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a b s t r a c t

Wearable sensors for activity monitoring currently are being designed and developed, driven by an
increasing demand in health care for noninvasive patient monitoring and rehabilitation training. This
article reviews state-of-the-art wearable sensors for activity monitoring and motion control. Different
technologies, including electromechanical, bioelectrical, and biomechanical sensors, are reviewed,
along with their broad applications. Moreover, an overview of existing commercial wearable products
and the computation methods for motion analysis are provided. Future research issues are identified
and discussed.
© 2023 The Author(s). Published by Elsevier B.V. on behalf of ShandongUniversity. This is an open access

article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
1. Introduction

During the past decade, new wearable sensor technologies
ave been developed for wide applications. Wearable sensors can
enefit patients, such as those with orthopedic or neurological
iseases, with improved diagnosis, treatment, and personalized
linical management [1]. Moreover, wearable sensors provide
ontinuous monitoring and measurements of physical activities
or patients in the recovery process, such as strength training and
racticing degenerated skills [2].
These sensors can be mounted to different parts of human

ody, for example, the chest, waist, and upper and lower limbs,
nd can even be worn in pockets or shoes or adhered to the skin
o collect data quickly and conveniently for the human motion of
nterest. In addition, sensors are integrated into wearable devices,
uch as orthoses and exoskeletons, applicable for patients with
emiplegia, elderly people, and workers, with the purpose of
ssistive control.
To date, few articles have reviewed wearable devices for ac-

ivity monitoring and tracking [3–5]. For example, Tokuçoğlu [6]
as reviewed wearable systems for monitoring physical activity
n medical applications, focusing on their use in health care.
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E-mail address: shb@mp.aau.dk (S. Bai).

1 Given his role as Guest Editor of this journal, Shaoping Bai had no
nvolvement in the peer review of this article and had no access to information
egarding its peer review. Full responsibility for the editorial process for this
rticle was delegated to Prof. Xinyu Wu.
ttps://doi.org/10.1016/j.birob.2023.100089
667-3797/© 2023 The Author(s). Published by Elsevier B.V. on behalf of Shandong U

(http://creativecommons.org/licenses/by/4.0/).
Khakurel et al. [7] has provided an overview of the applications
of wearable technologies in the workplace. However, even fewer
articles have paid attention to various technologies and applica-
tion scenarios such as daily activities, medical rehabilitation, and
industrial assistance, as well as to commercial products available
for use in these areas.

In this article we review state-of-the-art wearable sensors for
activity monitoring and tracking, including technologies, comput-
ing algorithms, and applications. Moreover, existing commercial
wearable products are listed and their performance compared.

2. Wearable sensing technologies

Many wearable sensors have been developed over the years
and can be classified by signal source into three major categories:
electromechanical sensors, bioelectrical sensors, and biomechan-
ical sensors, as shown in Fig. 1. Sensors that detect limb motion
and collect kinematic and kinetic information include accelerom-
eters, encoders (angle, angular velocity, linear acceleration, an-
gular acceleration, inclination angle), inertial measurement units
(IMUs) with even more kinematic data, and foot switches and
pressure insoles.

Sensors that detect central nervous system (CNS) activities can
be divided into invasive and noninvasive. Invasive bioelectrical
signals mainly include cortical electroencephalography, cortical
neural recordings, invasive peripheral nerve recordings, and inva-
sive electromyography (EMG). Noninvasive measurement meth-

ods mainly include surface electromyography (sEMG) and surface

niversity. This is an open access article under the CC BY license
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Fig. 1. Classification of wearable sensors for activity monitoring and tracking.
lectroencephalography (EEG). Sensors developed on biomechan-
cal principles to detect biomechanical activities such as muscle
ontractions include force-sensitive resistor (FSR, noninvasive),
apacitance sensors, and magnetomicrometry (invasive).
An overview of the sensors in these categories is listed in

able 1. In the following sections, we examine each type’s de-
elopment and applications.

.1. Electromechanical sensors

Electromechanical sensors convert human movements into
inematic and kinetic parameters. This type is the most com-
only used, spanning from medical care to sports medicine to
upporting daily activities. Compared with sEMG signals, elec-
romechanical sensors have good stability and high repeatabil-
ty but also experience hysteresis. Moreover, their performance
s prone to mechanical gaps, wearing misalignment, and other
ssues, which can aggravate the hysteresis and downgrade per-
ormance.

A typical sensor of this type is the accelerometer, which
as been used extensively in gait analysis [26,27]. For example,
ccelerometers are installed on the lower limbs and back to mea-
ure accelerations during walking [28,29]. The phase of lower-
imb motion can be determined by analyzing the acceleration
ata obtained [30]. Other wearable sensors, such as magnetore-
istive sensors and gyroscopes, can be integrated with accelerom-
ters to provide more information about human gait [8–11,13,
4,31,32]. Gyroscopes usually are used to measure the angle and
ngular velocity of the lower-limb joints [33–35].
The combination of IMU with foot switches and pressure in-

oles enables more accurate gait detection, developed with more
omplex algorithms [36,37]. Yang et al. [38] have proposed an
daptive gait phase detection model based on three IMU sensors
nd two foot switches for monitoring unsteady walking and
arious activities (e.g., walking, running, stair ascent and descent,
quatting). Their results showed that the accuracy of the proposed
ait detection model in the measured activities reached 99.0%. Su
t al. [39] have proposed a deep convolutional neural network
CNN) model to classify five gait phases according to IMU and
oot switch information. In the offline evaluation of gait phase

ecognition, their model shows an accuracy of ∼97%.

2

2.2. Bioelectrical sensors

Bioelectrical sensors detect the electrical potential of nerve
cells. The signals are filtered and amplified for interpretation
of CNS activities. Invasive sensors are electrodes directly im-
planted into the neural information source (e.g., cortical neuron
recordings, EMG) or neural signal pathways (e.g., invasive periph-
eral nerve recordings). Invasive electrodes provide signals more
accurately and reliably than do noninvasive ones.

Many clinical studies with invasive neural sensors have been
conducted, with promising results [40]. For example, Raspopovic
et al. [41] have proposed an activity monitoring system based on
an implanted neural interface that integrates sensory feedback
into a sensorimotor loop. This system can improve the wearer’s
mobility, agility, and fall prevention in dynamic tasks. However,
the current invasive neuro-sensing technologies can cause direct
physical harm and some unknown risks to the human body;
therefore, more development and clinical research are needed.

Among the noninvasive neural sensors, EEG caps, which are
commonly seen in laboratory settings and tests, can easily be
interfered with, especially during the process of walking [42–44].
The neuronal pulse signals of the cerebral cortex have a natural
distortion after passing through the skull and scalp. Artifact de-
tection and removal methods from scalp EEG remain an active
area of research, as none of the existing methods are complete or
universal.

The sEMG sensors are the most commonly used neural sensors
for activity monitoring. The sEMG sensors cover surfaces specific
to muscle activities occurring during movements, as shown in
Fig. 2. The sEMG signal has the advantages of small delay, high fi-
delity, and convenient measurement. Whereas a few studies have
adopted sEMG sensors in gait detection [15–20,45–47], in general,
EMG-based systems are less commonly used for this purpose
because their performance is poor due to, for example, electrode
position changes, sweat on the skin, and muscle variations.

One model based on SVM obtained good results, with a 96% ac-
curacy in detecting swing and stance phases [48]. Fricke et al. [49]
have compared three different classification methods-K-Nearest
Neighbors (KNN), CNN, and SVM–to automatically classify EMG
patterns according to potential gait disorder. The automatic clas-
sification of normal and abnormal EMG patterns during gait was
possible with high accuracy when using CNN (91.9%) but not with

SVM (67.6%) or KNN (48.7%). Joshi et al. [50] have proposed a
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Table 1
Overview of wearable sensors for activity monitoring and control.
Sensor category Characteristics Sensor types Examples

Author [Ref.] Integrated
system

User groups Tests Type Location Data Algorithm Note

Electromechanical
signal

kinematic and
kinetic data
High stability,
high repetition,
but high
hysteresis

IMU, encoder (angle,
angular velocity,
linear acceleration,
angular acceleration,
inclination angle),
force sensor (ground
interaction force,
joint torque)

Kreil et al. [8]

Special shorts
for the
integration of
FSRs

Healthy
participants Lab FSR Ankle Acceleration;

angular velocity
Threshold
algorithm

FSR can provide information that is
not accessible to motion sensors

Liu et al. [9] N Healthy
participants Lab Inertial sensor Toe Angular velocity

Machine learning
(ML)/Hidden
Markov Model
(HMM)

Recognition rate of the model is
91.88% despite the differences in age,
height, and weight

Chen W. et al. [10] N Healthy
participants Lab IMU

7 plantar
positions;
instep

Acceleration;
plantar pressure

ML/support
vector machines
(SVM)

Method can successfully classify the
phases of gait with an accuracy of
approximately 94%

Potluri et al. [11] N Healthy
participants Lab IMU 64 plantar

positions; calf

Acceleration;
angular velocity;
magnetic field
strength; plantar
pressure

ML/SVM/K-
means/ANN

Verify that ML methods, especially
ANN, performed well in gait phase
detection with high accuracy

Rattanasak et al.
[12] N Healthy

participants Lab Plantar force
sensor

5 plantar
positions Plantar pressure ML/KNN

Method provided an 81.43% accuracy
for gait phase detection and can
control the transtibial prosthetic
effectively at the maximum walking
speed of 6 km/h

Rahimi et al. [13] N

Patients
with
Parkinson’s
disease
(PD)

Home

3-axis
accelerometer,
3-axis
gyroscope

Head, trunk,
pelvis, upper
arms, wrists,
thighs,
shanks

10 joint angular
velocities, 48
joint angles

PCA
PCA analysis compared across trials for
the walking task indicated large
intertrial variability

Ding et al. [14]

Lower-
extremity
exoskeleton
robot

Healthy
participants Lab IMU Instep Acceleration;

angular velocity
Threshold
algorithm

Compared to the force plate, the mean
time errors of toe-off and heel-strike
detection are −10 and 19 ms

Bioelectrical
signal

Detect CNS
system activities
Small delay, high
fidelity, easy
distribution, but
poor stability

EMG, sEMG, EEG
sensors

Tsurushima et al.
[15] and Kawamoto
et al. [16,17]

Hybrid
assistive-limb
robotic
exoskeleton
suit

Patients
with stroke Lab

EMG, angle
sensor, IMU,
plantar
pressure
sensor

Hip,
thin-muscle
EMG, foot
plantar

Mean step
length, average
step rate;
single-leg
support time;
maximum
distance walked
lasting for
6 min; Berg
Balance Scale
score

Proportional
control

Patient performed a more natural walk
with more step length than his
normal walk

Gupta et al. [18] Lower-limb
prosthesis

Patients
with
amputations

Lab Single-channel
EMG FL, BF

Average
identification
accuracy

Continuous
terrain
identification
method

Feature selection algorithm significantly
improved identification accuracy as
compared to PCA technique

Chen et al. [19,20]
Knee-ankle-
foot
robot

Patients
with stroke Lab

EMG, encoder,
force sensor,
IMU

EMG: thin
and shank
muscle, IMU:
waist, thighs,
shanks and
feet

Angular velocity,
angle and
muscle
activations

Hidden Markov
Model

Activation level of the major leg
muscles s reduced as indicated by the
EMG signals, and normal gait pattern
is maintained during the test

Liu et al. [21] Lower-limb
exoskeleton

Healthy
participants Lab EMG sensor

EMG: thin
and shank
muscle

Metric-learning-
based temporal
convolution
network

Model’s accuracy of gait phase
recognition is 96.22%, which is better
than LSTM’s 91.20%

Biomechanical
signal

Perceiving
physiological
activities from
muscle
contraction
Intrusive sensors
need relevant
surgery

FSR (noninvasive)
Capacitance sensor,
magnetomicrometry
(invasive)

Ogris et al. [22] N Healthy
participants Lab FSR Forearm

muscle

Manipulative
arm gestures
recognition

KNN (mean and
variance are
used as features,
with window
size 30 and step
size 15)

For all classifiers, overall accuracy of
the FSR system is in the middle
between the accelerometer and the
gyro

Islam et al. [23,24] Upper-body
exoskeleton

Factory
workers,
elderly
people, or
people with
weak
muscle
Strength

Lab FSR band Upper arm Payload
estimation SVM

Mean value of absolute error varies
from 0.14 kg to 0.37 kg, and mean
value of relative error varies from 0.07
to 0.17 for the participants

Esposito et al. [25] Prosthetic
hand

People with
upper-limb
amputations

Lab FSR with rigid
dome

Forearm
muscle

Quantitative
comparison
between EMG
and FMG
(Pearson’s
correlation
coefficient r)

Proportional
control of
prosthetic hand

The r scored 0.9286 (p value <
0.0001). All participants reported no
appreciable differences between
EMG-LE control and FSR control of the
prosthesis

3
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Fig. 2. Gait detection with sEMGs.
Fig. 3. Magnetomicrometry for motion intention detection. (a) Application in transtibial prosthesis. (b) Experimental verification on birds [51].
linear discriminant analysis control system that can recognize
eight gait phases through eight EMG electrodes under the user’s
foot. Due to the complexity of data acquisition and processing
and the sensitivity of moisture between the sensors and skin, the
method based on EMG was less popular.

2.3. Biomechanical sensors

In recent years, attempts have been made to use biomechani-
al sensors, such as muscle contraction information accompany-
ng the movement process, to detect human motion and recog-
ize motion intention [51–56]. Biomechanical sensors have been
eveloped using biomechanics principles to detect changes or
eformations of muscles and the skeletal system. This type of
ensor can detect human motion more effectively.
Taylor et al. [53,54] have proposed a sensing method, mag-

etomicrometry (shown in Fig. 3), which tracks changes in tis-
ue length wirelessly according to the relative position of the
mplanted magnetic beads. Their work indicated that fast and
ccurate muscle measurement can be achieved for animals. Es-
osito et al. [25] presented a non-invasive FSR that can sense the
echanical force exerted by the underlying contracting muscles.
he muscle simultaneous recordings showed a high correlation
etween the FSR output and the EMG linear envelope.

. Wearable sensor applications

.1. Daily activities

Wearable motion trackers, which continuously monitor the
ser’s movement in real-time, are increasingly used in health
4

care. One reason is that they can motivate users to perform more
exercise while providing feedback on their activities [57]. The
other is their enabling of wearers to become aware of the level
of their activities, which can ensure that users maintain adequate
activities for a healthy life.

A variety of motion trackers are available, including 3-axis
accelerometers, magnetometers, and gyroscopic sensors. Wrist-
wearable devices are most commonly used for tracking daily
activities. These devices measure activity signals such as motion,
acceleration, rotation, and gestures.

Accelerometers are most commonly used for daily activi-
ties [58]. sEMGs and FMGs also are used for gestures’ recogni-
tion [59]. Because the palm side of the wrist noticeably deflects
during finger flexion gestures, an array of piezoelectric contact
sensors can be used to measure this deflection. Wrist-based
devices have been utilized in research settings to monitor sleep
quality [60].

Generally, gyroscopes, accelerometers, and magnetometers
are combined in the same device, namely IMUs, for more accurate
motion tracking. For example, gyroscopes can respond quickly to
changes and are more reliable when measuring angles, whereas
magnetometers have poor accuracy when moving rapidly but
show no deviation over time [61].

3.2. Medical rehabilitation

Wearable sensors can be used for medical rehabilitation and
patient care [62–64]. Motion sensors and posture detection de-
vices can monitor patients with balance problems and PD or
patients undergoing rehabilitation [65–68]. The motor symptoms
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f PD have hypokinetic and hyperkinetic features. The autonomic
nvolvement and loss of postural reflexes can be seen in the
ater stages but also can be seen earlier in patients with atypical
arkinsonian syndromes. When motion and position sensors are
sed together, falls can be detected or predicted. Patients with a
istory of falls or with no falls have different locomotion patterns.
hese findings are indicated by studies of patients using wearable
otion sensors [69]. Galvanic skin activity and electrocardiogra-
hy can be recorded with wearable sensors in a patient’s own
nvironment to disclose autonomic abnormalities. Using motion
ensors to monitor motor symptoms gives better information
han does patient use of a diary. Thus, more satisfactory planning
f treatment can be possible.
Multiple sclerosis (MS) affects younger people in their produc-

ive age. Therefore, maintaining a certain level of physical activity
s essential for a good quality of life. Several performance scales
ave been defined to measure physical activities such as gait,
and movements, fatigue, vision, and spasticity [70]. Traditional
ethods of evaluation include questionnaires, observation, and
ctivity timing, all of which are time consuming and imprecise.
n the contrary, motion sensors and actigraphs can offer more
recise information [71]. Commercially available devices have
een used to record step numbers and temporal parameters of
ait such as stride, swing, and step times [65].
Sedentary behavior seems more common in patients with MS

ho have mobility disabilities than in those without [66]. One
tudy assessed sedentary behavior with an actigraph, finding a
ignificant correlation between disability and self-reported dis-
bility status scale scores but no significant correlation between
ognitive function and sedentary behavior [72]. Brain atrophy and
edentary behavior also should be investigated further.

.3. Workplaces and industrial exoskeletons

In addition to health care, wearable sensors are being applied
o the workplace to improve working conditions and reduce
ork-related injuries. These sensors have the potential to im-
rove employees’ work efficiency and health status. Working pos-
ure in some jobs, such as computer-related work, construction,
nd mining, can cause a large amount of physical tension in the
ack which, if continuing for a long time, can cause lower-back
isease [73,74].
To reduce the risk of work-related musculoskeletal diseases,

nnovative wearable technologies that do not interfere with work-
rs’ activities can improve biomechanical risk assessment, adapt
o all working conditions, and overcome the limitations of the
urrent standardized methods. These technologies include IMU,
nstrument gloves, and sEMGs, although new tools have emerged
n other research laboratories and workplaces [75]. Wearable
ystems based on intelligent footwear with which the reverse
ynamics analysis can be carried out are very promising [76,77].
rtificial muscles that can contract, expand, and rotate reversibly
nder external stimulation can be embedded with microsensors
o implement effective feedforward prediction control [78–80].

In industry, wearable devices are needed to provide exter-
al assistance to workers carrying or lifting heavy objects. Luo
t al. [81] have designed a wearable stooping-assist device that
an reduce the strain from a stooping posture and prevent risk
f low-back injuries. Chu et al. [82] have tested exoskeletons for
hipyard workers to help improve working conditions by reduc-
ng the muscle tension in lower-limb muscles and supporting
ertical loads, which can help prevent musculoskeletal diseases.
lthough exoskeletons have certain limitations, such as lifting
apacity and maximum walking speed, testing over several hours
howed improved work efficiency and the potential prevention
f muscle diseases [7].
5

3.4. Other applications

Wearable devices are commonly used in other fields as well,
such as military and human–machine interfacing. Military wear-
able devices cover a range of locations according to their behav-
ioral characteristics, such as a head controller [83], smart gloves
[84,85], a lower-limb exoskeleton [86,87], smart shoes [88], and
wearable suits [89,90]. For example, Schlenker et al. [89] have
developed FlexiGuard, a biological telemetry system used to mon-
itor the physiological conditions of soldiers, rescue workers, and
firefighters. This system can improve the personal safety of mon-
itored personnel during training and tasks. Basic settings in-
clude heart rate, body surface temperature, motion tracking (ac-
celerometer), and sweat (humidity) sensors.

Wearable sensors also have applications in human–machine
interfaces, for example, to measure artists’ stress level and re-
peatability training [91–95]. Kusserow et al. [94] have proposed a
wearable sensor system to measure the pressure response mode
of professional musicians under public performance conditions.
Otterbein et al. [95] have proposed wearable technology for artis-
tic movement descriptors using force-sensing resistors, which
investigated how artistic tools and methods can inform the de-
velopment of this technology. Nam et al. [93] have proposed a
dance training system that senses the pressure on the foot while
dancing and extracts ankle movement. The exergame enables
students to watch a teacher’s dance from all directions by using
an avatar and obtaining the effects of exercise and education by
repeatedly practicing the avatar’s dance.

4. Commercial wearable devices

Many wearable sensor products currently are available in the
marketplace to meet increasing interest and applications (shown
in Fig. 4). Table 2 summarizes most of these wearable devices and
sensors.

The most common commercial sensors are the wrist-worn
triaxial accelerometers. These commercial systems use propri-
etary algorithms that typically rely on inertial or rotational signals
greater than a set threshold and are then defined as active counts.
For example, Fitbit Flex is a smart watch for sports tracking,
including steps, distance, calories burned, active minutes, hourly
activity, and stationary time. Similar products include Jawbone
Up, Nike FuelBand, Xiaomi Mi Band, and Huawei Zero. However,
when walking speed is slow and accelerations during leg swing
are small and irregular, the methods for step counting with wrist-
and trunk-worn sensors may be inaccurate, as for people with
hemiparetic gait.

In practical use, peak acceleration and angular velocity of the
leg occur in the swing phase during the gait cycle, which is most
easily measured with leg-worn sensors. A magnetometer can
be added to evaluate the direction vector of spatial orientation.
Therefore, linear acceleration, angular velocity, and heading angle
relative to magnetic north can be obtained from any known
object position, as the combination of accelerometer, gyroscope,
and magnetometer is the most commonly used IMU (e.g., Vicon
Blue Trident, XSens, TracPatch, APDM).

Heart rate signal often is fused with the inertial signal mea-
sured from commercial wrist sensors to provide information
about metabolic information. For special requirements, wire-
less sensors can incorporate ECG, EEG, or EMG signals; piezo-
electrodes can measure, for example, foot pressure and force
myogram (FMG); biosensors can continuously monitor glucose;
and sensors can measure temperature. Sensor information can be
supplemented and given context by smartphone- or smartwatch-
based reports. For instance, Movesense Medical developed a
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Table 2
Typical commercial wearable sensors.
Product Country Sensor Integrated

system
Usage Measured data Specification Pros and cons

Vicon UK IMU N

Home, lab,
outdoors,
underwater
treadmills,
swimming

3-axis acceleration,
3-axis angular
velocity, and 3-axis
direction/position

Battery life: 12 h;
Weight: 9.5 g;
Charge time: 1.5 h

Waterproof, various
application occasion;
unable to measure
muscle activity

Fitbit Flex USA Accelerometer N

Sweat, rain, and
splash proof, but
not swim proof or
showerproof
(IP68)

Steps, distance,
calories burned,
active minutes,
hourly activity, and
stationary time

Battery life: up to
5 days; Charge
time: 1-2 h

Low price and
portable;
unable to analyze gait
and muscle activity

XSens NL IMU Y

Home, laboratory,
outdoors, IP68
water resistant
rating

3-axis acceleration,
3-axis angular
velocity, and 3-axis
direction/position

Battery life: 1 day,
70 mAh; Charge
time: 1 h; Weight:
11.2 g

Waterproof, various
applications; support
to build developer’s
own applications;
unable to measure
muscle activity

SENS DK Accelerometer N Home, laboratory,
hospital 3-axis acceleration Battery life: 90

days

User-friendly patch
allows each individual
to replace it as
required; data
automatically
transferred to the
cloud

TracPatch CA

Accelerometer,
temperature
sensor, and
step counter

N Indoor and
outdoor

Range of motion,
ambulation,
exercise, and wound
site temperature
trend data

N/A

First wearable
orthopedic device;
TracPatch cloud
allows for unlimited
data collection and
storage;
unable to analyze
specific gait and
muscle activity

Movesense FIN IMU, ECG
sensor Y

Home and clinical
environment;
water and shock
proof

3-axis acceleration,
3-axis angular
velocity, and 3-axis
direction/position;
heart rate (bpm);
R-R intervals;
single-channel ECG
(nonmedical);
Bluetooth heart rate
profile

Weight: 9.4 g

Open source; heart
condition can be
monitored;
unable to measure
muscle activity

APDM USA IMU N

Indoor and
outdoor; water
resistant and dust
tight (IP64)

3-axis acceleration,
3-axis angular
velocity, and 3-axis
direction/position

Battery life: 12 h;
Weight: 25 g

Various applications;
unable to measure
muscle activity

Noraxon USA IMU, EMG
sensor N

Indoor and
outdoor; water
resistant

3-axis acceleration,
3-axis angular
velocity, and 3-axis
direction/position;
raw EMG

Battery life: 8 h;
Charge time: 4 h;
Weight: 19 g

Measures muscle
activity;
unstable, high cost,
uncomfortable, and
complex

BioX Bands DK IMU, FSR Y Indoor and
outdoor

3-axis acceleration,
3-axis angular
velocity, and 3-axis
direction/position;
8-channel FMG;
muscle contraction
intensity

Battery life: 8 h

Indirectly measures
muscle activity;
general-purpose
upper- and
lower-limb movement
detection and gesture
classification; low cost
lightweight medical ECG and movement sensor for tracking hu-
man health at home and in the clinical environment. The Noraxon
device can continuously collect various data within a unified
software platform and simultaneously can supplement the inte-
gration of EMG, force, pressure, motion, and high-speed video.
The TracPatch device passively collects wound site temperature
trend data in addition to range of motion, ambulation, and ex-
ercise data during a patient’s episode of care. The BioX Sensor
Band, combining IMU and FSRs, can detect limb motion, muscle
strength, and gestures accurately and conveniently.
6

5. Computation methods

On the basis of the measured data, gait phase detection and
human gait feature recognition can be achieved through various
analysis technologies. Various methods can be used to determine
gait events during walking [4]. The simplest computation method
for gait detection is based on threshold values; different threshold
algorithms are proposed to extract certain features of the gait
phases, time–frequency analysis method, or peak heuristic algo-
rithms, which are also a branch of the threshold method in case
the derivative crosses zero [14,96–101].
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Fig. 4. Typical commercial wearable devices for activity monitoring and tracking. (a) Vicon; (b) Fitbit Flex; (c) XSens; (d) TracPatch; (e) Movesense; (f) APDM; (g)
Noraxon; (h) BioX Bands.
ML is used widely for classifying gait stages in offline and
eal-time data [102,103]. Many gait phase recognition methods
ave been proposed on the basis of different ML methods, such as
he HMM, CNN, and neural networks (NN) models [104,105]. For
nstance, HMM has been used in many applications as a branch
f ML [9,19,20]. Roth et al. [106] have presented a HMM-based
tride segmentation approach to evaluate the gait segmentation
erformance of 28 patients with PD, finding that the proposed
MM achieved a mean F1 score of 92.1%.
Many methods for gait phase parameters based on ANN have

een developed. Evans et al. [107] have developed a hybrid
ethod combining with a Feedforward NN and an HMM to

ncrease the number of detected gait phases to five. Their tests
howed that the average detection accuracy was 88.7% within
3 ms. In another study, three-layer NN was embedded into HMM
or classification of six gait stages, and training data were marked
ith a rule-based detection method [98]. The accuracy of this
ethod reached 98.11%, and the sensitivity, 94.32%. This hybrid
ethod is computationally complex for model training but is
ighly efficient for real-time detection. Wang et al. [108] have ap-
lied the Long-Short Term Memory (LSTM) neural network to gait
hase recognition based on IMU data. Their results have indicated
hat the gait phase transitions estimated from the proposed LSTM
etwork can successfully approximate human intention, with an
ccuracy of 97.8%.
ML-based methods are an effective method for gait tracking

109,110]. Many studies have shown that offline detection is
uccessful, but real-time detection is not remarkable because the
arameter matrix and computational times are too large.

. Discussion

In this article, we reviewed wearable sensors and their ap-
lications. Many nonwearable sensor-based devices exist, for ex-
mple, motion capture systems, which are most suitable for gait
nalysis in the laboratory environment. Motion capture includes
n image processing-based system and a floor sensors-based
ystem to capture gait. However, it is impossible to capture data
n human gait outside the laboratory with daily activities. Wear-
ble sensors can be used flexibly not only in the laboratory and
ospitals but also in the home and outdoor natural environments.
The use of wearable sensors within the health care system is

apidly increasing, mainly driven by the clinical demand for di-
gnosing and monitoring treatment. It is expected that wearable
7

sensors will be incorporated into treatment practices over time,
changing from decision support to full-scale medical devices. This
transformation demands high-quality data with high reliability
and a data infrastructure that allows for immediate processing
and presentation of real-time data to health care providers and
patients. At the same time, iterative design processes including
all stakeholders – with the patient at the center – must be
performed to ensure high compliance when using these new
treatment modalities. Design issues such as battery life versus
frequency sample must be addressed and tailored for specific
medical conditions to allow for a full-scale transformation from
hospital to at home solutions. The need will be most obvious
for patients with neurological or musculoskeletal diseases, but
all medical fields can benefit from increased knowledge on a
disease’s impact on motion and thereby on patients’ quality of
life.

Our review reveals that highly integrated and multimodal
measurement is challenging and requires extensive studies. IMU
is the most commonly used wearable sensor to measure human
kinematics and kinetics, while sEMG is the main noninvasive
technique used to evaluate muscle functions. On the other hand,
FMG is being studied as an alternative to EMG [51,53,54]. Most
reported works have adopted single-modality sensing technolo-
gies. Multimodality sensing that collects different types of motion
data simultaneously is promising for obtaining more accurate
and reliable results and yet remains challenging, requiring ad-
ditional extensive studies. Multimodality sensing relies on new
computation methods and algorithms, particularly ML and arti-
ficial intelligence, but will enable intelligent control of wearable
devices such as robotic exoskeletons and active protheses. More-
over, data-driven activity modeling and motion reconstruction
must be investigated further.

7. Conclusion

Wearable devices are used widely in various fields, from daily
activities to medical rehabilitation and industrial assistance. Our
review provides an overview of wearable sensors, including their
technologies and applications. We focused on wearable sensors
for activity monitoring in health care and rehabilitation and ex-
tended our examination to sensors for other applications, such
as the human–machine interface and motion control in industry,
the military, and art. We collected information on commercial
wearable sensors, which can facilitate researchers’ selection of
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evices for further studies. From this review we identified a few
ey research topics, calling for future research for new sensors,
ethods, and algorithms.
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