Glass-Forming Ability of Soda Lime Borate Glasses

Zheng, Qiuju; Mauro, John C.; Smedskjær, Morten Mattrup; Potuzak, Marcel; Keding, Ralf; Yue, Yuanzheng

Publication date:
2011

Document Version
Early version, also known as pre-print

Link to publication from Aalborg University

Citation for published version (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

? Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
? You may not further distribute the material or use it for any profit-making activity or commercial gain
? You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: August 26, 2019
Glass-Forming Ability of Soda Lime Borate Liquids

Qiuju Zheng¹,², John C. Mauro², Morten M. Smedskjaer¹, Marcel Potuzak², Ralf Keding³, Yuanzheng Yue¹

¹Section of Chemistry, Aalborg University, DK-9000 Aalborg, Denmark
²Science and Technology Division, Corning Incorporated, Corning, New York, USA
³Max Planck Institute for the Science of Light, D-91058 Erlangen, Germany

We investigate the glass-forming ability (GFA) of a series of iron-containing soda lime borate compositions \([xNa_2O-10CaO-(89-x)B_2O_3-1Fe_2O_3\ (x=5, 10, 15, 20, 25, 30 \text{ and } 35 \text{ mol%})]\) by examining their crystallization behavior and fragility. GFA is characterized in terms of Hrubý parameter \(K_H\) and our newly established criterion. In general, the GFA decreases with increasing content of \(Na_2O\). Interestingly, we observe that after the first upscan to 1000 °C at 20 K/min and a subsequent downscan at the same rate, two glasses containing 20 and 25 \(Na_2O\) mol% do not exhibit any crystallization exotherms during the second upscan at 20 K/min to 1000 °C. Even when the upscan rate is lowered to 5 K/min, the same phenomenon is observed. This means that the stability of these glasses against crystallization is dramatically enhanced for these two compositions. This particular behavior is explained in terms of the temperature dependence of the boron speciation.