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a b s t r a c t

Redundant structure has been widely deployed to improve system reliability, as when one unit fails,
the system can continue to function by using another one. Most existing studies rely on the similar
assumption that the heterogeneous units are subject to periodic inspections and identical in terms of
their aging situations and the numbers of resisted shocks. In practice, it is often adequate to trigger
a unit individually in the event of a single shock, which intensifies the degradation of that unit,
accordingly, requiring a sooner inspection to ensure its safety. In this study, the stochastic dependency
among units is addressed firstly by introducing a novel activation sequence. Secondly, an adaptive
system-level inspection policy is proposed by prioritizing the unit with a worse state. Finally, we
take advantage of Monte Carlo methods to simulate the whole process and estimate two objectives,
referring to the average system unavailability and maintenance cost, in a designed service time. It
is found that the two objectives are contradictory through numerical examples. The Non-dominated
Sorting Genetic Algorithm III (NSGA-III) algorithm, therefore, has been employed to find the optimal
solutions in system unavailability and cost, which provide clues for practitioners in decision-making.
© 2022 The Author(s). Published by Elsevier Ltd on behalf of ISA. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

With the impacts from working conditions, aging, many in-
dustrial systems, especially mechanical parts, are suffering from
degradation mechanisms and getting vulnerable along with time,
which eventually leads to system failures [1–3]. Typical degrada-
tion mechanisms of mechanical items include corrosion, wear and
fatigue, etc. [4,5]. The failure of these systems brings not only eco-
nomic loss to the enterprise, but also detrimental impacts on the
people, assets, and environment [6,7]. Thus, multiple measures
have been widely acknowledged to reach/maintain better system
performance in its whole lifecycle. In the design phase, redundant
structures are widely applied in engineering with the intention to
increase system reliability or improve actual system performance,
e.g., final elements subsystem consisting of two or more elements
in safety-instrumented systems(SISs) [6]. The main advantage of a
redundant structure is that the system is still functional by using
the other unit(s) if one fails. 1-out-of-2 (1oo2) configuration is a

∗ Correspondence to: Department of Chemistry and Bioscience, Aalborg
University, Niels Bohrs Vei 8A, Esbjerg 6700, Denmark.

E-mail address: hayu@bio.aau.dk (H. Yu).

typical example. Besides the structural fault-tolerance, inspection
and maintenance are typical add-on activities in the operational
phase in maintaining system performance at the required level.
These interventions are carried out to limit the failure probability,
thereby improving system availability and safety [8].

To date, a considerable amount of literature is available in
terms of performance/reliability assessment of the redundant
structures, covering topics, including common cause failure
[9–11], testing and maintenance [12–16], reliability allocation
[17,18], cascading failures [19] etc. Exposing to the quite same
working conditions, the dependence, especially failure depen-
dence, is attracting more attention [20,21]. Also, many systems
are subject to degradation and random shocks simultaneously
[22,23]. For example, the required function of the high integrity
pressure protection system (HIPPS) is to close the flow in the
pipeline in case the pressure is beyond the specialization. As
expected, the safety valve is designed to respond to potential
occasional high pressures, which might intensify internal stress
and, consequently, leave non-neglected damages on itself [12].
It indicates that the continuous degradation makes the system
more vulnerable to random shocks and the shocks furtherly accel-
erate the degradation process [22,24–26]. These random shocks

https://doi.org/10.1016/j.isatra.2022.09.029
0019-0578/© 2022 The Author(s). Published by Elsevier Ltd on behalf of ISA. This is an open access article under the CC BY license (http://creativecommons.org/
licenses/by/4.0/).
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contribute to the failure dependence between units. Existing
studies address the dependence by assuming the same amount of
shocks or same damage [12,27]. This assumption is acceptable in
conservatively evaluating system performance but disregarding
the design purpose of the redundant structure. Taking one step
more in thinking, since the redundant structure is designed with
the purpose to improve system performance, and it implies that
the single unit should have sufficient ability to complete the
required function. Taking the aforementioned 1oo2 safety valves
in HIPPS as an example, each valve should be allocated sufficient
ability, e.g., maximum allowable pressure, in most cases to stop
the flow when the higher pressure in the pipeline occurs. Thus, a
question arises regarding how to trigger the 1oo2 configuration
system to maximize its performance assuming each shock only
exerts on one unit? The potential choices could be (1) Continuing
to activate the same unit until it fails; (2) alternating the uses of
the two units each time; (3) randomly activating the two units.

Besides the activation sequences of redundant units, the devel-
opment of sensor technologies boosts the application of condition
monitoring technologies in asset management. It provides more
opportunities to utilize collected system performance data to
predict in real-time system health and to enable maintenance
decision-making [1]. Time-based inspection and maintenance,
which is still the mainstream currently, falls behind the needs
of modern industries. The obvious shortcoming is that it strictly
obeys a predefined inspection and maintenance scheme, indepen-
dent of the system’s current actual state. Such an approach can
result in unnecessarily expense intervention of the production
process. To release the assumption of the periodic inspection, sev-
eral researchers conduct the condition-based maintenance with
adaptive inspection policy, indicating the upcoming inspection
interval is upon the current state [1,28,29]. Generally, the inspec-
tion interval decreases along with the accumulation of degra-
dation, the closer to the failure threshold, the sooner the next
inspection would be arranged. Yet, these studies mainly focus on
single-unit systems. Considering the interruption of the process, it
might be not economic-friendly to apply the unit-level adaptive
inspection policy on redundant structures directly. For the sake
of system performance and economics, thus, it is reasonable to
prioritize the unit with a worse current state in determining the
upcoming inspection interval. That is, the system-level inspec-
tion interval is assumed to be consistent with the prioritized
unit. When it comes to maintenance, the maintenance action,
either preventive maintenance (PM) or corrective maintenance
(CM), is well-accepted as the assumption of perfect in existing
literature [28,30–32]. It means the system is in an as-good-as-
new condition. The assumption might be applicable for CM which
normally refers to the replacement of the failed unit, but quite
questionable for PM. For a PM, unit degradation can be mitigated
but not be eliminated. The maintenance effect in the degradation
degree mitigation can be reasonably assumed to have a positive
correlation with the cost of single PM action [33,34].

As a response, in this paper, we intend to study the 1oo2 con-
figuration system performance considering the aforementioned
factors, including the activation sequence, adaptive inspection
policy, and imperfect PM. Specifically, each unit is subject to un-
avoidable aging and potential damage caused by random shocks
that exert on units following a specific activation probability.
Meanwhile, on the unit-level, the interval to the forthcoming in-
spection is determined following the current revealed unit state.
Furthermore, the inspection interval of the unit with a worse
state would be taken as the interval value for the simultane-
ous inspection of the redundant system. Unit-level CM and PM
interventions are conducted at the inspection time when the
accumulative degradation exceeds the preset threshold.

Normally, it is insufficient to find the optimum inspection
and maintenance policy relying on a single optimization crite-
rion separately, either the system performance or maintenance
cost [35–37]. The frequent and effective inspections and main-
tenance interventions are beneficial in reducing the probability
of the system being in an undetected failed state, but paying
the prices with higher relevant costs. Thus, these aforementioned
factors are incorporated into an optimization problem for the
inspection and maintenance of a 1oo2 configuration by propos-
ing two objective functions. The first objective function mini-
mizes the unavailability of the system, while the second objective
minimizes the cumulative cost in its service time. The specific
objectives, therefore, include:

• Modeling and quantifying the dependence of units in re-
dundant structure caused by the activation sequence in
withstanding random shocks;

• Merging the unit-level inspection and system-level inspec-
tion into an adaptive and aperiodic inspection policy;

• Multi-objective optimization in seeking the optimal inspec-
tion and maintenance strategies.

The remainder of this paper is organized as follow: Section 2
illustrates the system description and lists required assumptions;
Section 3 conducts the analytical formulas of system unavailabil-
ity and maintenance cost, presents and discusses sensitivity anal-
ysis of inspection and maintenance parameters as well; Section 4
generalizes the multi-objective optimization problem and seeks
the optimal solutions relying on NSGA-III algorithm; Concluding
remarks are presented in Section 5.

2. Problem description

Notations

Zi(t) The accumulative degradation caused by aging
of unit i by time t

Yi(t) The accumulative degradation caused by
random shocks of unit i by time t

Xi(t) The sum of accumulated degradation by aging
and shocks of unit i by time t

p The activation probability of unit 1 for shocks
[Tn−1, Tn] The starting and ending time of nth inspection
T−
n

(
T+
n

)
The immediate time just before (pre-) (after
(post-)) an inspection time Tn

X i
T−
n

(
X i
T+
n

)
The degradation level of unit i at time T−

n ,
before (after) the inspection

L Failure threshold
H The designed service time

It is well-accepted that redundant structure is helpful in the
improvement of system performance. It means that the 1-out-
of-2 (1oo2) configuration is capable to be functional even one of
the two units fail. The 1oo2 configuration is employed in system
performance evaluation. On unit level, the single unit i (i = 1,
2) suffers from two degrading processes: one is the continuous
degrading process related to the impact of aging {Zi(t), t ≥ 0};
and the other is random shocks with damage {Yi(t), t ≥ 0} due
to the implementation of the designed function. Here, the single
unit loses its function when the sum of two degrading processes
exceeds a preset failure threshold Li. The system is regarded as in
a failed state only if both two units fail. The system is inspected
at certain epochs. The nth inspection interval is denoted as [Tn−1,
Tn] and n ∈ N, T0 = 0.
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2.1. Degradation modeling

2.1.1. Aging degradation
The continuous aging degradation of unit i (i = 1, 2) at time

t is assumed following a Wiener process {Zi(t), t ≥ 0}. Then, we
can have [38],

Zi(t) = µit + σiB(t) (1)

where µi is the drift parameter, σi is the diffusion coefficient,
and B(t) is the standard Brownian motion. Here, we assume µ >
0. Then process Zi(t) has independent and normally distributed
increments in (t1, t2), t2 > t1: Zi(t2 – t1) ∼N(µ(t2 – t1), σ 2(t2 –
t1)).

2.1.2. Damage caused by shocks
Besides the aging degradation, the system is exposed to dam-

age resulting from random shocks. Their arrival is assumed as
a Homogeneous Poisson Process (HPP) {N(t), t ≥ 0} with the
occurrence rate λ. Then the probability mass function [38] of
having n shocks in (0, t] is calculated as:

Pr(N(t) = n) =
e−λt (λt)n

n!
, n = 0, 1, . . . (2)

For shocks, two units are activated at random. For the sake of
convenience in the following discussion, assuming the activation
probability of unit 1 is p (p ≥ 0), then 1−p is on unit 2. Following
the splitting property of a Poisson process, before the failure of
any unit, the arrival of shocks on unit-level in (0, t] also would be
independent HPPs, {N1(t), t ≥ 0} and {N2(t), t ≥ 0} with rates λp
and λ(1–p), respectively [38]. But if one unit is failed before the
next inspection and maintenance time, the other has to taking the
forthcoming shocks with a probability of 1. When the two units
fail, the 1oo2 configuration ceases to function.

Furthermore, the independent damage magnitude of jth shock
yj, for j = 0, 1, 2, . . . , N(t), is gamma-distributed with parameters
(α, β). The cumulative damage of unit i caused by random shocks
by times t, denoted by Yi(t), can be given as

Yi(t) =

N(t)∑
j=0

yj · 1i(j), j = 0, 1, . . . (3)

where 1i(j) is the indicator function. It equals to 1 if the shock j
is activated on unit i; otherwise, it equals to 0.

The reliability of unit i at time t equals to the probability that
its total degradation Xi(t) is less than the failure threshold Li.

Ri(t) = Pr(Xi(t) = Zi(t) + Yi(t) < Li) (4)

2.2. Adaptive inspection and maintenance policy

Inspection and maintenance activities are critical to ensur-
ing that the unit/system performs satisfactorily. Inspection is
assumed to be non-destructive with negligible time in this study.
Here, we take T−

n and T+
n to indicate the moment just before (pre-

) and after (post-) the inspection at Tn, respectively. Then, the
unit/ system state is known at such time moment.

Usually, there are two types of maintenance actions on the
unit-level, CM and PM. When the accumulative degradation of
a unit exceeds a failure threshold L, the unit would be failed
with respect to the certain function, thus the CM action follows.
Meanwhile, the actual unit performance deteriorates along with
the degradation process, which may lead to poor production
quality. It is, thus, reasonable to conduct PM when the actual
unit performance exceeds a threshold M, and 0 < M < L. Here,
we assume the preventive threshold M is a random variable that
needs to be optimized.

Based on the unit state at inspection time Tn, maintenance
follow-ups can be expressed in three potential scenarios:

Fig. 1. Illustration of function m(·) with a = 3/4.

(1). If X i
T−
n

≥ Li, meaning that unit i is failed, thus CM is
performed incurring a cost (CCM). The unit after CM is
as-good-as-new (AGAN), namely, X i

T+
n

= 0;

(2). If Mi ≤ X i
T−
n

< Li, imperfect PM is performed with a
cost (CPM). The degradation level X i

T−
n

is partially eliminated
after PM, represented as X i

T+
n

= k · X i
T−
n
. Thanks to the

imperfect PM factor k, if the expected degradation level
after PM still exceeds the threshold Mi, X i

T+
n

> Mi, the

CM intervention will be conducted instead of the planned
PM, accompanying with cost CCM. In addition, the incurred
CPM cost is directly relevant to the imperfect PM factor k.
Referring to the proposed degradation improvement factor
in imperfect maintenance actions in [39], here we assume
the CPM(k) has a function with the imperfect PM factor k
and the perfect PM cost CPM_0, that is, CPM(k) = (1 − k) ·

CPM_0.
(3). If X i

T−
n

< Mi, the unit i state is left unchanged with X i
T+
n

=

X i
T−
n
, but will induce an inspection cost CT.

Following the maintenance intervention, the current unit state
at post-inspection X i

T+
n

becomes the starting point of the follow-
up inspection epoch and simultaneously serves as the basis for
the determination of the next inspection time T i

n+1. The next
inspection time T i

n+1 is determined by the rule [28], as

T i
n+1 = T i

n + m
(
X i
T+
n

)
(5)

where m(·) is a decreasing function that might be a convex, con-
cave, or linear function to represent the next inspection interval
corresponding to the current state. The initial inspection interval
T0 = m(0). The intervalm

(
X i
T+
n

)
, which corresponds to the known

degradation level X i
T+
n

of unit i at Tn, has a generic relation with
T0, as

m(X i
T+
n
) =

⎡⎣1 − a

(
X i
T+
n

Mi

)b⎤⎦ · T0 (6)

where 0 ≤ a < 1 and b > 0, and m
(
X i
T+
n

)
thus has a range [(1 – a)

· T0, T0]. It is noticed that the unit is subject to periodic inspection
with interval T0 when a = 0. An illustration of function m(·) is
depicted here in Fig. 1.

In terms of the 1oo2 configuration, here, a system-level in-
spection policy is considered. That is, the unit with a worse
state takes precedence and determines the upcoming system-
level inspection. It indicates that the two units are inspected at
the same time with the interval ∆T S

n = min
[
m
(
X1
T+
n

)
,m

(
X2
T+
n

)]
.
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Fig. 2. Illustration of the proposed model with a = 0.5 and b = 1.

For the sake of a better understanding of the proposed model,
an illustrative example is depicted in Fig. 2. The capital Ti (i = 1,
2, . . . ,) on the x-axis stands for the system-level inspection time
while random shocks arrive at time ti. When p = 0, it implies
that unit 2 will withstand all the shocks. But if unit 2 fails, then
unit 1 has to take the shock until the next inspection time when
the failed unit 2 is maintained. The shock-activated unit’s shift
is automatically carried out following the predefined algorithms.
For example, in Fig. 2(a), the first shock at t1 exerts the abrupt
increment on the degradation path of unit 2. But for the second
shock at t2, given the accumulated degradation level of unit 2
exceeds the failure (CM) threshold, the increment automatically
appears on unit 1 to indicate the effect of the second shock. A
similar process can be found in [T5, T6] in Fig. 2(a) and [T1, T2] in
Fig. 2(b).

Also, the system-level inspection intervals are inconstant, as
depicted in Fig. 2. As aforementioned, the system-level inspection
interval adapts to the unit which has a worse degradation level
at the current time, e.g., the interval length [T3, T4] in Fig. 2(a) is
determined by the state of the unit 1 at T3. When the imperfect
PM is conducted, the existing degradation is partially mitigated
from a specific value between the PM and CM threshold to below
the PM threshold. Here, parameter k stands for the result of
the imperfect PM. The corresponding degradation level before
and after imperfect PM, in this example, is X i

T−
n

and 0.2 · X i
T−
n
,

respectively. The potential degradation paths with imperfect PM
are shown in Fig. 2(b), e.g., T4 and T7 for unit 1.

3. Performance analysis

This section focuses on the theoretical analysis for the pro-
posed model. The inspection is assumed to be perfect in revealing
the current degradation level of each unit. For the convenience
of further discussion, we adopt a vector S

(
T+
n

)
=

(
X1
T+
n
, X2

T+
n

)
to

stand the system state (degradation level) at the post-moment at

Tn after inspection and maintenance activities and S
(
T−
n

)
for the

pre-moment similarly.

3.1. System unavailability analysis

For t ∈
[
Tn, Tn + ∆T S

n

]
, or [Tn, Tn+1], the reliability of unit i can

be calculated as

Ri (t|Tn) = Pr
(
Xi(t) = Xi

(
T+

n

)
+ Zi(t) + Yi(t) < Li

)
(7)

When both units fail, the system ceases to function. By clas-
sifying into three cases: (1) both units survive until by time t;
(2) unit 1 fails before time t while unit 2 survives; (3) unit 2
fails before time t while unit 1 survives, the instantaneous system
reliability probability can be quantified as

RS (t|Tn) = R1 (t|Tn) · R2 (t|Tn)

+(1 − R1 (t|Tn)) · R2 (t|Tn) + (1 − R2 (t|Tn)) · R1 (t|Tn)

(8)

The average system failure probability, for t ∈
[
Tn, Tn + ∆T S

n

]
,

is

F avg
S,Tn =

1
∆T S

n

∫ Ti+∆T Sn

Ti

FS (t |Tn ) dt

=
1

∆T S
n

∫ Ti+∆T Sn

Ti

(1 − RS (t |Tn ))dt
(9)

The average system unavailability in a finite horizon length
(H) with total TH inspections can be calculated as

F avg
S =

1
H

TH∑
i=0

F avg
S,Ti

(10)

3.2. Maintenance costs

The total cost on unit-level, as indicated in Section 2.2, com-
prises of inspection cost CT, PM cost CPM and the replacement cost
CCM, and 0 < CT < CPM < CCM. With the known information S(T+

n )
at Tn and the calculated next inspection interval length ∆T S

n , the
expected cost in [Tn, Tn+1], can be discussed in different scenarios
as follows:

(1) No maintenance at Tn+1

P1 = Pr
{
S
(
T−

n+1

)
< M

⏐⏐S (T+

n

)}
(2) PM on two units

P2 = Pr
{
M1 < X1

T−

n+1
< L1 and M2 < X2

T−

n+1
< L2

⏐⏐S (T+

n

)}
(3) CM on two units

P3 = Pr
{
X1
T−

n+1
> L1 and X2

T−

n+1
> L2

⏐⏐S (T+

n

)}
(4) Single PM + no maintenance

P4 = Pr
{[

M1 < X1
T−

n+1
< L1 and X2

T−

n+1
< M2

]
or
[
M2 < X2

T−

n+1
< L2 and X1

T−

n+1
< M1

] ⏐⏐S (T+

n

)}
(5) Singe CM + no maintenance

P5 = Pr
{[

X1
T−

n+1
> L1 and X2

T−

n+1
< M2

]
or
[
X2
T−

n+1
> L2 and X1

T−

n+1
< M1

] ⏐⏐S (T+

n

)}
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Fig. 3. Simulation procedure in the inspection interval
[
Tn, Tn + ∆T S

n

]
.

(6) Singe PM + single CM

P6 = Pr
{[

M1 < X1
T−

n+1
< L1 and X2

T−

n+1
> L2

]
or
[
M2 < X2

T−

n+1
< L2 and X1

T−

n+1
> L1

] ⏐⏐S (T+

n

)}
The corresponding cost in [Tn, Tn+1] thus can be calculated as

TCTn = P1 · 2CT + P2 · 2CPM + P3 · 2CCM

+P4 · (CPM + CT ) + P5 · (CCM + CT ) + P6 · (CPM + CCM )
(11)

Hence, the total cost (TC) of the 1oo2 configuration in the finite
horizon length (H) with total TH inspections is given by:

TC =

TH∑
i=0

TCTi (12)

3.3. Monte Carlo simulation

It is not straightforward to derive the explicit analytical for-
mulas for system unavailability and relevant costs based on the
discussions in Sections 3.1 and 3.2. In this view, the Monte Carlo
method stands out given its capability of achieving a closer adher-
ence to reality for obtaining estimates of the solution of complex
problems utilizing random numbers [40]. It has been widely used
in research issues related to reliability, availability, maintainabil-
ity, and safety (RAMS) problems [41–43].

The main simulation procedure in the inspection interval[
Tn, Tn + ∆T S

n

]
is depicted in Fig. 3. The whole simulation in the

given finite time length [0, H] includes 6 main steps described as
follows.

Step 1 — Initialization: Start the procedure firstly by initializ-
ing the parameters, and the current time is set as 0.

Step 2 — Inspection interval generation: At the beginning
of each inspection cycle, determine the system-level inspection
interval ∆T S

n by Eq. (6) with the minimum value in the current
state vector S

(
T+
n

)
as the input. And reset the time elapsed in

this interval to t = 0.
Step 3 — Simulation of the unit-level degradation processes:

Divide the inspection interval ∆T S
n into small time steps. Ran-

domly generate the increment of aging in each time step with
the pdf of the Wiener process. Generate the time interval of two
random shocks with exponential distribution with mean λ. Then,
make the jth random shock at time tj equals to the cumulative
sum of the previous shock occurrence time intervals, and reject
the shocks whose occurrence times is beyond the inspection
interval. Besides, generate the relevant shock size yj with Gamma
distribution with parameter (α, β).

Step 4 — Shock allocation and failure check: The allocation
criterion is upon the comparison of a random uniform value u
with the original value p of unit 1. The shock is supposed to
exert unit 1 if u ≤ p, and on unit 2 otherwise. Furthermore, the
cumulative degradation level of the chosen unit at tj is compared
with the failure threshold L. If the cumulative degradation level
is less than L, the jth shock will count on the chosen unit as
arranged. But the other unit will automatically take the upcoming
shocks if the chosen unit 1 failed at some before tj. It means
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Table 1
Parameters for the numerical example.
Parameter µ σ λ α β p CT k CPM_0 CCM CD

Value 1.5 5 0.4 2 0.6 0.5 10 0 80 100 500

the activation probability of unit 1 to withstand shocks after the
jth is switched to 1 (unit 2 fails) or 0 (unit 1 fails) upwards. It
is mentioned that either the failure of the unit or the system is
unknown unless either revealed by the failure in dealing with a
shock or revealed at the next inspection.

Step 5 — Maintenance intervention and end of inspection
cycle: The accumulated degradation of each unit is known at
the scheduled inspection time. If the elapsed time t is beyond
the scheduled inspection time ∆T S

n , relevant maintenance inter-
ventions are conducted following the details in Section 2.2. The
current time is updated to the cumulative sum of the previous
inspections. If the cumulative time is bigger than the designed
service time H, the simulation will go to step 6. Otherwise, the
simulation continues for the next inspection and restarts from
Step 2.

Step 6 — Termination and system performance calculation:
The whole simulation process terminates when the maximum
number of iteration Nsim is reached. System performance and
the relevant cost of the jth simulation path are calculated based
on Eqs. (10) and (12), respectively. Finally, their mean values
are employed as the expected average system unavailability and
maintenance cost.

3.4. Adaptive inspection policy

An adaptive inspection policy proposed here is expected with
the potential benefits to improve the system performance given
the utilization of collected information. To address the proposed
policy, a sensitivity analysis on the parameter (a, b) of adaptive
inspection length function in Eq. (6) is conducted here. The de-
signed service time H is 25, and the initial inspection interval is
4. Other relevant parameters are listed in Table 1.

The evaluation criteria are the average system unavailability
and maintenance cost in the designed service time calculated by
Eqs. (10) and (12), respectively.

From Eq. (6), the upcoming inspection interval apparently
tends to 0 as parameter a tends to 1. The proposed inspection pol-
icy loses its adaptiveness with these relatively small intervals. Ad-
ditionally, considering the unavoidable inspection cost, too short
an inspection interval might not be the most economic-friendly,
which reversely determines the upper boundary of parameter
a. Without losing generality, parameters a, b in this section are
assumed in ranges [0, 0.9] and [0, 5], respectively. Fig. 4 presents
the effects of parameters (a, b) of the proposed inspection policy
on the average system unavailability and cumulative cost.

When a = 0, the system is subject to periodic inspection
with an interval of 4. System unavailability is thus independent
with the value of parameter b, as depicted in Fig. 4(a). System
performance presents a positive correlation, meaning decreasing
unavailability, with the increment of parameter a. When a is a
specific value, system unavailability negatively correlates with
parameter b, and the differences become more obvious when pa-
rameter a approaches the upper boundary. System unavailability
reaches a minimum value with a = 0.9 and b = 0 in this ex-
ample; on the contrary, system cumulative cost has a maximum
value. This peak is mainly caused by excessive inspections. The
same as system unavailability, the cumulative cost is independent
with parameter b when a = 0 given the periodic inspection.
To conclude, through this numerical example, it is obvious that
the application of adaptive inspection policy is beneficial for the

Fig. 4. Effects of adaptive inspection policy on system performance and
maintenance cost.

improvement of system performance but induces higher costs to
some extent as well. These two contradictory objects, thus for
the practitioners, call for a balance, which reduces the system
unavailability with a reasonable economic cost.

3.5. Maintenance policy

As stated in Section 2.2, PM action might be imperfect and
partly mitigate the unit degradation. Here, the main discussion
centers on the PM threshold M, factor parameter k, and its effects
on relevant cost and system unavailability. To avoid the too early
intervention of PM, the starting PM threshold M is set from 4,
and the upper boundary is the same as the CM threshold. Thus,
the parameter M, k in this section has its specific ranges [4, 7]
and [0, 1], respectively. Relevant parameters are adopted from
Table 1. The adaptive inspection policy is assumed with a = 0.5
and b = 1. Results are shown in Fig. 5.

When PM threshold M equals 7, it implies that no PM action
will be conducted, system unavailability shows a maximum value,
and is theoretically independent with parameter k. Generally,
in Fig. 5(a), system unavailability decreases with the increasing
value of parameter M. The system possesses a better performance
with the assistance of earlier PM intervention, reflected as the
decrement of system unavailability along with the smaller value
of M in Fig. 5(a). If parameter k takes the same value, yet the
cumulative cost presents a two-phase curve. The cumulative cost
decreases first along with the lower value of threshold M and
then increases. The decrement of the cumulative cost comes
from the benefits of PM in reducing the system downtime, but
too earlier PM (smaller PM threshold M) will heighten PM cost
reversely. The PM policy has limited effects on system unavail-
ability when the threshold M is relatively small, e.g., 3 or 4 in
Fig. 5(a). In terms of parameter k, system unavailability curves
show dissimilar tendencies correlated with the value of M. When
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Fig. 5. Effects of maintenance policy on system performance and cost.

M is quite large, system unavailability increases along with k
to some point and then decreases afterward. When k is quite
small, implying a better PM effect, the unit degradation level is
partly mitigated thanks to PM actions. But as for the worse PM
effect, reflected as the higher value of k, it contributes to the
increment of system unavailability. Then after a turning point,
system unavailability shows a different tendency. This shift is
caused by the compensation measure of imperfect PM described
in Section 2.2. When parameter k closes to 1, the effects of PM
action, X i

T+
n

= k·X i
T−
n
, might be insufficient to lower the unit degra-

dation level than PM thresholdM, then, in this circumstance, a CM
action with higher cost CCM is taken rather than a PM. It complies
with the cumulative cost tendency depicted in Fig. 5(b). When
M is quite small, system unavailability decreases with k first and
bounces thereafter. It says that the early and efficient PM actions
are good for system performance improvement to some extent.
Imperfect PM actions will weaken the advantage, the proportion
of compensation CM is getting bigger along with k. Subsequently,
the proposed imperfect PM policy fails to fit the expectations in
system performance improvement in the end but induces high
costs instead. Based on these considerations, the lower boundary
of M should be set more reasonably.

This section analyzes the system unavailability and mainte-
nance cost through constant factors to illustrate the effective-
ness of adaptive inspection policy and maintenance interventions.

Considering the incorporation of these factors, a more system-
atic method is needed to get a whole picture of two objective
functions.

4. Multi-objective optimization

The intervention actions of the 1oo2 configuration in the op-
erational phase, referring to the inspection and maintenance poli-
cies, need to consider multiple objectives, including the afore-
mentioned system performance and maintenance cost, from the
discussions in Sections 3.4 and 3.5. The change of each input
is bound to enhance cost and impact the system performance
to varying degrees simultaneously. Therefore, a multi-objective
optimization model is considered here to address the proposed
problem in Section 3: the optimization of inspection and main-
tenance of 1oo2 configuration consisting of heterogeneous units
subject to adaptive inspection and imperfect maintenance.

4.1. Description of the problem

The optimization problem is made for two objectives: system
unavailability FS and the total cost TC in a finite time horizon
H, calculated based on Eqs. (10) and (12), respectively. Decision
variables cover activation probability (of unit 1) p, PM threshold
M, the ratio k of imperfect PM, parameters for the adaptive
inspection policy a and b. This study aims to achieve better trade-
offs between the two dependability attributes of average system
unavailability and maintenance cost.

The vector of decision variables is, therefore:

x = {p, k, a, b,M}

Each variable has a certain range from the real perspective as in
Eq. (14).

Fgoal = min(F avg
S , TC) (13)

s.t.
0 ≤ p ≤ 1

0 < k < 1

0 < a < 0.9

0 ≤ b ≤ 5

4 < M ≤ L = 7

(14)

A comparison study following the time-based inspection and
maintenance scheme is conducted to verify the advantage of the
proposed model. In this case, the variable a and bwill be excluded
from the decision vector x. The other variables, the activation
probability p, the ratio k of the PM and PM threshold M, are
assumed in the range as described in Eq. (14).

4.2. NSGA-III algorithm

This study adopts the NSGA-III algorithm in solving the bi-
objective optimization problem. NSGA-III [44] is an extension
to the standard NSGA-II [45] with a similar framework but sig-
nificant improvements by introducing a reference-point-based
selection mechanism. These reference points are scattered across
the normalized hyperplane [46]. The flowchart of NSGA-III is
shown in Fig. 6.

4.2.1. Generation of the initial population
The first step of the NSGA-III algorithm is to generate the ini-

tial values of decision variables. Each solution individual consists
of 5 decision variables, namely x = {p, k, a, b,M}, generated
randomly following the given lower and upper boundaries, as
displayed in Eq. (14). In sum, a population with N individuals is
formed. The population size is normally assumed between 60 and
100 solutions to balance the efficiency and accuracy [47].
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Fig. 6. The main process of NSGA-III.

4.2.2. Crossover and mutation
Crossover and mutation operators intend to create new so-

lutions. The following equation can generate those new values:

xO,i = αixp1,i + (1 − αi)yp2,i (15)

where xp1,i and xp2,i are the genes from the one and the other
parent (indices p1 and p2), respectively, and the αi is in the range
[0,1].

While mutation is to create one child from only one parent.
The most common mutation operator treats each gene individ-
ually and allows each bit to flip at a low mutation rate. The
mutation rate is typically set to a very small value from 0.001
to 0.01 [48].

4.2.3. Elite selection mechanism
The elite selection mechanism of the NSGA-III algorithm is

depicted in Fig. 7.
At a generation t, the child population Qt is generated through

crossover and mutation operators of the parent population Pt .
The Pt and Qt have N individuals. Following that, a population
Rt = Pt ∪ Rt with the size of 2N is obtained by combining the
two populations Pt and Qt . The following step is to select the
best N members from Rt to form the parent population for the
next generation. Specifically, Rt is firstly categorized into non-
domination levels (F1, F2, and so on). Then the fourth step is to
construct a new St , starting from F1, by taking members from
different non-domination levels sequentially, terminating at the
first hitting the size N. Assuming the last level included is the

Fig. 7. The main selection procedure of NSGA-III.

Table 2
Set of NSGA-III algorithm related parameters.
Parameter Value

Population size, pop 100
Evolution times, gen 100
Cross percentage 0.5
Mutation percentage 0.5
Mutation rate, µ 0.02

Fig. 8. Pareto frontier of multi-objective optimization of the proposed model.

lth level, the individuals from non-dominated front level l + 1
onward are thus rejected. If |St | = N, then Pt+1 = St , if |St | >

N, then all the individuals from level one to l –1 are chosen, and
the remaining slots to be occupied by the individual from the last
level Fl is K = N – |Pt+1|. The selection mechanism, relying on
a reference-point-based method, is the primary characteristic of
NSGA-III. The use of a widely distributed reference point results
in a well-distributed set of trade-off points at the end.

The algorithm parameters, in this case, are listed in Table 2.

4.3. Discussions of results

The codes of the NSGA-III algorithm and simulation results
are completed in the Matlab R2019b program. The calculated
Pareto optimal solution sets for the system unavailability and
maintenance cost with periodic inspection scheme with T = 3
and the proposed model with parameters in Table 1 are depicted
in Fig. 8.

The initial inspection interval length for the proposed model
is T0 = 3. Compared to the periodic inspection with T0 = 3, the
proposed model improves system performance and reduces cost.
The details of the Pareto frontiers with the periodic policy and
the proposed policy are shown in Tables 3 and 4, respectively.
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Table 3
Pareto optimal solutions for the periodic policy.

No. x System
unavailability

Cost
p k M

1 0.514 0.110 4.068 7.518E−03 1276
2 0.664 0.130 4.065 7.546E−03 1267
3 0.583 0.149 4.071 7.804E−03 1263
4 0.864 0.168 4.069 8.258E−03 1260
5 0.815 0.201 4.069 9.341E−03 1259
6 0.601 0.089 4.068 7.360E−03 1281
7 0.901 0.207 4.074 9.344E−03 1256

Table 4
Pareto optimal solutions for the proposed policy.

No. x System
unavailability

Cost
p k a b M

1(A) 0.855 0.373 0.758 0.444 5.006 3.751E−03∗ 1246
2 0.862 0.580 0.765 0.470 4.818 4.111E−03 1220
3(B) 0.858 0.603 0.702 0.513 4.768 5.880E−03 1186∗

4 0.868 0.425 0.771 0.493 5.039 3.879E−03 1239
5 0.859 0.600 0.714 0.509 4.797 5.537E−03 1187
6 0.863 0.576 0.750 0.462 4.811 4.374E−03 1208
7 0.863 0.554 0.751 0.559 4.877 4.670E−03 1201
8 0.853 0.589 0.761 0.565 4.743 4.455E−03 1203
9 0.842 0.600 0.752 0.627 4.724 4.977E−03 1192
10 0.866 0.550 0.755 0.506 4.881 4.277E−03 1209
11 0.863 0.581 0.732 0.625 4.693 5.104E−03 1189
12 0.858 0.569 0.788 0.581 4.885 4.193E−03 1218
13 0.866 0.582 0.743 0.618 4.701 4.827E−03 1194

It is apparent that, with the periodic inspection and main-
tenance policy, early PM is encouraged since the M value (PM
threshold) in solutions closes to the lower boundary with value
4.

In terms of the proposed policy, it is worth mentioning that
the optimal solutions for minimizing system unavailability (point
A) and minimizing the cost (point B) locate on two extreme points
in the Pareto frontier, which are marked with the ∗ symbol in
Table 4. Furthermore, the system unavailability and cumulative
cost are contradictory. When the system unavailability is reduced,
that is, when the system performance is improved, the relevant
cumulative cost is increased. The Pareto frontier in Fig. 8 is
helpful for practitioners to make decisions for the inspection and
maintenance policies considering various factors. Briefly, if the
system performance is the priority, point A is the best choice;
conversely, point B is the best choice when the inspection and
maintenance budget is the priority. Moreover, for example, if the
tolerable maximum cost rate is 1200 (economic units), from the
results in Table 4 and Fig. 8, there are 5 points, with No. 3, 5,
9, 11 and 13, in Pareto frontier meeting the requirement. Under
the budget constraint, system unavailability should be as low as
possible. Then the optimal point is No. 13 with variable pair is
[0.866, 0.582, 0.743, 0.618, 4.701], the corresponding system un-
availability is 4.827E−3, and the cost is 1194. This multi-objective
inspection and maintenance optimization is thus expected to
provide more feasible solutions to meet the practitioners’ prefer-
ences or other particular requirements according to the practical
situation. However, there are uncertainties in these results from
Monte Carlo simulations. The NSGA-III algorithm shows its ability
to be leveraged in the decision-making of redundant structure
with the balance of maintenance cost and system unavailability.

5. Concluding remarks

Considering the stochastic dependence in redundant struc-
ture, this paper has proposed a novel activation probability to
determine which unit to withstand the damage from random

shock. On the unit-level, the total degradation process consists
of an aging degradation process and abrupt damage caused by
random shocks (if it is activated). To release the widely used time-
based scheme, an adaptive inspection and maintenance scheme
depending on the current state revealed in the inspection has
been proposed.

Merging these factors, unit-level for system unavailability and
cumulative cost has been proposed. The Monte Carlo method
has been employed to study the average system unavailability
and cumulative maintenance cost in a designed service time.
Numerical examples for the 1oo2 configuration have been con-
ducted to describe the effects of adaptive inspection policy and
imperfect maintenance policy. Briefly, the system unavailability
and maintenance cost are two contradictory objectives. Taking
advantage of the NSGA-III algorithm, a generalized optimal on
these decision variables has been conducted to simultaneously
achieve the minimum system unavailability and maintenance
cost. It provides clues for practitioners in choosing the optimal in-
spection and maintenance policy to holistic system performance
and economics.

In this paper, the typical 1oo2 configuration has been em-
ployed as the research objective for the sake of simplification and
understanding. However, in the future, it would be interesting
to extend the proposed model to a more complex structure,
e.g., 2oo3 or a generalized KooN structure. Meanwhile, more
kinds of dependence among units in redundant structures could
be considered, such as the uncertainties in the failure thresholds
and degradation rates. For the proposed activation sequence,
a more dynamic and state-dependent probability might be a
potential research topic.
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