
Aalborg Universitet

Lab to Multi-Scene Generalization for Non-Line-of-Sight Identification With Small-Scale
Datasets

Hua, Qirui; Nielsen, Martin Hedegaard; An, Zeliang; Ren, Jian; Wisniewski, Rafal; Kold,
Søren Vedding; Rahbek, Ole; Shen, Ming
Published in:
IEEE Transactions on Artificial Intelligence

DOI (link to publication from Publisher):
10.1109/TAI.2023.3262763

Publication date:
2024

Document Version
Accepted author manuscript, peer reviewed version

Link to publication from Aalborg University

Citation for published version (APA):
Hua, Q., Nielsen, M. H., An, Z., Ren, J., Wisniewski, R., Kold, S. V., Rahbek, O., & Shen, M. (2024). Lab to
Multi-Scene Generalization for Non-Line-of-Sight Identification With Small-Scale Datasets. IEEE Transactions on
Artificial Intelligence, 5(2), 516-529. https://doi.org/10.1109/TAI.2023.3262763

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            - Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            - You may not further distribute the material or use it for any profit-making activity or commercial gain
            - You may freely distribute the URL identifying the publication in the public portal -
Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

https://doi.org/10.1109/TAI.2023.3262763
https://vbn.aau.dk/en/publications/f44e13ef-3111-4c90-96bd-b5179cd30683
https://doi.org/10.1109/TAI.2023.3262763


Downloaded from vbn.aau.dk on: July 03, 2025



1

Lab to Multi-Scene Generalization for
Non-Line-of-Sight Identification with Small-Scale

Datasets
Qirui Hua, Martin H. Nielsen, Zeliang An, Jian Ren, Rafal Wisniewski, Senior Member, IEEE, Søren Kold, Ole

Rahbek, Ming Shen, Senior Member, IEEE

Abstract—Ultra-wideband (UWB) wireless indoor positioning
systems rely on time of flight (TOF) to estimate distances but
can be biased and miscalculated due to non-line-of-sight (NLOS)
transmission channels in complex environments. Therefore, to
remove errors, several machine learning techniques have been
proposed for identifying NLOS signals from Channel Impulse
Responses (CIRs). However, as CIR signals could be heavily
influenced by various environments, current NLOS classifiers are
not universal to provide satisfactory accuracy for new scenarios
and require detailed measurements on a large number of CIRs
for training. Hence, we propose a generalization method based
on data augmentation via noise injection and transfer learning
to allow the deep neural network (DNN) trained under a lab
condition to be applied to various and even harsh practical sce-
narios with the need to measure massive training data minimized.
This paper presents the first demonstration that it is effective to
utilize a lab-based pre-trained DNN for real-world transfer and
white Gaussian noise data augmentation for ML-based NLOS
identification on UWB CIRs to address the problem when it
is not feasible to measure sufficient training data. Our testing
results show that in two scenarios, corridor and parking lot,
with only 50 CIR signals as the training set, the accuracy of the
NLOS identification model after applying the proposed method
is increased from 84.4% to 98.8% and from 81.1% to 97.1%,
respectively.

Impact Statement—In this paper, we propose a robust and
data-efficient DNN-based method for identifying non-line-of-sight
(NLOS) signals within ultra-wideband (UWB) indoor positioning
signals to overcome distance estimation errors. For applica-
tions in a new environment or generalization across multiple
environments, the need for sufficient data to train the DNN
model can be largely lowered and higher accuracy can be
offered. Furthermore, with our approach, the realization of
accurate NLOS identification becomes possible in some harsh
scenarios where collecting a large amount of data is costly, time-
consuming, or even impossible. In addition, we have investigated
the possibility of applying noise injection to augment channel
impulse response signals (CIRs) and to deal with environmental
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I. INTRODUCTION

THE indoor localization system plays an essential role in
the Internet of Things (IoT) applications, such as auto-

matic vehicles, healthcare devices, logistics, industrial produc-
tion, and wireless sensor networks, where accurate real-time
position measurement is needed [1] – [5]. For example, smart
unmanned robots will play an important role in future hospi-
tals [6]. Advanced positioning systems immediately locating
patients help automated guided vehicles transport medical
materials or patients themselves timely in an emergency, and
tracking patient activities also optimizes individual treatment
[7]. Due to the attenuation of obstacles such as concrete
walls and windows, lots of indoor localization methods have
been explored rather than those for outdoor environments
(e.g., Global positioning system (GPS) and global navigation
satellite system (GNSS)). These indoor techniques cover Wi-
Fi, Bluetooth, Infrared, and ultra-wideband (UWB) [1]. The
localization system using UWB measures time-of-flight (TOF)
to estimate the distance to the target. For a precise calculation
of converting TOF to distance, the transmission between the
transmitter and receiver must be in a line-of-sight (LOS)
condition. Otherwise, as illustrated in Fig. 1(a), a non-line-
of-sight (NLOS) transmission caused by signal reflection can
delay the TOF of the UWB measurement and hence add a
positive bias to the estimated distance. However, NLOS signals
are inevitable in realistic environments due to any obstacles by
objects and walls and cause positioning errors [8]. Therefore,
for this issue, a common solution is to detect LOS and NLOS
propagation during positioning so that those false results can
be corrected with an error model or simply filtered out.

Lots of NLOS identification techniques have been investi-
gated throughout the literature by statistical analysis of channel
characteristics. [8] - [16]. Recently, the rapid development
of machine learning (ML) algorithms and their excellent
classification performance has inspired research in NLOS
identification technology. With the support vector machine
(SVM), an efficient ML model, either the extracted features
from channel [17], [18], or the channel impulse response (CIR)
signal [19] can be used to identify NLOS with over 90%
accuracy. More ML methods, including deep neural network
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Fig. 1. Overview of the NLOS identification system: (a) NLOS and LOS communication, (b) Examples of measured CIRs in multiple scenarios.

(DNN) [20], convolutional neural network (CNN) [21] - [23]
and long short-term memory (LSTM) [24], are adopted for
NLOS identification by leveraging the CIR data and reported
to achieve higher classification accuracy than SVM [21].

However, it has been noticed from previous experiments
[14], [25], [26] that the variation of environments has a sig-
nificant influence on measured UWB signals, and CIRs from
three different scenarios vary, as shown in Fig. 1. Specifically,
most ML-based NLOS classifiers have limited generalisability
and they must be trained and applied in the same scenarios.
Otherwise, their performance in an unmeasured and untrained
scenario degrades due to the environmental noise [26]. As
NLOS transmission results from obstacles in the environment,
channel statistic features for ML models to analyze are depen-
dent on scenario settings. Thus, every time the applied scenario
changes, it is a must to collect a massive amount of data and
re-train the model, which can be time-consuming, complicated,
or even impossible in some harsh cases due to limitations
including infectious diseases, radiation, and chemical toxicity.

Following the lab-to-real-world transfer concept, the DNN
NLOS classifier pre-trained in an anechoic chamber as a
lab condition with sufficient training data is generalized and
transferred to the practical scenarios with data augmentation
emulating the environmental influence. To adapt the lab-based
NLOS classifier to a new targeted scenario, only a minuscule
amount of data (i.e., 50 sets of CIRs) needs to be re-measured
and scaled up by Gaussian noise injection as a form of data
augmentation. The dataset after augmentation is able to fine-
tune the initial DNN model via transfer learning technique
to obtain promising NLOS identification performance in the
targeted scene. According to our experiment results, the model
generalized by our proposed technique can achieve 98.8% and
97.1% accuracy in new scenarios, a corridor and a parking lot,
respectively. As a comparison, without the proposed method

and under the same condition of prior data, the DNN model
trained from such small-scale data would have only 84.4% and
81.1% accuracy.

Several previous studies also focus on this problem and pro-
vide some solutions, such as transfer learning [26]. Compared
to others, the contributions of our work lie in:

• The proposed DNN-based model with generalization can
identify NLOS in multiple scenarios to assist indoor
localization with superior accuracy, compared with other
existing ML-based methods.

• We propose the lab-to-real-world transfer concept to real-
ize DNN-based NLOS identification in practical scenarios
where it is difficult to collect a large amount of data
for training. By generalizing the lab-based model, the
demand for and cost of measurement of training data for
NLOS identification are largely reduced.

• Our work is the first study and experiment to investigate
and validate the possibility of introducing data augmen-
tation via injecting noise to CIRs for the enhancement of
generalization in ML-based NLOS identification.

• By injecting noise into CIRs as training input, it is found
that the robustness of the model for NLOS classification
in a noisy condition is improved.

As a result, we address the engineering problem of applying
ML-based methods in real-world scenarios where it is difficult
to obtain a large amount of data from measurements.

II. NLOS IDENTIFICATION APPROACH

A. Channel Impulse Response

The channel impulse response (CIR) is the power output
profile over the measured channel in response to an impulse
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Fig. 2. The proposed DNN model architecture for NLOS identification and the training process.

as a function of time delay, which can be given by [27]:

h(t) =

n∑
i=1

βiδ(t− τi) (1)

where n is the number of multi-paths, and βi and τi represent
the attenuation coefficient and delay of the ith path, separately.
Compared to LOS, NLOS transmission could introduce differ-
ences in features of CIR. For example, the first path component
is always stronger than the other path as it is received first with
the shortest distance. Nevertheless, under an NLOS condition,
the signal is reflected and delayed, resulting in a weaker first
path component and a higher delay term. These characteristics
related to NLOS can be statistically analyzed by ML-based
models after training with labelled CIRs. Thus, the DNN
model can be designed for NLOS classification based on CIR
[20]. Furthermore, instead of analyzing the selected features of
CIR, the complete CIR waveform can be used as the input to
an ML-based model for NLOS identification since the model
itself can extract needed features, making data augmentation
by noise injection possible [19], [21], [24].

One of the challenges of the CIR-based NLOS classifier
is its sensitivity to the variation of environments, causing its
limited generalizability and poor accuracy in an untrained
scenario. It is known that amplitude and delay terms of multi-
path components are determined by the characteristic of the
transmission paths, which are dependent on the scenario set-
tings. Thus, a new scenario with different obstacles, shapes and
distances may result in variation in received power and delay
of LOS and NLOS conditions, leading to misclassification
of NLOS based on criteria studied from previous scenarios.
Generally, if an ML model is expected to be applied in a
scenario, CIR data belonging to that scenario is required for
training. However, we propose that the requirement could
be simplified by data augmentation and transfer learning so
that just small-scale CIR data in a new scenario should be
measured.

B. Deep Neural Network

In the future B5G and 6G scenarios, it is necessary to pur-
sue low-latency and low-power applications when deploying
NLOS recognition models into IoT devices. Thus, instead of

the existing complicated CNN or LSTM network, we consider
the low-complexity DNN network as our feature extractor
and NLOS classifier. DNN is a well-known classification tool
[28] and is employed for NLOS identification [20]. It is a
mathematical model built up around so-called neurons, where
model weights for passing to other neurons are determined
during training to end up with the classification based on the
input vector.

The network architecture is a simple 3-layered feed-forward
neural network illustrated in Fig. 2, with rectified linear unit
(ReLU) activation functions between the hidden layers, which
have a size of 256 perceptrons, 256 perceptrons and 2 per-
ceptrons, separately. The layers used are fully connected (FC)
layers and the batch normalization (BN) layers, connected by
the activation function as seen in Fig. 2. In the FC layer, the
output of the ith FC layer is defined as

yi = Wixi +Bi, (2)

where xi is the input feature, Bi reflects bias, and Wi denotes
the weights. The output of the ith FC layer is passed the BN
layer, which can be expressed by

ŷi = γ
yi − E [yi]√
Var [yi] + ε

+ β, (3)

where γ and β represent the new mean and variance of the
input data, respectively. Besides, ϵ is a constant parameter
that prevents the denominator from being zero. The ReLU
activation function is applied to the output of the first BN layer,
which effectively avoids gradient disappearance and gradient
explosion when training the model. The ReLU function is
defined as:

ReLU(x) = max(x, 0), (4)

where x represents the input of the ReLU function. Finally,
the Softmax function is used as the last layer’s activation
function. It outputs a vector of two confidence values as output
for determining the signal to be either LOS or NLOS and is
defined as:

Si(x) =
ei∑
j e

j
. (5)
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Fig. 3. The proposed generalization method for NLOS identification in multiple scenarios through transfer learning and data augmentation by noise injection.

To evaluate the performance of the network in training, it is
chosen to use the loss function cross-entropy loss in combi-
nation with a soft-max function:

ℓ(k,π) = − ln

(
expπk∑
i expπi

)
. (6)

where k is the index of the target class, and π are the
unnormalized posterior class probabilities which are the output
of the last layer of the network.

The optimizer is chosen to be Stochastic Gradient Decent
with a learning rate found empirically to 0.05, which seeks to
minimize the loss criterion.

Fig. 2 shows the designed DNN model and the basic training
process diagram of this work, where labels are known as
expected values. As seen from the figure, the training process
would end when the loss between labels and predicted values
is no longer reduced or reaches a preset threshold.

The DNN model is pre-trained by the CIR data collected in
an anechoic chamber, where basic LOS and NLOS conditions
are created manually with reflectors to ensure its universality.
When it comes to NLOS identification in a new scenario
where only a small-scale training dataset should be measured,
the initial model can be fine-tuned by transfer learning using
sufficient data after augmentation. The process of realizing
generalization in a new scenario is shown in Fig. 3.

C. Data Augmentation

Data augmentation is a common method to increase the
amount of data to fulfil the requirement of data training,
avoid overfitting and improve the accuracy and robustness
of the DNN [29], [30]. A number of modified copies can
be generated by trimming the original data using geometric
transformation or adding noise to compensate for the lack
of training data. In particular, jittering data with noise has
been reported to be effective in improving the generalizability
of deep learning models [31], [32]. Thus, this technique
is powerful for some applications requiring a large training
dataset but with the difficulty of collecting it, such as com-
puter vision, biological signal, and medical image analysis

[33] - [36]. In order to train an NLOS identification model
generalized in multiple scenarios, extensive datasets should
be measured in each corresponding scenario. It is complicated,
costly, and time-consuming for lots of measurement equipment
to be set up whenever a new environment comes up, and
the quick application of NLOS identifier in harsh scenarios
is unachievable. Although some data augmentation techniques
for image analysis are not suitable for CIR signals, some for
time series data are available. In this work, we employ the
noise injection method by adding Gaussian white noise, which
is proven to be effective through comparative experiments in
the following sections.

As shown in Fig. 3, we modify the copies of the original
CIR signals by injecting white Gaussian noise to create new
training data. The additive noise is generated based on the
signal-to-noise ratio (SNR) against the existing signals to
guarantee that the signal power is always greater than the
noise power. The probability density function of Gaussian
distribution is defined by:

p(x) =
1

σ
√
2π

e−
(x−µ)2

2σ2 , (7)

where σ and µ2 are its mean and variance, respectively, and
it can be notated as N (µ, σ2). And SNR is given by:

SNR =
P

N
, (8)

where P is the signal power and N is the noise power.
Therefore, the variance of the expected noise, as well as its
power, can be determined as

σ2 = N =
P

SNR
. (9)

With µ = 0, the distribution of the additive white Gaussian
noise for data augmentation n is given by:

n = σ ×N (0, 1) =

√
P

SNR
×N (0, 1). (10)

Based on equation (1), the CIR after adding noise, which is
expected to emulate the actual measure of CIR with environ-
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mental noise, can be written as:

hn(t) =

n∑
i=1

βiδ(t− τi) + n(t). (11)

Totally, 9 sets of augmented data are generated with the SNR
ranging from 4 dB to 12 dB.

Both the chamber dataset and the small-size dataset of a new
targeted scenario are augmented. The former is augmented for
pre-training the initial model, while the latter is for fine-tuning.
It is crucial to apply data augmentation to the chamber dataset
to maintain consistency with the augmented dataset of the
new scenario, which may facilitate the process of fine-tuning
and final accuracy. Some samples of LOS and NLOS CIR
signals with and without additive noise from three scenarios
are illustrated in Fig. 4 - 6.
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Fig. 4. Original CIR signals from the anechoic chamber and CIR signals
with additive noise, (a) LOS and (b) NLOS.
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Fig. 5. Original CIR signals from the corridor and CIR signals with additive
noise, (a) LOS and (b) NLOS.
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Fig. 6. Original CIR signals from the parking lot and CIR signals with
additive noise, (a) LOS and (b) NLOS.

D. Transfer Learning
To minimize the need for training data in real-world sce-

narios and save time in model training, transfer learning is

essential to adapt an existing model from a lab condition to a
related problem [37] - [39]. Inspired by virtual-to-real-world
transfer, we propose lab-to-real-world transfer to minimize
the need for a large amount of data in new environments.
From an anechoic chamber lab, NLOS and LOS conditions
can be artificially created and then measured to pre-train an
initial DNN model. By leveraging transfer learning, the pre-
trained model can be simply fine-tuned for real-world NLOS
identification in a new target scenario. Besides, cooperation
with data augmentation can further enhance the efficiency in
the usage of data and increase the accuracy of the final DNN
model.

Transfer learning in our proposed generalization method of
Fig. 3 is implemented by a parameter sharing approach, which
initializes the network by the parameters from the pre-trained
model. We use 50 epochs to pre-train the initial model with
the chamber dataset. For the application in a new scenario, the
pre-trained model is set as the initial network for training by
another 50 epochs using the dataset from the targeted scenario.
The number of training epochs should be tuned regarding the
practical performance. It should be noted that the data for pre-
training the initial model is collected in an anechoic chamber,
where the UWB anchor and tag with the reflector are set
manually to create LOS and NLOS transmission channels for
CIR measurement. Under such a lab condition, a large size
of data can be collected efficiently, and the influence of the
environment is largely suppressed. In addition, we also apply
data augmentation through noise injection to the anechoic
chamber data. As it is beneficial to expose the initial DNN
model to the noise, which reduces the difficulty of adapting
to noisy signals during fine-tuning.

III. MEASUREMENT SETUPS

The training and testing CIR data is measured and generated
by UWB EVB1000 kits [40], [41] integrated with a De-
cawave DW1000 transceiver IC. Each board for measurement
is mounted on a bracket at a height of 1.6 m. The UWB
transceiver boards, divided into tags and anchors, are settled
and changed several times at different positions to create LOS
and NLOS paths depending on the measured scenarios. The
collected signals are first processed by the evaluation board. As
introduced in the previous section, the experiments are carried
out in three scenarios: anechoic chamber, corridor, and parking
lot, which are illustrated in Fig. 7.

Two EVB1000 kits are set as a transmitter and a receiver
to collect the CIRs in the 8 m × 9 m anechoic chamber of
Fig. 7(a). To create NLOS paths, three metal plates with the
sizes of 1 m × 1 m, 0.35 m × 0.26 m and 0.23 m × 0.17 m
are placed as obstacles and reflectors.

Three EVB1000 kits were used to measure the CIR data in
the corridor of Fig. 7(b), which has brick or concrete walls
on both sides. Such a scenario can emulate the real multipath
environments of localization applications, and the NLOS path
is created under the actual environment due to the shape of
the corridor.

Similarly, CIRs are collected by three EVB1000 kits in an
underground parking lot, as shown in Fig. 7(c). This concrete
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Fig. 7. Measurement Setups in: (a) anechoic chamber, (b) office corridor, and (c) parking lot.

underground space has 130 m in length, 34 m in width, and 2.5
m in height. As shown in the figure, black squares represent
pillars with 0.78 m in width. Concrete walls, cars, and pillars
result in LOS and NLOS paths in this typical multi-path
environment.

Eventually, the retrieved CIRs are aligned to the leading
edge of CIRs, and the available data is cropped to a length of
100 data points for convenience. For each scenario, training
and testing datasets are established by 700 and 300 sets of
CIRs, separately, with a ratio of 7:3. Besides, datasets for
training and testing are balanced, with an equal proportion of
LOS and NLOS data in both groups. During the DNN training
phase, a subset with the desired number of CIRs, depending
on the conditions and requirements of experiments, would be
extracted from the training group. Samples of LOS and NLOS
CIRs in three scenarios are presented in Fig. 1(b).

IV. RESULTS AND DISCUSSION

To demonstrate the significance and improvements of the
proposed method for small-scale data application in a variety
of scenarios, this section covers experiment results and their
related discussion, including:

• Benchmark performance of typical ML models without
the proposed generalization method, under the condition
where only a small amount of training data is available.

• Demonstration of NLOS identification accuracy improve-
ments due to the proposed method on a small-scale
dataset.

• Experiment on additional data augmentation methods
including colour noise, clipping, and warping, for DNN-
based NLOS identification model.

• Comprehensive comparison of existing ML-based ap-
proaches for NLOS identification from the literature,
including SVM [19], CNN [21] and CNN+LSTM [24].

• Computational complexity analysis of the proposed
method.

(a) (b)

Fig. 8. Validation of the classification model with (a) an NLOS sample and
(b) a LOS sample.

• Discussion of the possibility of reusing the available
training data from other scenarios.

• Demonstration of noise immunity enhanced by the pro-
posed method.

The ML models in this work are implemented by scikit-
learn and Keras libraries based on Python 3.7.11 running on
MacBook Pro M1. An example that validates the proposed
method to generate classification results for CIR inputs is
visualized in Fig. 8.

The results of NLOS identification can be grouped into four
categories, true positive (TP), true negative (TN), false positive
(FP) and false negative (FN), which represent correct NLOS
prediction, correct LOS prediction, incorrect NLOS prediction
and incorrect LOS prediction, respectively. Then, based on
statistics results, the classification performance of ML-based
models is evaluated by metrics of accuracy, precision, recall,
F1-score, which can be calculated by:

Accuracy =
TP + TN

TP + FP + TN + FN
, (12)

Precision =
TP

TP + FP
, (13)

Recall =
TP

TP + FN
, (14)
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TABLE I
BENCHMARK IDENTIFICATION ACCURACY OF ML METHODS IN MULTIPLE SCENARIOS WITH A TRAINING SET SIZE EQUAL TO 50 AND 200.

ML Methods SVM DNN
Test Scenarios Chamber Parking Lot Corridor Chamber Parking Lot Corridor

Training Scenarios
Training Set Size = 50

Chamber 93.0% 63.9% 80.1% 73.9% 51.3% 56.2%
Parking Lot 47.1% 92.1% 43.2% 45.2% 81.1% 56.2%
Corridor 76.8% 54.3% 91.8% 65.0% 66.4% 84.4%

Training Scenarios
Training Set Size = 200

Chamber 93.0% 64.3% 74.4% 96.2% 52.1% 68.7%
Parking Lot 53.5% 93.6% 55.6% 51.8% 98.0% 49.2%
Corridor 71.2% 80.0% 96.8% 62.3% 83.5% 98.6%

F1 =
2× Precision×Recall

Precision+Recall
. (15)

A. Benchmark Performance of ML Methods in Multiple Sce-
narios

We first test the benchmark multi-scene performance of
the chosen ML method, DNN, along with SVM, a widely
used ML technique for NLOS applications, with a limited
scale of the training set. As shown in Table I, without
proposed generalization technique, The size of the training set
is another issue for NLOS identification of ML-based methods
as revealed by the benchmark performance. With 50 sets of
CIRs, DNN can only attain 81.1% and 84.4% accuracy in
trained scenarios of parking lot and corridor, respectively. The
contrast between validation and train loss curves without data
augmentation in Fig. 9 indicates the basic model is underfitted
at around the 20th epoch and overfitted after the 20th epoch
due to the lack of training data. With a small training set
size, SVM models could perform relatively better but still
unsatisfactorily, especially with 92.1% and 91.8% accuracy
for the classification in the parking lot and corridor. However,
if the training set size increases to 200, the accuracy of DNN
models can achieve higher accuracy than SVM, around 96.2%
to 98.6% in the respective trained scenarios. The results with
different training set sizes demonstrate DNN model demands
sufficient training data to reach its upper limit capability for
NLOS identification, which can outperform SVM. To sum up,
the benchmark results indicate the limited generalizability of
ML-based methods, and a large amount of training data is
required for precise NLOS identification in multiple scenarios
with the traditional methods.

B. Improvements by Data Augmentation and Transfer Learn-
ing

Illustrated in Fig. 10 and 11, the proposed method, combin-
ing the advantages of transfer learning and data augmentation
through noise injection, is able to assist the DNN model to
generalize in different scenarios with a small-scale of data.
To examine the performance, the number of CIRs for training
from the targeted scenario is restricted to 50, and 450 sets
from the anechoic chamber are available for pre-training.

As the benchmark, the basic DNN model can only provide
84.4% and 81.1% accuracy in the corridor and parking lot,
separately. For a fair contrast analysis, the chamber dataset for
pre-training is also treated as one of the controlled inputs to the
model. Employing transfer learning with chamber dataset can

Fig. 9. Cross entropy loss of training and validation with and without data
augmentation on 50 sets of original CIRs.

increase the accuracy to 93.3% and 92.7% for the corridor and
parking lot compared to simple mixing. Similarly, with noise
augmentation, the NLOS recognition accuracy is improved by
about 10% in the same scenario after data augmentation by
injecting noise to increase the size of the training set by a
factor of 9 (50 to 450 sets). Furthermore, the loss change
during the training phase after applying data augmentation
is shown in Fig. 9. It suggests the underfitting problem can
be addressed by data augmentation with the gap between
train and validation loss minimized compared to that without
data augmentation. It can be concluded that under the same
prior condition of training data size (450 sets of data from
the chamber + 50 sets of data from a new scenario), data
augmentation and transfer learning for DNN can dramatically
enhance its NLOS identification accuracy.

Thus, as we proposed, both data augmentation and transfer
learning are essential for generalization with small-scale data.
The results of experiments in DNN+TL groups demonstrate
that injecting noise to augment either the pre-train data (cham-
ber data) or fine-tune data (corridor or parking lot data from
multiple new scenes) can be advantageous. When both datasets
(pre-train and fine-tune) are amplified, the accuracy could
reach the maximum in our experiments. For the fine-tuning
dataset, on one hand, the augmentation provides sufficient
training data for the model. On the other hand, for the pre-
training dataset, we deduce that the model could adapt to
the additional noise in advance. Consequently, compared to
using the transfer learning technique only, the introduction of
the data augmentation exhibits an advantage of around 5% in
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Fig. 10. Identification accuracy of DNN in the corridor with different generalization methods using 50 sets of training data. (TL: transfer learning)

Fig. 11. Identification accuracy of DNN in the parking lot with different generalization methods using 50 sets of training data. (TL: transfer learning)

accuracy.
Therefore, a combination of data augmentation and transfer

learning is proposed to address the challenges of requiring
large NLOS identification training data in a variety of scenar-
ios. As shown in Fig. 10 and 11, the NLOS identification of
the DNN model can achieve up to 98.8% and 97.1% accuracy
for the corridor and parking lot, respectively. Furthermore,
considering the rise in accuracy from the benchmark (84.4%
and 81.1%), our approach is enormously effective for a DNN
model to be generalized to a new environment with demand
on training data (i.e. 50 CIRs).

C. Comparison of Data Augmentation Techniques
Except for noise injection using AWGN, other data aug-

mentation techniques including using colour noise source [42],
[43], data clipping and data warping [29], [44], [45] are worth
researching on their influence on CIRs and the DNN model
for NLOS identification. To implement these augmentation
techniques, colour noise (white, pink, brown, blue, and purple)
are generated in MATLAB and added to the CIRs. Data
clipping is performed by sliding a window on CIR to take
70 to 80 random samples (100 in total) with others padded
by zero. Besides, data warping is realized by first clipping 50
samples and then stretching them by a ratio of 2. Finally, an
equal amount of training data after augmentation would be
obtained from 50 original CIRs.

The results of several tested data augmentation methods
for NLOS identification in the corridor and parking lot are
included in Table II. For all evaluation metrics of NLOS
identification, white noise ranks first in both corridor and
parking lot, and hence it is chosen for data augmentation
as our proposed method. For other colour noise, the overall
performance in corridor may actually degrade, while a rise of
2-5% in recall rate can be found in parking lot. These two
opposing trends indicate there is uncertainty in the outcome
of injecting coloured noise with non-constant power density in
the frequency domain. Furthermore, it is noticed that applying
data clipping only cannot assist NLOS identification with a
small-scale set of data, but combining data clipping and warp-
ing gives a relatively competitive performance. Especially, the
accuracy and recall rate from 93.2% and 92.8% jumps to
95.7% and 95.1% in corridor, and from 92.8% and 88.0%
to 94.9% and 92.5% in parking lot.

D. Comparison of Existing ML-based NLOS identification
Methods

To have a comprehensive evaluation of the performance of
the proposed method, we choose some ML-based methods
from previous research as the comparison in Table III for the
corridor and IV for the parking lot. With only a small-scale
dataset available (50 sets of CIRs), the accuracy of ML-based
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TABLE II
PERFORMANCE METRICS COMPARISON OF AUGMENTATION METHODS

Augmentation Method Accuracy Precision Recall F1-score Accuracy Precision Recall F1-score
Scenario: Corridor Scenario: Parking Lot

W/O Augmentation 93.2% 93.7% 92.9% 0.932 92.8% 97.4% 88.0% 0.924
White Gaussian Noise 98.8% 98.4% 99.1% 0.988 97.1% 98.5% 95.6% 0.970
Pink Noise 86.8% 82.8% 93.0% 0.876 93.0% 94.4% 91.4% 0.929
Brown Noise 89.3% 89.7% 88.8% 0.892 88.9% 88.0% 90.1% 0.891
Blue Noise 91.6% 93.7% 89.2% 0.914 91.3% 90.9% 91.9% 0.914
Purple Noise 91.5% 92.3% 90.6% 0.914 93.9% 94.5% 93.2% 0.938
Clip 87.0% 93.9% 79.2% 0.858 91.9% 93.3% 90.4% 0.918
Clip + Warp 95.7% 96.2% 95.1% 0.956 94.9% 97.2% 92.5% 0.948

TABLE III
PERFORMANCE METRICS COMPARISON OF EXISTING AND PROPOSED NLOS CLASSIFICATION METHODS FOR CORRIDOR SCENARIO

Method Accuracy Precision Recall F1-score
SVM 92.1% 91.8% 96.4% 0.941
SVM - Noise Augmentation 93.9% 92.9% 96.3% 0.945
CNN 92.3% 87.6% 98.6% 0.928
CNN - Noise Augmentation 96.2% 94.7% 98.2% 0.963
CNN + LSTM 86.4% 89.1% 84.4% 0.860
CNN + LSTM - Noise Augmentation 96.4% 96.8% 96.4% 0.965
DNN 84.4% 88.6% 78.9% 0.835
DNN - Noise Augmentation 94.9% 91.4% 98.9% 0.950
DNN + TL 93.2% 93.7% 92.9% 0.932
DNN + TL - Noise Augmentation 98.8% 98.4% 99.1% 0.988
Reference of ML-based methods: SVM [19], CNN [21] and CNN+LSTM [24].

TABLE IV
PERFORMANCE METRICS COMPARISON OF EXISTING AND PROPOSED NLOS CLASSIFICATION METHODS FOR PARKING LOT SCENARIO

Method Accuracy Precision Recall F1-score
SVM 91.8% 90.9% 92.9% 0.919
SVM - Noise Augmentation 93.9% 93.3% 95.0% 0.940
CNN 81.8% 83.8% 78.9% 0.806
CNN - Noise Augmentation 89.4% 96.7% 81.6% 0.885
CNN + LSTM 81.8% 79.6% 87.1% 0.827
CNN + LSTM - Noise Augmentation 86.1% 82.4% 93.1% 0.869
DNN 81.1% 80.5% 82.1% 0.813
DNN - Noise Augmentation 94.5% 97.2% 93.3% 0.952
DNN + TL 92.8% 97.4% 88.0% 0.924
DNN + TL - Noise Augmentation 97.1% 98.5% 95.6% 0.970
Reference of ML-based methods: SVM [19], CNN [21] and CNN+LSTM [24].

methods would not exceed 92.3% (CNN) in the corridor and
can be even lower in the parking lot to 81.8% (CNN and
CNN+LSTM) except for the SVM model. As for recall rate,
it can indicate the capability of finding all NLOS, which in
most cases is below the accuracy. SVM and CNN (for corridor
only, which can be considered as an occasional case) can attain
a relatively high recall rate. Given multiple scenarios and a
lack of data, most existing ML-based cannot reach the desired
performance.

As we proposed, the results demonstrate that it is effective
to introduce data augmentation via white Gaussian noise
injection for most ML-based NLOS classifiers. Among all,
DNN models gain the greatest improvements in accuracy
and recall rate due to data augmentation. Furthermore, it is
observed that transfer learning can be helpful for multiple
scenario applications but with its recall rate dropping. Thus,
the proposed method deploying both data augmentation and
transfer learning for a DNN model contributes to the best
metrics shown in Table III and IV. For NLOS identification in
the corridor, accuracy is raised by at least 2.3% (compared to

CNN+LSTM), precision by 1.6% (compared to CNN+LSTM)
and recall rate by at least 0.9% (compared to CNN). For
the parking lot, as other ML-based methods cannot perform
well in terms of accuracy, the accuracy can be increased by
5.3% (compared to SVM), precision by 1.8% (compared to
CNN) and recall by 0.6% and 2.3% (compared to SVM and
CNN+LSTM). In conclusion, targeting the case of multiple
environments with small datasets, our proposed approach is
more effective than existing techniques for NLOS identifica-
tion.

E. Computational Complexity Analysis

The analysis of the time complexity of the proposed method
compared with other typical ML-based methods for NLOS
identification is presented in Table V. As a lightweight ML
tool, the time complexity of SVM implemented by scikit-
learn only depends on the input data dimension and size of the
training set [46], and it consumes the least time for training and
testing. With higher time consumption, deep learning methods
consist of a large number of neurons and parameters to be
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TABLE V
COMPUTATIONAL COMPLEXITY ANALYSIS

ML Methods Training Time Complexity Num of Parameters Epoch Train Time (s) Test Time (s)
SVM O(dN2) - - 0.003 0.001

CNN O(NI
∑L

l=1 klfldl) 118210 800 195.904 0.640

CNN + LSTM O(NI(
∑L

l=1(klfldl) + w)) 32450 500 319.856 0.947

DNN O(NI
∑L

l=1 nlnl−1) 94210 50 17.767 0.186

DNN + TL O(NI(
∑Lpre+Ltr

l=1 nlnl−1)) 160260 100 44.870 0.330

L: number of layers (Lpre and Ltr are the number of layers for pre-training and fine-tuning, respectively).
d: dimension of the input (dl is the dimension of the input of the lth layer).
N : number of the training sets.
I: number of iterations (epochs).
kl: kernel size of the lth layer.
fl: number of filters of the lth layer.
nl: number of nodes of the lth layer (n0 is the input dimension).
w: weight of LSTM.

Fig. 12. Identification accuracy against training set size of DNN applied in
the corridor. (TL: transfer learning)

trained. The time complexity of CNN [21] and CNN+LSTM
[24] methods are given by kernel size, the number of filters
and weight (for LSTM) defined in the network [47] - [49].
Although introducing the LSTM structure can simplify the
number of parameters in the network, CNN-based methods
still require hundreds of iterations and high training time.
As for DNN, its complexity is dependent on the number of
nodes designed in its network. Similarly, the DNN classifier
is complicated in terms of the number of parameters and its
complexity depends on the number of nodes in the network
[50], [51], but the epochs required to reach convergence largely
reduce compared to CNN. Besides, applying transfer learning
adds some time complexity for fine-tuning. To sum up, at
a cost of time complexity, deep learning models could gain
better performance. Within the tested models, the proposed
method (DNN+TL), not only takes a relatively short time to
train (44.9s) but also gets outstanding NLOS identification
performance as discussed in the metrics comparison section.

F. Impact of Training Set Size

It is known that the size of the training set is a significant
factor in the performance of a DNN model. Hence, with
various training set sizes from 30 to 200, Fig. 12 and 13
demonstrate the increase in the accuracy of the proposed

Fig. 13. Identification accuracy against training set size of DNN applied in
the parking lot. (TL: transfer learning)

generalization method, compared to the basic DNN as well as
DNN with transfer learning or data augmentation, individually.
Based on the results, given the lack of training data from
testing scenes in the corridor or parking lot, for example, when
a training set size is not larger than 50, the DNN model cannot
precisely classify NLOS signals with an accuracy below 90%
or even 80%. For models trained by a sufficient amount of
data (i.e. 200 sets), all tested approaches could result in an ac-
ceptable NLOS identification accuracy of over 98% in testing
scenes of the corridor or parking lot. However, the proposed
method via data augmentation and transfer learning can allow
the DNN trained by 50 sets of CIR signals to resemble that
trained by 200 sets, leading to approximately 98% accuracy. It
effectively boosts the accuracy in identification with the same
training data.

Furthermore, although the improvements in accuracy de-
crease as the size of training data grows, the model generalized
by the proposed method with 200 sets of data can reach 100%
accuracy in the test in the corridor and parking lot. To ac-
quire high-level accuracy in NLOS identification, an extensive
amount of training data is desirable, but our approach reduces
this need for training data and simplifies the generalization of
the NLOS classifier to new environments.
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Fig. 14. Accuracy results of DNN based on a mix of 25 sets of corridor data and 25 sets of parking lot data. (TL: transfer learning)

G. Mixing Training Data from Different Scenarios

In the experiment, we also notice that data from a similar
scenario is helpful for generalization and can be mixed into
a dataset for training. Fig. 14 illustrates the results of models
trained by a mix of CIR signals collected in different scenarios.
In this experiment, transfer learning is implemented by pre-
training with the same 50 sets of chamber data and fine-tuning
with a mix of 25 sets from the corridor and 25 sets from
the parking lot (50 sets in total). Generally, as models are
trained by data collected in both scenarios, they exhibit similar
and good performance in these trained scenarios, with over
90% accuracy. Compared to previous results shown in Fig. 10
and 11, there is a slight loss in accuracy when training with
the mix of data from two scenarios, dropping to 97.2% and
96.7% for the corridor and parking lot, respectively (98.8%
and 97.1% in comparison). The penalty is acceptable as it
reveals the possibility that the data from a previously measured
scenario could be mixed with new data to train a model in a
new scenario. Reusing the existing data can further reduce
the need to collect new data for an unmeasured environment,
allowing the DNN model to be generalized among multiple
environments.

H. Robustness against Noise

Based on the proposed generalization method, as the DNN
model is trained by data with noise injected (between 4dB
and 12dB SNR), it gains robustness against noise with similar
SNRs. Fig. 15 and 16 demonstrate the robustness by illustrat-
ing the change of identification accuracy against the SNR of
the test data with the addition of white Gaussian noise. For
the model trained without noise (with transfer learning only),
its low accuracy is mainly due to insufficient training data, but
it is also important to notice that its accuracy declines a lot
with SNR from 6dB to 12dB, which indicates its robustness
is weak. As a comparison, with noise augmentation during
training, the curves of identification accuracy in the corridor
and parking lot are flatter within 6dB and 12dB, with the
accuracy metric maintaining higher than 90%. It indicates that

Fig. 15. Identification accuracy in the corridor against SNR of CIR based
on 50 sets of training data. (TL: transfer learning)

Fig. 16. Identification accuracy in the parking lot against SNR of CIR based
on 50 sets of training data. (TL: transfer learning)
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the model trained by our method has immunity to the noise and
can be applied in some harsh cases with the SNR of signals
not lower than 4dB to 6dB. For SNR below 0dB, the accuracy
of most models is low as the noise power is greater than the
signal power, and therefore such a noisy condition should be
avoided.

I. Discussion
Deep learning models like DNN are powerful tools for

classification with large neuron networks, but they require a
large amount of data to train for the desired performance.
Considering NLOS identification in new scenarios, it may not
be possible to collect sufficient training data due to constraints
such as time, materials, and risks. And using a small dataset
for training may result in a model that is unable to extract the
appropriate features for classification, thus yielding low accu-
racy. We propose a small-sample generalization method for a
lab-based model via transfer learning and data augmentation
to solve this problem. It is demonstrated by the results of the
proposed method that based on the lab-to-real-world transfer
scheme, the pre-training dataset collected with artificial LOS
and NLOS setups in the anechoic chamber contributes to
the improvements in the classification performance. As an
enormous number of signals for a well-trained initial model
can be easily measured, the need for natural signals by actual
measurement is considerably reduced. It is also possible to
reuse the data from other scenarios to compensate for the lack
of training set. Besides, throughout the literature, applying
noise jitters CIRs to assist NLOS identification has never
been explored. In this paper, the experiment results prove
that random Gaussian noise with controlled SNR added to
CIR would not distort crucial features related to NLOS in the
signal and degrade the training fitting of the DNN model. On
the contrary, some advantages are demonstrated for the first
time in NLOS identification on UWB CIRs, including im-
proving generalization in multiple scenarios, complementing
small-scale datasets to deal with underfitting in training, and
enhancing robustness.

In fact, the original measured CIRs could include certain
noise components from the environment. The injected noise
may imitate the environmental noise in CIRs and the super-
position of noise may cancel out part of the noise as well.
Then, part of the features relevant to environments could be
removed while features related to NLOS remain and could be
easily extracted. It could be the reason why noise injection
for data augmentation is able to effectively augment data to
train a model to distinguish NLOS signals with improved
performance.

Our initial expectation was that the additional Gaussian
noise could act the same as an environmental effect during
training for the lab-based model transfer, so no new training
data is needed for generalization towards NLOS classification
in multiple scenes. We then noticed that this type of noise
is only partially effective and can largely reduce the required
amount of training data, but data collection in a new scenario is
still a must. Future studies could focus on the design of noise
for CIR data augmentation so that the irrelevant features due
to environmental impact could be eliminated during training.

V. CONCLUSION

This paper proposes a generalization method that only
demands a small-scale dataset to realize DNN-based NLOS
identification in multiple scenarios to assist indoor localization.
Without a large amount of data for training a model, high
identification accuracy for arbitrary new environments can be
achieved by the cooperation of transfer learning and data
augmentation. As proposed, the model is pre-trained and
fine-tuned based on transfer learning, with the data from
an experimental lab environment and augmented data via
noise injection from a small amount of data measured in a
new scenario. This method overcomes the lack of data and
makes NLOS classification become available in real-world
environments where measuring a large amount of data is not
possible.

By testing the proposed method in a corridor and parking
lot, we verify its advantages of improving accuracy in training
with a small dataset, increasing from 84.4% to 98.8% and from
81.1% to 97.1% in two testing scenarios with only 50 sets of
CIR signals, respectively. Hence, the results demonstrate our
NLOS identification technique is effective for TOF-based in-
door localization systems and related indoor automatic guided
vehicles to avoid distance errors. Furthermore, the potential
of lab-to-real-world transfer and data augmentation in NLOS
identification with UWB CIRs is verified, offering a new
opportunity to address the challenge of training data collection.

As a consequence, the experimental result manifests the
powerful generalization capability and robustness of our pro-
posed generalization method for DNN, which can become a
breakthrough in the practical deployment of the multi-scenario
NLOS identification approach.
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