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Abstract: The demand for Unmanned Underwater Vehicles (UUVs) for various operations has
increased. Automating these operations requires good knowledge of the location of the UUV. This study
investigates the filter lag in the commercial low-cost Underwater GPS Explorer Kit, a short baseline
(SBL) from Water Linked. Furthermore, different filters are designed in an attempt to minimize the
filter lag. Minimizing the lag is beneficial for real-time navigation, as delays have a negative impact
on stability. Three different filters are designed; a model-free simple moving average (SMA) filter, a
Kalman filter (KF) based on a constant velocity motion model, and lastly, an unscented Kalman filter
(UKF) based on the non-linear model derived from the robot’s dynamics. A large filter lag is found in
the original filter; however, it can be concluded that a model-based filter with knowledge of the system

dynamics can be used for minimizing the filter lag.

Copyright © 2022 The Authors. This is an open access article under the CC BY-NC-ND license
(https://creativecommons.org/licenses/by-nc-nd/4.0/)
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1. INTRODUCTION

Over the last decade, there has been an increasing demand for
Unmanned Underwater Vehicles (UUVs) for operations, such
as seabed mapping, harbor monitoring, and offshore mainte-
nance. One requirement for completing such operations is ac-
curate localization (Yang and Huang (2017); Mai et al. (2016)).
Unlike land and aerial vehicles, underwater vehicles cannot
utilize the Global Navigation Satellite System (GNSS) due to
radio waves’ rapid attenuation in water (Paull et al. (2014)).
According to Ribas et al. (2012), most underwater vehicles
rely on dead-reckoning. However, these estimates are subject
to drift and must use other techniques to bound the position
error. The Absolute Acoustic Positioning System (AAPS) is
commonly used, especially the Long Base Line (LBL). How-
ever, LBL is costly and demanding to deploy. To mitigate
issues of LBL, other technologies such as Short Base Line
(SBL) and Ultra Short Base Line (USBL) can be used for
vehicle tracking (Ribas et al. (2012)). However, good control
performance requires accurate and reliable feedback Kinsey
et al. (2006). Especially, when performing operations near
structures where collision are to be avoided, like during clean-
ing and visual inspection tasks. In such cases, sensor accuracy,
resolution, and small measurement delays are more crucial
than for long-distance navigation (Pedersen et al. (2022)).

When an AAPS is used for real-time navigation, the delay im-
posed by the acoustics has to be handled properly; otherwise,
the delay might result in errors Ribas et al. (2012). Different
ways to handle the sensor delay are proposed by Mandt et al.
(2001). The most accurate method proposed is resetting navi-
gation and filtering every time a delayed measurement arrives.
Repeatedly recalculating the filtering is computationally de-

manding, especially for extensive sensor delay (Mandt et al.
(2001)). In Jgrgensen et al. (2020), a short baseline system
with three receivers were used to aid the inertial measurement
unit (IMU) in estimating both the position and attitude of
an ROV. The results show that the proposed observer perfor-
mance is close to the optimal non-implementable filter, which
uses Qualisys underwater camera positioning system measure-
ments.

The Water Linked underwater global positioning system,
which is an SBL, differs from other industrial systems by
its price, as this system can be acquired for less than $7000.
Beside the low cost, the UGPS is easy integrable with the
BlueROV2 (See WaterLinked (2022)) which is widely used
research projects due to its affordable price (Wallen and Song
(2019); Manzanilla et al. (2019)). Therefore, this SBL has in-
teresting research capabilities if the measurements can be used
as feedback. In Pedersen et al. (2019), an SBL system from
Water Linked (Underwater GPS Explorer Kit) were used for
real-time navigation. A varying measurement delay of 2.00 +
0.55 sec was discovered. Despite the varying delay, a Smith-
predictor, which assumes fixed delay, was developed to elimi-
nate the effects of the delay. However the predictores feedback
was not sufficient for the developed position controller. In
Pedersen et al. (2019) it was not investigate how much of the
discovered delay was sensor induced and filter induced; this
needs to be investigated in order to tell whether an improved
filter can improve the performance of the feedback.

In this study, the Water Linked SBL system is investigated
regarding measurement delay. The filter lag imposed by the
manufacturer’s original filter is investigated through experi-
mental tests. Furthermore, three filters are designed with the
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goal of minimizing the filter lag. The filters designed vary in
computational demand from a Simple Moving Average (SMA)
filter to Kalman Filter (KF) and, lastly, an Unscented Kalman
Filter (UKF). The filter comparison will be evaluated based on
filter-induced lag and delay.

2. SYSTEM DESCRIPTION

The SBL system used in this study is the UnderWater GPS
Explorer Kit (UGPS) from Water Linked. It must be noted
that Water Linked has revised this system; however, the revised
system needs a hardware change, and is not used in this study;
therefore, better performance might be experienced, if using
the revised system. The UGPS consists of a topside box, four
receivers (seen in Fig. 1b), and one locator, which is mounted
on the ROV as shown in Fig. 1a.

(a) BlueROV with locator
mounted on top (see red cir-
cle). with receivers.

(b) Underwater GPS Ex-
plorer Kit, the topside box

Fig. 1. Underwater GPS Explore Kit from Water Linked.

The SBL system is tested in a pool with a diameter of 6.1 m
and a depth of 1.15m. The small size results in acoustic
signals are inevitably reflected from the pool walls, which
may influence the delay’s magnitude and the precision of
the location’s signal. Hence, tests in open waters might show
different results.

When placing the receivers, it was observed that their location
greatly impacted how the system performed. Through exper-
iments, it was found that the best configuration was to place
the receivers aligned with the North and East axis, as seen in
Fig. 2.
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Fig. 2. Receiver setup. The red dots are the location of the four
receivers, and the black circle illustrates the pool. The
orange arrow shows the direction the ROV was towed in
the experiments.

3. MODELING

In section 5 model-based filters are designed, therefore a
model is required. The modeling of the ROV is based on Fos-

sen’s representation of underwater vehicles shown in Fossen
(2011), and the parameters have been determined through a
combination of experiments and can be found in Sgrensen
et al. (2022) and more details on the parameters can be found
in the paper by Benzon et al. (2021) where the same platform
has been used.

The governing equations are given by.
n=Jn)v M
Mv+Cv)v+D(v)v+gn) =7 )

where = [N,E,D, .0, l;/]T is a combination of world co-
ordinates and Euler angles defined in the NED frame. v =

[, v,w, p,q,r]" is the body-fixed velocity vector. In Fig. 3 both
the NED and body-fixed frame definitions are shown.

Fig. 3. Figure from Benzon et al. (2021). BlueROV2 with
frame-definitions.

J(n) is the rotation matrix between the NED and body-fixed

frame. For the external forces T = [11, T2, T3, T4, Ts, TG]T, which
is the input given in forces 7y, 7, 73 and torques 74, Ts, T¢.

The rest of the variables in (1) and (2) can be found in section
3 in Sgrensen et al. (2022).

To get a mathematical expression for the acceleration, (2) is
solved as an inverse problem with respect to v.

v=M'(t-C(v)v-D(v)v—g(n) 3)

Equation (3) can then be formulated as a vector of non-linear
functions.

f(nav’r) = [“('77"77)aV(naVvT)’W(naVaT),

4
p(M.v,7),4(m,v,7),7(n,v.7)]" @

The non-linear model is used for filter design section 5.

4. SENSOR DELAY INVESTIGATION

The time delay of the SBL system is experimentally investi-
gated. First, the time delay of the raw signal was determined
by comparing the response from the onboard IMU and the raw
signal from the SBL system. A similar test was carried out in
Pedersen et al. (2019).

The experiment shows that the raw signal is delayed by ap-
proximately 1.5 sec as seen in Fig. 4. This is in the same range
as found in Pedersen et al. (2019). Therefore it is assumed that
the sensor delay of 2.00 4= 0.55 sec still applies.
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Fig. 4. The experiment showing the response from the ac-
celerometer and the raw signal from the SBL system
when the ROV is surged.

The experiment cannot determine whether the delay is sensor
induced or filter induced. To investigate the filter lag an alterna-
tive experiment is conducted using an encoder for measuring
the ROV travel directly. The encoder signal is integrated to
obtain the ROV travel. This test shows the filter lag as the
raw position and filtered position measurements are logged
simultaneously by the SBL system. The test setup is illustrated
in Fig. 5.

Encoder

Moving
Direction
Rope

Fig. 5. Ilustration of the test setup. The green circle is a spool,
with an encoder attached to measure the angular velocity.

The results from the direct travel measurement can be seen in
Fig. 6.
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Fig. 6. Comparison of the integrated encoder signal, the raw
SBL system signal and original Kalman filter output.

The comparison of the raw signals and the original Kalman
filter is shown in Fig. 6 and shows the filter successfully
reduces the noise but meanwhile imposes further lag than the
raw signal.

The time between the raw signal and the filtered signal con-
verges was determined to be between 24 sec to 27 sec, as it was
hard to determine an exact value due to large variations in the
raw signal. The ROV has a top speed of 0.73 msec™! (Benzon
etal. (2021)), and it will be able to move more than 10 m before
the SBL measures the location. This is clearly a problem for
navigation in small operational areas, and a reduction in filter
lag is demanded to have a useful feedback signal.

5. FILTER DESIGN

Three filters are designed to investigate if the original KF-
generated signal can be improved. The first filter is a model-
free filter with low computational effort, which in this case is
an SMA, then a KF is designed, which uses a linear model. The
KF uses only the sensor measurement y, with the assumption
that measurement noise is Gaussian (this has been verified
through steady-state tests), and the previous estimated state
vector X, to predict the next state estimates. Lastly, an UKF
is designed, which uses the non-linear model. The UKF uses
both the sensor output y, the previous estimated state vector
X, and the input to the system ;. The UKF is chosen over
an extended Kalman filter (EKF), as the UKF reduces the
linearization errors compared to the EKF but comes at the cost
of extra computational effort (Paull et al. (2014)).

5.1 Simple Moving Average

The SMA has the advantage that it is a single line operation
with simple math operators; this means that it has a low
computational cost compared to the other filters designed in
this study.

The moving average uses the average value of the measure-
ments y over a fixed window of measurements. It is formulated

as,
n
Y v )
i=n—m+1
where y; is the measurement, m is the window size, 7 is the to-
tal number of measures, and ysaz4 is the filtered measurement.

1
YSMA = —

m determines how fast the filter reacts to changes; a large m
makes changes appear slower but reduces noise. In this study
m = 10, which was found by evaluating the trade-off between
responsiveness and smoothness.

5.2 Kalman Filter

For the KF, a simple constant velocity motion model is used.
Niw1 = Ny + N, St (6)

where N is position and Ny is the velocity in the the NED
frame, while Ot is the time step between the positions.

When rewriting the constant velocity motion equation to a
discrete state-space equation with states x = [N, N]7, the
system matrix becomes

1 6t
A:{o 1] 0

The output matrix is the measured states, which is the position
N.

c=[10] (8)

KF is a linear optimal state estimation method and is often used
to remove sensor Gaussian noise from raw sensor data (Park
et al. (2019)). KF consists of two steps; the first step is the time
update, in which a linear model is used to predict the following
state values. The second step is the measurement update,
which uses an actual measurement to correct the predicted
state.

The calculation for KF is shown in (9)-(13)
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Time Update

X1 = Ax 9)
Py =APyA"T +Q (10)
Measurement Update
K =P 4 C" (CPyyCT +R) ™ (11)
Btk = X 1o + K (% — CRigpe) (12)
Piiipy1 =T —KC) Py 13)

where % is the state estimate [V, N]”, y is the SBL raw mea-
surement, Q is the process noise, R is the sensor noise, Pk‘k
is the state co-variance, and K is the Kalman gain. @, R, and
the initial Py, have to be determined. The subscript k is the
discrete sample number, when multiple updates are done to
a single variable at one time step, the subscript k|k are used,
where each represent a change in the variable (time Update
and measurement update).

Q is in many cases represented as an acceleration disturbance
to the system (Kazimierski and Zaniewicz (2021)).
Q=GG'a; (14)
where G is a 2x2 diagonal matrix, whose elements are
diag(0.561,8t), and o, is the standard deviation of the distur-
bance represented as acceleration. In this study o, is chosen to
be 5 % of the maximum thrust force in surge, which is 71 4y =
86 N Benzon et al. (2021), which means o, = 0.217 msec!.
0.0144> 0
o- | |

0  0.07892 (15)

R is determined by calculating the standard deviation of
steady-state raw measurements from the SBL system.

R =0.3557* (16)
P is determined by the maximum difference between the initial
state estimate X( and the initial true state x.

P = (%0 —x0) (X0 —x0)"1 (17)
As the ROV always starts with zero velocity, the velocity
uncertainty is small. As the ROV is placed in a known position
in these experiments, the position variation is small as well.

P{oﬂ 0 } (18)

0 0.1
5.3 Unscented Kalman Filter

The UKEF builds upon the Unscented Transform (UT), which
is a method for calculating statistics of a stochastic variable
undergoing a non-linear transformation.

The non-linear model used for the UKF is the model derived
in section 3, and the states for is x = [, v]7. The non-linear
discretized model using forward Euler can be described by

Mipr| _ | M+ J (M) VSt
Vitl Vi+ f (Mg, Vi, Tr) St

where 8¢ is the time step and & is the sample index.

19)

However due to lack of reliable angular measurements and
the fact that the experiments are only done in one direction
(N), (19) is reduced to only concerning N by making the
assumption the attitude of the ROV is constant and zero.
Thereby J(1n) becomes an identity matrix meaning 1, ; =

1, + Vi6t. The model is further reduced to only concern N
and u as for KF, meaning x = [N, u]”.

The reduced non-linear model used in the UKF can thereby be
described as.

i(n,v,7) =0.05047; —0.109sin(6) — 0.0504u 20)
(141.0lu| +13.7) + 1.62rv — 1.04gw
It is seen that the orientation and the angular velocity are
present in the above equation. As these are assumed to be zero,
these terms disappear. leaving (20) as the reduced model.

i(u, 7)) = 0.05047 —0.05041(141.0]u| 4 13.7) (21)
Moreover, since the ROV was towed in the experiments (see
Fig 5), the surge force (thrust), normally stemming from the
thrusters, is instead the applied force from the tow-rope. Since
this force is not directly measured, the approximate applied
velocity i and acceleration ii from the tow system is back-
calculated from the encoder positions d,. and used to cal-
culate the equivalent forces,

denc,k - denc,k—l

i = denc,k = St (22)
enc
L. one e — dones—
i = dope s = % (23)
enc
I;{;
= _— 4+ii(141.0)a| +13.7 24
Tk 0.0504*"”( |ii| + ) (24)

where Ot,,. is the sampling rate for the encoder. It must be
noted that using this method for input estimation may provide a
less realistic estimate than obtaining the input from the thruster
input directly, as uncertainties in the thruster model are not
included. Under normal operation the input to the UKF will
be the thruster input given to the thrusters, not the encoder
backcalculation as this is only present in this specific test setup.

The reduced non-linear model is discretized using forward
Euler and describing position and velocity.

F(xk, T ,k) = [ Nk + uk6t ] (25)

Ui + Ll(uk, ’51_’/()61‘
where x;, is the state vector for the filter, which consists of the
position and the velocity x; = [Ni, u]”.

The statistical features of x; are determined from the UT by
forming sigma vectors %; by the use of the state mean %;; and
its covariance Py;. The calculation of the x; can be seen in
(29)-(31). The index i in x; corresponds to i = 0, ..,2n, where
n is the number of states.

By combining the UT and the KF theory, the UKF is designed.
UKF works in 5 steps, one initial step and four recursive steps,
which are recalculated at each time step.

Initial Calculations

m_ A
o A+n (26)
Ws =Wg'+ (1— o+ ) 27)
C __ m __ 1 s

W/™ and W are weights used to normalize the the sigma points,
where A = a? (k-+n) —n is a scaling parameter, & describes
the spread of the sigma points around the state estimate and is
a small positive value. In this study a = 0.1,  describes the
distribution of state variables. § = 2 is optimal for Gaussian
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distributions (Wan and Merwe (2000)). k is a secondary scale
parameter and is usually set to zero (Li et al. (2015)). Py
is initialized as the expected variance between the true state
and the estimated state vector; this is initialized with the same
values as for the KF (see (18)).

Sigma Points Update

Xo =%k (29)
. T
Xi:xk+( (”+7L)Pk\k>i ,(i=1,...,n)  (30)
T
X =3 — (, /(n—i—l)P,dk)iin, (i=n+1,....20) (1)
Time Update
Si:F(xi), (i:07...,2}’l) (32)
2n
Repie= Y Wi (33)
i=0
2n ] T
P =0+ Y Wi (& —Rernp) (8 —Rerip) (34)
i=0
Measurement Update
Z;=1[10](&), (i=0,...,2n) (35)
2n
s=Y wrz, (36)
i=0
2n -
P.=R+Y W (Zi— %) (Zi—2) (37
i=0
2n . T
P = ZVVzC (8,' _-ik+1\k) (Zi _2) (38)
i=0
Filter Update
K=P.P_' 39)
X1 =X K (e —2) (40)
Piiijirt = P+ KP K" (41)

0, R and Py equal to the once found for the KF as the same
platform is used.

6. RESULTS

The three filters presented were implemented on the ROV and
two towing tests was conducted. One test in which the ROV
was towed from one side to the other, the results of this test can
be seen in Fig. 7 and another test where the ROV was stopped
three times, these results are shown in Fig. 9.

3
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Fig. 7. Comparison of different filter algorithms applied on raw
data from an SBL system.
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(a) Comparison of different filters when motion begins on
same data-set as shown in Fig. 7.
25
— — —Encoder
E
c 25 Original
] - - - MA
K] KF
o 15f g 7 UKF
z 5% bound

20 22 24 26 28 30 32 34 36

Time [sec]
(b) Comparison of different filters when reaching the final
location on same data-set as shown in Fig. 7. The 5 % bound
is defined as 5 % of the total distance traveled in regards the
true position, according to the encoder measurement

Fig. 8. Areas of interest on the data-set shown on Fig. 7.

In Fig. 7 it can be seen that the original filter is expectedly
lagging the true position (measured by the encoder). The
three designed filters follow the true position with a smaller
deviation than the original filter. The designed filters do not
counter the sensor delay in the raw signal, which is clearly
seen in Fig. 8a. From this figure it can also be seen that both
the original filter and the MA lag behind the raw signal while
the KF and UKF have better tracking on the true position.

From Fig. 8b it can be seen that the UKF reaches a bound
within 5% of the true position, according to the encoder
measurement, at the same time as the encoder measurement
reaches the position. MA has reached the bound 4.95sec
later, while the KF reaches the bound 10.9 sec after the true
position due to an overshoot. The original filter shows no
oscillations; however it reaches the bound 11.2 sec after the
true measurement reaches its final position, which shows that
the original filter is very conservative.

The test with three stops of a duration of 14 sec each (Seen
in Fig. 9), shows that the original filter barely reaches the true
location at each stop, before the ROV moves again. Another
observation is that the SBL measurements have an offset at
the first stop, the encoder measures the position to 0.08 m and
the SBL measures approximately —0.18 m. This deviation is
suspected to be caused by acoustic reflections from the walls
of the pool. Tests in open waters could show different results.
However, the test shows that the developed filters is on par with
the raw signal, without noticeable lag compared to the original
filter.

7. CONCLUSION AND FUTURE WORK

In this study, it is found that the manufacturer’s original filter
has a large filter lag, with convergence time between 24 sec to
27 sec. To investigate whether the filter lag could be reduced by
alternative filters, three filters were designed and experimen-
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Fig. 9. Comparison of different filter algorithms applied on
data from experiment with three stops, each stop has a
duration of 14 sec.

tally evaluated. Results showed that the model-based filters
provide lower filter lag compared to the model-free and the
original filter. The UKF performed best in regards to conver-
gence time. However, none of the filters could eliminate the
sensor lag experienced in the raw signal. Input for the UKF
is estimated from encoder measurements rather than from a
thruster model. The results presented for the UKF, therefore,
can be more precise than given for real system inputs. Fur-
ther tests with actual thruster inputs need to be conducted
to evaluate the true performance of the UKF. Furthermore,
it is assumed that no rotation of the ROV occurs, which is
reasonable in the specific case investigated in this study. But
for scenarios where the ROV moves freely, this could be too
restrictive. Extending the UKF to include angular position and
velocities is left to future work, however, this requires accurate
and reliable attitude measurements. The test shown in Fig. 9
showed that the acoustic reflection may have interfered with
the SBL signal causing a position estimation error in areas of
the pool. Similar issues are not expected in open-water tests,
but should be subject for future work.
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