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Abstract: Pigments are an essential part of life on earth, ranging from microbes to plants and humans. The physiological and envi- 
ronmental cues induce microbes to produce a broad spectrum of pigments, giving them adaptation and survival advantages. Microbial 
pigments are of great interest due to their natural origin, diverse biological activities, and wide applications in the foods, Pharma- 
ceuticals, cosmetics, and textile industries. Despite noticeable research on pigment-producing microbes, commercial successes are 
scarce, primarily from higher, remote, and inaccessible Himalayan niches. Therefore, substantial bioprospection integrated with ad- 
vanced biotechnological strategies is required to commercialize microbial pigments successfully. The current review elaborates on 

pigment-producing microbes from a Himalayan perspective, offering tremendous opportunities for industrial applications. Addition- 
ally, it illustrates the ecological significance of microbial pigments and emphasizes the current status and prospects of microbial 
pigment production above the test tube scale. 

Keywords: Himalaya, Microbial ecology, Microbial pigments, Bioprocess, Industrial biotechnology 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2017 ) . In addition, unethical and untreated discharge of industrial 
dye effluents produces toxic compounds and persists longer in the 
environment ( Babitha, 2009 ) . Therefore, microbial pigments are 
preferred over their chemical counterparts. Added advantages are 
microbial pigment’s ease of production and processing supple- 
mented with diversified biological activities, such as antimicro- 
bial, anticancer, antioxidant, and antituberculosis ( Chatragadda & 

Dufossé, 2021 ; Chen et al., 2021 ; Silva et al., 2021 ) . Different bacte- 
rial pigments with potential bioactivities have been summarized 
elsewhere ( Venil et al., 2020 ; Celedón and Díaz, 2021 ) . Therefore, 
it is not discussed in detail in the current review article. However, 
a brief comparative account of microbial pigment production 
over chemical synthesis of pigments is illustrated in Fig. 1 . 

Microbial pigments and colors are important for various 
applications such as food, clothing, housing, and other com- 
modities ( Narsing Rao et al., 2017 ; Finger et al., 2019 ; Ramesh 
et al., 2019 ; Sen et al., 2019 ; Chatragadda & Dufossé, 2021 ) . 
The demand for natural colors is exponentially increasing due 
to the harmful effects of synthetic dyes. The worldwide pig- 
ment market is valued at over USD 32.9 billion in 2020 and 
is further projected to grow at a CAGR of over 5.1% during 
the forecast period ( 2021–2028 ) ( https://www.grandviewresearch. 
com/industry-analysis/dyes-and-pigments-market ) . The global 
pandemic of COVID-19 has significantly affected the dyes 
and pigments market in the past 2 years. During the pe- 
riod, the prohibition of construction works negatively impacted 
the global paint industry. Nevertheless, the global pigment 
market is expected to witness a healthy rise in the coming 
years ( https://www.databridgemarketresearch.com/) . The mar- 
ket value of natural pigments used as food colorants is pre- 
dicted to reach USD 3.5 billion at 12.4 CAGR by 2027 ( https:// 
www.alliedmarketresearch.com/food- color- market ) . The market 
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Introduction 

The solar photon owns the diversity of colors/pigments on earth
in the visible spectrum. Pigment production results from a com-
plex interaction of a cell/organism with its environment ( Cuthill
et al., 2017 ) . Microbes, including bacteria, produce various pig-
ments with diverse physicochemical and ecological functions
( Narsing Rao et al., 2017 ; Chatragadda & Dufossé, 2021 ) . The pri-
mary function of pigments in plants is to harvest solar energy.
Similarly, microbial pigments help cells in photoprotection, de-
fense, community-level interactions, and competition, with many
aspects yet to be discovered ( Silva et al., 2021 ) . The diversity in
structure and functions of microbial carotenoids ( utilizing light
energy, neutralizing oxidants, and role as virulence factors ) is an-
other prominent example ( Supplementary Fig. S1 ) ( Nupur et al.,
2016 ) . 

Eukaryotes and prokaryotes produce pigments for numerous
purposes in different capacities. Plants produce a variety of
pigments ( Carvalho et al., 2011 ) , but they have several drawbacks,
including non-availability, scalability, stability, content, and im-
purities ( Usman et al., 2017 ) . In contrast, microbial pigments are
devoid of such limitations and serve as a readily available source
of important natural biomolecules ( Narsing Rao et al., 2017 ) . Other
benefits of microbial production include renewable sources and
superior quality product formation compared to chemical synthe-
sis ( Thakur et al., 2016 ) . Synthetic dyes and pigments have various
health and environmental concerns. Few FDA-approved synthetic
dyes used in food, pharmaceuticals, and cosmetic preparation
resulted in health-related and environmental issues. For example,
sunset yellow and tartrazine result in allergic effects, benzidine
dyes result in bowel cancer, and carbon black, widely used as
printing ink, is also a potential carcinogen ( Narsing Rao et al.,
Received: April 4, 2022. Accepted: May 21, 2022.
© The Author ( s ) 2022. Published by Oxford University Press on behalf of Society of Industrial Microbiology and Biotechnology. This is an Open Access article 
distributed under the terms of the Creative Commons Attribution License ( https://creativecommons.org/licenses/by/4.0/ ) , which permits unrestricted reuse, 
distribution, and reproduction in any medium, provided the original work is properly cited. 
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Fig. 1. Advantage of microbial production of pigments over chemical 
synthesis. 
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alue of carotenoids alone is expected to reach USD 2.0 billion
y 2026 ( https://www.marketsandmarkets.com/Market-Reports/ 
arotenoid- market- 158421566.html ) . 
Although pigment-producing microbes are ubiquitous, stressed

 physical, chemical, and biological ) environmental niches have
ore prevalence. For instance, microbial communities in cryo-
nvironments produce myriads of pigments ( Rehakova et al.,
019 ; Dhakar & Pandey, 2020 ; Sajjad et al., 2020 ) . Microbial pig-
ents such as carotenoid, melanin, violacein, and flexirubin have
een isolated and identified from diverse cold niches ( Vaz et al.,
011 ; Liu et al., 2019 ; Kumar et al., 2021 ) . The bacterial carotenoids
re one of the most reported pigments from variable cold habi-
ats like a glacial fjord, Caspian sea, Antarctica, Italian alpine
laciers, and Himalayan niches ( Reddy et al., 2003 ; Amaretti et al.,
014 ; Afra et al., 2017 ; Singh et al., 2017 ; Pandey et al., 2018 ) .
igh-altitude Himalayas hosts various extreme niches harboring
 range of stress conditions, including permafrost, freeze-thaw,
xidative stress, limited nutrients, and high UV ( Stres et al., 2013 ;
umar et al., 2021 ) . Different microbial communities inhabit
he hostile environmental conditions of such niches ( Kumar
t al., 2018a , 2022 ; Thakur et al., 2018 ) , providing tremendous
pportunities for bioprospecting pigment-producing microbes. 
This review is focused on microbial pigment production, its

cological importance, and also presents a Himalayan perspec-
ive. Further, we discuss the importance of microbial pigments for
tudying microbial responses to changing environments, rapidly
ising industrial interests, and potential applications. Finally, the
iotechnological strategies for large-scale production are also
iscussed. 

hysiological and Ecological Significance of 
igments in Cold Adaptive Microbes 

icrobes from the cold regions produce a variety of pigments
s secondary metabolites in response to changing physiological
nd environmental signals and survival strategies ( Quesada
t al., 1999 ; Mueller et al., 2005 ; Dieser et al., 2010 ; Sajjad et al.,
020 ; Silva et al., 2021 ) . The pigments are synthesized in harsh
onditions to protect the microbial cells from excessive UV, photo-
amage, fluctuating salinity, freeze-thaw cycles, and low temper-
tures ( Mueller et al., 2005 ; Kumar et al., 2021 ) . In addition, pig-
ents also provide competitive advantages to the microbial com-
unity while thriving under various types of biotic and abiotic
tress environments ( Morgenstern et al., 2015 ; Lozano et al., 2020 ) .
The microbial pigments from the Himalayan bacteria demon-

trated a wide range of biological applications, including UV
olerance, cytotoxicity, antibacterial, and antioxidant potential 
 Correa-Llanten et al., 2012 ; Lapenda et al., 2015 ; Kumar et al.,
021 ) . Some recent studies have shown the UV-protective char-
cteristics of microbial pigments, such as carotenoid, violacein,
nd melanin ( Reis-Mansur et al., 2019 ; Solano, 2020 ; Kumar et al.,
021 ) . Additionally, carotenoid production from Antarctic bacte-
ia played an important role in modulating membrane fluidity
o cope with low-temperature conditions. It also protects cell
amage against freeze-thaw ( Jagannadham et al., 2000 ; Dieser
t al., 2010 ) . Carotenoids also help the fungus to tolerate harsh
onditions of strong sunlight and UV radiation ( Sajjad et al.,
020 ) . Likewise, melanin and secondary metabolites accumulate
n cells under environmental stress conditions ( Bhosale, 2004 ) .
owever, the psychrotolerant strain Sphingobacterium antarcticus
roduces a high amount of carotenoid pigment when compared
o the mesophile Sphingobacterium multivorum ( Jagannadham et al.,
000 ) . Similarly, natural food colorants such as phycobiliproteins
rom mesophiles were found to be heat sensitive, resulting in re-
uced stability at high temperatures ( Dufossé, 2018 ) . Thus, pig-
ent production from psychrophilic microbes confers substantial
cological and physiological benefits at cellular and community
evels. 

igment Producing Microorganisms: The 

imalayan Perspective 

 Colorful World of Microbial Diversity in the 

imalayan Niches 
he high-altitude Himalayan region looks barren and devoid
f life to the naked eye. However, it hosts an unprecedented,
olorful world of microbes underneath it. The Himalayan region
hrows harsh, challenging, and diverse microclimatic conditions,
anging from arid lands to permafrost glaciers and glacial lakes.
hese niches in the trans-Himalayan region host multiple en-
ironmental stresses, that is, fluctuating temperature, extreme
old, frequent freeze-thaw, oxidative stress, high UV intensity,
ow oxygen, and scarce nutrient availability. On the contrary,
igment production is one of the strategies that provides survival
nd adaptational advantages to many microbes in stressed
nvironments ( Mueller et al., 2005 ; Dieser et al., 2010 ; Silva et al.,
021 ) . Therefore, high-altitude Himalayan niches are a hotspot
or exploring pigment-producing microbes. The above hypoth-
sis is supported by the bioprospection and diversity studies
n pigment-producing microbes from high-altitude Himalayan
iches summarized in Table 1 . 
A relatively high percentage of pigmented bacteria was found

n the high-altitude glacial niches ( Zhang et al., 2008 ; Shen et al.,
012 ; Shen et al., 2018 ; Panwar et al., 2019 ) . For example, pigment-
roducing bacteria were isolated from different depths of ice
ore from the Puruogangri glacier in the Tibetan Plateau ( Zhang
t al., 2008 ) . A total of 1385 bacterial isolates were obtained from
ast Rongbuk glacier, Mount Everest in the Himalayas and out
f which 84.9% were found pigmented ( Shen et al., 2012 ) . Fur-
her, the studies showed that culturable and pigment-producing
acteria’s abundance were higher in the middle and sequentially
ower in the upper and below the ice core. The high percentage
f pigmented bacteria in the high-altitude glacial samples vali-
ated the adaptive role of pigments for the bacteria ( Shen et al.,
012 ) . Another study unveiled the culturable bacteria belonging
o four phyla from the ice core samples of the Yuzhufeng glacier
ituated at 3800 masl in the Tibetan Plateau ( Shen et al., 2018 ) .
he study revealed 89% pigmented bacteria from entire colonies,
nd the proportion increased from 79 to 95% with the depth of the
ce core. Different colored bacterial colonies such as yellow ( 47% ) ,

https://www.marketsandmarkets.com/Market-Reports/carotenoid-market-158421566.html
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Table 1. Pigment-producing microbes from cold niches of high-altitude Himalayas 

Pigment ( s ) Microbes/phylum Isolation source Biological applications References 

Violacein, deoxyviolacein 
( violet color ) 

Iodobacter sp. PCH194 Bhoot ground kettle lake, 
Sach Pass, Himalaya, 
India 

Antimicrobial, anticancer, and 
UV protecting properties 

Kumar et al., ( 2021 ) 

Red pigment Rhodonellum psychrophilium Pangong Tso Lake located in 
Leh Ladakh, India 

Antibacterial, antioxidant, 
growth stimulating 
properties 

Bisht et al., ( 2020 ) 

Yellow color Flavobacterium spp. Laigu, Zepu, Renlongba, and 
Gawalong glaciers, 
Tibetan Plateau 

Adaptation under 
low-temperature conditions 

Liu et al., ( 2019 ) 

Various pigments ( pink, 
yellow, and orange ) 

- Tirich Mir glacier, Hindu 
kush Himalaya 

- Rafiq et al., ( 2019 ) 

Yellow, orange, brown, 
violet, and pinkish-red 

Proteobacteria, Firmicutes, 
Actinobacteria, 
Bacteroidetes 

Himalayan glaciers, 
Uttarakhand, India 

Adaptation against cold 
temperature 

Panwar et al., ( 2019 ) 

Carotenoid ( orange ) Penicillium sp. Indian Himalayan region Antimicrobial potential Pandey et al., ( 2018 ) 
Carotenoids ( various colors ) Proteobacteria, 

Actinobacteria, 
Bacteroidetes, and 
Firmicutes 

Yuzhufeng glacier, Tibetan 
Plateau 

- Shen et al., ( 2018 ) 

Prodgiosin ( red pigment ) Serratia nematodiphila RL2 Lahul and Spiti, Himalaya, 
India 

Antibacterial activity Gondil et al., ( 2017 ) 

Carotenoids ( yellow-orange ) Sanguibacter suarezii KK6, 
Kocuria turfanensis KK7, 
Kocuria rosea KK12, 
Planococcus maritimus 
KK21 

Leh and Ladakh, India Survival strategies in cold 
conditions 

Kushwaha et al., 
( 2014 ) 

Various pigments Firmicutes, alpha- and 
gamma-Proteobacteria, 
Actinobacteria 

East Rongbuk glacier, Mount 
Everest 

Adaptation against stress Shen et al., ( 2012 ) 

Yellow pigment Leifsonia pindariensis Pindari glacier, Indian 
Himalayas 

- Reddy et al., ( 2008 ) 

Yellow, pink, orange Bacillus odyssey, 
Flavobacterium sp . 
Cryobacterium 

psychrophilum , Kocuria 
carniphila, Frigoribacterium 

sp. 

Puruogangri glacier, Tibetan 
Plateau 

- Zhang et al., ( 2008 ) 

Violacein ( violet ) Janthinobacterium lividum 

XT1 
Xinjiang glacier, China Survival strategies in cold 

conditions 
Lu et al., ( 2009 ) 
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reddish-orange ( 24% ) , orange ( 16% ) , white ( 11% ) , pink ( 2% ) , and
brown ( < 1% ) were obtained from the ice core ( Shen et al., 2018 ) .
HPLC analysis showed that 40% of the pigments were α-carotene,
followed by 28% diatoxanthin. Other pigments identified were
β-carotene, fucoxanthin, peridinin, and zea/lutein. Pigmented
bacteria were also isolated from soil, water, and ice samples from
the western Himalayas in Uttrakhand, India, with varying alti-
tudes from 2300 to 4500 masl ( Panwar et al., 2019 ) . Amongst,
some of the bacterial pigments showed intense antioxidant ac-
tivity. These extensive diversity studies showed the abundance of
pigment-producing bacteria in the high-altitude glaciers. 

Characterization of Pigments from the 

Bacteria/Fungi 
Apart from the extensive diversity studies, only a few were
reported to isolate and characterize pigments from bacteria. For
instance, a red pigment-producing Serratia nematodiphila RL2 was
isolated from the cold desert of Lahaul valley ( Gondil et al., 2017 ) .
The pigment identified as prodigiosin showed an antibacterial 
effect against various pathogenic bacteria. Another red pigment- 
producing bacterium Rhodonellum psychrophilium GL8 was isolated 
from a high-altitude lake, Pangong Tso, Leh, India ( Bisht et al.,
2020 ) . The pigments were a mixture of prodigiosin and other 
related compounds and showed antimicrobial, antioxidant, and 
bioenhancer properties. Blue-violet color-producing bacteria were 
also discovered in the high-altitude Himalayas. For example, the 
violacein-producing psychrotrophic bacterium Janthinobacterium 

lividum XT1 was isolated from a glacier in Xinjiang, China ( Lu 
et al., 2009 ) . A unique eurypsychrophilic bacterium, Iodobacter sp.
PCH194, capable of violacein pigment production, was isolated 
from the sediments of Bhootground kettle lake situated at 4200 
masl in Sach Pass, western Himalaya, India ( Kumar et al., 2021 ) .
The violacein pigment was a mixture of violacein and deoxyvi- 
olacein and had promising antimicrobial and anticancerous 
properties. The yellow-colored Flavobacterium spp. were isolated 
from Tibetian glaciers, and their genome possesses genes en- 
coding for carotenoid biosyntheses, such as phytoene synthase,
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Fig. 2. Pigment producing bacteria isolated from high-altitude trans-Himalayan region: ( a ) Iodobacter sp. PCH194, ( b ) Streptomyces sp. PCH436, ( c ) 
Streptomyces sp. PCH436, ( d ) Janthinobacterium sp. PCH410 ( e ) Kocuria sp. PCH206, ( f ) Pedobacter sp. PCH18 ( g ) Pseudomonas sp. PCH 413, ( h ) Arthrobacter sp., 
( i ) Bacillus sp. PCH164, ( j ) Flavobacterium sp. PCH19, ( k ) Arthrobacter sp. PCH30, and ( l ) Leifsonia sp. PCH178. 
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ycopene- β-cyclase, and β-carotene hydroxylase ( Liu et al., 2019 ) .
imilarly, the abundance of genes/proteins involved in carotenoid
iosynthesis was found in the whole-genome metagenomes of
igh-altitude Himalayan lake sediments ( Kumar et al., 2022 ) . 
Carotenoids and their derivatives produced by high-altitude
imalayan fungi Penicillium sp. GBPI_P155 possesses antibacterial
otential. It may be a defense strategy against other microorgan-
sms ( Pandey et al., 2018 ) . Similarly, many fungi produce pigments
s an adaptive measure to cope with stress conditions of low tem-
erature, UV radiations, and oxidative stress ( Pandey et al., 2018 ;
ajjad et al., 2020 ) . It suggested that microbial pigments such as
arotenoids play an essential role in adaptation to the stress en-
ironment of high-altitude Himalayas. 
a
o-Production of Biomolecules with Pigments as 
ustainable Bioprocess 
esides the fundamental research, the pigment-producing mi-
robes from the Himalayas are goldmines for industrially relevant
ioproducts vis-à-vis microbial pigments. Since the Himalayan
egions are less explored, they could be a rich source for new
nd unique pigment-producing microorganisms. Thus, efforts
re required to explore its hidden treasures. Our lab focuses on
ioprospecting high-altitude Himalayan microbiomes for basic
nd applied research ( Kumar et al., 2018a , 2019 , 2020 , 2021 , 2022 ;
hakur et al., 2018 ; Ambika et al., 2022 ) . The isolation and iden-
ification of various pigment-producing bacteria from the high-
ltitude Himalayan region were accomplished during the course. 
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A few prominent pigment-producing bacteria viz., Iodobacter
p. PCH194 ( CP025781 ) , Kocuria sp. PCH206 ( MH096001 ) , Bacillus
p. PCH164 ( MF774150 ) , Pedobacter sp. PCH18 ( KY628836 ) , Flavobac-
erium sp. PCH19 ( KY628837 ) , Arthrobacter sp. PCH30 ( KY628848 ) ,
eifsonia sp. PCH178 ( MF774164 ) ( Kumar et al., 2018a , 2021 ; Thakur
t al., 2018 ) , Pseudomonas sp. PCH413 ( MF774129 ) , Streptomyces
p. PCH436 ( ON080900 ) , Streptomyces sp. PCH437 ( ON080901 ) ,
nd Janthinobacterium sp. PCH410 ( MZ396632 ) . ( Unpublished
ata ) are shown in Fig. 2 . Amongst, Iodobacter sp. PCH194
as successfully demonstrated for the pilot-scale produc-
ion of violacein pigment and polyhydroxybutyrate as a co-
roduct ( Kumar et al., 2021 ) . The patent for the Himalayan
odobacter sp. PCH194 bioprocess for co-production of polyhy-
roxybutyrate and violacein pigment has been filed ( Kumar
t al., 2021 ) . A few others are also being investigated in
ur lab. 

iotechnological Strategies for Microbial 
igments Production 

ioprocess development is the key to the large-scale production of
icrobial pigments. It includes the up-scale production of micro-
ial pigment followed by downstream processing. Several stud-
es have developed bioprocesses for pigment production, such
s carotenoids, flexirubin, violacein, and prodigiosin at ≥1.0 L
evel ( Table 2 ) . Most studies employed wild microorganisms in
atch or fed-batch processes for pigment production. For exam-
le, carotenoid production was reported from Rhodotorula gluti-
is TISTR 5159, Sporobolomyces roseus , and Sporidiobolus pararoseus
sing cheaper carbon sources ( Saenge et al., 2011 , Petrik et al.,
014 , Borba et al., 2018 ) . Zeaxanthin, a type of carotenoid, was
roduced by the Flavobacterium sp. P8 strain in a 5 L batch biore-
ctor using yeast extract and peptone rich medium ( Vila et al.,
020 ) . However, the main problem associated with carotenoid pro-
uction was the low yield. Flexirubin pigment was produced from
hryseobacterium spp. in a batch bioreactor with a yield of 0.2 and
.52 g/L ( Venil et al., 2015 ; Aruldass et al., 2016 ) . Prodigiosin pig-
ent production was attempted by employing Serratia spp. in a
atch bioreactor. For instance, 18.2 and 8.0 g/L of prodigiosin were
roduced by Serratia marcescens strain CF-53 and UTMI in a 5 L
tirred tank bioreactor using low-cost substrates like peanut oil
ake ( Naik et al., 2012 ) and brown sugar ( Aruldass et al., 2014 ) ,
espectively. Violacein pigment was produced using various wild
ypes ( Kanelli et al., 2018 ) and recombinant bacteria ( Yang et al.,
011 , Fang et al., 2015 ) . Among the wild types, Chromobacterium
iolaceum was employed for large-scale violacein production us-
ng low-cost substrates ( Aruldass et al., 2015 ) . Engineered bacteria
ith violacein-producing genetic machinery further improve vol-
metric productivity over time ( Yang et al., 2011 ; Fang et al., 2015 ;
iu et al., 2019 ) . 
Metabolic pathways for the biosynthesis of most of the pig-
ents are complex. Therefore, metabolic engineering is usually

ricky. Hence, alternative strategies such as cheaper substrates
nd co-production of multiple bioproducts must be explored. For
nstance, a simultaneous co-production strategy was developed in
ur lab using a Himalayan bacterium, Iodobacter sp. PCH194, which
roduced 1.5 g/L of violacein pigment and 10.0 g/L of polyhydroxy-
utyrate ( Kumar et al., 2021 ) . Similarly, astaxanthin-rich pigment
nd polyhydroxyalkanotes are simultaneously produced by Para-
occus sp. LL1 ( Kumar et al., 2018b ) . Thus, the design of an appro-
riate cultivation system with a suitable bioreactor for industrial
ermentation is required to achieve high production of pigments. 
onclusion and Future Perspective 

icrobes require specific features to produce biologically active
igmented compounds on an industrial scale. These include fast
rowth rates, scalability, high productivity, and preferably non-
athogenic. Additionally, the strains should include the utilization
f low-cost substrates, ease for scale-up and downstream process-
ng, high productivity, and overall low production cost. The micro-
ial pigment should be non-toxic, stable, and tolerant to pH, tem-
erature, and light. Bioprospecting pigment-producing microbes
an obtain strains with desired features from extreme niches, in-
luding the high-altitude Himalayas, and further apply genetic en-
ineering or strain improvement approaches to known potential
icrobes. The cryospheric microbes can synthesize natural colors
s a protective shield against life-threatening ecological stresses.
herefore, new possible sources for pigment-producing bacteria
ust be investigated. Exploring microbial pigments from newer
nd extreme niches could provide novel and well-known pigment
olecules for diverse industrial applications. 

upplementary Material 
upplementary material is available online at JIMB ( www.academic.
up.com/jimb ) . 
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