Aalborg Universitet

Using Interference to Block RFID Tags

Krigslund, Rasmus; Popovski, Petar; Pedersen, Gert Frølund; Bank, Kristian

Publication date: 2011

Document Version Early version, also known as pre-print

Link to publication from Aalborg University

Citation for published version (APA):

Krigslund, R., Popovski, P., Pedersen, G. F., & Bank, K. (2011). Using Interference to Block RFID Tags. Poster presented at 5th annual IEEE International Conference on RFID, Orlando, United States.

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
 You may freely distribute the URL identifying the publication in the public portal -

Take down policy

If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to the work immediately and investigate your claim.

Using Interference to Block RFID Tags

RASMUS KRIGSLUND, PETAR POPOVSKI, GERT F. PEDERSEN AND KIM OLESEN Department of Electronic Systems, Aalborg University, Denmark {rkr, petarp, gfp, ko}@es.aau.dk

1. Introduction

- Radio Frequency IDentification (RFID): Great potential, seen dominantly in supply chains.
- Trend towards **item level tagging**
- Example: Requirements for a reader in a store.
- -(Almost) certain reading at the door.
- -No reading of tags the store.
- Our proposal: Intensional interference to block undesired tag responses.
- Modern readers implements the dense-readermode |1|:

- FIGURE 3: Signal flow diagram of the utilized experimental setup. Distances are introduced artificially using the signal attenuators A and B.
- A and B: Adjustable attenuators.
- Reader: Intermec IF5 (dense-reader-mode not supported)

-Readers filter out undesired frequency bands. -The tags needs to cope with the interfered signal.

FIGURE 1: An application requirering a confined interrogation zone, and tags inside the store to be blocked.

• Related work:

-Methods to utilize dense-reader-mode [2]. -No distinction between reader-reader and reader-tag collisions.

3. Experimental Setup

FIGURE 5: Read probability for reader-tag collisions plotted as a function of SIR.

FIGURE 6: Read probability for reader-reader collisions plotted as a function of SIR.

- Reader-reader collisions:
- -Constant difference between unmodulated and modulated interference.
- -CCI and ACI #1 are horizontally shifted \approx 25 dB.

- The focus in this work:
- -The impact of **interference** at the tag (reader-tag collisions)
- -Experimental investigation of the applicability of blocking tags using interference: a) Reader-Tag Collision: During the commands from reader to tag
- b) Reader-Reader Collision: During the tag response

2. System Model

• Sample scenario: **Two adjacent readers.** • Interrogation zone: Area where read probability > 99 %.

FIGURE 4: The utilized tag, an Alien ALN9640 (Passive, UHF), and the shielded box, with the coupling element (black) and the tag.

- A tags ability to interpret • Focus: reader commands under interference.
- A tag requires the commands: Preamble + Select + Query
- Interferer is on during initiation of the interrogation round (tag response undistorted).
- Discrete set of Signal to Interference Ratios (SIRs): Response probability based on n = 500interrogation rounds.

- Comparing reader-tag and reader-reader collisions:
- -ACI: Same SIR conditions required.
- -Modulated CCI: Tag replies at SIR 15 dB higher than the reader can receive.
- -Unmodulated CCI: Tag response at low SIR. * Indicate ability to help power up tag.

5. Conclusion

In this work we investigate the impact of interference at the tag, and whether interference can be used constructively to block tags from responding. • Result: We can keep a tag from respond-

ing by imposing interference.

- Interference type showed important: Modulated co-channel interference most effective.

FIGURE 2: The considered scenario, where a tag is located between a reader and an interferer.

- s_r and s_i : Reader and interference signals respectively.
- s_i is modeled with and without AM:
- -Co-Channel Interference (CCI): $f_c = 866.5 \text{ MHz}$
- -Adjacent-Channel Interference (ACI) #1: $f_c = 867 \text{ MHz}$
- $-\text{ACI } \#2: f_c = 867.5 \text{ MHz}$

• High SIR required to maintain good response rate.

4. Results

- Reader-tag collisions (at 99 % level):
- -Modulated interference has the most significant impact.
- $-A \approx 10 \text{ dB}$ difference between modulated CCI and ACI #1.
- -Interference impact decrease for increasing frequency distance.

• Blocking of tags enables:

1) A sharper separation of interrogation zones.

2) Reduction of false positive readings of tags.

References

[1] EPCglobal, "EPC Radio-Frequency Identity Protocols Class-1 Generation-2 UHF RFID," no. v1.2.0, 2008.

[2] D.-H. Shih, P.-L. Sun, D. C. Yen, and S.-M. Huang, "Taxonomy and survey of RFID anti-collision protocols," Computer Communications, vol. 29, no. 11, pp. 2150–2166, 2006.