

Aalborg Universitet

Doors and walls

physical barriers and knowledge sharing Nowinska, Agnieszka; Pedersen, Torben

Published in: Industry and Innovation

DOI (link to publication from Publisher): 10.1080/13662716.2022.2141611

Creative Commons License CC BY-NC 4.0

Publication date: 2023

Document Version Accepted author manuscript, peer reviewed version

Link to publication from Aalborg University

Citation for published version (APA): Nowinska, A., & Pedersen, T. (2023). Doors and walls: physical barriers and knowledge sharing. *Industry and* Innovation, 30(5), 585-606. https://doi.org/10.1080/13662716.2022.2141611

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 You may not further distribute the material or use it for any profit-making activity or commercial gain
 You may freely distribute the URL identifying the publication in the public portal -

Take down policy

If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: July 03, 2025

Doors and walls: physical barriers and knowledge sharing

Agnieszka Nowinska*
Aalborg University Business School
Fibigerstræde 11, 44
9220 Aalborg, Denmark
Phone: +45 9940 2530

E-mail: <u>aun@business.aau.dk</u>

Torben Pedersen
Bocconi University
Department of Management and Technology,
Via Röntgen 1, 20136, Milano, Italy
Tel: +39 025836.3614

E-mail: torben.pedersen@unibocconi.it

* Corresponding author.

Doors and walls: physical barriers and knowledge sharing

Abstract

The extant literature has demonstrated that physical distance negatively affects knowledge

sharing, even within the same building. Moreover, the impact of physical barriers, such as doors

and walls, has been flagged as an important avenue for research. We contribute to the micro-

geography literature by unpacking the effects of physical barriers on knowledge sharing and

moderators of that relationship. Based on micro-level, single-firm observational data on

employees' knowledge-sharing dyads, we find that physical barriers impede knowledge sharing

after accounting for distance. Simultaneously, we theorise on and find evidence of several

moderators of the negative relationship between physical barriers and knowledge sharing at the

dyadic and individual levels: strong ties, participation in coordination mechanisms across

departments, job autonomy, and location in an office near a printer room. The study has

implications for managers in charge of office allocation and the physical layout of offices.

Keywords: knowledge sharing, physical barrier, distance, ties, coordination, autonomy

2

Doors and walls: physical barriers and knowledge sharing

Introduction

While knowledge sharing has been widely linked to organisational performance (Donnelly 2019; Oyemomi, Liu, Neage, and Alkhuraji 2016), its determinants in the physical environment are less researched (Oliveira, Curado, and Henriques 2019). A seminal study by Allen (1977) showed that physical distance between individuals deters knowledge sharing in organisations (Kabo, Hwang, Levenstein, and Owen-Smith 2015; Monge, Rothman, Eisenberg, Miller, and Kirste 1985). Other researchers have found that proximity matters for individual knowledge-sharing behaviour (Chown and Liu 2015; Masket 2008). Notably, Allen's (1977) work supplemented and inspired other scholarly investigations of how changes in the physical environment affect knowledge sharing (Allen and Gerstberger 1973; Gullahorn 1952; Oldham and Brass 1979).

Physical distance and barriers, like walls and doors, are inherent components of the physical environment. Scholars have studied these factors in the context of changes in the physical layout of office spaces (i.e., moving from one office to another) that result in a larger or smaller number of immediate enclosures (Allen and Gerstberger 1973; Gullahorn1952; Oldham and Brass 1979). This stream of research has focused on comparing one physical setting to another rather than on the effects of the physical barriers themselves. Nonetheless, scholars have emphasised that the physical barriers 'appear to be the aspect of physical structure in greatest need of future research' (Hatch 1987, 388).

3

Our goal in this paper is two-fold. First, we aim to demonstrate the importance of physical barriers (e.g., doors and walls) and, thereby, go beyond the focus on sheer distance. Second, we aim to develop theory on mechanisms that may offset the negative effects of barriers on knowledge sharing at the dyadic and individual levels, and to explore those mechanisms (i.e., strong ties among dyads, participation in coordination across departments, job autonomy, and location in an office next to a printer room).

We use observational data from 796 employee dyads from a single firm located in one building with offices spread across five floors. Doors and walls are the physical barriers on which we focus. We test the effects of these physical barriers and the focal moderators on the frequency of knowledge sharing in the sampled dyads.

Our findings suggest that physical barriers (i.e., doors and walls) negatively affect knowledge sharing even when distance remains constant. However, these negative effects are alleviated in the presence of strong ties between employees, and when employees have substantial job autonomy, are part of work tasks that involve multiple departments, or are located in an office next to a printer room.

The findings have implications for managers in charge of office allocation and physical layouts at firms as well as those implementing task forces across departments, as they show the negative effects of seat allocation on knowledge sharing. While it may not be possible to completely overcome or alleviate all of these negative effects, several interventions are possible: fostering social relations through community building, explicitly giving employees job autonomy, introducing mechanisms that cut across departments, and designing the workspace with an equal distribution of social spots, such as printer rooms.

Distance, physical barriers, and knowledge sharing

An important body of research indicates that as physical distance¹ increases, the likelihood of knowledge sharing decreases. Allen (1977) presented seminal results along these lines and his findings have been supported by subsequent studies, even in cases of relatively short distances and when employees are working in the same building (see, e.g., Fayard and Weeks 2007; Sailer and Mcculloh 2012). For instance, scholars have shown that colocation or proximity (Khazanchi, Sprinkle, Masterson, and Tong 2018) matter for voting behaviour and political outcomes (Chown and Liu 2015; Masket 2008). Similarly, the cancellation of an academic conference – an opportunity for participants to be temporarily proximate² – led to a decrease in the likelihood of scientific collaboration (Campos, Leon, and McQuillin 2018). Moreover, the literature on knowledge diffusion highlights benefits that accrue to local versus distant actors, such as inventors or firms (Baruffaldi and Raffo 2017; Feldman and Kogler 2010; Jaffe, Trajtenberg, and Fogarty 2000), although hypotheses on localised knowledge spillovers have been questioned (Breschi and Lissoni 2001, 2009).

Proximity promotes spontaneous gatherings and face-to-face interactions (Sole and Edmondson 2002). Face-to-face interactions are richer and have higher bandwidth than, for instance, phone conversations, as they allow for 'body-work' (Nardi and Whittaker 2002). Distant employees forego opportunities for random encounters (Hatch, 1987; Waber, Magnolfi, and Lindsay 2014), as they have less scope to engage in spontaneous conversations around the water cooler or other social spots. While organisational studies have found proximity effects to be

¹ We equate distance with physical distance in this paper. However, we acknowledge the multi-faceted character of distance as well as research referring to other dimensions of distance (Dolfsma and van der Eijk 2016).

² For more on temporary physical proximity or colocation, see Baruffaldi and Poege (2020), Chai and Freeman (2019); Lavoratori, Mariotti, and Piscitello (2020), and Torre and Rallet (2005).

positive, social ecology studies of interactions in housing contexts offer some nuanced findings that physical proximity may lead not only to friends but also to enemies (Ebbesen, Kjos, and Konecni 1976)

After Allen's seminal study (1977), scholars have focused on the effects of adding or removing physical barriers (i.e., exposing the same employees to various types of physical environments at different points in time) by, for instance, moving employees from a traditional closed office to an open-office space or removing walls that separate employees (Oldham and Brass 1979). The first wave of studies associated open space offices with higher rates of informal interaction when compared to traditional closed offices (Allen and Gerstberger 1973; Brookes and Kaplan 1972; Szilagyi and Holland 1980). Other studies found that such moves may decrease the number of interactions because of employees fear supervisor's monitoring, or the type of interaction (Oldham and Brass 1979; Sundstrom, Herbert, and Brown 1982; Värlander 2012). Researchers have also studied the effects of increased transparency in the physical environment, which decreases privacy, and found negative effects on workers' performance (Bernstein 2012). As such, research on the effects of changes in physical barriers has provided mixed results.

In this paper, we depart from these studies and aim to fill in the gap in our knowledge of the effects of physical barriers. Accordingly, we theorise and comparatively study the behaviour of individuals separated by physical barriers and the behaviour of those for whom such barriers are absent, while controlling for physical distance. Notably, we do not study changes in the physical environment but exploit the fact that employees are exposed to different physical environments in order to scrutinise the effects of those environments on their knowledge-sharing

behaviours. We also explore possible moderators of the effects of physical barriers on knowledge sharing.

Search costs are an important determinant of individual matching processes (Boudreau, Brady, Ganguli, Gaule, Guinan, Hollenberg, and Lakhani 2017; Catalini 2018) and have a strong restrictive effect on knowledge sharing (Hansen, Mors, and Løvås 2005). While both distance and physical barriers give rise to search costs, several mechanisms distinguish the effect of distance from the effects of qualitative discontinuities, such as doors and walls.

First, the concept of privacy is closely linked to physical barriers in the workplace (Khazanchi, Sprinkle, Masterson, and Tong 2018). Privacy affects knowledge-sharing behaviours in several ways (Archea 1977). First, the privacy conferred by doors and walls is correlated with one's range of visual access. In the first phase of the knowledge-sharing process, an employee initiates a search (Hansen et al. 2005). Visual access is important in this regard, as the employee may simply lean out of his or her workspace or stand up to check whether another colleague in the same office is available. As such 'quick checks' are not possible through doors and walls, the consequence of blocked visual access is that an individual may leave his or her own office only to discover that a colleague is absent or busy, with both alternatives deterring knowledge-search prospects (consistent with Archea's [1977] notion of inflection in gradients).

In addition, given visual access in the same office, an employee may use body language (Nardi and Whittaker 2002) to communicate with a colleague without engaging in conversation. Even if the focal colleague is busy, the employee may still get his or her attention and signal a need to talk later at a very low cost. Therefore, visual access in one's own office implies lower search costs than the alternative of walking to another office.

Nevertheless, privacy related to visual access is considered a paradox – while too much of privacy may be detrimental to collective behaviour, too little privacy (or too much transparency) may have the same effect (Bernstein 2012). In line with the Hawthorne effect, employees exposed to others' visual fields may adjust their behaviours (Archea, 1977, 121). In other words, 'being seen' by others may prevent employees from engaging in certain types of interactions, such as informal chats. As this fear of 'being seen' is present for reaching out both within one's office and beyond it, we expect its effect on all types of social interactions to be constant.

Second, Ashkanasy, Ayoko, and Jehn (2014, 1173) note that:

A collective of employees in an open plan office environment may contribute to employee identification at the group level. For example, the opportunity for team members to work close to each other in an open-plan environment may help to build team identification.

Social interactions – 'values and norms that may together promote collective or team identification' (Ashkanasy et al. 2014, 1173) – contribute to such identification. These authors also propose that 'the physical environment provides employees who work together (e.g., in collaborative spaces) an opportunity to mark their workspaces with group awards, group certificates, and logos that display the group vision while communicating the group identity' (Ashkanasy et al. 2014, 1173). Such an identity may drive employees' knowledge-sharing behaviour, with a tendency to favour within-group, rather than between-group, interactions.

In summary, Pfeffer (1982) argues that doors and walls have a significant effect on behaviour, as people cannot walk through partitions or talk through walls. Archea (1977) supports this idea, stating 'doors, walls, corners, and other places in the environment where new information first impinges on a situation will have special behavioural significance' (121). Given the high search costs, lack of visibility, and difficulty of developing a shared identity associated with physical barriers, we expect them to reduce the frequency of knowledge sharing regardless of distance. Therefore, we posit:

H1: After controlling for physical distance, employees separated by physical barriers, such as doors and walls, have a lower frequency of knowledge sharing than employees who share an office.

Physical barriers, moderating factors, and knowledge sharing

Doors and walls may impede social interaction in a workplace. As knowledge sharing is generally a desired element of an organisational space, firms may want to know about ways to counter and possibly alleviate such impediments. In the following, we identify three categories of factors that may moderate the negative effects of doors and walls on knowledge sharing: the types of tasks and responsibilities an employee has within the organisation (an individual-level characteristic of the focal employee), the type of relationship between a pair of employees (dyadic characteristics), and environmental characteristics (related to the focal employee). We review these three categories of moderators and further explore their interplay with the physical environment in the empirical section.

First, the extant research suggests that employees change their behaviour when their supervisors are present, as employees fear monitoring (Lecuona-Torras and Cummings 2018). This finding is in line with the fear of 'being seen' by others (Archea 1977). However, some qualitative characteristics of employees' tasks and roles may confer legitimacy on social

interactions, including interactions that involve leaving one's own office. We theorise that two types of job characteristics can circumvent the negative effects of physical barriers. First, being part of a task force and coordinating across departments may provide employees with reasons to reach out to colleagues outside their own departments. This is in line with Fayard and Weeks's (2007) argument on the importance of social designation, which provides 'legitimate rationalisations for people to stay and talk to each other' (625). Therefore, the negative effects of physical barriers may be offset if employees are involved in coordination across departments.

Moreover, job autonomy matters for knowledge-sharing behaviour. Job autonomy has been defined as one's discretion to schedule tasks and make decisions on the job (Morgeson and Humphrey 2006).³ It has been found to influence knowledge sharing in two ways: indirectly, through factors such as intrinsic motivation or organisational climate (Gagné, Tian, Soo, Zhang, Ho, and Hosszu 2019; Llopis and Foss 2016; Pee and Lee 2015), and directly (Nesheim and Gressgård 2014).⁴ Job autonomy may thus increase knowledge sharing, even in the presence of physical barriers.

Second, the literature has traditionally advanced strong, positive spillovers of proximity and social relations, which enable collocated individuals to form strong ties. Chown and Liu (2015) found that, for average peers', location 'structures' affect their access to peers' support, while Masket (2008) documented the existence of peer effects based on location. Similarly, Lee (2019) found that the effects of moving desks closer were strongest for individuals with no prior ties, which corroborates the positive effects of proximity on strong ties. Strong ties, such as ongoing

³ Some research points to managers as individuals with specific knowledge-sharing patterns who frequently act as brokers (for a review, see Sergeeva and Andreeva [2016]).

⁴ However, Gagné et al. (2019) mention one study focused on 'job autonomy and knowledge hiding (that) found no relation between them (Černe et al., 2017). Instead, this study found that a combination of job autonomy and a mastery climate decreased the negative effect of hiding on innovative work behavior' (p.787).

work relationships, may influence knowledge sharing between individuals in the presence of physical barriers. This phenomenon was documented by Casciaro and Lobo (2005), who found that individuals searching for knowledge are mostly driven by the likeability, not the ability, of potential partners. Similar results were found in an empirical study of project outcomes in which better outcomes were attributed to the strength of ties rather than proximity among firms (Ganesan, Malter, and Rindfleisch 2005).

Challenging the work on 'localised knowledge spillovers', Breschi and Lissoni (2009) demonstrate that networks (i.e., social interactions among inventors) account for a larger part of knowledge diffusion than physical proximity.⁵ On a related note, social ecology studies (Ebbesen et al., 1976) find that proximity may drive dislike because of daily exposure to others' criticisable behaviour, which would be absent in the case of distance ties. Building on this argument and on the importance of likeability in knowledge sharing, we expect strong ties in dyads to alleviate the negative effects of physical barriers on knowledge sharing.

Third, as mentioned above, the physical context and social designations play a role in individual behaviour. As Fayard and Weeks point out (2007):

... only when we include social characteristics – routines concerning who uses what resource when – that shape traffic patterns in the office, for example, norms about social distance and interruption that govern polite behavior, and shared understandings about the behaviors designated as appropriate in the setting – can we understand what behaviors are afforded.

(625)

⁵ These authors note that networks of inventors suffer from 'immobility'. In other words, inventors cluster in the same locations.

In Fayard and Weeks' (2007) study, photocopiers were found to 'afford' interactions in the form of individuals helping each other with operating them, negotiating access, or picking up or waiting for printouts – all of which were considered 'legitimate activities' (624). Fayard and Weeks (2007) termed the surrounding interactions, sometimes involving even passers-by, 'social photocopying'. This is in line with the 'passive contacts' and functional distance (Festinger, Schachter, and Back 1950) documented in a housing study. 'Passive contacts' are 'casual or involuntary meetings' (Festinger, Schachter, and Back 1950, 34) that may materialise because of some functional elements of the surroundings. The authors propose that 'factors such as design of a building or the positional relationships among a group of houses are also important determinants of which people will become friends' (35), and that functional distance is measured by 'the number of passive contacts that position and design encourages' (35). In their empirical analysis, the authors found support for a higher number of friendships among individuals located in specific parts of the building, such as those living by stairways connecting different floors.⁶

In an organisational setting, passive contacts can be made by employees located near print rooms. Therefore, we expect location near a copy room to alleviate the effects of barriers on individual knowledge-sharing behaviour. In other words, individuals located within the vicinity of a copy room should be more likely than others to search for knowledge outside their own offices. Such searches may occur randomly because these individuals hear a conversation, join in and, thereby, make 'passive contact', or because the photocopier 'affords' social interactions and makes leaving one's office easier in the first place, as doing so is viewed as legitimate.

⁶ The authors also document the well-known negative effect of physical distance on the likelihood of friendship formation. They note that the relationship between physical and functional distance is complex.

Methods

Research context, case selection, and data collection

The data collected for our main study originated from one firm – a global leader in dieselengine production. One of the firm's core locations was Copenhagen, Denmark. We chose this case firm for three reasons. First, knowledge sharing was important for all of the company's employees, who were mostly engineers, as the firm designed, optimised, and serviced engines that were specific to each customer. Many of the services provided to customers were unique in the sense that they required different competences and solutions that were adapted to the specific customer and context, which implied that knowledge sharing across employees and offices was necessary. Second, the employees understood that knowledge sharing was necessary and legitimate. Third, there were significant variations in distance and in assignments to offices among employees from various departments located in the five-floor building. On each floor, employees were divided into 10 to 15 offices separated by doors and walls. The variation in distance on each floor ranged from 0 to 100 meters. Some offices were located directly by printer rooms, while others were not. Moreover, this study context had the advantage that some of the other distance dimensions highlighted in the literature, such as geographical and cultural distance, were ruled out by design, as all individuals were in the same location (i.e., the same building) and were only separated by doors, walls, and stairs.

We used a survey instrument – more specifically, a name generator (a common method in the social sciences) – to gather insights into knowledge-sharing behaviours. We also obtained access to detailed plans covering the physical layout of the building, including information on individuals' locations, which enabled us to measure the distance in employee dyads. Employees

were in open offices housing between 5 and 15 employees, and each employee had access to some private space.⁷

Each floor in the five-story building was largely allocated to a specific function (e.g., R&D on the fifth floor, engineering on the fourth floor), and employees with similar competences (e.g., IT engineers, quality engineers, or marine engineers) were located together. This non-random seat assignment should generate more knowledge sharing within an office simply because of the interdependence of the conducted tasks. However, a key reason for choosing this firm for our study was that the knowledge needed for most projects was scattered among various offices.

Nevertheless, the non-random office assignments may bias our results. We attempted to alleviate this concern in several ways. In our observational study, we added several variables, such as departmental dummies, function dummies, and the number of partners, which should help to control for the non-random office assignments. In addition, we ran several robustness checks, including simultaneous equations (2SLS) with instrumental variables and a model with multiple fixed effects, to alleviate possible endogeneity concerns related to the non-random office assignments.

We pre-tested the survey with various audiences (i.e., academic peers and employees) to ensure that the survey items could be easily understood. The survey was administered over the internet by the firm's representatives. We sent a total of 505 surveys and received 263 answers, giving a response rate of 41%. Due to missing information, we excluded 58 answers, leaving us

⁷ The floor plans indicating the location of offices and other facilities on each floor are available upon request.

with a data set of 205 observations. We used dyads of two employees involved in knowledge sharing as our unit of analysis, and we had 796 usable dyads.

Of the 205 respondents, 78% were highly educated males holding a master's degree or higher. 84% of the respondents were in their thirties. With help of the firm's representatives, we compared the demographic characteristics of the non-respondents to those of the respondents and did not find any significant differences between the two groups. In addition, we did not find differences in the key variables between early and late respondents in t-tests, which suggests that non-response bias is not an issue in our data.

In the survey, respondents were asked to name up to five colleagues located in the same office building with whom they shared knowledge on regular basis (i.e., a name generator). Of the 205 useable responses, 46% listed the maximum of five knowledge-sharing partners, 23% listed four, 15% listed three, 6% listed two, and 10% listed only one. The average number of self-reported partners was 3.88. As such, our dyadic data may not be independent (Broekel, Balland, Burger, and van Oort 2014), as the same respondents self-reported themselves as part of various dyads. We address this issue in the empirical section (i.e., we added random effects for ego and alter).

Measures

Our dependent variable, *frequency of knowledge sharing*, is a count variable that captures how often an employee shares knowledge with colleagues located in the same office building. Similar measures have been used in other studies on knowledge sharing (Casciaro and Lobo 2005). We measured this variable using a nine-point scale ranging from never (= 1) to many times each day (= 9). We obtained data on this variable for all 796 knowledge-sharing dyads. For 18% of the dyads, knowledge sharing took place several times per day, while it occurred once

per day in 22% of the dyads and several times per week in 28% of the dyads. Knowledge sharing occurred once per month or less in less than 10% of the dyads. This indicates good variation in the frequency of knowledge sharing across the dyads.

The independent variable, *distance*, captures the walking distance between the two knowledge-sharing employees in the 796 dyads. We measured this distance as the shortest walking distance (in meters) from chair to chair. The building was designed to ensure that every employee, regardless of location, had a staircase nearby. In total, ten staircases and lifts linked the different floors. Therefore, the shortest walking distances mainly consisted of horizontal distances even when the employees were located on different floors (i.e., employees located in the same area on different floors scored low on distance). However, to separate the effect of different floors, we also controlled for vertical separation. Distances ranged from 0 to 100 meters, with an average of 20.5 meters and a standard deviation of 27.4. This indicates good variation in distance across the dyads.

We added a dummy variable to capture whether the two employees in a dyad were in the same office. The variable, *different office*, took a value of 1 if the two employees were in different offices and 0 if they were in the same office (baseline category). In 44% of the dyads, the employees were in the same office.

We computed four additional, moderating variables that each captured a mechanism that may circumvent the negative effects of physical barriers. First, the type of relationship between colleagues in a dyad may affect their knowledge-sharing behaviour (Casciaro and Lobo 2005). For instance, friends are more likely to share knowledge, although that knowledge may be largely redundant. We therefore constructed a *tie strength* variable for each dyad to measure perceptions of closeness to the dyad partner rated on a seven-point scale, where 1 denoted

'distant' and 7 denoted 'very close' (Marsden 1990; Marsden and Lin 1982). The mean of *tie strength* is 4.1, which suggests a relatively high number of emotionally close dyads.

Second, *job autonomy* captures the extent to which respondents can perform their job-related tasks on their own. The respondents were asked to rate the extent to which they could 'conduct their work tasks on their own' using a scale from 1 (= very little) to 7 (= very much). The mean of 5.5 suggests that most respondents perceived their jobs as rather autonomous in the sense that they had the discretion to conduct tasks in the way they wanted.

Third, we created a construct covering the extent to which an individual was involved in *coordination* activities with other departments. The construct was based on three items capturing whether the individual was involved in 'fixed meetings', 'temporary task forces', or other 'planning activities' across departments (Cronbach's alpha = 0.74). All three items were measured on a seven-point scale ranging from rare (= 1) to very often (= 7), with an average of 3.5 and a high level of variation among the respondents.

Finally, we included a dummy for photocopier, which took a value of 1 for all individuals located in offices next to a printer room. According to Fayard and Weeks (2007), 'social photocopying' is a phenomenon. As such, the vicinity of a *printer room* may affect the employees' behaviour and social interactions. Of the respondents, 56% were located further away from a printer room, while 44% were located next to a printer room.

We also added numerous *control variables* to rule out confounding variables stemming from factors related to ability, motivation, and opportunity (Argote, McEvily, and Reagans 2003; Reinholt, Pedersen, and Foss 2011). Our controls included both dyad- and individual-level variables. The dyad-level variables reflected relationship-specific factors that may make the

sharing of knowledge more or less likely. They also captured opportunity-related factors. The individual-level variables captured individual-specific aspects of ability and motivation that may affect the propensity to share knowledge. As such, the control variables rule out confounding factors that may explain the frequency of knowledge sharing and the possibility that unobserved heterogeneity biased our results.

More specifically, we included the standard individual demographic characteristics of age and education. *Age* is an ordinal variable with the following categories: 25 to 34, 35 to 44, 45 to 54, and 55 to 64, which were assigned values of 1, 2, 3, and 4, respectively. There were 44 respondents in the first category, 73 in the second, 48 in the third, and 40 in the fourth. Therefore, most of the respondents were in their thirties. *Education* is an ordinal variable reflecting the level of education: high school or below (= 1), high school education (= 2), bachelor's degree (= 3), and master's degree or PhD (= 4). Ten respondents were in the first group, 35 in the second, 115 in the third, and 37 in the fourth. As such, most employees were highly educated.

We included the variable *motivation* because employees vary in their willingness and motivation to share knowledge (Gagné, Tian, Soo, Zhang, Ho, and Hosszu 2019; Gagné and Deci 2005). Motivation is either extrinsic or intrinsic (Gagné and Deci 2005). If individuals adopt behavioural regulations or social norms, and value compliance with those regulations and norms, they are extrinsically motivated. In contrast, intrinsically motivated individuals engage in collaborative activities, such as knowledge sharing, without any other prerequisites solely because they identify with the social norms (Gagné and Deci 2005) Both *intrinsic motivation* and *extrinsic motivation* are multi-item measures reflecting respondents' reasons for sharing

knowledge, and they use seven-point scales ranging from 'strongly disagree' (= 1) to 'strongly agree' (= 7).

Opportunities to share knowledge have numerous dimensions, including the number of partners and vertical closeness. In this regard, respondents were asked to indicate how many work-related collaborations they had with *internal partners* in the company and *external partners* outside the company. Most respondents indicated that they collaborated with internal colleagues. The mean of internal partners was 16, while the average number of external partners was 7.3. We also controlled for the *vertical separation* of dyads. This count variable, which reflected the number of floors separating the two dyad members, ranged from 0 to 4.

As highlighted above, some dimensions of distance, such as geographical and cultural distance, are ruled out by the study's design. However, other dimensions of distance, such as belonging to different functions and departments (i.e., professional groups), remained. We therefore controlled for *function* – engineering, R&D, sales and marketing, and technical service. The extent of knowledge sharing might vary by function, as some roles (e.g., in R& D) may be required to reach out for knowledge to a greater extent. We also added 46 dummies for each *department* to control for specific effects related to different specialities and professional groups.

The level of interactions, especially face-to-face interactions, is also a function of the extent to which knowledge has been codified in written form so it can be shared in ways that do not require face-to-face interactions (Carlile 2004; Tyre and von Hippel 1997). We therefore measured *codified knowledge* using a seven-point scale denoting the extent to which the shared knowledge was codified and written in the form of reports, manuals, or emails. If the shared knowledge was not codified at all, then it took a value of 1, while it was assigned a value of 7 if it was highly codified.

Finally, we controlled for the gender of the focal individual sharing knowledge, with a *male* dummy taking a value of 1 for male respondents (175 of the 205 respondents). Table 1 provides a correlation matrix and descriptive statistics (including means and standard deviations) for all variables.

Insert Table 1 here

As expected, both independent variables – distance and different office – are negatively correlated with the dependent variable of frequency of knowledge sharing. The correlation between these variables is positive (0.52), but not perfect, as it picks up different dimensions of the physical separation. Vertical separation is also negatively correlated with knowledge sharing and, as expected, correlated with different offices (0.67). The moderating variables exhibit a common pattern. While they are negatively correlated with distance, the correlations with different office are positive for strength of ties, job autonomy, and coordination. The magnitude of the correlations among these items and with the independent variables is low. Of the moderators, strength of ties exhibits the strongest correlation with the dependent variable.

Self-reported measures have well-known weaknesses, but they remain a widely accepted way of capturing perceptions and behaviours among employees (Howard 1994; Ng and Feldman 2012). Nevertheless, we conducted several statistical tests to assess the severity of respondent biases. First, a Harman's one-factor test on the items indicated that common method bias was not an issue. Multiple factors were detected, and the variance did not stem from the first factors (Podsakoff and Organ 1986). The 14 variables included in the model on knowledge sharing formed six factors with eigenvalues greater than 1, and the first two factors captured 18% and 13% of the total variance, respectively. Second, we ran a partial least squares (PLS) model, including a common method factor with items that encompassed all of the construct's items.

Such PLS models provide information on each item's variance as substantively explained by the constructs and the common method factor. The average substantive variances explained by the constructs were all greater than 0.50, while the average method variance was approximately 0.01 for all items. The ratio of substantive variance to method variance was very high, suggesting that the data does not suffer from major respondent biases. While these tests do not eliminate the possibility of respondent biases, they suggest that our results are not predominantly driven by common method variance.

Results

Our data includes multiple dyads with egos (naming others) and alters (named by others), which results in non-independence among the dyads having the same ego or alter. This kind of clustering violates the independence assumption in our models and may reduce the size of the standard errors. To adjust the standard errors for clustering, we introduced a random effect for every ego and alter in our analysis. Furthermore, (two-way) random effects can control for potential unmeasured characteristics of egos and alters that could affect the outcome in terms of knowledge sharing. Therefore, we ran a multilevel – or 'nested' – model with random effects for egos and alters in order to alleviate the non-independence in our data (Gulati and Nickerson 2008). We discuss other specifications, including alternative fixed effects (Correia 2016), in the robustness section.

Insert Table 2 here

Table 2 presents the main findings for four models. The first model (M1) is the null model with the variance decomposition. The second model (M2) includes the *distance* variable and all control variables, while the *different office* variable is added in the third model (M3). The

full model (M4) includes all of the variables and the interactions of the moderators with *different* office.

M1 decomposes the variation in the frequency of knowledge sharing into three levels: ego, alter, and dyad. The dyad level is the residual when controlling for the ego and alter levels. The decomposition shows that 61.3% of the variance in knowledge sharing relates to the dyad level, 11.3% relates to the alter level, and 27.4% relates to the ego level. As such, a significant part of the variation in knowledge sharing can be attributed to all three levels. Our hypothesis on the effects of distance, doors, and walls relates mostly to dyad-level variation, which is primarily what we explain in the following.

As expected, *distance* is negative with a highly significant parameter (β = -0.01, p = 0.002) in M2, which confirms that increasing distance decreases knowledge sharing. Of the control variables, *codified knowledge* is positively correlated with the frequency of knowledge sharing, while *vertical separation* and *extrinsic motivation* negatively affect knowledge sharing.

In M3, the separation in the dyad is split into two elements: physical distance (*distance*) and physical barriers in terms of walls and doors (*different office*). As expected, being in a different office negatively affects knowledge sharing, even when controlling for distance.

Moreover, the significance of distance disappears when location in a different office is added.

This indicates that the negative effects of distance are largely a reflection of separation by doors and walls.

The key element of our results is not that the relationships among knowledge sharing, distance, and separation into different offices are significantly negative. This finding is expected, as employees are located near others with similar competences from the outset. The significance

of the results lies in the fact that both distance and physical barriers reduce social interactions.

This implies that to promote knowledge sharing, one should focus on physical barriers, like walls and doors, rather than on distance when designing office spaces.

In the final model (M4), the main effects of physical barriers and distance are in line with results from Model 3. This model also includes the four moderators of our main hypothesised relationship (i.e., the mechanisms that moderate the negative effects of physical barriers). The four moderators – *coordination*, *printer room*, *tie strength*, and *job autonomy* – are added as main effects and interacted with the *different office* variable (reflecting the physical barriers). Two of these moderators are significant on their own (*tie strength*, *job autonomy*), while the other two are not. Nevertheless, the coefficients of all interaction terms (moderators with the independent variable *different office*) are significant and have the expected positive signs. When we run the model with standardised variables, we find that the positive moderating effect is slightly higher for job autonomy (0.11) and coordination (0.10) than for printer room (0.09) and tie strength (0.08). However, the total effect on knowledge sharing is most positive for tie strength, as it has a significant, positive main effect.

These results remain consistent when each of the four moderators is added one by one. The results clearly indicate that while physical barriers hinder knowledge sharing, the negative effects can be avoided in cases where the employee: 1) is involved in coordination across departments, 2) is located in an office next to a printer room, 3) has strong ties within the organisation, or 4) has substantial job autonomy. Strikingly, the model (M4) explains 41.5% of the variation in knowledge sharing (1.475 - 0.863/1.475 * 100) that can be attributed to the dyad level. This can be further disaggregated in the sense that 16% of the dyad variation in knowledge sharing is related to physical barriers (the increased explanatory power from M2 to M3), while

another 16% can be attributed to the four moderating variables (the reduction in residual variance at the dyad level from M3 to M4).

We are aware of the 'bad control' issue (Angrist and Pischke 2008), which may arise when including a variable that can simultaneously be used as an outcome (first scenario) or itself be affected by a variable of interest (second scenario-proxy controls). Moreover, the strength of relationships may be problematic here, and we have run robustness tests excluding this moderator. More importantly we cannot entirely rule out the possibility that some relationships were formed precisely because of a lack of physical barriers. Although it is theoretically unlikely that the lack of physical barriers determines the location of printer rooms, communication between offices, or individual job autonomy, we still conducted robustness checks with all combinations of interaction effects.

Robustness Tests

We ran several tests to ensure that our results are robust. More specifically, we ran the following alternative models: 1) a model with fixed effects rather than random effects, 2) a model that only included observations for employees located on the same floor, and 3) a model with instrumented variables. These alternative models, which are based on M3 in Table 2, are presented in Table 3 as M5, M6, and M7.

Insert Table 3 here

The first model (M5) only included dyads that were located on the same floor (N = 535). This model tested whether our results were conflated by the separation of the dyads across different floors. The results we obtained in M5 were similar to those obtained for M3, including a significantly negative coefficient of *different office*.

The second model (M6) was the fixed-effects model (Correia, 2016; Correia, Guimarães, and Zylkin 2020). We ran the same model (M3) as an OLS model with ego-level and actor-level fixed effects (rather than the random effects in our main model). This excluded many of the explanatory variables that did not vary on the ego and/or actor levels. However, our hypothesised variables in this model displayed same signs. In particular, *different office* was significantly negative.

Finally, we ran a two-stage model (2SLS) with instrument variables (M7). This model controlled for the non-random office assignments. For instance, employees meant to work closely together in teams may be purposely seated in the same office, which will naturally increase their level of interaction and reduce their need to reach out to others. We aimed to rule out endogeneity originating from non-random office assignments, which might imply that the frequency of knowledge sharing as well as distance and location in different offices are endogenously determined. More specifically, we used instrumental variables in the first-stage equation for all three variables. The instruments, which are indicated in Model 7 of Table 3, are structural variables related to: function (4 dummies), department (46 dummies), the number of internal and external partners, and the nature of the knowledge exchanged. These instruments satisfy both the relevancy and exclusion restrictions, as they explain a substantial part of the variation in distance (22%) and location in different offices (27%), as confirmed in an F-test (3.19, p = 0.0001), but are only marginally related to the frequency of knowledge sharing (4%). In Table 3, M7 is the second-stage equation. Our key result of different office being significant and negative holds. Furthermore, to test for overidentifying restrictions, we regressed the residual from the knowledge-sharing equation on the instruments for the model (the Basmann test), which also led us to reject the hypothesis of a significant relationship between instruments and residuals (F = 0.78, p =0.67). This is a strong result considering the size of our sample, which directly scales the test statistic. In addition, the R-squared value in this regression is very low (.0045) and none of the predictors are statistically significant. We also inspected the bivariate correlations between the instruments and the residuals, all of which were insignificant and close to 0. In combination, these tests do not provide absolute proof of the absence of endogeneity, but they do suggest that the problem has been addressed in our model.⁸

Discussion and Conclusion

Multiple studies, starting with Allen (1977), show that even short distances between individuals hamper knowledge sharing. However, regardless of distance, physical barriers also separate employees. Consequently, we asked whether these physical barriers matter when controlling for distance. In addition, we explored moderating mechanisms for the hypothesised negative relationship between physical barriers and knowledge sharing.

Our study extends the extant literature on distance and knowledge sharing (Kabo, Cotton-Nessler, Hwang, Levenstein, and Owen-Smith 2014; Monge, Rothman, Eisenberg, Miller, and Kirste 1985). While the effects of distance have been well documented, this study shows a persistent pattern of decreasing knowledge-sharing behaviour in the presence of physical

⁸ We also designed a randomised online survey to address the same concern, but we do not cover this aspect in this paper due to space restrictions. When participants were presented with a choice of whom to contact in a knowledge search (i.e., a colleague within or outside their own office), distance and the other factors remained constant. In an additional check, we included an option to visit a social space outside the focal office. This represents a first phase in knowledge sharing and does not entirely map on the dependent variable used in the observational study. However, the latter is conditional on the former (for phases of knowledge sharing, see Hansen et al. [2005]). The respondents predominantly opted to reach out to someone in their own office, although the choice was moderated by the presence of a social spot just outside the office. This offers additional support for our main hypothesis and one of the moderators. The results of the online survey are available in the online Appendix.

barriers. In this regard, we contribute to what has been termed 'micro-geography' (Liu and Marx, 2020).

Our observational study indicates that barriers in the form of walls and doors matter, regardless of distance. We found this result to be robust in multiple additional tests and we corroborated the empirical regularity using a randomised survey. The implication is that to understand how the physical environment affects knowledge sharing, we cannot focus on distance alone, as other physical barriers seem to be more important. We explored several moderators that alleviate the effects of physical barriers of knowledge sharing: strong ties, job characteristics, and location in an office by a printer room. We believe this exploratory part of the paper should be taken with caution and we propose that scholars should study moderators or physical barriers in detail. In particular, the complex relationship between tie strength and proximity, including the extent to which proximity may engender dislike and the process itself, are likely to be fruitful areas of future research. Also, the interaction between job autonomy and knowledge sharing could be an interesting issue for investigation, especially in distributed, virtual teams – a context qualitatively different from ours.

The implication of our study for the promotion of knowledge sharing is that we must carefully rethink the organisation of the physical environment in firms. This is in line with 'situational' learning research (Tyre and von Hippel 1997), which suggests that the physical setting is an important element in the learning process. To further increase the rate of social interactions and the frequency of knowledge sharing, managers may consider experimenting with different physical designs involving, for example, glass walls, dividers, or movable and temporary walls. Such considerations should include solutions that ensure visibility among

members of the same team while simultaneously conferring privacy. Strategically located shared areas, such as printer rooms, can enhance knowledge sharing.

Moreover, as noted by Fayard and Weeks (2007), the physical environment should not be considered separately from organisational practices and routines, or social designation. Our findings indicate that job autonomy and being part of coordination structures alleviate the effects of barriers. This points to the importance of social designation and the legitimacy of knowledge sharing. Organisations should therefore work to emphasise the legitimacy of knowledge sharing and design spaces that support such behaviour by, for instance, equally distributing lounges, watercoolers, and printer rooms.

We propose several avenues for future research. The question of whether the promotion of social ties through corporate meetings, events, or other interventions (Donnelly 2019) in managerial discretion and organisational design are substitutes or complements remains open, and represents a potentially interesting extension of our study. As proximity and physical space matter for interactions, temporal proximity (Baruffaldi and Poege 2020, Chai and Freeman 2019; Lavoratori, Mariotti, and Piscitello 2020; Torre and Rallet 2005) may prove to be a valid substitute and may be fruitfully considered in knowledge-intensive sectors. Future research could also tackle the types of tools (e.g., regular get-togethers, informal hours) that are most efficient. In addition, we suggest that scholars investigate whether our results are replicable in other contexts, such as less-knowledge-intensive industries or environments with different office designs. Similarly, scholars can compare the search for knowledge in purely professional contexts with the search for knowledge in other contexts, such as those characterised by friendship ties. Another consideration may be the introduction of flexible work practices, where the concepts of work and home spaces are blurred (Richardson and Mckenna 2014). Scholars

could also use different research designs, such as comparative case studies, to further explore key mechanisms (e.g., employees' in-group biases) as a function of organisational culture. Moreover, although our study focuses on physical barriers, the nature of those barriers and the contingent behavioural effects remain understudied. We therefore suggest that future research should distinguish among different types of barriers (e.g., glass versus traditional brick enclosures or types of doors) to nuance our findings. On a related note, even the structure and design of a social area, such as a printer room, may matter. Therefore, comparative studies may also address different designs of such spaces.

In addition, personality traits and preferences may drive knowledge sharing. For instance, a more explorative nature (Mom, van Neerijnen, Reinmoeller, and Verwaal 2007) may make individuals more likely to search for knowledge outside their own offices. We suggest future research should examine the role of such traits.

Finally, our study focuses on dyads in which knowledge sharing materialised. Future comparative research could study the effects of barriers on the extensive margin – that is, the likelihood of knowledge sharing rather than its frequency.

References

- Allen, T.J. (1977) Managing the flow of technology: Technology transfer and the dissemination of technological information within the R & D organization, MIT Press.
- Allen, T. J., & Gerstberger, P. G. (1973). A Field Experiment to Improve Communications in a Product Engineering Department: The Nonterritorial Office '. *Human Factors*, 15(5), 487–498.
- Angrist, J. D., & Pischke, J. S. (2008). *Mostly harmless econometrics*. Princeton University Press.
- Archea, J. (1977). The Place of Architectural Factors in Behavioral Theories of Privacy. *Journal of Social Issues*, 33(3), 116–137.
- Argote, L., McEvily, B., & Reagans, R. (2003). Managing knowledge in organizations: An integrative framework and review of emerging themes. *Management Science*, 49(4), 571–582. https://doi.org/10.1287/mnsc.49.4.571.14424
- Ashkanasy, N. M., Ayoko, O. B., & Jehn, K. A. (2014). Understanding the physical environment of work and employee behavior: An affective events perspective. *Journal of Organizational Behavior*, 35, 1169–1184. https://doi.org/10.1002/job
- Baruffaldi, S., & Poege, F. (2020). A Firm Scientific Community: Industry Participation and Knowledge Diffusion. www.iza.org
- Baruffaldi, S., & Raffo, J. (2017). The geography of duplicated inventions: evidence from patent citations. *Regional Studies*, *51*(8), 1232–1245. https://doi.org/10.1080/00343404.2017.1280152
- Bernstein, E. S. (2012). The transparency paradox: A role for privacy in organizational learning and operational control. *Administrative Science Quarterly*, *57*(2), 181–216. https://doi.org/10.1177/0001839212453028
- Boudreau, K. J., Brady, T., Ganguli, I., Gaule, P., Guinan, E., Hollenberg, A., & Lakhani, K. (2017). A field experiment of search costs and the formation of scientific collaborations. *The Review of Economics and Statistics*, *XCIX*(4), 565–576. https://doi.org/10.1162/REST
- Breschi, S., & Lissoni, F. (2001). Knowledge Spillovers and Local Innovation Systems: A Critical Survey. *Industrial and Corporate Change.*, 10(4), 975–1005.
- Breschi, S., & Lissoni, F. (2009). Mobility of skilled workers and co-invention networks: An anatomy of localized knowledge flows. *Journal of Economic Geography*, *9*(4), 439–468. https://doi.org/10.1093/jeg/lbp008
- Broekel, T., Balland, P. A., Burger, M., & van Oort, F. (2014). Modeling knowledge networks in economic geography: a discussion of four methods. *Annals of Regional Science*, *53*(2), 423–452.
- Brookes, M., & Kaplan, A. (1972). The Office Environment: Space Planning and Affective Behavior. *Human Factors*, 14(5), 373–391.
- Campos, R., Leon, F., & McQuillin, B. (2018). Lost in the Storm: The Academic Collaborations That Went Missing in Hurricane ISSAC. *Economic Journal*, 128(610), 995–1018. https://doi.org/10.1111/ecoj.12566
- Carlile, P. R. (2004). Transferring, Translating, and Transforming: An Integrative Framework for Managing Knowledge Across Boundaries. *Organization Science*, *15*(5), 555–568.
- Casciaro, T., & Lobo, M. S. (2005). Competent jerks, lovable fools, and the formation of social networks. *Harvard Business Review*, 83(6), 92–99. https://doi.org/10.1037/e602512007-002

- Catalini, C. (2018). Microgeography and the direction of inventive activity. *Management Science*, 64(9), 4348–4364. https://doi.org/10.1287/mnsc.2017.2798
- Chai, S., & Freeman, R. B. (2019). Temporary colocation and collaborative discovery: Who confers at conferences. *Strategic Management Journal*, 40(13), 2138–2164. https://doi.org/10.1002/smj.3062
- Chown, J., & Liu, C. (2015). Geography and power in organizational forum: evidence from the U.S. Senate Chamber. *Strategic Management Journal*, *36*, 177–196. https://doi.org/10.1002/smj
- Correia, S. (2016). A Feasible Estimator for Linear Models with Multi-Way Fixed Effects *.
- Correia, S., Guimarães, P., & Zylkin, T. Z. (2020). Fast Poisson estimation with high-dimensional fixed effects. *Stata Journal*, 20(1), 95–115. https://doi.org/10.1177/1536867X20909691
- Dolfsma, W., & van der Eijk, R. (2016). Distances in Organizations: Innovation in an R &D Lab. *British Journal of Management*, 27(2), 271–286. https://doi.org/10.1111/1467-8551.12114
- Donnelly, R. (2019). Aligning knowledge sharing interventions with the promotion of firm success: The need for SHRM to balance tensions and challenges. *Journal of Business Research*, 94, 344–352. https://doi.org/10.1016/j.jbusres.2018.02.007
- Ebbesen, E., Kjos, G., & Konecni, V. (1976). Spatial ecology: Its effects on the Choice of Friends and Enemies. *Journal of Experimental Social Psychology*, 12, 505–518.
- Fayard, A., & Weeks, J. (2004). Photocopiers and Water-coolers: The Affordances of Informal Interaction. *Organization Studies*, 28(5), 605–634.
- Feldman, M. P., & Kogler, D. F. (2010). Stylized facts in the geography of innovation. In *Handbook of the Economics of Innovation* (Vol. 1, Issue 1 C, pp. 381–410). Elsevier B.V. https://doi.org/10.1016/S0169-7218(10)01008-7
- Festinger, L., Schachter, S., & Back, K. (1950). Social pressures in informal groups; a study of human factors in housing.
- Gagné, M., & Deci, E. L. (2005). Self-determination theory and work motivation. *Journal of Organizational Behavior*, 26(4), 331–362. https://doi.org/10.1002/job.322
- Gagné, M., Tian, A. W., Soo, C., Zhang, B., Ho, K. S. B., & Hosszu, K. (2019). Different motivations for knowledge sharing and hiding: The role of motivating work design. *Journal of Organizational Behavior*, 40(7), 783–799. https://doi.org/10.1002/job.2364
- Ganesan, S., Malter, A. J., & Rindfleisch, A. (2005). Does Distance Still Matter? Geographic Proximity and New Product Development. *Journal of Marketing*, 69, 44–60.
- Gulati, R., & Nickerson, J. A. (2008). Interorganizational Trust, Governance Performance Choice, and Exchange Performance. *Organizational Science*, 19(5), 688–708.
- Gullahorn, J. (1952). Distance and Friendship as Factors in the Gross Interaction Matrix. *Sociometry*, 15(1), 123–134.
- Hansen, M. T., Mors, M. L., & Løvås, B. (2005). Knowledge sharing in organizations: Multiple networks, multiple phases. *Academy of Management Journal*, 48(5), 776–793. https://doi.org/10.5465/AMJ.2005.18803922
- Hatch, M. J. (1987). Physical Barriers, Task Characteristics, and Interaction Activity in Research and Development Firms. *Administrative Science Quarterly*, *32*(3), 387–399.
- Howard, G. S. (1994). Why do people say nasty things about self-reports? *Journal of Organizational Behavior*, 15(5), 399–404. https://doi.org/10.1002/job.4030150505
- Jaffe, A. B., Trajtenberg, M., & Fogarty, M. S. (2000). *Knowledge Spillovers and Patent Citations: Evidence from a Survey of Inventors*. 90(2), 215–218.

- Kabo, F., Hwang, Y., Levenstein, M., & Owen-Smith, J. (2015). Shared Paths to the Lab: A Sociospatial Network Analysis of Collaboration. *Environment and Behavior*, 47(1), 57–84.
- Khazanchi, S., Sprinkle, T. A., Masterson, S. S., & Tong, N. (2018). A spatial model of work relationships: The relationship-building and relationship-straining effects of workspace design. In *Academy of Management Review* (Vol. 43, Issue 4, pp. 590–609). Academy of Management. https://doi.org/10.5465/amr.2016.0240
- Lavoratori, K., Mariotti, S., & Piscitello, L. (2020). The role of geographical and temporary proximity in MNEs' location and intra-firm co-location choices. *Regional Studies*, *54*(10), 1442–1456. https://doi.org/10.1080/00343404.2020.1732901
- Lecuona-Torras, J., & Cummings, J. (2018). Where you sit matters: physical collocation and informal interactions in formal organizations presented at the Academy of Management conference in Chicago, 2018.
- Lee, S. (2019). Organization Science Learning-by-Moving: Can Reconfiguring Spatial Proximity Between Organizational Members Promote Individual- level Exploration? *Organization Science*, 30(3), 467–488.
- Liu, C. C., & Marx, M. (2020). Micro-geography: a fundamental organizing attribute. *Industry and Innovation*. https://doi.org/10.1080/13662716.2020.1822153
- Llopis, O., & Foss, N. (2016). Understanding the climate-knowledge sharing relation: The moderating roles of intrinsic motivation and job autonomy. *European Management Journal*, 34(2), 135–144. https://doi.org/10.1016/j.emj.2015.11.009
- Marsden, P. (1990). Network Data and Measurement Author. *Annual Review of Sociology*, 16(1), 435–463.
- Marsden, P., & Lin, N. (1982). Social structure and network analysis. SAGE PUBLICATIONS Ltd.
- Masket, S. E. (2008). Where you sit is where you stand: The impact of seating proximity on legislative cue-taking. *Quarterly Journal of Political Science*, *3*(3), 301–311. https://doi.org/10.1561/100.00007058
- Mom, T. J. M., Van Den Bosch, F. A. J., & Volberda, H. W. (2007). Investigating managers' exploration and exploitation activities: The influence of top-down, bottom-up, and horizontal knowledge inflows. *Journal of Management Studies*, *44*(6), 910–931. https://doi.org/10.1111/j.1467-6486.2007.00697.x
- Monge, P. R., Rothman, L. W., Eisenberg, E. M., Miller, K. I., & Kirste, K. K. (1985). The Dynamics of Organizational Proximity. *Management Science*, *31*(9), 1129–1141.
- Morgeson, F. P., & Humphrey, S. E. (2006). The Work Design Questionnaire (WDQ): Developing and validating a comprehensive measure for assessing job design and the nature of work. *Journal of Applied Psychology*, *91*(6), 1321–1339. https://doi.org/10.1037/0021-9010.91.6.1321
- Nardi, B., & Whittaker, S. (2002). The place of face to face in distributed work. In P. Hinds & S. Kiesler (Eds.), *Distributed work* (pp. 83–110). MIT Press.
- Nesheim, T., & Gressgård, L. J. (2014). Knowledge sharing in a complex organization: Antecedents and safety effects. *Safety Science*, *62*, 28–36. https://doi.org/10.1016/j.ssci.2013.07.018
- Ng, T. W. H., & Feldman, D. C. (2012). A comparison of self-ratings and non-self-report measures of employee creativity. *Human Relations*, 65(8), 1021–1047. https://doi.org/10.1177/0018726712446015

- Oldham, G. R., & Brass, D. J. (1979). Employee Reactions to an Open-Plan Office: A Naturally Occurring Quasi-Experiment. *Administrative Science Quarterly*, 24(2), 267–284.
- Oliveira, M., Curado, C., & Henriques, P. L. (2019). Knowledge sharing among scientists: A causal configuration analysis. *Journal of Business Research*, 101, 777–782. https://doi.org/10.1016/j.jbusres.2018.12.044
- Oyemomi, O., Liu, S., Neaga, I., & Alkhuraiji, A. (2016). How knowledge sharing and business process contribute to organizational performance: Using the fsQCA approach. *Journal of Business Research*, 69(11), 5222–5227. https://doi.org/10.1016/j.jbusres.2016.04.116
- Pee, L. G., & Lee, J. (2015). Intrinsically motivating employees' online knowledge sharing: Understanding the effects of job design. *International Journal of Information Management*, 35(6), 679–690. https://doi.org/10.1016/j.ijinfomgt.2015.08.002
- Pfeffer, J. (1982). Organizations and organization theory. Pitman.
- Podsakoff, P., & Organ, D. (1986). Self-reports in organizational research: Problems and prospects. *Journal of Management*, 12(4), 531–544.
- Reinholt, M., Pedersen, T., & Foss, N. J. (2011). Why a central network position isn't enough: the role of motivation and ability for knowledge sharing in employee networks. *Academy of Management Journal*, 54(6), 1277–1297.
- Richardson, J., & Mckenna, S. (2014). Reordering spatial and social relations: A case study of professional and managerial flexworkers. *British Journal of Management*, *25*(4), 724–736. https://doi.org/10.1111/1467-8551.12017
- Sailer, K., & Mcculloh, I. (2012). Social networks and spatial configuration How office layouts drive social interaction. *Social Networks*, *34*(1), 47–58. https://doi.org/10.1016/j.socnet.2011.05.005
- Sergeeva, A., & Andreeva, T. (2016). Knowledge Sharing Research: Bringing Context Back In. In *Journal of Management Inquiry* (Vol. 25, Issue 3, pp. 240–261). SAGE Publications Inc. https://doi.org/10.1177/1056492615618271
- Sole, D., & Edmondson, A. (2002). Situated Knowledge and Learning in Dispersed Teams. *British Journal of Management*, 13(S2), S17–S34. https://doi.org/10.1111/1467-8551.13.s2.3
- Sundstrom, E., Herbert, R., & Brown, D. (1982). 0013916582143007.pdf. *Environment and Behavior*, 14(3), 379–392.
- Szilagyi, A. D., & Holland, W. E. (1980). Changes in Social Density: Relationships With Functional Interaction and Perceptions of Job Characteristics, Role Stress, and Work Satisfaction. *Journal of Applied Psychology*, 65(1), 28–33.
- Torre, A., & Rallet, A. (2005). Proximity and localization. Regional Studies, 39(1), 47–59.
- Tyre, M. J., & von Hippel, E. (1997). The Situated Nature of Adaptive Learning in Organizations. *Organization Science*, 8(1), 71–83. https://doi.org/10.1287/orsc.8.1.71
- Värlander, S. (2012). Individual flexibility in the workplace: A spatial perspective. *Journal of Applied Behavioral Science*, 48(1), 33–61. https://doi.org/10.1177/0021886311407666
- Waber, B., Magnolfi, J., & Lindsay, G. (2014). Workspaces That Move People. *Harvard Business Review*, 92(10), 68–77.

Table 1 Descriptive statistics and correlation matrix, all values > |0.07| are significant at the 5% level

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)
(1) Frequency of knowledge sharing	1.00													
(2) Distance	-0.32	1.00												
(3) Different office	-0.47	0.52	1.00											
(4) External partners	0.04	0.10	0.14	1.00										
(5) Internal partners	0.01	0.11	0.15	0.39	1.00									
(6) Vertical separation	-0.37	0.39	0.67	0.13	0.15	1.00								
(7) Codified knowledge	0.01	0.07	0.13	0.25	0.24	0.09	1.00							
(8) Intrinsic motivation	0.07	0.06	-0.02	0.10	0.16	-0.01	0.04	1.00						
(9) Extrinsic motivation	-0.02	-0.01	-0.03	-0.03	-0.02	-0.07	0.01	-0.11	1.00					
(10) Gender	-0.06	-0.01	0.02	0.14	0.03	0.07	0.15	-0.07	0.04	1.00				
(11) Coordination	0.06	-0.01	0.05	-0.05	-0.03	-0.01	0.11	0.01	0.06	0.07	1.00			
(12) Printer room	0.01	0.05	0.02	0.06	0.09	-0.03	-0.05	0.13	-0.02	-0.09	-0.16	1.00		
(13) Tie strength	0.23	-0.08	0.18	0.12	0.18	-0.16	0.16	0.10	0.01	-0.05	0.07	0.03	1.00	
(14) Job autonomy	0.05	-0.01	0.04	-0.05	-0.04	-0.03	0.07	-0.02	0.01	0.02	-0.06	0.11	-0.04	1.00
Mean	6.96	20.5	0.44	7.26	16.0	0.56	4.26	5.88	3.44	0.85	3.49	0.44	4.15	5.52
Std. Dev.	156	20.3	0.44	8.77	7.76	0.36	1.56	1.11	1.76	0.85	1.31	0.44	1.45	1.42
Minimum Maximum	1 9	0 100	0 1	0 25	1 25	0 4	1 7	1 9	1 9	0 1	1 7	0 1	0 7	1 7

Table 2 Frequency of knowledge sharing: nested model, n = 796

Dependent variable Frequency of knowledge sharing	Null model	Hypothes	Moderating model	
	M1	M2	M3	M4
Intercept	6.990***	8.204***	6.587***	4.354***
1	(.08)	(.65)	(.66)	(.82)
Independent variables		/		
- Distance		-0.010***	-0.002	-0.001
- Different office		(.001)	(.002) -1.571***	(.002) -3.175***
Different office			(.15)	(.50)
Controls			(110)	(100)
Relationship level				
- External partners		0.010	0.012	0.013
•		(.01)	(.01)	(.01)
- Internal partners		0.003	0.002	-0.012
1		(.01)	(.01)	(.01)
- Vertical separation		-0.526***	-0.152*	-0.126*
1		(.06)	(.06)	(.06)
- Codified knowledge		0.103*	0.128**	0.065
		(.05)	(.05)	(.04)
- Function (4 dummies)		Yes	Yes	Yes
- Departmental dummies (46 dummies)		Yes	Yes	Yes
Motivation				
- Intrinsic		0.032	0.019	0.067
		(.07)	(.06)	(.06)
- Extrinsic		-0.090*	-0.067	-0.077*
		(.04)	(.04)	(.04)
Individual heterogeneity				
- Age		Yes	Yes	Yes
- Education		Yes	Yes	Yes
- Gender		0.376	0.422*	0.375*
		(.20)	(.21)	(.19)
Moderator variables				
- Coordination				0.006
- Coordination * different office				(.07)
- Coordination - different office				0.135*
- Printer room				(.06)
				0.025
- Printer room * different office				(.54)
Time toom unicient office				0.356*
- Tie strength				(.18)
- The Surengui				0.441***
- Tie strength * different office				(.05)
-				0.112* (.05)
- Job autonomy				0.173**
- Job autonomy * different office				(.06)
autonomy sillololly ollifo				0.152**
				(0.06)

Residual variance				
- Ego level				
	0.659***	0.360***	0.348***	0.316***
- Alter level	(.11)	(.07)	(.07)	(.06)
	0.273***	0.179**	0.158**	0.108*
- Dyad level	(80.)	(.07)	(.06)	(.05)
•	1.475***	1.222***	1.029***	0.863***
	(.11)	(.09)	(.08)	(.07)
Model fit				
- 2 Log Likelihood	2853	2605	2503	2359
- AIC	2861	2689	2589	2433

Standard errors in parentheses. *** P < 0.01, ** p < 0.05, * p < 0.1.

Table 3 Robustness tests

Dependent variable	Same-floor	Fixed-effects	Instrumental-variables		
Frequency of knowledge sharing	model	model	model		
	(HLM)	(OLS)	(2SLS)		
	M5	M6	M7		
Intercept	6.411***	6.134***	7.581***		
•	(.81)	(.63)	(.41)		
Independent variables					
- Distance	0.004	-0.001	-0.011		
	(.004)	(.002)	(.007)		
- Different office	-1.485***	-2.953***	-0.742**		
	(.25)	(.57)	(.33)		
Controls					
Relationship level					
- External partners	0.001		Instrument		
	(.01)				
- Internal partners	-0.001		Instrument		
	(.01)				
- Vertical separation	n.a.	-0.135***	-0.367***		
		(.06)	(.05)		
- Codified knowledge	0.151**		Instrument		
	(.05)				
- Function (4 dummies)	Yes	Yes	Instrument		
- Departmental dummies (46 dummies)	Yes	Yes	Instrument		
Motivation					
- Intrinsic	0.001		0.094*		
	(.07)		(.05)		
- Extrinsic	-0.082		-0.051		
	(.05)		(.03)		
Individual heterogeneity	,		` /		
- Age	Yes		Yes		
- Education	Yes		Yes		
- Gender	0.686**		-0.179		
	(.24)		(.14)		
Model fit					
- 2 Log Likelihood	1640				
- AIC	1720				
- F-value		6.47***	22.90***		
- R-squared		0.71	0.25		
N					
	535	796	796		

Standard errors in parentheses. *** P < 0.01, ** p < 0.05, * p < 0.1.