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Abstract: Mutual information I(X;Y") is a useful definition in information theory to estimate
how much information the random variable Y holds about the random variable X. One way
to define the mutual information is by comparing the joint distribution of X and Y with the
product of the marginals through the Kullback-Leibler (KL) divergence. If the two distributions
are close to each other there will be almost no leakage of X from Y since the two variables
are close to being independent. In the discrete setting the mutual information has the nice
interpretation of how many bits Y reveals about X. However, in the continuous case we do not
have the same reasoning. This fact enables us to try different metrics or divergences to define
the mutual information. In this paper, we are evaluating different metrics and divergences to
form alternatives to the mutual information in the continuous case. We deploy different methods
to estimate or bound these metrics and divergences and evaluate their performances.

Copyright © 2022 The Authors. This is an open access article under the CC BY-NC-ND license

(https://creativecommons.org/licenses/by-nc-nd/4.0/)

1. INTRODUCTION

Mutual information has been used as a measure of privacy
leakage in several contexts. It dates back to the introduc-
tion of information theory in Shannon (1948). Afterwards,
it has been used to measure leakage in several contexts
such as multiparty computation (MPC), differential pri-
vacy, and machine learning Cristiani et al. (2020); Farokhi
and Kaafar (2020); Sankar et al. (2013); Urrutia (2018);
Cuff and Yu (2016); Li et al. (2021). In this paper we focus
on the use of mutual information in privacy-preserving
distributed computations, e.g. MPC. Even though you
want to compute on real numbers, an MPC protocol is
usually converted into finite field operations, and hence
the mutual information is between two discrete random
variables. However, Tjell and Wisniewski (2021) suggest
secret sharing scheme over the real numbers. Using this the
MPC can be carried out directly in the real numbers which
gives the advantage that some real number computations
are easier to carry out. The drawback is that a share might
leak a small amount of information, but as described in
the paper the amount can be very limited. In any case,
this gives rise to study and investigate different ways to
measure the leakage in the continuous case.

The interpretation of the mutual information 7(X;Y) in
the discrete case is how many bits Y on average reveals
about X, so if we want to keep X private we want this
information to be small if someone learns Y. However,
this bit interpretation goes out of the window when
the random variables are continuous random variables.
Therefore, in the continuous case there might be other
alternatives which are just as good as mutual information
to measure information leakage. The mutual information
compare the joint distribution of X and Y to the product
of the marginals through the KL-divergence. Intuitively,
this makes sense since if X and Y are independent the

* This work was supported by Poul Due Jensens Foundation

product of the marginals and the joint coincide and hence
mutual information is equal to zero. A large difference
means dependency and hence Y tells more about X.

There could be other alternatives which can be just as
good as the KL-divergence. For instance several other mea-
sures of distances between probability distributions exist
such as Jensen-Shannon divergence, Wasserstein distance,
or Total variation distance. In this paper, we define these
alternatives for mutual information (Section 2), consider
different ways to estimate them (Section 3), and evaluate
the performance of the estimators (Section 4).

2. PRELIMINARIES

Let X be a probability space with o-algebra £ and measure
P. We consider two random variables X and Y on this
space, i.e. X,Y: X — R% We equip the measurable space
R? with the Borel o-algebra B and Lebesgue measure \.
The measure on R¢ induced by X given by P(X ~1(B)) for
all B € B is called the distribution Px (similarly for Y)
and the probability density function (pdf) p(x) if it exists
is defined to be the function satisfying

P(X~Y(B)) = /B p(x)dA(z) (1)

for all B € B, also known as the Radon-Nikodym deriva-

tive p(z) = df)\x . Hence, we remark that we will use the

following two equivalent notations for integrals

| apx= [ soire. 2)

2.1 Definition of Mutual Information and Alternatives

Now, we present the definitions of the different diver-
gences/metrics and we start with the original definition
of mutual information from the KL-divergence. !

1 'We remark that the mutual information can also be defined using
the differential entropy but this is equivalent to the KL-definition.

2405-8963 Copyright © 2022 The Authors. This is an open access article under the CC BY-NC-ND license.
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Definition 1. Let P and @ be two probability distribu-
tions, where P is absolutely continuous with respect to
Q. The Kullback-Leibler (KL) divergence between them is
defined as

dP
Dicr(P | Q)=/ s (40 dP=/ p(oy1og (22 ) ara),
x dQ Rd q(z)

3)
where % is the Radon-Nikodym derivative and the last
equality holds if the pdf’s p(z) and ¢(z) exists.
Definition 2. Let X: X — R? and Y: Y — R™ be two
continuous random variables with distributions Px and

Py. If Pixy) is the joint distribution of X and Y, then
the mutual information between X and Y is given by

Ik (X;Y) = Drr(Pixy) || Px ® Py). (4)

As we can see, the mutual information is a comparison
(using the KL-divergence) of the joint distribution with
the product of the marginals. However, as described in
the introduction we can also make this comparison using
other divergences/metrics on probability measures. We
will introduce some of these below. We first consider f-
divergences Rényi (1961), which is a class of divergences
the KL-divergence also belongs to. An f-divergence be-
tween two probability distributions P and ), where P is
absolutely continuous with respect to @, is defined as

DirlQ= | 1 (flg) aQ. (5)

and if both P and @ are absolutely continuous with respect
to the Lebesgue measure A we have the densities satisfying
dP = p(x)d\(z) and dQ = q(z)dA(z) implying that

Pl = [ 1(55)awnr@. o)

With this notation the KL-divergence is an f-divergence
with f(t) = tlog(t).

Definition 3. Let P and @) be two probability distribu-
tions. The Jensen-Shannon (JS) divergence of P and @ is

an f-divergence with f(t) = 3 ((t +1) log(t%) + tlog(t)).

From this, it can be deduced that 2

P+Q
2

P+Q
2

Dys(P Q) = 3Dxr(P | “22) + 2D @
2p(z) 24()

(7)
:% /Rp(x) log (m) + q(z) log (m) (@),

Definition 4. Let P and @ be two probability distribu-
tions. The Total variation (TV) divergence between them
is an f-divergence with f(t) = [t — 1.

)

Again, this shows that
Drv(P [ Q) =+ / AP —dQ| = * / Ip(z) — q(@)|dA ). (8)
2 X 2 R4

Intuitively, it makes sense to compare how much the
two densities differ from each other throughout the whole
domain. But on the other hand, the total variation can
sometimes be a too strong metric.

As an alternative to the f-divergences we also consider the
Wasserstein distance which is a metric.

2 The JS-divergence is a symmetric version of the KL-divergence.

Definition 5. Let P and @ be two probability measures on
a metric space and let d(z,y) be a metric on this space.
Then the k’th Wasserstein distance is

wirQ = it ([ dwntaen) o

where I'(P, Q) is the set of all couplings of P and @, i.e.
the set of measures having P and @ as the marginals.

One can see 7 as a transportation plan for transforming P
into Q. Therefore, W1 (P, Q) is also known as the earth
mover distance since it measures the cost of “moving
the mass” from P to @. Since W; has the earth mover
interpretation this will be the one we are focusing on the
most in this paper.

In fact, both the W7 and the TV distance can be described
as an integral probability metric (IPM) Miiller (1997).

Definition 6. For two probability measures P and ) on a
measurable space X', IPM is given by

(7 P.Q) = [ @)@ - [ rwdaw) 0
€
where F is a space for measurable functions on X.

For different F we obtain different metrics. In fact, due
to the Rubenstein-Kantorovich duality setting the class
F = Lp where, L, is the set of all functions that
are 1-Lipschitz functions Villani (2009) we obtain the
Wasserstein-1 distance as an IPM. Similarly, we can cap-
ture the TV by setting Fry = {f | [[fllcc < 1}3 where

[flloc = sup,ex [ f(2)]-

To measure information leakage we compare the joint dis-
tribution with the product of the marginals of two random
variables X and Y, like in (4). Since the other diver-
gences/metrics can be used as alternatives for measuring
the information leakage we will use a mutual information-
like notation. Hence, we write I;5(X;Y), Ity (X;Y), and
Iy, (X;Y) when we do the same comparison as in (4) but
with another divergence/metric.

2.2 Relation Between Different Measures

There are a lot of relations between the divergences. In this
version we just state a few of them and refer the reader to
the full version for more details.

0<Dys(P[Q)<Drv(P || Q) <1, (11)

Drv(P Q) < %DKL(P | Q), (12)
Dry(P [ Q) < V1 = eDrr(PlIQ), (13)

We also mention, Wy, is increasing with k, i.e. Wy, (P, Q) <
Wi, (P, Q) when k; < ko Villani (2009).

3. MUTUAL INFORMATION AS LEAKAGE
MEASURE IN MPC

In MPC n parties would like to compute f(z1,...,2,)
where z; is held by the ¢’th party. The computation needs
to be secure even in the presence of an adversary cor-
rupting a number of the parties. This means for instance

3 We choose % as our bound to be consistent with definition 4

referring to (8 —a = 1) in Theorem 2 in Sriperumbudur et al. (2009)
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that the adversary is not allowed to learn more than it
will learn from the input of the corrupted parties and
the output f(z1,...,2z,). While the security requires a
simulation proof, the privacy requirement can be stated
via mutual information in the following way

I(XZ7V16WA):I(XZ,f(X1,,Xn),{XJ}]eA) (14)

where View 4 is everything the adversary A sees through
the algorithm. Some privacy-preserving algorithms do not
guarantee equality in (14) but ensure that I(X;; View 4)
is not much higher than I(X;; f(X1,...,X5), {X;}jeq).
Hence, it is interesting to be able to compute I(X;; View 4)
but the density of View 4 is not always known which makes
it difficult for computation. Hence, approximating this mu-
tual information is interesting from an MPC perspective.

Thus, we present different ways to approximate the differ-
ent metrics/divergences defined in Section 2.1 on proba-
bility distributions P and @ in the following sections. The
approximations are based on samples X = {z;}¥, from
a random variable X having distribution P and density
p(z) and samples Y = {y;}¥ | from a random variable Y’
having distribution @ and density ¢(y). Often in practice
p and g are not known so we approximate them.

3.1 Leakage Estimation via Histograms

In this section we give a general way to approximate
the pdf’s using histograms. We build up histograms by
splitting the domain into K bins and count the number
of instances in each bins. L.e. the domain equals Ufil B;
where B; N B; = 0 when ¢ # j. This gives rise to an
approximate pdf of p, where we let n,; be the number of
instances in bin B; from the samples of X;

Z ]l:vGBl N n;:’ )

where 1,cp, is the 1ndlcat0r function for x in B;. We
remark that the B;’s are disjoint and hence for each x
exactly one. of the terms in the sum is nonzero. Hence,
P(z) = /\(  if z € B;. Since all the divergences we look
at are f-divergences, they can be described as an integral
with respect to the Lebesgue measure of some function of
the pdf’s, i.e. f(p(x),q(x)). Hence, we can split the interval
up in a sum of mtervals where we mtegrate over a constant.

It means that
Z/ F(p(@), a(x))dA (@)

/ f(p(2), q(z
d

~Z / F((@), q(2))dN (@) = ZA(B Jeis
where the last equality follows from the fact that p(z) and
4(z) is constant inside bin B; and hence f(p(z),§(x)) = ¢;
is constant inside this bin. This implies the following
approximations of the different divergences.

(15)

(16)

n

K
Dxr nist(P || Q) :Z ]Z\} log <np >
i=1 o

Z\”’”—

(17)
DTthst P || Q

1 (& M,
Disnist(P || Q) =5 e+
i=1 q,? P, (18)

Ngi 2ng;
1 _ .
N o8 <nq7z + Npi >)

3.2 Wasserstein Distance Via Optimal Transport

Optimal transport is often formulated in a discrete setting,
so we start by considering the optimal transport between
two discrete distributions. We consider p(z) and ¢(y) and
they can be described by two vectors p and q where the
entries are the probabilities for the different outcomes and
hence the entries in p (and q) sum to 1. Optimal transport
describes the cost (how far the mass needs to be moved and
how much mass) of transporting p(z) to q(y).

The solution to the optimal transportation problem be-
tween p and q is nothing but a matrix [M;;]Y,_, € RY*Y
where the element M;; is the amount of mass transported
from p; to g;. In order to find the optimal transportation
plan M using the cost function C, consider

d(P,Q) mln(C M)

subJect to M1 = p, (19)

MT1 = q,
where 1 is the vector of all ones. The optimal transporta-

tion plan between p and q is obtained after solving the
linear program (LP) problem in (19) Haasler et al. (2021).

Now we look at the continuous case. We still have p(z)
and ¢(y) but they are now continuous functions. The
equivalence of minimizing (C, M) with respect to M in the
discrete setting is to take the infimum with respect to all
possible m(z,y) of [pa, pa c(z,y)m(z,y)d\(z,y) satisfying

Jpam(z,y) dX(z) = q(y) and [zam(z,y)dA(y) = p(a).
But with ¢(z,y) being a metric (and in our case the
Euclidean distance) this is nothing else than the W;
distance from definition 5. Approximating p(x) and ¢(x)
by histograms from samples we can approximate the
Wasserstein distance by solving (19) setting the entries
in p equal nj{, and similarly for q. In this case we need
to define the distance matrix C but a natural way to do
S0, is to compute the distance between the centers of the
bins.

The optimal transportation is very useful when we have a
relatively small number of bins. However, when we have a
large amount of bins, solving the LP problem can be com-
putationally heavy. To address this issue, it is suggested
to apply the Sinkhorn distance. The optimization problem
can be converted into a Sinkhorn distance between two
probability vectors p and q by introducing a Lagrange
multiplier for the entropy constraint as

dA(P, Q) =min (C, M) — *h( )

subJect to M1 =p, (20)
MT1 =q,

where A > 0 is a tuning parameter that scales the entropy

constraint h(M) = — 3. M;;log(M;;) (Cuturi (2013),

3,j=1
equation (2)). By optimizing dy, implies an upper bound
on W; distance which computationally should be easier
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to compute. Furthermore, we mention that if A\ is large,
the Sinkhorn distance would be a good approximation of
the Wasserstein distance. We used Algorithm (1) in Cuturi
(2013) and please refer to here for a detailed description
of the Sinkhorn distance.

3.8 A KL-estimator From Samples

In this section we describe a KL-divergence estimator
given a set of samples from two distributions. The esti-
mator is presented in Perez-Cruz (2008). The estimator is
computed by approximating p(z) and ¢(y) around z; by
looking at the k-th nearest neighbor to x;. They show that
even though the approximations of p(x) and ¢(y) do not
necessarily converge to p(z) and ¢(y) the estimator will
converge to the true KL-divergence when increasing the
sample size. The estimator is given by

S () ()

where 71 (x;) is the Euclidean distance from z; to the k-the
nearest neighbor in X \ {;}, and s(x;) is the Euclidean
distance to the k-the nearest neighbor in Y.

Drrk—nn(P | Q) =

8.4 Leakage Estimation via Kernel Mean Embedding

The use of kernel functions range widely in classical ma-
chine learning topics for deploying inner product (x , 1:'> of
two data instances x, 2 € X which measures the distance
between those instances. However, linear functions applied
to the inner product sometimes fail when generalizing the
distance measure.

In order to overcome this issue, one can apply a ”kernel
trick” and make the distance measure accurate enough
by replacing the inner product with a possible non-linear
mapping. Kernel methods rely on kernel functions and
can be defined as an inner product of a mapping function
which transforms data instances into a higher dimensional
feature space as k(z,z') = (¢(x),d(x ) where k(-,-) is
the kernel function, ¢(-) is the mapping function for data
instances as {¢ : X — #,x — ¢(z)}, and (p(x), d(x))
is the inner product in the reproducing kernel Hilbert
space (RKHS) J#. By introducing this trick, which de-
pends on substituting the (z,z') with (¢(x), ¢(z')) s, it is
possible to apply the inner product in a higher dimension,
and measure the similarities between z and = Muandet
et al. (2016). In this way, we do not need to explicitly
construct ¢(z) and not need to know J# specifically. Tt
will be sufficient to use positive definite kernels in .77 for
the benefits. As a such kernel, we used the Gaussian kernel

k(xz,2') = exp(—%) with ¢ = /1/2 for this paper.

We define yet another metric from IPM, namely the max-
imum mean discrepancy (MMD) (with the help of kernel
function eventually) using F := {f | || f|ls¢ < 1} to get the
functions from a unit ball in 5#. Let X, X’|Y, and Y’ be
independent representations as X, X’ ~ P and Y,Y’' ~ Q.
We show in the full version that the MMD can be com-
puted as

MMD?[#, P,Q] = Ep p[k(X, X")] + Eq,q[k(Y,Y")]

—2Ep q[k(X,Y)] @22)

which leads to the unbiased estimator of the MMD
Borgwardt et al. (2006) below

MMD2 [, X, Y] = N(Nil ZZk%z])

zlj;éz

N2 sz i Ys).

=1 j=1

(23)

4. EXPERIMENT AND RESULTS

Since the motivation is especially leakage of information
in a distributed computation such as a MPC protocol
we evaluate the metrics in such setups. We take our
inspiration from Tjell and Wisniewski (2021) where secret
sharing is defined over the real numbers. In contrast to the
traditional finite field MPC a share might reveal some (but
limited) information. Hence, we will evaluate the leakage
of a share and a small MPC using this concept.

4.1 A Secret and Its Share Scenario

First, we consider the leakage of information of a normal
distributed X ~ N (i, 02) from an obfuscated version
of X, namely X — R where R ~ N (ur,02). This can
also be seen as a share of X in the real number secret
sharing scheme from Tjell and Wisniewski (2021). The
joint distribution of (X, X — R) is

2 2
€ Oy Oz
N[ ) e
and the product of the marginals is
2
o 0
N[ G 2 le]) e

and hence we can actually determine the KL-divergence
explicitly in this case. In our experiments, we assume that
both X and R has 0 mean so for simplicity we do the same
here. In this situation we have

1 o2
Ik (X; X —R) = 5111 <1+J§>.

T

(26)

In the experiments we set 02 = 1 and o2

that

= 10 implying

1
Ixp(X: X = R) = 5 In(1.1) = 0.048. (27)
The upper bound on TV in (12) is less than the bound in
(13) in this case, and it implies that

Lig(X;X —R) < Ipy(X;X —R)<0.154.  (28)

However, using that the JS-divergence is a symmetrized
version of the KL-divergence, a result from Durrieu et al.
(2012) implies that

I;5(X; X — R) < 0.0356. (29)

For details about this we refer to the full version of our

paper, where we also argue that
Iw, (X; X — R) < Wa(Px,x—Rr): Px ® P(x_r)) = 0292 (30)

when we use the covariance matrices from (24) and (25).
4.2 Multiplication Using Three Parties Scenario

In this scenario we consider a situation with three parties
where two of them having a value s and t respectively and



158 Bulut Kuskonmaz et al. / IFAC PapersOnLine 55-16 (2022) 154-159

the parties wants to learn the product st. We treat s and ¢
as outcomes of random variables S and T" and we use the
Shamir secret sharing scheme from Tjell and Wisniewski
(2021) with privacy threshold 1 and evaluation points
p1 = —1, po = 1, and p3 = 2. In this situation the shares
can be constructed by evaluating fs(z) = s+ (rs — s)x
at p; and hence the shares of s is (25 — rq, 75, —s + 2ry).
Notice that having two shares leaks everything about s.
The algorithm goes on like this. The party having s, secret
shares s by sending fs(p;) to the i’th party. Similarly, is ¢
shared by sending f;(p;) to the i’th party. Now, the ¢’th
party computes fs(p;)fi(p;) and sends this value to the
other two parties. Since this is a evaluation of a degree-
2 polynomial and each party has three evaluations they
can determine the polynomial having constant term st.
We assume that the first party is not having an input and
we want to evaluate how much he learns about s from this
distributed algorithm. I.e. we want to evaluate

1(S;2S—R,, 2T — Ry, Ry R, (—S+2R,)(~T+2R,)). (31)

In the experiments we assume that S and T are following
a N(0,1) distribution and R; and R; are normal as well
with 0 mean and variance o2 = 10.

4.3 Experimental Setup

For both scenarios explained in Section 4.1 and Section
4.2, we consider the convergences for all divergences and
metrics with respect to the number of samples and the
number of bins used. We report and comment on the run
time for each approximation and computation. However,
we were unable to compute the Wasserstein and Sinkhorn
distance due to memory problems for the scenario in
Section 4.2 which indicates that the two methods are
impractical for measuring information leakage in higher
dimensions. Furthermore, the k-nearest neighbor approach
does not seem to converge for the amount of samples we
were able to evaluate. Hence, we only show the convergence
for the histogram-based divergences in this case.

Due to definition 1 on the KL-divergence errors occur if we
have an empty bin for ¢(z) (since we cannot divide by 0).
To overcome this issue, we replace these 0’s with a small
number (107%). In our experiments we use A = 700 for the
Sinhkhorn distance.

4.4 Results

In Figure 1, we observe for the scenario described in
Section 4.1 that we have a nice convergence for the his-
togram based estimations from Section 3.1 of the KL-, TV-
and JS-divergences when sufficient amount of samples are
used. After 10° samples, divergences started to converge
smoothly and their standard deviation narrows down. Fur-
thermore, the KL-divergence seems to converge close to
its right value in (27). On the other hand, the histogram
based Wasserstein distance started to converge when we
used a 107 number of samples while the Sinkhorn estima-
tion converged using 10° samples. The knn estimators for
different k oscillates for the samples smaller than 10000
in the scenario 4.1. However, it started to converge when
2000 samples were used. MMD approximation also seems
converged as well with the sufficient amount of samples.

0.3

— -G~ Kl (+-std)

L tv (+-std)
025 ——f-— js (+-std)
wass. dist. with LP (+- std)
Sinkhom dist. (+- std)
Kl with knn (k=1)
0.2 Kl with knn (k=2)

j Kl with knn (k=5)

Kl with knn (k=10)
mmd (wass lower)
Kl from (27)

0.1 %

e O " N

25 3 3.5 4 4.5 5 55 6 6.5 7 75 8
Number of sample with log scale (log10(N))

Flg 1. Average values of metrics for the scenario in 4.1 with respect
to logarithm of the number of samples. Dotted lines represent the
standard deviation. Number of bins are 24.

T
0.25 1~ at

wass. dist. with LP (+- std)
Sinkhorn dist (+- std)
——G— Kl (+- std) b
tv (+- std)
~ js (+- std)

0.2

0.15 -

Values

0.05 - b

8 10 12 14 16 18 20 22 24 26 28 30
Number of bins

Fig. 2. Average values of metrics for the scenario in 4.1 with respect
to number of bins. Dotted lines represent the standard deviation.
Number of samples are N = 107

In Figure 2, we evaluate for the scenario 4.1 that histogram
based W7 via LP started to converge when using 30
bins in both dimensions for the histograms (in total 900
bins). Also Sinkhorn behaves like an upper bound for Wy
at the convergence level. The change in the number of
bins does not seem to effect the behavior of TV- and
JS-divergence. Table 1 shows the advantage of Sinkhorn
over LP calculation for Wi in terms of the speed. For
divergences, it seems that the choice of the number of bins
has a minor effect on run time.

8 10 12 16 20 24 28 30

kl with histograms | 0.23 | 0.19 | 0.19 | 1.1 023 | 0.24 | 0.35 | 6.9
tv with histograms | 0.12 | 0.09 | 0.90 | 0.14 | 0.10 | 0.11 0.12 1.0

Jjs with histograms 0.16 | 0.21 | 0.12 | 0.14 | 0.14 | 0.17 | 0.28 1.2
wass. dist. with LP | 14 31 52 206 | 737 | 1993 | 4859 | 12073
Sinkhorn dist. 0.88 | 1.2 1.3 2.6 7.8 15.1 | 35.7 | 99.3

Table 1. Histogram based: Average run times in millisec-
onds for scenario 4.1 compared to number of bins.

In Table 2, it is obvious that the run time increases
gradually for MMD approximation as the number of
samples in use increases in the both scenarios 4.1 and 4.2.
When using knn estimator, there is insignificant increase
in runtime as we use more samples for scenario 4.1 unlike
MMD. Hence, knn estimator works poorly for the scenario
4.2 since it did not converge to a specific value as we
increase the number of samples for the estimation.
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100 | 500 | 10° 2 x 10° 3 x 10° 4 x 10° 5 x 10° 7 x 10° 107 2 x 107

knn (for all k)

. 12 20 35 48 67 80 104 142 312
for scenario 4.1

mmd with Gaussian

9 102 | 421 2066 4002 7351 11601 22822 47644 193679

‘e 101 | 412 | 2207 4778 8430 15471 25546 50493 | 198473

Table 2. Average run times of the methods in 3.3 and
3.4 in milliseconds for different sample sizes.

05

— -G KI (+- std)

tv (+- std)

0.45 i ———js (+- std)
: mmd (+- std)
041 i bound (12) (+- std) | -|

i — — — — bound (13) (+- std)

0.35

03 4 B

Values

0.2
0.15

01 AORT—

0.05 e
s o R * * *

2.5 3 35 4 4.5 5 5.5 6 6.5 7 7.5 8
Number of sample with log scale (log10(N))

Flg 3. Average values of metrics for scenario 4.2 with respect to
logarithm of the number of samples. Dotted lines represent the
standard deviation. Number of bins are 24.

In Figure 3, we observe for the scenario described in Sec-

tion 4.2 that the convergence of approximations started to

emerge when we use 10° number of samples for histogram
based estimations of the KL-, TV- and JS-divergences.

Standard deviation is quite tight after such a number of

samples used. Since we do not know the explicit value

of KL, we plug in the estimate into the bounds in (12)

and (13), which are shown in the figure as well. MMD

approximation could only be possible to run with 20000

samples maximum but it is sufficient for its convergence.

5. CONCLUSION AND FUTURE WORK

To sum up, we evaluate the possible divergences and
metrics to measure the mutual information I(X;Y") for
specific scenarios using MPC in this paper. Results show
that the histogram-based estimators of the divergences
are strong for approximating the mutual information in
terms of the number of samples used and the run time
of the approximation. The MMD metric is also a useful
measure for its convergence but it can be computationally
heavy for applications requiring a high number of samples.
Wasserstein distance is a quite informative metric as well.
On the other hand, calculating it using LP or estimating it
with Sinkhorn’s algorithm becomes useless for the samples
in the 5 dimension.
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