated by the high degree of freedom of the model, a characteristic of 
the expert-based simulation approach. 

The expert-based approach may need inputs from local stakeholders, 
i.e., planners and policymakers, in outlining the primary objectives for 
the scenarios. This is necessary, as many intermediate decisions are left 
to the modeller (expert), and the post-processing participation is used 
for discussions on the suggested future energy scenarios. 

2.2. Stepwise simulation 

The stepwise simulation approach is a multi-step process for 
designing and, to some extent, “optimising” a future scenario. It is 
widely applied for all scales of the energy system and is based on a series 
of steps undergone to reach a future energy system scenario. This in-
creases the number of simulations done compared to the expert-based 
simulation approach, however, the number remains relatively low and 
within the range of what is feasible to conduct manually (n < 250). 

The stepwise priority simulation approach is an umbrella term for 
capturing different stepwise simulation approaches – there is no such 
thing as a general approach that can be applied everywhere. However, a 
general essential characteristic is that the procedure (steps) undergone 
by the modeller is documented afterwards. The extent and details of this 
documentation can vary significantly, but ideally, the level of detail 
should allow other researchers to replicate the work and go through the 
same logical process of scenario design. In Table 1 only two “steps” are 
shown in the illustration, but the process would likely consist of more 
steps before a scenario is finalised. A step in this context could be 
implementing energy savings, variable renewable electricity production 
(VRE), or district heating (DH), and through a process of testing different 
implementation rates or capacities to find an optimum. These are, as 
implied in the name, implemented in separate steps, thereby providing 
the modeller with insights into how the energy system responds to the 
various changes. 

Like in the expert-based approach, early involvement and partici-
pation from local stakeholders are important, mainly for outlining the 
modelling steps to be investigated and the principles guiding the 
modelling. Because the stepwise priority simulation approach is based 
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on these established principles, the degree of freedom is lower than for 
the expert-based simulation, however, because these are often only 
general guidelines the degree of freedom remains high compared to 
optimisation approaches. 

2.3. Near-optimal solutions 

The concept of near-optimal solutions is an emerging but so far not 
widely applied approach to energy system modelling. The idea is that 
solutions with similar results, in terms of costs and CO2 emissions, may 
be very technologically diverse. Therefore, presenting an array of 
feasible (near-optimal) solutions may in some instances be preferable, as 
it would allow modellers and decision-makers to evaluate scenarios on 

additional criteria than, e.g., minor differences observed in cost and CO2 
emissions. 

The near-optimal solutions approach is an extension of optimisation 
approaches. In simulation studies considering alternatives based on 
multiple criteria is an ingrained part of the evaluation process, even if it 
is not generally referred to as an assessment of near-optimal solutions. 
This is not generally the case for the outputs of an optimisation 
approach, where there may be only one optimal solution or a series of 
optimal solutions in the case of a Pareto front, and hence also consid-
ering near-optimal solutions (based on additional criteria) could provide 
a greater depth to such optimisation studies. 

Fig. 1. A general stepwise simulation framework for developing energy system scenarios in a municipal context.  
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2.4. Multi-objective optimisation 

MOO approaches are widely applied in energy system modelling 
studies through different methods and tools. While MOO could refer to 
the optimisation of any number of objective functions, most studies are 
limited to two objectives, CO2 emissions and system costs (e.g., regional 
applications to South Tyrol [32] or Niederösterreich [38]). The opti-
misation model will seek to minimise or maximise the objectives within 
an allowed decision space defined by a number of decision variables. 
With the decision variables, the modeller defines boundary values for 
the optimisation model, generally based on physical limitations. There is 
no strict limit on the number of decision variables that can be included 
in a MOO model, however, depending on the range of values to be 
investigated, the decision space can quickly increase beyond what is 
feasible to optimise based on brute-force optimisation (simulating all 
possible system combinations). Instead, advanced search heuristics are 
often needed such as, e.g., genetic algorithms or particle swarm opti-
misation due to the large number of simulations required (n > 1,000). 
The output of a MOO model is generally in the form of a Pareto front, 
consisting of scenarios with the lowest costs and CO2 emissions. 

The degree of freedom of a MOO approach is low due to the rule- 
based nature of optimisation approaches where the model will include 
a set of pre-established rules for conducting the optimisation process, 
allowing a model to independently arrive at an optimal solution (or a 
series of optimal solutions). Some participation with local stakeholders, 
i.e., planners and policymakers may be needed in post-processing, as the 
output by nature is not one optimal scenario, but a series of optimal 
solutions found on the Pareto front. 

2.5. Single-objective optimisation 

Single-objective optimisation is not widely applied in energy system 
modelling due to the multi-criteria nature of most problems related to 
energy systems, for which MOO would generally be applied instead. 
Single-objective optimisation may be combined (in post-processing) 
with other boundary criteria, e.g., maximum CO2 emissions, which to 
some extent would allow for additional criteria to be considered in 
single-objective optimisation models. 

Like in MOO models, many simulations are required (n > 1,000), and 
the degree of freedom of the approach is low due to the pre-established 
set of rules for conducting the optimisation process. There is less need 
(and room) for participatory processes in the post-processing of results, 
as the output is one optimal scenario, based on optimisation of a single 
objective. 

2.6. Proposing a stepwise simulation approach 

Simulation modelling approaches are generally guided by some more 
or less well-defined principles, but no actual framework exists for 
stepwise simulation approaches. This is particularly a challenge in 
simulation approaches as the development of future scenarios relies 
significantly on the decisions of the modeller and the prior knowledge 
and understanding of energy system interactions. Therefore, based on 
the review of existing approaches, a stepwise simulation approach is 
proposed, as illustrated in Fig. 1. 

The purpose of the proposed stepwise simulation approach is first to 
explore system solutions that can reduce both CO2 emissions, and total 
system costs. Secondly, a weighing of these needs to occur, generally 
based on a politically set emission reduction target. This is possibly a 
target that cannot be achieved without compromising the total system 
economy as it may not be the cheapest solution, hence the second aim of 
the stepwise simulation approach is to fulfil the political target at the 
lowest possible total system cost. The approach outlined in Fig. 1 con-
sists of four main steps to consider when developing energy system 
scenarios in a municipal context, starting from a reference scenario. 

In Step 1 the potential for energy savings is explored for all relevant 

energy sectors by testing different levels of savings, after which a pre-
liminary assessment of local VRE potential can be done. The resulting 
preliminary scenario with energy savings and local VRE production then 
serves as starting point for Step 2. 

In Step 2 the potential for conversion to DH and cooling is explored. 
The feasible potential is a result of multiple factors such as building 
density, heat and cooling demands, and local heat and cooling sources, 
therefore the modeller needs to consider multiple system solutions. 
Depending on the extent to which electrification and storage capacity is 
included in DH and cooling, the potential VRE capacity may be affected 
and can therefore be reassessed. The resulting scenario with DH and 
cooling then serves as starting point for Step 3. 

In Step 3 conversion of the remaining individual heat and cooling 
demand is investigated, e.g., through a shift to individual heat pumps. 
Again, increased electrification may have occurred which could impact 
the potential for installing VRE capacity, hence this should be tested 
again. The resulting scenario with complete or partial transition of the 
individual heating and cooling sector then serves as starting point for 
Step 4. 

In Step 4 electrification of the transport sector and the potential for 
electricity storage are investigated. Depending on the local demands and 
the scope of the energy system modelling electrofuels for heavy trans-
port may be needed. Lastly, local VRE potentials are tested again. 

The process outlined in Fig. 1 should be considered recursive and 
may need to be repeated in case targets are not met in the first iteration. 
However, after the first iteration, the modeller will have a general un-
derstanding of the marginal costs of further CO2 reductions for each of 
the initiatives in Steps 1–4, and hence be able to prioritise certain areas 
for further developments. 

3. Methods 

This section presents the selected case study where the established 
simulation and optimisation approaches are applied to compare how 
such modelling approach decisions affect the resulting future municipal 
energy scenarios. 

3.1. Case selection and reference scenario 

Oud-Heverlee is one of 300 independent municipalities in the 
Flemish region of Belgium. In 2015 the municipality developed a 
climate action plan for 2020 [39] as part of the Covenant of Mayors 
initiative [40] and has also joined the 2030 Covenant of Mayors initia-
tive, committing to 40% CO2 reductions by 2030. 

Oud-Heverlee has approximately 11,000 inhabitants, and an energy 
system based mostly on fossil fuels, with electricity being supplied 
mainly from the national electricity grid. Oud-Heverlee already has a 
small amount of rooftop photovoltaics (PV), some electric vehicles, and 
some households have heat pumps for heating. 

Oud-Heverlee consists primarily of single-family houses (88% in 
2020), with the remaining housing facilities being mostly apartments. 
The municipality has experienced a slight growth in population from 
2011 to 2020 by 0.9%, and a gradual increase in housing facilities, 
increasing by 5.4% in the same period. Both growth rates are however 
lower than the average of the Flemish region. The building stock consists 
of 44.3% of buildings from before 1970, 20.5% of buildings from the 
period 1971–1981, and the remaining 35.2% being buildings con-
structed after 1981. 

Energy consumption, for both heat and electricity, has been 
decreasing slightly from 2011 to 2020, and as a result, so has CO2 
emission. Total energy consumption has decreased by approximately 
12.6%, and CO2 emissions by 7.6% - thus failing to reach the previous 
Covenant of Mayor target of a 20% reduction by 2020. Reductions in 
energy demand and CO2 emissions are a result of house renovations 
enabling heat savings, a gradual replacement of oil boilers with natural 
gas boilers, and in a few cases, the installation of electric heat pumps. 
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The transportation sector is largely unchanged in the same period. In-
dustrial activity in Oud-Heverlee is limited, and there are no local power 
plants. A reference scenario for 2020 was established, functioning as a 
starting point for future scenarios - an overview of energy flows can be 
seen in Fig. 2. 

Individual heating is by far the most energy-consuming sector with 

the majority of the heat demand being supplied by natural gas. Trans-
port is overwhelmingly covered by fossil fuel-based personal vehicles 
relying on oil, and electricity is imported from the national grid except 
for a small local electricity production from PV. 

3.2. Modelling tools and approaches 

In this study, energy system scenarios are modelled with the use of 
EnergyPLAN v16.1 [10] – a well-established tool for holistic modelling 
of energy systems and all related energy sectors with more than 300 
references in the academic literature [41] EnergyPLAN is used as the 
calculation engine for both the simulation and optimisation-based ap-
proaches but is applied in different ways to accommodate both model-
ling approaches. 

The stepwise simulation approach uses the Multiple Energy Grids 
Planning tool, an EnergyPLAN-based modelling tool designed specif-
ically for municipal energy system scenarios [13]. This tool comes with 
additional functionalities for scenario modelling, allowing the user to 
develop multiple energy system scenarios more easily compared to the 
stand-alone version of EnergyPLAN. In Fig. 3 the inherent logic for 
scenario modelling in the Multiple Energy Grids Planning tool can be 
seen. This process aligns well with the stepwise simulation approach 
defined in Section 2.2 which, due to its nature with user-defined sce-
narios, considers scenario development an iterative activity. 

The MOO approach also relies on EnergyPLAN for the actual energy 
system calculations to ensure consistency, but the optimisation of inputs 
is done by the EPLANopt model [32], a MOO model based on a genetic 
algorithm. The model, typically adopting total system costs and CO2 
emissions as objective functions, establishes a Pareto front of Pareto 
optimal solutions. These solutions are identified by the expansion ca-
pacity optimisation algorithm which varies the decision variables’ 
values in their admissible ranges until convergence indicators are met. 

The stepwise-simulation approach represents a categorical approach 
to simulation, relying on significant user input and careful selection of 
scenarios, as opposed to automated generation of thousands of systems. 
The applied MOO approach represents a broader optimisation-based 
modelling paradigm where the development from reference to future 
scenarios is done autonomously based on pre-defined boundaries. 

Fig. 2. Reference scenario energy flows for Oud-Heverlee (2020).  

Fig. 3. Scenario development process of the stepwise simulation approach.  

Table 2 
Decision variables investigated in energy system scenarios.  

Decision variable Unit Minimum value Maximum value Interval 

Onshore wind power kW 0 100,000 1,000 
PV kW 2,000 100,000 1,000 
Electricity storage MWh 0 300 10 
DH thermal storage MWh 0 1,500 50 
DH HP capacity kW-e 0 25,000 250 
DH share % 0 100 10 
Indiv. HP production GWh 6 120 1  
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3.3. Decision variables 

Seven decision variables are included in the energy system modelling 
conducted for this study. This is firstly to limit the scope of the modelling 
exercise, and to structure the variables included in the energy system 
scenarios so that comparable results can be obtained for the two applied 
modelling approaches. Secondly, the variables included are in areas of 
the energy system that are within the municipality’s sphere of influence, 
hence aligning with the scope of municipal energy planning. In Table 2 
the decision variables investigated can be seen with the assumed mini-
mum and maximum boundary values. 

The decision variables shown in Table 2 are investigated in both the 
stepwise simulation approach and the MOO approach, adhering to the 
minimum and maximum values and the intervals shown. Energy effi-
ciency improvements and changes to the transportation sector are not 
included in the scenarios due to a lack of data and to limit the scope of 
modelling. Simulation-based approaches would typically not adopt the 
“decision variables” terminology, and instead refer to “system charac-
teristics and technological changes”, but for simplicity, these possible 
system changes will be referred to as decision variables going forward. 

Most of the decision variables do not have correlated modelling 
impacts (i.e., onshore wind power, PV, electricity storage, DH thermal 
storage, and DH HP capacity), meaning that changing these variables 

does not strictly require changes to other model inputs. However, 
increasing the DH share does require additional model changes. Firstly, 
increasing DH inherently come with the assumption that the individual 
heat demand is decreased in parallel. It is therefore assumed that the 
individual heat demand is shifted from individual heat production 
technologies to DH, prioritising a shift away from fossil fuel technolo-
gies. Hence, the shifting is first done for the individual oil boilers, then 
the natural gas boilers, then the biomass boilers and finally, if needed, 
the individual electrical HPs. 

Secondly, increasing DH demand needs to be accompanied by suf-
ficient peak load production capacity. It is assumed that a peak load 
production capacity for DH is supplied by biomass heat-only boilers at a 
capacity equal to 120% of the peak load demand. For increased indi-
vidual HP production, other individual heat production technologies are 
reduced concurrently, based on the same principles as described for DH. 

Further details on the technical and economic assumptions for the 
decision variables can be seen in Appendix A. 

4. Results 

In this section, the results from the energy system modelling of Oud- 
Heverlee are presented. Results, with an emphasis on the modelling 
process, are presented for both the stepwise simulation approach and the 

Fig. 4. Annual system costs and CO2 emissions for different combinations of installed VRE production capacity for Oud-Heverlee (Simulation-based approach 
Step 1). 

Fig. 5. Annual system cost and CO2 emissions for different levels of DH implementation, HP capacity, and thermal storage capacity for Oud-Heverlee (Simulation-based 
approach Step 2). 
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MOO approach, followed by a comparison of the two approaches. 

4.1. Stepwise simulation approach 

Electricity and heat savings are omitted from the model, hence in a 
first step it is tested how the energy system in Oud-Heverlee responds to 
the implementation of VRE capacity by increasing the installed wind 
power capacity, PV capacity, and a combination of wind power and PV 
(Fig. 4). For all scenarios, the same trend emerges; both CO2 emissions 
and total annual system costs (operation costs and annualised invest-
ment costs for all energy sectors) are decreasing up until a point after 
which system costs increase. The potential for CO2 reduction is lowest 
for scenarios implementing PV only, a result of the natural temporal 
production profile of PV, while wind power comes with a more variable 
production profile. The highest potential for CO2 reduction and the 
lowest system costs were however observed for the combination of PV 
and wind power – hence this option was selected for Step 2, with an 
installed capacity of 16 MW PV and 21 MW wind power. 

In Step 2 (Fig. 5) DH is implemented, testing three different scenarios 
all with increasing DH implementation. A “DH only”-system where heat 
is supplied by large biomass heat-only boilers, a “DH + HP” system 
where the boilers are supplemented by an electrical HP capacity, and a 
“DH + HP + storage” system where thermal storage capacity is also 

included. DH is implemented based on a cost curve which can be seen in 
Appendix A, which also includes the methodology for establishing the 
particular DH cost curve. 

Differences are generally minor across the three scenarios, and the 
same trend is observed – cost and CO2 emissions are reduced for the first 
10% of the DH cost curve (i.e., the densest areas), but for any additional 
DH implementation the annual system costs increase. CO2 emissions 
continuously decrease with increasing DH because of the transition from 
fossil fuel-based individual heating to renewable DH. A complete con-
version to DH results in a significant increase in system costs due to the 
very scattered housing found towards the end of the cost curve. While 
the difference is small, the DH + HP + storage scenario is selected for the 
next step due to it providing the lowest system cost. Only a 10% con-
version to DH resulted in a reduction in system costs, however, for 
comparison, and because of the CO2 emission reductions from further 
DH conversion, also 30% and 60% DH variations are included in the 
following steps. In Fig. 6 it is shown whether the conversion to DH (and 
the electrification occurring because of it) makes it feasible to increase 
the installed VRE capacity. This is possible for all scenarios, but most 
prominently for the 60% DH scenario since naturally the largest elec-
trification occurs here. The result is an installed capacity of 18 MW PV 
and 24 MW wind power for the 10% DH and 30% DH scenarios, and 20 
MW PV and 27 MW wind power for the 60% DH scenario. 

Fig. 6. Annual system cost and CO2 emissions for different levels of DH implementation and increasing VRE capacity for Oud-Heverlee (Simulation-based approach 
Step 2). 

Fig. 7. Annual system cost and CO2 emissions for increasing conversion to individual HPs with different levels of DH implementation for Oud-Heverlee (Simulation- 
based approach Step 3). 
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Fig. 8. Annual system cost and CO2 emissions for increasing VRE capacity with different levels of DH and individual HP implementation for Oud-Heverlee 
(Simulation-based approach Step 3). 

Fig. 9. Annual system cost and CO2 emissions for increasing electricity storage capacity with different levels of DH and individual HP implementation for Oud- 
Heverlee (Simulation-based approach Step 4). 

Fig. 10. Annual system cost and CO2 emissions for increasing VRE capacity with different levels of DH and individual HP implementation and 30 MWh electricity 
storage for Oud-Heverlee (Simulation-based approach Step 4). 
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In Step 3 a gradual conversion of the remaining individual heat de-
mand to electrical heat pumps is investigated (Fig. 7). The gradual 
conversion to individual HPs results in an increased system cost but does 
reduce CO2 emissions. For the final step, a variation with almost com-
plete conversion to individual HPs is selected, only the already existing 
biomass boilers remain. With the increased electrification from the 
increased capacity of individual electrical HPs, it is now possible to 
further increase the VRE capacity while lowering both CO2 emissions 
and system costs, as seen in Fig. 8. The result is an installed capacity of 
26 MW PV and 36 MW wind power in the 10% DH scenario, and 24 MW 
PV and 33 MW in the 30% DH and 60% DH scenarios. 

In Step 4 li-ion batteries are added for electricity storage, enabling 
further, however relatively minor, CO2 emission reductions but with 
increased system costs, as seen in Fig. 9. For completeness, scenarios 
with 30 GWh of electricity storage capacity are tested with increasing 
VRE capacity (Fig. 10), but the added electricity storage capacity does 
not enable additional VRE capacity to be installed without incurring 
additional system costs. 

4.2. Multi-objective optimisation approach 

The optimisation model EPLANopt is applied to the case of Oud- 
Heverlee with the same decision variables as in the stepwise simula-
tion approach. The model determines optimal system solutions for CO2 

emission and system cost reduction, resulting in a Pareto front of 
optimal solutions, as seen in Figs. 11 and 12. The results thereby do not 
determine a single optimal scenario, but rather a range of optimal sce-
narios for continuously decreasing CO2 emissions. 

In Fig. 11 it can be seen how the model determines the optimal ca-
pacity of PV to be around 14 MW–16 MW and for wind power to be 
around 27 MW–33 MW for most scenarios. This however increases 
significantly towards the end of the Pareto front as the CO2 emissions 
decrease. Electricity storage is not included in most scenarios and is only 
included towards the end of the Pareto front where the system costs 
increase exponentially. The trend is less clear for the individual HP 
demand - the individual HP demand increases gradually before a steep 
drop to 6 GWh at the end of the Pareto front. The drop to 6 GWh occurs 
because a 90% conversion to DH allows for increased integration of VRE 
from storage capacity compared to individual heating and thereby 
reduced CO2 emissions but results in a high system cost due to the 
required investment costs and resulting thermal losses. 

In Fig. 12 it can be seen how the model determines that for optimal 
scenarios the DH share is gradually increased to reduce CO2 emissions. 
This increase in DH comes with increasing installed capacity of HPs in 
DH is increasing and increased thermal storage capacity. 

The general trends observed in Fig. 12 (increasing HP capacity and 
increasing thermal storage capacity) are intuitively relatively logical 
correlations to an increased DH deployment. The fluctuations observed 

Fig. 11. Development of VRE capacity, electricity storage capacity, and individual HP demand relative to Pareto front for the Oud-Heverlee case.  
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for the HP and thermal storage capacity indicates that there is some 
uncertainty on the exact optimal installed capacity, even if it is quite 
clear that some capacity is needed. 

4.3. Simulation vs optimisation 

Comparing the results of the stepwise simulation approach to the 
MOO approach in Fig. 13, it can be seen that the simulation results in all 
steps (1–4) are generally at least at one point very close to the Pareto 
front. Hence, the proposed stepwise simulation approach does enable 
the user to arrive at scenarios that are similar to those obtained from the 
MOO approach. The exception to this is Step 1 where it is not possible to 
arrive at results comparable to the MOO approach; that is however not 
surprising based on the limited options available for Step 1. 

The structured nature of the proposed simulation approach of the 
user-guided stepwise simulation approach also leads to some system 
understanding of technological interactions obtained from the process of 
modelling. The MOO optimisation approach does however provide a 
much more complete picture of all possible Pareto optimal solutions, but 
without any inherent explanations or understanding of the conclusions 
to draw from the results. Instead, the modeller needs to establish this 
understanding of results in a post-processing phase. 

To arrive at the results in Figs. 13, 9,000 simulations were done for 
the MOO approach, which due to the genetic algorithm applied is 

relatively few compared to the total decision space available. The results 
for the stepwise simulation approach required 219 total simulations, 
however, these results do not cover the same array of optimal solutions 
found with the MOO approach. 

5. Discussion 

Determining that distinctively different energy system modelling 
approaches exist is the first step towards greater awareness of how 
modellers approach energy system modelling, beyond contemplating 
what modelling tool to use, but also considering how it is applied. 
However, the aim of comparing energy system modelling approaches in 
this study has not been to establish whether one approach is superior to 
others, but rather to establish that a conscious decision is needed from 
modellers. 

Energy systems are inherently complex due to consisting of multiple 
sectors and an abundance of technologies [42], and modellers could 
therefore be inclined to believe that MOO methods are required to 
obtain results even resembling optimality. It is however seen in this 
study that it is possible to arrive at energy systems for a municipality 
based on a general set of principles for simulation that is comparable in 
terms of CO2 emissions and total system cost to energy systems derived 
from MOO. This is illustrated by the proximity of the results from the 
proposed stepwise simulation approach compared to the established 

Fig. 12. Development of DH share, HP capacity in DH, and thermal storage capacity relative to Pareto front.  
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Pareto front from the EPLANopt method. Hence, system complexity 
should likely not be used alone as a criterion to determine whether to 
apply simulation or optimisation-based approaches. Rather, such a de-
cision should preferably be guided by the local challenges, recognising 
whether these can be translated to an optimisation problem. 

The stepwise simulation approach relies on an iterative process 
guided by the modeller, thereby supporting a build-up of system un-
derstanding that may help in defining future scenarios and later in 
communicating the results of these scenarios. A downside to this user- 
guided process is the risk of overlooking relevant energy system con-
figurations, as the process is naturally limited by the imagination of the 
modeller. MOO on the other hand, in this study implemented through 
the EPLANopt model, models a larger range of potential system con-
figurations compared to what is feasible in a stepwise simulation 
approach. The downside of MOO is that significant post-processing of 
the results is needed to understand the occurring energy system 
interactions. 

The emphasis on CO2 emissions and total system cost present in this 
study is not embedded in simulation approaches and was perhaps in this 
study overemphasised to enable the comparison to optimisation ap-
proaches. This is however a general tendency seen in studies on 
decentralised energy system modelling as such scenarios often need to 
align to concrete national CO2 emission targets [43,44]. 

Such emphasis on only CO2 emissions and costs, and a strictly 
confined set of decision variables, disregards some of the opportunities 
provided by simulation approaches. This includes the potential to 
investigate fundamental or radical changes to the energy system that 
cannot be confined to an optimisation problem, or the potential to 
evaluate scenarios based on an additional set of parameters. Hence, for 
holistic energy system modelling, optimisation approaches may in some 
instances be unable to at the same time choose between savings in 
electricity, heat, electrification, DH or individual supply, production 
technologies for electricity and DH. In simulation approaches, such 
choices can be better understood and can be dealt with separately, while 
also addressing the different markets they act on. 

Perhaps as a response to the general energy system complexity and 
challenges in evaluating scenarios, increasing attention to model 
coupling, model integration and multi-criteria approaches seems to be 
emerging. Muñoz et al. [45] argue for a general need for holistic 
modelling in integrated city energy modelling. They further propose a 
methodology for combining energy scenario modelling based on secto-
ral energy demands and present a framework for evaluating scenarios 
based on energy, environmental, and socioeconomic criteria. Under-
lining the emerging emphasis on integrated methods, Chang et al. [46] 
present an extensive review of the growing field of multi-model analysis 
practices in energy system modelling and model coupling. In this, the 
authors argue that simulation and optimisation methods are mutually 
complementary, and that model coupling can enable modellers and 
planners to explore a wider solution space and thus more robust sce-
narios. Chang et al. conclude that model coupling also occur across 
different model classes, i.e., coupling energy system models with de-
mand side models, geospatial models, macroeconomic models, or life 
cycle assessment models, but that coupling to social dimensions is 
lacking. Future models for municipal energy system modelling could 
potentially develop in line with these trends, and to a larger extent 
function as “hybrid” simulation-optimisation models employing 
multi-criteria principles with less strict distinctions of simulation- and 
optimisation-based approaches. 

6. Conclusion 

This study defined five individual energy system modelling ap-
proaches, building on the previous simplified distinction of simulation 
and optimisation models in existing literature, and categorised existing 
applied approaches to energy system modelling. A stepwise simulation 
approach was proposed and compared to the EPLANopt MOO approach 
through an application to a municipal case study. The comparison 
exemplified how fundamental differences in modelling approaches in-
fluence the process of designing future energy systems. 

The municipal energy system of Oud-Heverlee was used as a case for 

Fig. 13. Comparison of Pareto optimal solutions determined through MOO to selected stepwise simulation solutions for the Oud-Heverlee case.  
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the practical comparison of stepwise simulation to a MOO approach. As 
a municipality, the energy system of Oud-Heverlee is delimited by po-
litical boundaries and due to its limited size relatively simple in terms of 
technologies and energy demands. Hence, there are no inherent barriers 
to applying the stepwise simulation approach or the MOO approach. 

Modellers should consider their approach to energy system model-
ling concurrently with deciding on a modelling tool so that both can be 
aligned with their research problem. Both simulation and optimisation 
approaches are legitimate approaches to energy system modelling for 
scenario development, assuming that sound fundamental principles are 
applied. 

Future research could consider investigating if the proposed stepwise 
simulation approach and principles herein can be transferred to national 
energy system modelling, with the increased system complexity 
entailed. While the proposed stepwise simulation approach would likely 
in principle be transferable, some further development may be needed to 
accommodate the increased array of technologies and energy sectors 
that must be captured in such national energy system models. 
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[26] Østergaard P, Mathiesen BV, Möller B, Lund H. A renewable energy scenario for 
Aalborg Municipality based on low-temperature geothermal heat, wind power and 
biomass. Energy 2010;35. https://doi.org/10.1016/j.energy.2010.08.041. 
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