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Abstract: Frequency analysis of rainfall data is essential in the design and modelling of hydrological
systems but is often statistically limited by the total observation period. With advances in weather
radar technology, frequency analysis of areal rainfall data is possible at a higher spatial resolution.
Still, the observation periods are short relative to established rain gauge networks. A stochastic frame-
work, “stochastic storm transposition” shows great promise in recreating rainfall statistics from radar
rainfall products, similar to rain gauge-derived statistics. This study estimates intensity–duration–
frequency (IDF) relationships at both point and urban catchment scales. We use the stochastic storm
transposition framework and a single high-resolution, 17-year long (however, discontinuous), radar
rainfall dataset. The IDF relations are directly compared to rain gauge statistics with more than
40 years of observation, and rainfall extremes derived from the original, and untransposed, radar
dataset. An overall agreement is discovered, however, with some discrepancies in short-duration
storms due to scaling errors between gauge and radar.

Keywords: radar rainfall; extreme rainfall; rainfall frequency analysis

1. Introduction

Frequency analysis of rainfall data is an invaluable tool in the field of hydrology.
An intuitive understanding of the relations between rainfall intensity, storm duration,
and return levels is beneficial to modelers and decision makers in performing risk as-
sessments and to design complex hydraulic and hydrological structures/systems. These
relations can be described as intensity–duration–frequencies (IDF), also sometimes referred
to as depth–duration–frequencies, and are derived statistically from rainfall measurements,
most commonly from different types of rain gauge networks [1,2]. These networks can
capture regional variability in rainfall but are rarely so densely located that the derived
statistics can account for the heterogeneity and chaotic nature of rainfall fields [3]. This lack
of spatial information is considered a great source of error in hydrological modeling [3–7],
where non-homogeneous land covers can result in vastly different runoff times and gen-
eral complex runoff response. A fast runoff response especially challenges hydrological
modeling of urban areas, and is, thus, critical to short (sub-hourly) rainfall durations with
high intensity, complex flow structures, and requirements to avoid capacity exceedances
for low return levels. Urban hydrological models, therefore, require rainfall input data in
high spatial and temporal resolution to discretize the runoff processes sufficiently.

Major advancements in radar technology in the last few decades have enabled mea-
surements of rainfall fields in higher resolution, both temporally and spatially. However,
the novelty of weather radar limits the frequency analysis level one can perform, and any
frequency analysis is limited by the total length of the observation period. IDF curves
directly derived from radar data will most likely be associated with significant margins of

Water 2022, 14, 4013. https://doi.org/10.3390/w14244013 https://www.mdpi.com/journal/water

https://doi.org/10.3390/w14244013
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/water
https://www.mdpi.com
https://orcid.org/0000-0002-1624-5796
https://orcid.org/0000-0003-4654-6204
https://doi.org/10.3390/w14244013
https://www.mdpi.com/journal/water
https://www.mdpi.com/article/10.3390/w14244013?type=check_update&version=2


Water 2022, 14, 4013 2 of 18

error compared to datasets with significantly more extended observation periods, such as
rain gauges [8–11].

Extreme value rainfall statistics are traditionally derived either using the plotting position
of ranked values of either an “annual-maxima-series” (AMS) [12] or “partial-duration-series”
(PDS) (also referred to as peaks-over-threshold) [13,14] approach. The plotting position approach
is severely limited by the observation period, i.e., the maximum return level that can be
inferred is the total length of the data series (i.e., no extrapolation is possible). The AMS and
PDS approaches sample values from the time series in two different ways. AMS samples
maximum value in specified block sizes, usually calendar years, whereas PDS samples values
above a specified threshold. The sampled values are fitted to a distribution function from
which frequency analysis is performed.

The IDF curves display the relations between the duration of a rain event and the
average rainfall intensity over this duration. IDF curves can be converted into design storms
(Chicago-design storms or unit hyetographs [15,16]), allowing a response assessment of
multiple storm durations and return levels.

To incorporate the spatial variability in rainfall, area reduction factors (ARF) are applied.
The ARF describes the ratio areal rainfall and point rainfall for a specific rainfall duration.
ARFs can be derived from rain gauge networks [17,18] or from radar data [11,19,20]. ARF
can directly be applied to design storms (IDF values or CDS storms) to emulate the spatial
variability of rainfall fields over a specific area. However, the process of deriving these ARF
often neglects the several complexities that follow the chaotic nature of rainfall [21].

A stochastic framework, known as stochastic storm transposition (SST) [22,23], is an
alternative approach to performing frequency analysis. This method virtually lengthens
the period of record for the dataset in question by resampling rainfall in time and space.
The method is applied and presented in Wright et al. [24,25] coupled with a “storm-catalog”
approach (a selected number of storms, for specified rainfall durations, are pooled into a
catalog), using rainfall products from the NEXRAD radar network [26]. The method shows
great promise in replicating extreme-value rainfall statistics, comparable to rain gauge
statistics, with return levels significantly longer than the observation period of the applied
radar dataset. The analyses in Wright et al. [24,25] focused on long rainfall durations and
high return levels (e.g., 100 years). For urban areas, shorter duration (sub-hourly) and more
frequent (return levels ≤10 years) storms are of interest, as described earlier.

In this study, we estimate IDF values from different datasets: single rain gauges,
a regional model (based on a network of rain gauges), and weather radar data. We use PDS
sampling for both rain gauge and radar data, and the SST framework for the radar data,
only. We then compare the output to examine the validity of the SST approach when using
a different dataset in a different climatological location than applied in Wright et al. [24].
Even though this study broadly follows the concepts presented in Wright et al. [24], the
novel contribution is applying the SST framework to a structurally different radar dataset,
different climatological conditions, and validation through traditional statistical models
at low return levels. The radar dataset we use in this study is structurally different from
the one used in Wright et al. [24] by having a higher resolution, only stemmning from
a single radar, and being discontinuous in time. The resolution of the radar product is
of greater detail, relative to Wright et al. [24], both spatially and temporally, allowing
for sub-hourly IDF estimates at both point and catchment scale. Therefore, one of the
paper’s objectives is to investigate whether the SST approach can be applied to estimate
sub-hourly IDF estimates for urban catchment scales using rainfall estimates from a single
radar covering 17 full years. Another objective is to study the relationship between data
observation periods (for both rain-gauge and radar data) and the corresponding validity of
the derived return levels, especially for return levels in the same order of magnitude as the
observation periods or even larger ones. Subsequently, we investigate low return levels
since the applied radar dataset should contain sufficient data for traditional frequency
analysis to be performed and, thus, allow for more validation of the SST framework.
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This paper is structured as follows: the overall study area and other necessary data are
presented and discussed in Section 2; specifically, the different types of rainfall data, and pre-
processing, are presented in Sections 2.2–2.4. Section 3 presents the applied methodologies,
specifically: the background for stochastic storm transposition, Section 3.1, and discussion
of hyperparameters, applied rainfall frequency analysis, Section 3.2 and areal reduction
factors, Section 3.4. Sections 4.1 and 4.2 discuss crucial aspects of the SST framework;
Section 4.3 shows IDF results for the radar/rain gauge dataset and the regional model, with
point/pixel being highlighted in Section 4.4 and catchment scale IDF curves highlighted in
Section 4.5. Lastly, Section 5 sums up the entire study, and final remarks are made.

2. Data and Study Area
2.1. Study Area

The island of Zealand in Denmark was chosen as a general study area, with the city of
Copenhagen as a specific area of interest (AOI) (Figure 1).

Radar (2002–2019)

Area of Interest, 151 km2

Transposition Domain, 7842 km2

Rain gauges

Long Term (1979–2021)

Medium Term (1995–2021)

Short Term (2002–2019)

Legend

Figure 1. Island of Zealand: the study area for the present study. The shaded area represents the
transposition domain used for the SST method, as presented in Section 3.1. All rain gauges used in the
study are shown and labeled with the length of the observation period. The red area encapsulates the
city of Copenhagen, which serves as the area of interest for the study. The division in the red-shaded
area is a Voronoi polygon which is used to create area-weighted rainfall series.

The greater Copenhagen area is the largest urbanized area in Denmark and, therefore,
the largest urban drainage system.

The Copenhagen area encompasses several meteorological measuring stations that are
used to verify the results of the SST procedure. We utilize three different meteorological
datasets in this study: rain gauges, Section 2.2; a regional rainfall model (derived from a
national network of rain gauges), Section 2.3; and a single weather radar, Section 2.4.

2.2. Rain Gauges

The rain gauges we apply in this study are a part of a more extensive network of rain
gauges managed by the Water Pollution Committee (WPC) [27] in Denmark. The network
consists of tipping-bucket rain gauges which register rainfall with a resolution of 0.2 mm.
Rainfall registrations are processed into time series with a temporal resolution of 1 min.
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The measured rainfall intensities are grouped into single rainfall events. A rainfall event
is triggered at the first registered tip and ends if no tip is recorded for 60 min. Events
consisting of only one tip are discarded.

Rain-gauge data serves multiple purposes in this study. A single rain gauge (long term,
1979–2021), shown in Figure 1, is used to derive IDF values for rainfall events with durations
of 10, 30, 180, 360, 720, and 1440 min and for return levels of 2, 5, 10 and 100 years, using a
“partial-duration-series” approach (presented in Section 3.2). A collection of five rain gauges is
used to estimate rainfall statistics at catchment scale for the selected area of interest (Figure 1).
These gauges have the longest common period of record, of about 25 years (1995–2021), and
are combined to one areal rainfall time series by applying an area-weighted average based
on the area division (Voronoi polygons) presented in Figure 1. These gauges are referred to
as the medium-term gauges. The final rain-gauge dataset covers the same period as the
observed radar data (2002–2019) and consists of 37 rain-gauge stations spatially distributed
over the whole domain. These gauges are referred to as the short-term gauges.

2.3. Regional Model

A regional extreme-value model (named the Danish regional rainfall model) for rain-
fall intensities, was developed by the WPC on the basis of a large collection of rain gauges
(83 gauges, all with more than 10 years of data, collectively 1881 station years [28]). The pre-
sented rain gauges in Section 2.2 are a part of this collection. The output from the Danish
regional rainfall model is IDF estimates at specified rainfall durations (10, 30, 180, 360,
720, 1440, and 2880 min, with interpolation available between these values). Parameters
of a generalized Pareto distribution are modeled after regional rainfall data to investigate
regional differences in extreme rainfall. The model is well-documented in Madsen et al. [1]
and Gregersen et al. [29]. The regionalization makes the IDF estimates less sensitive to
outliers, and different sources of errors [14]. Furthermore, the regionalization and distribu-
tion fit enables extrapolation of IDF estimates, so that return levels beyond the observation
period can be inspected. The model evaluates IDF values at point-scale; hence, we choose
to apply areal reduction factors, to the IDF values, to obtain an estimate at catchment scale.
The derivation of these factors is presented in Section 3.4.

2.4. Radar Rainfall

We use data from a single weather radar as input to the SST framework. We also
estimate IDF curves from a single pixel (same location as the long-term gauge in Figure 1)
and at catchment scale (area of interest in Figure 1).

The radar is a C-band weather radar, located in south Copenhagen, as presented in
Figure 1. The radar is operated by the Danish Meteorological Institute (DMI). For this
study, data from 2002–2019 is available. From the raw radar scannings, a radar reflectivity
product with a (pseudo) constant altitude of 1 km, a 10-minute temporal resolution, and a
cartesian 500 m × 500 m spatial resolution is generated. The reflectivity is converted
into rain intensities using a standard Z-R Marshall–Palmer relation [30]. To increase the
precision of the radar-rainfall product, the radar data is daily mean-field bias-adjusted
against rain gauges within the transposition domain (Figure 1). The complete processing of
the radar dataset is documented in Thorndahl et al. [30] and applied in [9,20,31].

The temporal resolution is increased to 1 min using the advective interpolation method-
ology presented in Nielsen et al. [32] to improve the quality of the precipitation product
further, as shown in Thorndahl et al. [30]. For computational purposes, the radar rainfall
product used in this study is converted back to a 10-minute resolution maintaining the
improved quality of the 1-minute product (not shown in this study).

For spatio-temporal radar data, it is challenging to define unambiguous rain events,
as can be performed with rain gauge data (Section 2.2). Instead of defining events, the radar
data is grouped into observation days, from midnight to midnight (00 UTC), containing both
dry and wet periods. During the radar’s observation period, there are different types of
breakdowns, malfunctions, and problems, e.g., filtering ground clutter or external emitters.
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Furthermore, rainfall days with poor-quality bias-adjustment due to too little rain-gauge
data are removed from the dataset. This leaves the dataset discontinuous and somewhat
inconsistent in time. In total, 1104 rainfall days (with more than 3 mm of rain anywhere in
the domain) are considered to be of high enough quality to be included in this study. This
corresponds to 65 rainfall days per year. In comparison, Thejll et al. [33] states that the average
year has 117 days with more than 0 mm of rain. Since this discrepancy covers days with very
little rainfall, it is not expected to impact the extreme-value statistics of this study.

3. Methods
3.1. Stochastic Storm Transposition

Performing frequency or extreme-value analysis on any dataset is limited by the total
length of observation. To derive valid rainfall statistics beyond the period of observation
of the applied radar dataset, we implement the stochastic framework “stochastic storm
transposition”. The procedure virtually extends the observation period by resampling
the rainfall in time and space. It assumes that storms recorded in space are statistically
independent and that there is an equal likelihood of storm occurrences in space (cf. the
homogeneous climatology assumption). Furthermore, it is assumed that the frequency
of storm occurrence at a point or at catchment scale is represented by the spatiotemporal
information in the SST sampling domain over the observation period. The procedure is
presented in detail in Wright et al. [24] and was later implemented in the open source
python tool RainyDay [34], which is utilized in this study and other studies [35,36]. A brief
explanation of the procedure is presented in the following, along with some RainyDay
hyper-parameter choices and reflections.

1. We specify the island of Zealand (7842 km2) as our transposition domain from which
rainfall will be resampled, see Figure 1. A prerequisite/assumption for random trans-
position to the area of interest (151 km2) is that the selected domain’s extreme rainfall
climatology is homogeneous. This assumption is assessed and discussed in Section 4.1.

2. The 500 largest storms at durations: 10, 30, 60, 180, 360, 720, and 1440 min are identified
by ranking storms with the same shape and size as the area of interest (Figure 1). This
collection of storms is henceforth known as the storm catalog (e.g., 60-minute storm catalog
or simply 60-minute catalog). The creation of the storm catalogs is further described in
Section 4.2.

3. The number of yearly storm occurrences for each duration is assumed to follow a
Poisson distribution with a rate parameter: λ = 88 (average 88 storms per year). This
derivation will be further explained in Section 4.2.

4. From the storm catalog in question (e.g., 60-min), we randomly select a storm. The as-
sumption of homogeneous climatology, within the transposition domain, allows us to
stochastically transpose the series of radar images in the x, y directions, since the storm
is assumed to have equal likelihood to have appeared anywhere within the domain.
Every time step of the radar image series is transposed with the same vector, so the
original motion of a rain storm is retained, and only the spatial occurrence is altered.

5. Step 4 is repeated k times where k is a random integer drawn from the Poisson
distribution explained in step 3. The k storms represent one year of rainfall.

6. For each transposed storm in step 4, we compute the t-minute catchment-average/point
rainfall depth, for the area/point of interest.

7. Steps 4–6 are repeated 1000 times to create 1000 years of synthetic storm events.
The 1000 largest values from all of the synthetic years are retained (following a general
“partial-duration-series” approach), and IDF values are estimated.

8. Steps 4–7 are repeated, for this study, 100 times to quantify the uncertainty of the
estimated IDF values.

In this study, we switch from the default frequency estimate of AMS in RainyDay to
the PDS approach. This is carried out to make the results more comparable to the IDF
curves derived from the rain gauge and the WPC regional model. Madsen et al. [14] show
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that the PDS approach provides a more accurate frequency analysis than the AMS approach
for short rainfall durations.

To relate this study to urban drainage design practice, the examined return levels are
chosen to be: 2, 5, 10, and 100 years. These are typical values applied in Danish urban-drainage
design and analysis for estimating system capacity exceedance at different service levels [37].

Two ensembles of storms are generated from the RainyDay tool. One SST ensemble
is based on a point of interest. IDF statistics are derived for a single radar pixel which
is directly compared to the same point in the WPC regional model and the empirical
IDF statistics of the long record rain gauge, as seen in Figure 1. These different ways
of estimating IDF relationships will function as a validation of the SST framework for
point rainfall IDF statistics. The second SST ensemble is at catchment scale and developed
specifically for the area of interest presented in Figure 1. SST IDF statistics derived from
the catchment storm catalog are compared to spatially weighted averaged IDF statistics
of the rain gauges within the area of interest and to the WPC regional model with areal
reduction factors applied.

3.2. Rainfall Statistics

Return levels for mean rainfall intensities across the selected durations (10, 30, 60, 180,
360, 720, and 1440 min) are estimated in two ways: (1) empirically by plotting position; thus,
by estimation of return levels by the ranking, in descending order, of storms (Equation (1));
and (2) by extreme-value analysis, where data is fitted to a generalized Pareto distribution
(GPD) following Madsen et al. [1] (Equation (2)). For both methods, the PDS approach
is used. A key factor in the PDS approach is the selection of a threshold value for the
exceedance of intensities for a given duration. This value should be low enough for a
meaningful extreme-value analysis to be performed while allowing the selected data points
to follow the GDP distribution. Following the recommendation from Gregersen et al. [29],
the threshold value is chosen so that we observe, on average, three exceedances per year
(λPDS = 3 yrs−1 in Equation (2)). Similar approaches are used in [1,29,31].

The return levels are estimated empirically by the California plotting position method
(Equation (1)):

T =
N

rank
(1)

where T denotes the return level of the specified rainfall intensity over a given duration, N is
the total length of observations, and rank is the rank position of the sorted rainfall intensities.

For the short-term observations (rain gauge and radar data), an extreme-value analysis
is performed to estimate return levels larger than the observation period. We use the
GDP distribution to estimate return levels (inverse exceedance probability) which, in its
reformulated state, is presented in Equation (2) [38]:

z(T) = z0 −
β

γ

[
1 −

(
1

λPDST

)−γ
]

(2)

In which z(T) is the rainfall intensity for return level T, z0 is the threshold value, an β and
γ are the shape and scale parameters of the GPD. The scale and shape parameters are estimated
with maximum likelihood (MLE) optimization. An individual fit of the GDP distribution is
performed for each chosen rainfall duration. Uncertainty of the modelled extreme values,
for each of the investigated rainfall durations, z(T), is obtained through Equation (3) [38]:

Var(z(T)) =
(

∂β

∂z

)2
Var(β) +

(
∂γ

∂z

)2
Var(γ) (3)

3.3. Pixel-Scale Duration Bias

Our study investigates extreme rain rates at the sub-hourly scale (10- and 30-min
duration). At these time scales, a significant bias between radar rainfall product and gauge-
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based ones are to be expected (both observed in Peleg et al. [39] and [20,30,31] for the
applied dataset). We examine this bias through (4) similar to Thorndahl et al. [20].

B(d) =
∑T

t=1

(
∑N

n=1 Gmax(n, d)
)

∑T
t=1

(
∑N

n=1 Rmax(n, d)
) (4)

where B(d) denotes the duration (d)-specific bias. Gmax(n, d) and Rmax(n, d) is the daily
duration specific maximum intensity for co-located gauge/pixel pairs (n), N being total
number of pairs and T being the total number of days with radar data (1104 for this study).

3.4. Areal Reduction Factors

The regional model, WPC, presented in Section 2.3, only evaluates IDF estimates
at point scale. Estimating areal values is, thus, achieved by multiplying areal reduction
factors (ARF) directly to WPC model point rain intensities. The ARF model is developed in
Thorndahl et al. [20] using the same radar dataset as used in this study. The ARF values
are derived using a storm-centered approach and fitted to a three-parameter model, as
presented in Thorndahl et al. [20]:

ARF = exp(
−0.31A0.38

d0.26 ) (5)

In which A [km2] denotes the areal coverage of rainfall (in this case, the area of interest
in Figure 1 and d (min) is the storm duration. For the area of interest of 151 km2, this equals
an ARF of 0.49 for a 60-min storm duration.

4. Results and Discussion
4.1. Transposition Domain Selection and Assessment

Two references justify the assumption of the climatological homogeneity of the trans-
position domain: (1) with regards to annual precipitation in [33,40] in which the average
precipitation is reported to vary from 615 mm (in the south of the domain) to 675 mm (in the
north of the domain) per year (average 1981–2010); thus, a variability of less than 10%; and
(2) by the extreme-value distribution in WPC regional model Madsen et al. [28] in which
no significant difference in the regional rainfall estimates of 60 min at a 10-year return
level (24 mm) is reported, and a minor variability at 1440 min (1 day) regional rainfall
estimates at the 10-year return level of 57 ± 4 mm. In general, Madsen et al. [28] report
variability of up to 10% at different return levels and durations between the north and
south of the island of Zealand. Due to this relatively low variability, the assumption of
climatological homogeneity is considered to be met. Consequently, we can apply a uniform
storm transposition scheme within the domain.

4.2. Rainfall Catalog Creation

A core concept in the SST framework is to create duration-specific rainfall catalogs
from which individual storms are randomly sampled. Subsequently, frequency analysis
can be performed based on consecutive years of randomly transposed storms. The choice
of the size of the catalog (the number of storms included) influences the results of the
frequency analysis quite significantly. Since the radar dataset we utilize in the present study
is incomplete in time, as described in Section 2.4, we choose to create catalogs containing all
of the available data and compare them to the available rain-gauge datasets. In Figure 2, we
compare ranked domain-average rainfall depths for durations 10, 60, 720, and 1440 min for
(1) in black, the 1104 days included in the radar dataset; (2) in orange, the largest 1104 values
included in the short-term rain-gauge dataset over the same period covered by the radar
data; and (3) in blue, the 1104 days of rain gauge data, which coincide temporally with the
radar dataset. The discrepancy between the orange and the blue lines indicates that the
radar dataset is abrupt and incomplete, since there are values within the full period of rain-
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gauge data which are not included in the rain-gauge dataset, coinciding temporally with the
radar dataset. The discrepancy is evident both in the domain-average data (solid lines) and
in the single pixel/point data (dashed lines). As described in Section 2.4, the incomplete
radar dataset is caused by the removal of defective radar data, days with radar data outages,
days with less than 3 mm recorded rain in at least one rain gauge used for bias-adjustment,
and the filtering of data with poor bias adjustment over the observation period.

0 200 400 600 800 1000
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102
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Figure 2. Ranked maximum point (dashed lines) and transposition domain average (solid lines)
rainfall depths for short-term rain-gauges (orange) and generated radar-data storm catalogs (black).
Blue lines show the short-term gauge dataset adjusted so that the dates coincide with the radar dataset.

Furthermore, the relation between the generated catalogs (black lines, Figure 2) and the
gauge data (orange and blue lines, Figure 2), shows a significant discrepancy at short rainfall
durations which diminishes with longer durations. This difference is, as also pointed out
by Thorndahl et al. [20] and Thomassen et al. [31], a consequence of scaling between point
and pixel, which is most predominant at smaller durations. This is often referred to as radar
subpixel variability. Similar differences between radar rainfall products and rain gauges have
been observed in Peleg et al. [39,41]. While the spatial resolution of the radar data applied in
this study is relatively high, the subpixel variability is still a significant factor.

The fact that the radar data is bias-adjusted against rain gauges at daily time scale [30]
might also influence the underestimation of short-duration intensities. This is discussed
further in Section 4.3, where duration-specific biases are presented.

Another explanation for the differences between radar and gauge data is related to the
spatial extent of storms and the difference in estimating areal rainfall from averaging points
versus averaging pixels over the domain. Figure 3 shows examples of individual storms from
the catalog. The low, median, and high values refer to the ranking based on the areal rainfall
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over the whole domain for durations of 10, 60, 720, and 1440 min. Short-duration rainfall
events tend to have low spatial extent, which is clearly visible in Figure 3 for the 10-min
catalogs. Even the 10-min storm ranked the highest in terms of average-domain depth, has a
limited spatial extent, and, therefore, a significant area with near-zero rainfall in the remaining
part of the domain. We see less discrepancy between rain-gauge and radar data for longer
storm durations due to the temporal smoothing of spatial rainfall variability as a storm passes
over a specific area. However, we see that even storms with the longest duration of 1440 min
can have a low spatial extent, thus meaning that the number of storms we choose to include
in the catalogs can significantly impact the frequency analysis results.

10 min lowest 10 min median 10 min highest

60 min lowest 60 min median 60 min highest

720 min lowest 720 min median 720 min highest

1440 min lowest 1440 min median 1440 min highest
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Figure 3. Examples of the spatial variability of accumulated rainfall depths for the duration-specific
storms added to the final rainfall catalogs. The unit for the colorbars are in mm rainfall depth. Lowest,
median, and highest refer to the rank of the domain mean rainfall depth.

In stochastic transposition, a small spatial extent of storms entails a reduction in
the probability of transposing the center of the storm to the area of interest. Likewise, it
increases the probability of transposing areas with zero rainfall to the area of interest.

As stated above, the gauge data adjusted to coincide temporally with the radar data,
in Figure 2 (blue line), indicates that while the largest storms in each catalog are closely similar
to the largest storms of the full rain-gauge dataset, the discrepancy increases with lower rank for
the smaller durations. This indicates that, especially, short-duration storms are undersampled
in the radar dataset. In order to compensate for this undersampling and small spatial extent
for short-duration storms, we need to increase the number of storms we sample per year in
the SST procedure. More specifically, this means that we cannot use a similar assumption of
estimating the Poisson distributed annual exceedances by λ = m

n , where m is the number
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of storms included in the storm catalog and n is the total period of record, that is used in
Wright et al. [24].

Instead, we estimate the λ parameter by (1) choosing a specific number of storms
exceedances for each catalog to include in the analysis, (2) looking up the domain average
radar rainfall corresponding to that number of exceedances (solid black line, Figure 2),
and (3) determining the corresponding number of exceedances in the area mean rain-gauge
dataset (solid orange line, Figure 2). As an example: the 100 largest storms from the radar
dataset yields a λ ≈ 35 yrs−1 instead of λ ≈ 6 yrs−1 (λ = 100

17 yrs ).
The adjusted λ value, which we use as a key parameter in SST sampling, is estimated

as an average for all durations. Due to the significantly lower domain average values,
the 10-minute catalog tends to give larger λ values regardless of the number of storms
included in the catalog. Using only the largest storms, e.g., 100, will lead to an oversampling
of the storms in the catalog, which might skew the frequency analysis results. To prevent
oversampling, we select a total of the 500 largest storms to be included in each catalog
since we observe stationarity in the output of the frequency analysis with this number
of storms (not shown). This specific study leads us to use a λ value equal to 88 for the
SST frequency analysis. λ = 88 yr−1 should be considered a parameter optimized for
this specific radar dataset to compensate for missing data and the small spatial extents of
short-duration storms. The value is, thus, not directly comparable to the annual number of
storm occurrences as applied in other studies, e.g., in Wright et al. [24].

4.3. IDF Curves Based on Empirical Plotting Position, Extreme-Value Distribution Fit,
and Comparison to SST

In this section, we compare IDF curves derived from rain-gauge and radar data at
point/pixel scale using the PDS (plotting position ranking) and GPD fit approaches (Section 3.2)
and compare them to the derived IDF curves based on the SST approach. This comparison
is central in studying the relation between return level and data observation period and the
consequent limits in the frequency analysis for short observation series. In this case, the radar
data observation covers 17 full years (2002–2019) and merits an empirical frequency analysis for
low return levels (e.g., 1, 2, or 5 years).

The PDS and empirical plotting-position approaches are used to estimate return levels for
mean rainfall intensities at the durations of 10, 30, 60, 180, 360, 720, and 1440 min. Figure 4
shows the frequency analysis for a 60-minute and a 1440-minute rainfall duration, for a single
rain gauge (see Figure 1, long-term gauge, adjusted to cover same period of record as the
radar) and the corresponding radar pixel. For comparison, the ranked values generated by the
SST procedure are shown on a linear axis (left) and a log axis (right) extending to 1000-year
return levels.

Figure 4 shows that the GPD model with the ensemble spread encapsulates the ranked
observed 60-min and 1440-min intensities for both the rain-gauge and radar datasets.
In general, the observed extremes agree with the estimated mean values from the GPD.
Return levels above 5 years display more significant statistical uncertainty, which is to be
expected for this relatively short period of record.

Figure 4, furthermore, shows a significant difference between the rain-gauge and radar
datasets. For both observed values and GPD fit, radar-based results underestimate the intensities
compared to the rain-gauge values. This underestimation is most predominant for the 60-min
values and is caused by the same challenges in point/pixel comparisons for short durations as
described in Section 4.2. In comparison, Thorndahl et al. [20] report an average difference of
15% (over a large dataset) due to this scaling error and we observe a bias of 19% according to the
values in Table 1 for rainfall durations of 60 min. It is, however, evident from both this study as
well as Schleiss et al. [9] and Thomassen et al. [31] that the scaling error can be significantly larger
in extreme-value analysis. This is also supported by Wright et al. [42], who state that errors such
as these tend to be heteroscedastic, meaning that the magnitude of error is dependent on rainfall
intensity [43] and has been shown to increase with rainfall intensity [44].
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Figure 4. GPD-based frequency analysis for long-term gauge (orange) and the corresponding radar
pixels (black). The lines indicate the fitted GPD-model and shaded area depicts model uncertainty.
Ranked values of synthetic rainfall years generated by the SST procedure are also shown (blue). Due
to the high density of points, only every 50th SST point is shown on the figures to the left.

The scaling discrepancy can also be seen in Figure 5, where we show IDF-curves for
return levels of 2, 5, and 10 years for all of the short-term gauges (Figure 1, 2002–2019)
and their corresponding radar pixels. The curves are derived using the PDS approach,
and return levels are estimated from Equation (1). The uncertainty bands explain the
discrepancies between the different gauges/pixels included in the datasets. They are, thus,
a measure of both spatial variabilities and the stochastic nature of rainfall. In this case, we
also see heteroscedasticity, i.e., larger variability for increasing intensity. The overall bias
between the two datasets also increases as the rainfall intensity increases, as shown above
for the long-term datasets and shown in Figure 6 and Table 1.

Table 1. Bias, root mean square error (RMSE) and mean absolute error (MAE) for all investigated
rainfall durations.

Rainfall Duration [min] 10 30 60 180 360 720 1440

Bias [-] 1.56 1.27 1.19 1.11 1.06 1.03 1.00
RMSE [mm] 8.71 4.43 3.09 1.42 0.83 0.47 0.25
MAE [mm] 4.49 2.28 1.46 0.69 0.41 0.23 0.12

The biases between the radar and rain-gauge values are likely the cause of the sub-
hourly differences for the IDF estimates presented and discussed in Section 4.4, Figure 7.
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Figure 5. IDF-curves for all of the short-term rain gauges (orange) and their corresponding radar
pixels (black). The solid line indicates median values and the shaded area depicts the total ensemble
spread between gauges. The curves represent return levels of 2, 5, and 10 years.
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Figure 6. Biases for duration of 10, 30, and 1440 min. Biases are calculated by Equation (4).
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Figure 7. IDF-curves (10 min to 1440 min) for the regional model (green, WPC); long-term rain gauge,
derived from GPD fit (orange); single radar pixel, derived from GPD fit (black, Radar), and the SST
framework (blue, SST). The shaded area depicts 95% confidence interval, and total ensemble spread
for SST values. Each curve represents a return level of: 2, 5, 10, and 100 years.

It should be noted that while the above analysis shows significant bias towards the
rain gauges, especially at short rainfall durations, a more precise IDF estimation would not
necessarily be achieved by adjusting the storm catalogs by the presented biases. Even at low
return levels, such as T = 2 years, we observe quite a significant uncertainty (Figure 5) in
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the hourly/sub-hourly extreme rain rates and a final ground truth possibly lies somewhere
between the radar- and rain-gauge-derived extreme values.

4.4. Point-to-Pixel Comparison of IDF Curves

In this section, we compare the SST-derived IDF relationships to the IDF-relationships
of the danish regional model (WPC) at point/pixel scale. For comparison reasons, we
maintain the GPD-fitted IDF values from the long-term gauge and corresponding radar
pixel from Section 4.3, since the GPD-fit allows us to extrapolate to return levels extending
beyond the observation period. Figure 7 shows IDF curves at return levels: 2, 5, 10, and
100 years for durations from 10 to 1440 min.

The SST procedure generates IDF curves very similar to that of the GPD derived
from the single-pixel radar dataset, showing that the methodology can produce rainfall
statistics comparable to traditional methods. The radar-based values (blue and black lines
in Figure 7) both underestimate, at short rainfall duration (sub 180 min), when compared to
rain-gauge-based IDF curves (orange and green line, Figure 7). This is in-line with studies
of the same radar dataset [20,30,31] and also from what is presented in Figures 4 and 5.
Above the 180-minute duration, the IDF curves are more or less in agreement. The single-
gauge-based IDF curves (orange line, Figure 7) overestimate across durations and return
levels indicating that this single rain gauge, in general, registered more extreme rainfall,
a trend we also observe in Figure 5.

A clear advantage of the SST framework is its stability to statistical certainty. For return
levels of 10 and 100 years, we see the SST-derived values have a much narrower ensemble
spread and more overall stability across the durations than the other datasets. Bearing
in mind that the observation period of the radar dataset, from which the SST values are
generated, is significantly shorter than the single-gauge dataset and the dataset underlying
the WPC-values, this is an essential result. It proves that we, in fact, can produce comparable
statistics by transposing spatial rainfall from the domain to the point of interest.

One of the limitations or even disadvantages of the SST framework is noticeable at the
10-minute duration and most significantly at the 2-year return level, Figure 7. Compared
to the radar data, the SST procedure underestimates the intensities. This is most likely
because of how the spatio-temporal sampling is executed. As elaborated in [24,25,34] and
also visible in Figures 2 and 3, short-duration storms have a very low spatial extent. This
will result in sampling a significant portion of zero values and, thus, skewing the frequency
analysis. Wright et al. [24] suggest increasing the number of included storms and the
number of storms sampled per year. However, this study shows that the effect of increased
sampled storms is negligible, potentially due to oversampling. A different solution could
be to update the SST framework such that a non-uniform spatial-transposition scheme
for each of the included storm durations is implemented. Potentially, this could lower
the number of zero values sampled and, thus, result in a non-skewed frequency analy-
sis. In the complete radar dataset, we do in fact have max. values, across all durations,
similar to max. values of a rain-gauge-based dataset, and it is, to some extent, a matter
of transposition. RainyDay [34] does offer a non-uniform transposition scheme based on
the geographical occurence of the maximum point for the applied storm catalog. This
feature was implemtented in this study (not shown) but showed very negliable effetcts.
This transposition scheme is not able to account for the short areal extent of short-duration
storms, as presented in Figure 3, and will still result in transposing zero rainfall over the
area of interest.

The scaling issues between point and pixel at short rainfall durations are, nonetheless,
unavoidable and should not be compensated by adapting the SST framework. The latter advo-
cates for one of the real advantages of the SST framework, namely, to generate extreme-value
statistics at catchment scale rather than point scale. This is studied in the following section.



Water 2022, 14, 4013 14 of 18

4.5. Catchment-Scale Comparison of IDF Curves

Having the validity of the SST framework investigated and confirmed in Section 4.4,
we present a similar analysis, in Figure 8, for IDF curves at catchment scale using the same
types of rainfall data. In order to go from point scale to catchment scale, the following
modifications are made to the rainfall data:

• ARFs are applied to the regional model (WPC) using Equation (5).
• The collection of medium-term rain gauges (Figure 1) is used to create an area-mean

rainfall time series, from which the GPD model is fitted, representing the area of
interest (AOI); see Figure 1.

• Radar pixels within the AOI are, likewise, used to create an area-mean rainfall time
series, and a GPD model is fitted, albeit with significantly more data points than the
collection of gauges.

• Instead of only sampling one point for the SST framework, all points within the AOI
are used to calculate a catchment average for the randomly generated rainfall event.
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Figure 8. IDF curves (10 min to 1440 min) for the regional model with ARFs applied (green, WPC);
collection of medium-term gauges, derived from GPD fit (orange, Gauge); radar pixels within the
AOI, derived from GPD fit (black, Radar) and the SST framework for AOI (blue, SST). Shaded area
depicts 95% confidence interval and total ensemble spread for SST values. Each curve is representing
a return level of: 2, 5, 10 and 100 years.

The SST framework performs on a par with traditional methods, as is evident by
an overall agreement between the GPD model fitted to the radar data and the results of
the SST framework (black and blue line, in Figure 8, respectively). The SST framework
overestimates intensities slightly compared to the base radar data. This is also expected,
since the base radar data is fixed to one spatial area and consists of a relatively short time
series. The SST framework samples values from a much larger domain area and virtually
creates rainfall for 1000 years, thus resulting in slightly higher values.
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Similarly, we observe a general agreement between the regional model and the two
radar-based IDF-curves, albeit with significant discrepancies at long rainfall durations.
A common criticism and general flaw [21] of the ARF approach is the negligence of the
rainfall fields’ structure and return levels of the area in question. This statement is supported
by the examples of 5-year storms presented in Figure 9. While the catchment average rainfall
intensity for all three storms is the same and equivalant to the 5-year return level and a
1440-min duration, they all have vastly different spatio-temporal structures.
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Figure 9. Generated 5-year storms for a duration 1440 min, shown on the left. The storms was
arbitrarily selected. On the right, time series for each individual pixel is shown (black) and the largest
pxiel based on accumulated rain depth (dashed red line).

The IDF curves derived from the collection of medium-term rain gauges overestimate,
relative to the other IDF curves, for most of the rainfall durations. Rainfall fields exhibit
a characteristic scaling nature where (1) the rainfall extremes are sensitive to the overall
scale [45] and (2) the spatial structure itself can, likewise, vary significantly [24]. By con-
structing a catchment-scale time series based on five points only, the frequency analysis
shows overestimation since the complex structure of the rainfall fields are neglected.

Figure 9 highlights one of the advantages of the SST framework: the ability to identify
specific catchment-area rainfall events and classify their return levels, allowing for a much
more detailed analysis of hydrological infrastructure. For complex surface areas such
as urban environments, the presented storms (Figure 9) will most likely result in vastly
different response signals. The relation between stochastically transposed areal input and
system response is an objective to further investigate in another study.

5. Conclusions

In this study, we apply the SST framework to a discontinuous radar dataset to derive IDF
curves for sub-hourly to daily, low-return-level rainfall durations. These SST-based IDF curves
are compared to traditionally derived IDF curves from long rain-gauge records, a regional
extreme-value model based on rain gauges, and untransposed radar data. For point rainfall,
we find that the SST framework using radar data can produce IDF curves similar to the
traditionally derived IDF curves based on a significantly shorter data period. In this way,
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the stochastic transposition utilizes the spatial variability of rainfall within the studied domain
to derive extreme-value statistics. It can, therefore, estimate valid return levels larger than the
observation period. Due to scaling issues between point and pixel scale, the derived SST values
underestimate rainfall intensities at short rainfall durations of less than 180 min. Still, this
discrepancy is more related to the properties of the radar data rather than an actual problem
with the SST framework. The results broadly follow the conclusions of Wright et al. [24],
however, with a different dataset with sub-hourly discretization, a finer spatial resolution,
and in a differrent climatological region. We show that even with an incomplete radar dataset
of approx. 1100 recorded rainfall days over 17 years, the SST framework still recreates IDF
curves comparable to that of traditionally derived methods when sampling parameters are
adjusted to account for missing data.

The SST framework shows great promise as a design and risk-assessment tool by
increasing our understanding of the spatio-temporal dynamics of rainfall fields. The ability
to generate rainfall events and assign return levels at catchment scale allows modelers and
decision makers to investigate hydrological- and hydraulic-system responses. The impacts
of spatio-temporal rainfall variability can, therefore, be studied in detail, especially in urban
areas where the spatial heterogeneity of surface area tends to be significant.
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