
Aalborg Universitet

Automated Ontology Evaluation: Evaluating Coverage and Correctness using a
Domain Corpus

Zaitoun, Antonio; Sagi, Tomer; Hose, Katja

Published in:
ACM Web Conference 2023 - Companion of the World Wide Web Conference, WWW 2023

DOI (link to publication from Publisher):
10.1145/3543873.3587617

Creative Commons License
CC BY 4.0

Publication date:
2023

Document Version
Publisher's PDF, also known as Version of record

Link to publication from Aalborg University

Citation for published version (APA):
Zaitoun, A., Sagi, T., & Hose, K. (2023). Automated Ontology Evaluation: Evaluating Coverage and Correctness
using a Domain Corpus. In ACM Web Conference 2023 - Companion of the World Wide Web Conference,
WWW 2023 (pp. 1127-1137). Association for Computing Machinery (ACM).
https://doi.org/10.1145/3543873.3587617

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            - Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            - You may not further distribute the material or use it for any profit-making activity or commercial gain
            - You may freely distribute the URL identifying the publication in the public portal -
Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

https://doi.org/10.1145/3543873.3587617
https://vbn.aau.dk/en/publications/6ff07f33-6ae1-4295-861a-cf0a1129f8fd
https://doi.org/10.1145/3543873.3587617


Downloaded from vbn.aau.dk on: July 04, 2025



Automated Ontology Evaluation: Evaluating Coverage and 
Correctness using a Domain Corpus 

Antonio Zaitoun Tomer Sagi Katja Hose 
University of Haifa,, Israel Aalborg University,, Denmark Aalborg University,, Denmark 
azaitoun@campus.haifa.ac.il tsagi@cs.aau.dk TU Wien,, Austria 

katja.hose@tuwien.ac.at 

ABSTRACT 
Ontologies conceptualize domains and are a crucial part of web 
semantics and information systems. However, re-using an exist-
ing ontology for a new task requires a detailed evaluation of the 
candidate ontology as it may cover only a subset of the domain 
concepts, contain information that is redundant or misleading, and 
have inaccurate relations and hierarchies between concepts. Manual 
evaluation of large and complex ontologies is a tedious task. Thus, 
a few approaches have been proposed for automated evaluation, 
ranging from concept coverage to ontology generation from a cor-
pus. Existing approaches, however, are limited by their dependence 
on external structured knowledge sources, such as a thesaurus, as 
well as by their inability to evaluate semantic relationships. In this 
paper, we propose a novel framework to automatically evaluate the 
domain coverage and semantic correctness of existing ontologies 
based on domain information derived from text. The approach uses 
a domain-tuned named-entity-recognition model to extract phrasal 
concepts. The extracted concepts are then used as a representation 
of the domain against which we evaluate the candidate ontology’s 
concepts. We further employ a domain-tuned language model to 
determine the semantic correctness of the candidate ontology’s re-
lations. We demonstrate our automated approach on several large 
ontologies from the oceanographic domain and show its agreement 
with a manual evaluation by domain experts and its superiority 
over the state-of-the-art. 

CCS CONCEPTS 
• Information systems → Web Ontology Language (OWL); • 
Computing methodologies → Natural language processing. 

KEYWORDS 
ontology, natural language processing, BERT, knowledge engineer-
ing 
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1 INTRODUCTION 
An ontology is a collection of concepts and relations. Each concept 
is unique and is often characterized by multiple attributes. Ontolo-
gies usually describe a single domain and are used to abstract and 
formally defne the semantic meaning of concepts in a domain and 
the relations between them [21]. In data integration, ontologies 
can play an important role by unifying and relating data elements 
under concepts despite having diferent schemas [11]. For exam-
ple, the concepts of address and residence can be placed under the 
concept of location, i.e., an address/residence is a location. Then, 
during the integration of the two data sources, the felds address 
and residence are mapped to a common concept - location. Another 
example from the domain of oceanography is Nutrients. Nutrients 
refer to the amount of dissolved inorganic macronutrients in sea-
water such as Silicate or Phosphate. Similar to the location example, 
both concepts will be grouped under a common ancestor - Nutri-
ents. Thus, ontology-based data integration/access (OBDI/OBDA) 
[10, 49] requires the existence of an ontology that encompasses the 
knowledge domains of the datasets being integrated. 

The construction of an ontology remains a challenge, and it is 
often painstakingly done manually by domain experts [2]. One of 
the main challenges with manually constructed ontologies is their 
inability to adapt to other tasks. Not only do they contain subjective 
knowledge that may be incompatible with the task at hand, but they 
may also lack important concepts and relationships required for the 
specifc data integration task or even just contain errors [20, 45]. 
Therefore, reusing manually constructed ontologies requires an 
evaluation step. More precisely, the evaluation of the relevance and 
coverage of the set of concepts contained in the ontology and the 
semantic correctness of the relations between these concepts with 
respect to the domain. 

Computer-generated ontologies are potentially far more robust 
in terms of size and scope as they are based upon a comprehensive 
review of the domain and require repeated evidence for each pro-
posed concept and relation [35]. However, these auto-constructed 
ontologies tend to lack nuanced information (such as defnitions, 
constraints, or axioms), and are limited in the type of generated rela-
tions. To take advantage of both the utility and nuance of manually 
constructed ontologies and the robustness of automated methods, 
one requires an automated method to evaluate and correct ontolo-
gies. In this paper, we suggest an automated ontology evaluation 
framework using a representative domain model to address this 
need. 

Existing approaches of automated ontology evaluation with re-
spect to a domain [6] [14] are limited in two respects. The frst is 
concept extraction from the domain, a required step that generates 
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the pool of concepts to which the ontology under evaluation is com-
pared. Existing methodologies utilize Part-of-Speech (POS) models 
that can only determine single-word terms. Multi-word phrases, 
such as Air Temperature, will be split into separate concepts (Air, 
Temperature). Moreover, when evaluating ontological relationships, 
existing approaches only consider their semantic relations with 
respect to external sources such as thesauruses, dictionaries, and 
vocabularies, all of which are general-purpose and are not repre-
sentative of the domain. 

To address these gaps we propose a novel automated evaluation 
framework able to both determine the semantic correctness of re-
lationships between concepts as well as the completeness of an 
ontology with respect to a particular domain. To achieve this, the 
framework utilizes a language-model-based representation of the 
domain to serve as an authoritative source of truth. Our approach 
utilizes a Named-Entity-Recognition (NER) model, which can not 
only pick up multi-word phrases but also label their types. We em-
ploy a pre-trained bi-directional transformer-based language model 
BERT [13], which serves as an auto-generated representation of 
the domain. We demonstrate our method over the oceanographic 
domain and show how the evaluation generates useful and action-
able insights that can be used to improve the evaluated ontology. 
We further evaluate the language model and show it to be a good 
representation of the domain, comparable to human experts. 

The remainder of this paper is organized as follows. Section 2 
provides preliminary defnitions, and Section 3 reviews previous 
work. In Section 4, our proposed automated evaluation method is 
described in detail. In Section 5, we demonstrate our evaluation 
method over three ontologies, and in Section 6, we perform a meta-
evaluation of the method. Finally, Section 7 presents our conclusions 
and directions for future work. 

2 BACKGROUND AND PRELIMINARIES 
As defned by Gruber [21], "An ontology is an explicit specifca-
tion of a conceptualization". The representation is made through a 
collection of concepts and relations between them. Formally: 

Defnition 2.1 (Ontology). Let � be a set of concepts, let � be a 
set of relations and let � be a set of relation associations such that 
� ⊆ {� (�,�) |∀� ∈ �, ∀� ∈ �, ∀� ∈ �} then an Ontology � is a triple 
� :=< �, �, � > 

Ontologies oft describe a single domain and are used as the defni-
tive source for the semantics of concepts in that domain. Ontologies 
are a crucial part of web semantics and information systems as they 
capture representations of the domain such that machines can inter-
pret them. Such interpretations are mostly required in tasks such as 
information retrieval [37, 46, 50], data integration [17, 27, 52]), and 
knowledge alignment [9, 24]. It is important to note that ontologies 
may also encompass additional knowledge, such as constraints, 
axioms, instances, and properties [21] but were not explicitly stated 
in the defnition for simplicity. When evaluating an ontology, we 
use the term concept family, comprised of a parent concept and a 
set of direct child concepts, formally: 

Defnition 2.2 (Concept Family). Let � =< �, �, � > be an ontol-
ogy and let ��� ∈ � be one of its relationships, then CF is concept 

family ⇐⇒ �� =< �� ,�� > where �� ∈ �,�� ⊆ �, ∀� ∈ 
�� =⇒ ���(�,�� ) 

Ontology construction by domain experts is a labor-intensive 
task. Thus, several (semi-)automated methods were suggested using 
rule-based approaches [15, 25, 29, 33, 43] later advancing to tech-
niques based upon Formal Concept Analysis (FCA) [12, 19, 47, 48] 
and Natural Language Processing (NLP) [2, 8, 16, 41]. 

Both manually constructed and automatically-constructed on-
tologies require evaluation before they can be reused for a new task. 
Throughout this paper, we will use the term candidate ontology to 
refer to the ontology being evaluated. Raad et al. [39] reviewed on-
tology evaluation methods and identifed seven evaluation criteria 
defned as follows. 

• Accuracy refers to concept defnition correctness. 
• Completeness determines an ontology’s coverage of the 
domain. 

• Conciseness identifes irrelevant concepts in the ontology. 
• Adaptability measures how well an ontology is suitable for 
its intended task. 

• Clarity assesses how well the intended meaning of the ontol-
ogy is being projected, i.e., concepts should be independent 
of the context. 

• Computational efciency measures the usage cost of the 
ontology in terms of performance. 

• Consistency serves as a measure of contradictions within 
the ontology. 

These criteria can be used in diferent evaluation methods that were 
classifed into the following four categories based on the artifact 
used as a basis of comparison to evaluate the candidate ontology. 

(1) Gold standard-based methods compare an ontology with 
a previously (typically manually) created ontology. 

(2) Corpus-based methods extract terms from a corpus and 
use them to determine the evaluated ontology’s ft to the 
domain represented by the corpus. These methods focus on 
the accuracy, completeness, and conciseness criteria. 

(3) Task-based methods evaluate the ontology by its ft to solve 
a specifc set of tasks that the ontology is designed for, fo-
cusing on the adaptability criterion. 

(4) Criteria-based methods evaluate the ontology by comput-
ing scores based on a set of rules and constraints. This eval-
uation is centered upon the structure of the ontology and 
often addresses the clarity criterion. 

In this work, we propose a novel corpus-based method that 
covers four evaluation criteria, namely, accuracy, completeness, 
conciseness, and consistency. 

3 RELATED WORK 
Brewster et al. [6] frst proposed to extract terms from a document 
corpus to assess an ontology’s completeness. They further sug-
gested using WordNet [34] to expand the list of extracted concepts, 
although it remains limited to single-word concepts. Additionally, 
they perform a vector-space similarity comparison between the 
text corpus and the ontology to assess accuracy. We extend this 
approach by supporting phrasal (more than one word) concepts, 
utilizing a concept extraction method tuned to the domain at hand, 
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and addressing additional coverage-based criteria such as concise-
ness. In contrast with our work, their method does not address 
consistency as in our work, where we evaluate the correctness of 
relations within the candidate ontology. Furthermore, the accuracy 
and utility of the extracted concept set is suspect, as the authors 
employ a general-purpose WordNet thesaurus and PoS tagger for 
this purpose. In this work, we create an accurate representation of 
the domain by utilizing a large language model extensively trained 
over a large representative set of documents from the domain. 

DiGiuseppe et al. [14] proposed another corpus-based approach 
in which an ontology is generated from the corpus and compared 
to the candidate ontology. In their approach, concepts are extracted 
using PoS tagging and mapped via vocabularies to determine their 
synonyms and synonym symmetry. The synonym information is 
used to derive the concepts’ hierarchy. The process results in a 
corpus-based ontology. The generated ontology is then compared 
to the candidate ontology. The coverage analysis outputs scores 
for classes, class equivalence, hierarchies, and breadth. The ap-
proach is both a corpus-based and criteria-based method. Again, 
only single-word nouns are considered, which is a limitation of 
PoS. Furthermore, the external dictionaries used to determine the 
synonyms are general-purpose English dictionaries that do not 
refect the true relations in the domain. In this work, we support 
multi-word concepts and utilize a domain-tuned language model 
to evaluate the candidate ontology’s relations. 

OOPS [38] is a web-based evaluation tool for OWL ontologies. 
Its evaluation is mostly based on lexical and structural patterns 
highlighting ontology pitfalls. This evaluation can be categorized 
as criteria-based since it employs rules and patterns. Although it 
can determine if an ontology is aligned with common standards, it 
cannot assess the ftness of the ontology to a particular domain as 
our work does. 

Ontologies are sometimes mentioned in relation to linked data 
[5]. However, while ontologies focus on the conceptual description 
of a domain, linked data refers to large sets of related entities rep-
resenting instances of these concepts and relation types. Work 
around the evaluation of Linked-Data (LD) has been proposed 
[18, 28, 40, 51], in which a rule-based approach is taken to fnd 
inconsistencies among data instances within an LD data source. In 
this work, we focus on evaluating ontologies rather than instances 
and records as in LD evaluation. 

In a rare example of using large language models (LLM) in the 
context of ontologies, Liu et al. [32] present an approach for placing 
a set of new concepts within an existing ontology. In their paper, the 
authors utilize the BERT language model [13], specifcally its next 
sentence prediction capabilities, to determine if a hierarchical rela-
tionship between two concepts exists. They do so by pre-training 
BERT on corpus text from the domain, then fne-tuning it using a 
set of pairs of concepts that exhibit a taxonomic relationship (i.e., 
“IS-A”), taken from the SNOMED biomedical ontology. They then 
test the model over concepts from the latest version of the ontology 
that were not present in the previous version that was used as 
training data. The results of the trained model yield an average of 
95% recall and 85% precision. This suggests that a language model, 
such as BERT, can learn the semantic meaning of the concepts and 
provide accurate relationship predictions even of unseen concepts. 
However, Liu et al. [32] do not attempt to evaluate an ontology but 

only demonstrate the ability of an LLM to learn the semantics of the 
domain and the relations between its concepts. In this work, we uti-
lize this ability to evaluate the completeness, accuracy, conciseness, 
and consistency of a domain ontology. 

4 AUTOMATED ONTOLOGY EVALUATION 
In this section, we describe our automated approach for evaluating 
an ontology with respect to a domain of interest. Our method allows 
the evaluation of completeness (coverage) and correctness (seman-
tic relation coherence). Furthermore, we can use the evaluation’s 
results to identify specifc concepts missing from the ontology as 
well as misaligned semantic relations between its existing concepts. 

Fig. 1 illustrates our proposed evaluation method in chronolog-
ical order. In order to evaluate the candidate ontology, we must 
generate an accurate representation of the domain. This representa-
tion takes two forms. The frst is a domain-trained language model 
(Domain BERT), used to judge relations between concepts using 
the semantics of the domain rather than their general-purpose use 
in English. The second is a collection of phrasal concepts (Domain 
concepts) extracted from the domain text corpus using a specialized 
named entity recognition (NER) model. The candidate ontology’s 
concepts can then be compared to this concept collection. In the 
following sections, we detail each step in the proposed evaluation 
pipeline. We start with describing how a collection of documents 
or text corpus (Section 4.1) is created, followed by our method for 
training a specialized NER model (Section 4.2) and pre-training a 
language model (Section 4.5). Using the NER model, domain con-
cepts are extracted from the text (Section 4.3) and are then matched 
with the concepts in the candidate ontology (Section 4.4), from 
which a sub-set of this ontology (Sub-ontology) is derived. Next, 
using the pre-trained language model, an evaluation (Section 4.6) 
takes place, generating a set of scores that refect the correctness 
and completeness of the candidate ontology with respect to the 
domain. 

4.1 Document Collection 
Document collection is a crucial step since it serves as the core of 
this pipeline. It is assumed that the corpus encompasses the knowl-
edge that is required to represent the domain since both the NER 
and language model are trained on it. The use of large collections 
of text to represent a domain is not new. Large text collections are 
routinely used in a variety of tasks, from training domain-specifc 
language models [22] to guiding automated literature surveys [3]. 
We consider the use of peer-reviewed representations of domain 
knowledge created by thousands of experts to be a robust represen-
tation of the domain. Moreover, such ontologies often form the basis 
for ontology-based data access and data integration system, e.g., 
[10], and since scientifc datasets are often described by research 
papers, we expect the same concepts to describe these datasets. In 
this work 10,000 papers from oceanographic journals were used, 
collected using a web crawler and the Crossref API based on pre-
vious research [44]. The papers were converted to raw text with 
ScienceParse1, including only the title, abstract, and content. 

1https://github.com/allenai/science-parse 
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Figure (1) Ontology evaluation pipeline. Details of the steps can be found in the corresponding sections. 

4.2 Domain Specifc Named Entity Recognition 
A typical NER model is capable of identifying phrases representing 
named entities in text, such as people (Marie Curie), places (War-
saw), or organizations (United Nations). But in order to be able 
to extract phrases representing (not necessarily named) concepts 
relevant to the domain such as temperature, one must train a custom 
NER model [31]. Using the collected text corpus (Section 4.1), a 
domain-specifc NER model is trained. NER models are often cre-
ated through supervised or semi-supervised approaches, requiring 
manual annotation of a sample of the corpus by domain experts. 
Then, this annotated sample can used by existing NER architectures 
(e.g., [1] that is used here) to train a domain specifc model. 

4.3 Concept Extraction 
Here we use the previously described NER model to extract a set of 
concepts (hereafter, domain concepts). The NER model, can detect 
multi-word phrases as well as semantically label them into classes, 
such as Organization or Measured Variable. After extracting the 
concepts, a threshold is applied to remove concepts with a small 
number of occurrences, assuming these are not representative of the 
entire but perhaps only a small subset of it. Finally, the remaining 
concepts are considered to be the domain concepts (gray and red 
dots in Figure 2). We fltered and kept only concepts that have 
appeared in at least ten diferent papers. 

ocean 
water

large 
quantities

oxygen
carbon

dioxide

temperature
salinity

solubility

Domain

Concepts

Ontology

Concepts

Shared

Concepts

Ocean water contains large quantities of 
dissolved gases, including oxygen, 
carbon dioxide and nitrogen. This gas 
exchange takes place at the ocean 
surface and solubility depends on the 
temperature and salinity of the water.

Text documents

processed by NER

Cutoff

Filter


Threshold

…

…

Figure (2) Concept extraction from text and the determina-
tion of shared concepts between the domain concepts and 
the ontology concepts. 

(a)

Ontology with matched


 concepts from the domain

(b)

Ontology with matched


 concepts from the domain

and their ancestor concepts

(c)

Ontology with matched


 concepts from the domain, 

their ancestor concepts 


and child concepts

Figure (3) Ontology subset derivation phase in which 
shared concepts (red) are frst identifed among the candi-
date ontology’s concept. Next, the ontology’s is-a hierarchy 
is used to add their ancestors (yellow). Finally, the children 
(green) of the shared concepts are added and the remaining 
unconsidered concepts (blue) are removed. 

4.4 Ontology Subset Construction 
Here, we construct a domain-relevant subset of the candidate on-
tology. It is assumed that concepts excluded from this subset are 
not relevant to the domain, an assumption we evaluate in Section 
6. Fig. 3 depicts the process. We frst match all concepts from the 
candidate ontology to the previously extracted domain concepts. 
We begin by standardizing the textual representation of both by 
lower-casing and lemmatization. For example, concepts containing 
words like Raining, Temperatures, and Solids become rain, temper-
ature, and solid, respectively. After applying this process to both 
the domain concepts and the candidate ontology’s concepts, we 
perform an exact match search for overlapping concepts. We refer 
to these overlapping concepts as Shared Concepts (marked red in 
Figs. 2 and 3). Using the shared concepts we traverse the candidate 
ontology’s hierarchy such that every ancestor in the hierarchy of a 
shared concept (yellow) is included, as well as every direct child of 
that concept (green). 

4.5 Language Model Pre-training 
Using the previously mentioned (Section 4.1 text corpus, we pre-
train a BERT [13] language model such that it adjusts to the domain. 
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This process entails feeding the model with the text corpus using 
pairs of sentences where some follow each other and some not, 
letting the model learn to predict the most probable next sentence 
while at the same time masking some of the words to let the model 
predict the masked words. Previous research [23] has shown pre-
training to increase the performance of downstream tasks utilizing 
such models. The fnal output of this phase is a pre-trained language 
model that is adapted to the domain. In the following section we 
utilize this model’s embedding layer to encode the concepts into a 
vector space for similarity evaluation. 

4.6 Evaluation Measures 
To determine the completeness of the candidate ontology , we com-
pute three metrics: Ontology Relevance, Sub-Ontology Relevance, 
and Domain Coverage based upon three quantifcations of the con-
cept overlap between the candidate ontology and the concept set 
extracted from the text corpus, representing the domain (see Venn 
diagram in Figure 2). O represents the number of concepts in the 
candidate ontology. D Domain concepts counts the number of con-
cepts extracted from the domain corpus after pruning (Section 4.3), 
S counts the number of shared concepts found between the candi-
date ontology and the domain concepts extracted from the corpus, 
and H the number of concepts in the subset of the candidate on-
tology constructed by taking the shared concepts and expanding 
them using the ontology’s hierarchical relations (Section 4.4). The 
measures are defned as follows. 

S
Domain Coverage = D 

(1) 

S
Ontology Relevance = O 

(2) 

S
Sub-Ontology Relevance = H 

(3) 

Revisiting the terminology introduced by Raad and Cruz [39], Eq. 
1 represents a completeness measure, evaluating the completeness 
of the candidate ontology concept set with respect to the domain. 
Equations 2 and 3 measure conciseness, or the extent to which the 
candidate ontology (or its subset) is relevant to the domain. 

Semantically similar concepts are expected to share properties 
[30]. Thus, defning measures that estimate this similarity is im-
portant. Therefore, to measure the correctness of the semantic 
relationships between concepts within the ontology, we defne the 
following measures. All of the proposed measures rely on the mea-
sured cosine similarity between concept pairs using a vector space 
where a high-dimensional vector represents each concept. This 
representation is done by encoding the concepts using the domain-
adapted BERT language model. Since the model is domain-adapted, 
the similarity of the concept vectors is derived from the similarity 
of their contextual environment in the document corpus. Thus, 
terms used in the same grammatical role in similar sentences will 
be similar in the vector space. 

We now defne three measures intended to be used to evaluate a 
single concept family (Hereafter CF, Defnition 2.2). The frst (CSS) 
represents an accuracy measure as it evaluates the correctness of 
the CF as constructed. The fnal two measure consistency, as they 
measure the extent to which the same relations (is-A) within a CF 
agree with each other. 

(1) Child Similarity Score - CSS is the mean cosine similarity 
between every pair of siblings in a CF. We defne this function 
as follows where � is the number of CF child concepts. 

�∑−1 

��� (�� ) = 
1 

���������� (�� ,� � ) (4)
� 

�=1, �=�+1 

(2) Parent Similarity Score - PSS is the mean cosine similarity 
between the parent and each of its direct child concepts. ∑ 

��� (�� ) = 
1 � 

���������� (�� ,�� ) (5)
� 

�=1 

Where �� is the parent concept and � is the number of child 
concepts. 

(3) Parent Diference Agreement - PDA makes use of the 
standard deviation of the similarity between the parent con-
cept and its direct children. We can interpret this value as 
the amount of agreement between the siblings towards the 
parent with respect to similarity. It is defned as: vut 

1 �∑ 
���(�� ) = 1 − [���������� (�� ,�� ) − ��� (�� )]2 

� − 1 
�=1 

(6) 

Using the defned measures, we iterate over all concept families 
within the ontology with two or more child concepts and compute 
the mean of CSS, PSS, and PDA. All of the values are within the 
range of [0-1]. Thus, having computed the measures, we determine 
the accuracy, completeness, conciseness, and semantic consistency 
using CSS, domain coverage, ontology relevance, and PDA, respec-
tively. 

5 EVALUATION 
Here, we demonstrate our approach by performing an automated 
evaluation on three ontologies with respect to the oceanographic 
domain. We begin by describing the domain and candidate ontolo-
gies (Section 5.1), followed by the results and a comparison with 
previous work (Section 5.2). We then demonstrate how the mea-
sures can be used to improve an ontology (Section 5.3) and conclude 
with a discussion of the results (Section 5.4). 

5.1 Domain and Candidate Ontologies 
Following the previously described method (Fig. 1), we use a pre-
existing corpus of 10,000 academic papers collected in the oceano-
graphic domain (Section 4.1) and a NER model that was trained on 
it [4] (Section 4.2). Using the NER model and a general-purpose PoS 
tagger [36], we extract the domain concepts from the text corpus 
(Section 4.3). This phase generated 455,051 unique concepts. After 
applying additional constraints and flters such as frequency and 
term length, 17,516 concepts remained. We then pre-trained the 
BERT2 [13] language model on the corpus (Section 4.5), resulting 
in an oceanography-domain BERT model. 

2BERT Base, Transformers 4.17.0, https://huggingface.co/, accessed June 6th, 2022 
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Table (2) Automated evaluation results of three ontologies 

Ontology 
Original 

Size 
Reduced 

Size 
Ontology 
Relevance 

Sub-Ontology 
Relevance 

Domain 
Coverage 

CSS 
Mean 

PSS 
Mean 

PDA 
Mean 

ENVO 6,566 2,585 0.11 0.28 0.05 0.72 0.65 0.90 
OMIT 87,816 5,379 0.01 0.26 0.10 0.71 0.69 0.92 
SWEET 4,533 3,241 0.34 0.48 0.11 0.71 0.68 0.89 

Table (1) Evaluated Ontologies 

Ontology Description Concepts 
ENVO Ontology of environmental features 

and habitats 
6,566 

OMIT Ontology to establish data exchange 
standards and common data elements 
in the microRNA (miR) domain 

87,816 

SWEET Semantic Web for Earth and Environ-
ment Technology Ontology 

4,533 

Our candidate ontologies (Table 1) are ENVO [7], OMIT [26], 
and SWEET [42]. While both ENVO and SWEET are environmental 
ontologies, OMIT is considered a microRNA ontology. However, 
due to its relatively large size, it substantially overlaps the oceano-
graphic domain. We match each candidate ontology to the set of 
domain concepts extracted from the document corpus (Section 4.4) 
allowing us to perform the evaluation (Section 4.6). 

5.2 Evaluation Results 
The results are presented in Table 2. In terms of relevance (concise-
ness measures, Eqs. 2 and 3) and domain coverage (Eq. 1), SWEET 
achieved the best results, with 34%, 48%, and 11% respectively. In 
terms of consistency, OMIT achieved the highest PDA score of 92% 
indicating a high level of similarity agreement among the children 
and the parent concepts (Eq. 6). Lastly, all ontologies received a 
CSS (Eq. 4) value between 71-72% indicating an average level of 
accuracy. The source code and datasets used are available online3. 

Table (3) Coverage and relevance comparison between our 
method and LSA [6] 

Ours LSA 

ENVO 
Coverage 0.05 0.01 
Relevance 0.11 0.09 

OMIT 
Coverage 0.10 0.02 
Relevance 0.01 0.01 

SWEET 
Coverage 0.11 0.02 
Relevance 0.34 0.25 

We now compare our method to the following recreation of 
Brewster et al. [6] (Table 3). The text corpus was fed into the LSA 
(Latent Semantic Analysis) algorithm with 20 clusters. From each 
cluster, the 15,000 most dominant words were fetched, resulting in 
a set of 33,754 unique words. Next, the WordNet expansion was ap-
plied in which two levels of hypernyms were fetched for each word. 
This expansion resulted in a larger set of 42,603 unique terms. From 
here, coverage and relevance (recall and precision in the original 
3https://github.com/Minitour/ontology-evaluation 

subtropical polar altitudinal 
condition temperate subpolar environmental 

variability arid tropical

subtropical 1 0.97 0.48 0.99 0.81 0.77 0.97 0.98

polar 0.97 1 0.46 0.96 0.83 0.75 0.98 0.97

altitudinal 
condition 0.48 0.46 1 0.5 0.3 0.67 0.46 0.48

temperate 0.99 0.96 0.5 1 0.8 0.8 0.97 0.98

subpolar 0.81 0.83 0.3 0.8 1 0.6 0.82 0.81

environmental 
variability 0.77 0.75 0.67 0.8 0.6 1 0.75 0.77

arid 0.97 0.98 0.46 0.97 0.82 0.75 1 0.98

tropical 0.98 0.97 0.48 0.98 0.81 0.77 0.98 1

Figure (4) Similarity matrix of child concepts of Environ-
mental Condition from ENVO 

paper’s terminology) were measured for each candidate ontology. 
Results show that LSA consistently assigns lower coverage and rel-
evance fgures than our method. We discuss this and the previous 
results in Section 5.4. 

5.3 Improving an Ontology using CSS and PDA 
Here, we demonstrate how one can utilize our method to improve 
an Ontology. CSS and PDA are defned (Eqs. 4, 6) for a single con-
cept family (Def. 2.2). Thus, to gain better insight into the type of 
problems the model has identifed or specifc relations that may 
be inconsistent for future repair, one can use detailed similarity 
matrices (Fig. 4) for a family that received low scores. The matrix 
presents the cosine similarity between every pair of child concepts 
in the family. CSS is defned as the sum of this matrix. 

Fig. 4 presents such a matrix of all child concepts in the concept 
family of Environmental Condition. As highlighted by the colors, 
most child concepts are highly similar (>0.97 cosine similarity, col-
ored red). However, the concepts environmental variability and al-
titudinal condition received a relatively low similarity score. Indeed 
(in this domain), these two concepts have a diferent relationship 
with the parent concept. 

To demonstrate how one can use these results to improve the on-
tology, we create an interim concept separating the set of concepts 
(temperate, tropical, subtropical, subpolar, polar, arid) from their orig-
inal parent concept Environmental Condition. We consulted with 
domain experts who suggested a few possible candidates. Out of 
the proposed candidates, the Climate Model concept achieved the 
highest value of PDA when introduced into the concept family 
(Fig. 5). As can be seen in the fgure, introducing the new concept 
markedly increases the CSS scores. 

5.4 Discussion 
Discussing the results obtained by our evaluation method over the 
diferent ontologies with domain experts yielded some interesting 
observations. The low overall relevance and domain coverage of 
OMIT, an mRNA ontology, was expected. However, the fact that we 
could extract a large and relevant sub-ontology from it using our 
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(0.53) 

Polar

(0.63)  

Altitudinal

Condition


(0.71) 
Temperate


(0.69) Arid

(0.64) 

Tropical

(0.65) 

Environmental 
Condition

Environmental 
Variability


(0.92)

Subpolar

(0.60) 

Polar

(0.72)  

Altitudinal

Condition


(0.71) 

Temperate

(0.77) 

Arid

(0.73) 

Tropical

(0.74) 

Climate 
Model

(0.86)

(a)

Concept family 


Environmental Condition 
before modification

(b)

Concept family 


Environmental Condition

after modification

Subtropical

(0.66) Subtropical


(0.74) 

Figure (5) Manual refnement of the Environmental Condition concept family. A new intermediate concept, Climate Model, is 
selected from a set of expert-suggested replacements using its PDA score, grouping similar concepts together. The numerical 
values represent the similarity to the direct parent (CSS). 

method can form the basis for an automated ontology construction 
method in the future that can obtain signifcant portions of partially 
relevant ontologies to piece together a comprehensive domain on-
tology. The fact that the SWEET ontology, which purports to cover 
the entire earth science domain (including oceanography), scored 
so low on coverage was surprising. It prompted us to perform a 
meta-evaluation of our method to ensure we were looking for ac-
tual domain concepts and not irrelevant concepts indiscriminately 
collected from the text. The results of this meta-evaluation are pre-
sented in the following section. When comparing to the current 
state of the art [6], we get a better coverage and relevance score. 
This was expected as the limitations of the LSA method cause it 
to miss phrasal concepts and many domain-specifc concepts. We 
validate the assumption that, indeed, the method misses more of 
the domain concepts in the following section as well. 

Introducing new intermediate concepts in an ontology is nor-
mally manual and time-consuming. However, as demonstrated here, 
using measures such as CSS and PDA, one can automate this pro-
cess by fnding the most suitable candidate concepts and testing 
which best maximizes the measures. 

6 META-EVALUATION 
Evaluating an evaluation method requires special care as it must be 
based upon sound assumptions of what is considered a good result. 
Here, we present a meta-evaluation that evaluates our proposed 
pipeline in two aspects. We begin by measuring the external agree-
ment of our method with our intended target audience, oceano-
graphic researchers. we then perform a statistical analysis to see 
how the diferent evaluation measures agree with each other and 
provide diferent perspectives on the candidate ontologies. 

6.1 External Agreement - Coverage 
To validate the coverage values obtained for the ontologies, we col-
lect domain-specifc concepts from two oceanographic researchers, 
one from the marine biology sub-domain and the other from com-
putational oceanography. We received 43 concepts the experts had 
suggested upon reviewing their latest publications. We then com-
pared these to the domain concepts collected as described in Section 
4.3 and to the three ontologies - ENVO, OMIT, and SWEET. If, in-
deed, our evaluation method is sound, the results should refect 
a high agreement between the domain concepts and the experts’ 

Table (4) Example of real and fake concept pairs. 

Child Concept Parent Concept Real or Fake 
organic acid environmental material Fake 
natural plastic organic molecule Fake 
leather dye dye Real 
mesenchyme tissue Real 

concept list and coverage values close to those found for the can-
didate ontologies by our method (Table 2). We found 88% of the 
experts’ concepts in the domain concepts that were extracted from 
the text by our method, which is as expected, representing a good 
domain coverage. ENVO, OMIT, and SWEET covered 23.2%, 13.9%, 
and 34.8% of our experts’ concepts. The SWEET result is perfectly 
in line with our coverage score. The ENVO and OMIT results are 
higher, but this refects an inherent bias in this meta-evaluation that 
over-represents marine biology concepts which are more prevalent 
in these two ontologies than in the domain at large. To validate our 
assumption that the lower LSA method scores in Table 3 are due to 
its poor coverage of the domain concepts, we tested it here as well 
and found it to be low, as expected, at 28%. 

6.2 External Agreement - Accuracy and 
Consistency 

Here we evaluate whether our CSS and PDA measures indeed mea-
sure the accuracy and consistency of the ontology. We compare 
the ruling of two domain experts over parent-child concept pairs 
to the efect on our measures of including these pairs in their con-
cept family. For pairs that our experts believe have a parent-child 
relationship between them, we expect their inclusion in the same 
concept family to increase the CSS and PDA scores. The reverse is 
also true. We randomly sampled 300 concept pairs with a hierar-
chical (IS-A) relationship between them from the ENVO ontology 
alongside 300 auto-generated pairs that do not have a hierarchical 
relationship.A few examples are displayed in Table 4. 

Of the 600 pairs, only 326 were used due to the lack of familiarity 
of the experts with the others. Out of the 326 labeled entries, 144 
were labeled true, and the remaining 182 were labeled false. We 
measured a Kappa agreement score of 0.75 between the two experts 
over their overlapping pairs which can be interpreted as a substan-
tial level of agreement. We iterate over each of the concept pairs 
and compute the following score before and after their inclusion in 
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a concept family. 

����� (�� ) = ��� (�� ) × 0.9 + ���(�� ) × 0.1 (7) 

In consultation with the domain experts, CSS was given a higher 
weight than PDA due to the nature of the task, which is to determine 
if a concept belongs to the concept family or not. This decision, 
according to our domain experts, is substantially more impacted by 
the similarity to existing siblings than by the extent of diference 
from the parent. 

Table (5) Confusion Matrix Defnition 

Labeled Positive Labeled Negative 

Predicted 
Positive 

The relation is labeled true 
and including the concept 

increases the score 
(True Positive) 

The relation is labeled false 
and including the concept 

increases the score 
(False Positive) 

Predicted 
Negative 

The relation is labeled true 
and including the concept 

decreases the score 
(False Negative) 

The relation is labeled false 
and including the concept 

decreases the score 
(True Negative) 

Table (6) Examples of concept pairs and how they were 
labeled by experts and predicted by the model 

Child 
Concept 

Parent 
Concept 

Expert 
Label 

Model 
Prediction 

Classifcation 

hill mount True True TP 
leaf isoprenoid False False TN 

organ 
multicellular 

anatomical structure 
True False FP 

ore cellular organisms False True FN 

The fnal results of the model evaluation are as follows. Of 326 
concept pairs, 127 are true positives, 139 are true negatives, 43 are 
false positives, and 17 are false negatives. Some of the example 
concept pairs are presented in Table 6. Thus, the model achieved an 
accuracy of 81%, a precision of 74%, a recall of 88%, and an F1 score 
of 81% (F1 Score), which strengthens the claim that the model’s 
ability to correctly identify inconsistencies and inaccuracies is on 
par with that of domain experts. 

6.3 Statistical Analysis 
Here, we perform a correlation analysis between our consistency 
measures (Eqs. 4, 5, 6) using Spearman’s correlation (the measures 
are not normally distributed). The measures are defned over a con-
cept family (Cf, Def. 2.2), and we wish to ensure that they measure 
diferent aspects of the CF. Results (Table 7) over the SWEET on-
tology (657 concept families) show a low to moderate correlation 
between the measures, confrming our assumption that they cap-
ture somewhat diferent aspects of the CF. An analysis of the other 
ontologies returned similar results that are omitted for brevity. 

Table (7) Correlation analysis of consistency measures us-
ing Spearman’s correlation coefcient. 

SWEET 
N=657 

concept families 

CSS PSS PDA 
CSS 1 0.213 0.484 
PSS 0.213 1 0.145 
PDA 0.484 0.145 1 

7 CONCLUSIONS AND FUTURE WORK 
In this work, we showcase a novel approach for the automated 
evaluation of ontologies with respect to a domain. We do so by 
pre-training a bi-directional transformer-based language model in 
an unsupervised fashion on a text corpus from the domain. We 
defne measures that make use of the language model to assess the 
accuracy and consistency of the ontology. Additionally, we use a 
NER model and PoS tagger to extract key concepts from the corpus, 
with which we create a concept set to evaluate the completeness 
and conciseness of an ontology. We validate the applicability of our 
approach by comparing the output of the model to that of domain 
experts. The results further strengthen the notion that language 
models such as BERT can adapt and encapsulate domain knowledge 
that can be utilized for a variety of tasks. Additionally, we showcase 
the potential applicability of our tools in both detecting a problem 
in the ontology and solving it. In this work, only hierarchical rela-
tions were considered due to the limitations of publicly available 
ontologies as well as computer-generated ontologies which are 
simple and lack other kinds of relations. However, the method can 
be expanded to work with other kinds of relationships as well as 
we intend to do in our future work. 
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A SUPPLEMENTARY MATERIAL 
In order to verify the applicability of the pre-trained model, we 
showcase a few examples of the fll-mask task, in which the model 
is given a sentence with one of the tokens being masked and the 
task is to fll it. The suggestions of both the original and pre-trained 
model are presented in Table 8. 

Table 9 showcases a set of concepts and concept families 

with respect to the relevant metrics. The Relevance column presents 
concepts from the diferent ontologies where the concept does not 
belong to the domain of interest, whereas on the other hand, the 
Coverage column showcases concepts that did exist in our domain 
concept set but did not appear in the ontology. 

Finally, Table 10 presents a comparison of expert-provided 
terms and their presence in our domain concepts dataset as well as 
the ontologies we examined. 

Table (8) Comparison between BERT models before and after pre-training on the domain corpus on fll-mask task. 

Sentence Base BERT Domain BERT 

Upwelling water consists of [MASK]. groundwater, 
gravel 

nutrients, 
diatoms 

Arid, subpolar, and polar are all [MASK] models. standard, 
dynamic 

ocean, 
climate 

phytoplankton use chlorophyll for [MASK]. 
growth, 
food, 

reproduction 

photosynthesis, 
growth, 
carbon 

A thermocline is the transition [MASK] between 
the warmer mixed water at the surface and the cooler deep water below. 

state, 
point, 
metal 

zone, 
layer, 
region 

A coccolithophore is a unicellular, eukaryotic [MASK]. cell, 
organism 

organism, 
phytoplankton 

Table (9) Examples of diferent concepts with respect to diferent metrics 
Relevance Coverage CSS PSS PDA 
Example of con- Examples of con- Two Concept fami- Two Concept fami- Two concept fami-
cepts that are part cepts that are part lies with high and lies with high and lies with high and 
of the ontology but of the domain but low child similarity low parent similarity low parent diference 
have no relevance are not part of the score score agreement 
to the domain ontology 

ENVO Sofa 
ENVO_01000588 

Northern Hemi-
sphere, Atlantic 
Ocean 

Mining has a CSS 
score of 0.95 

Sedimentary rock 
has a CSS score of 
0.54 

Particulate organic 
matter has a PSS of 
0.95 
Elevation has a PSS 
of 0.15 

Coastal inlet has a 
PDA of 0.99 

Liquid environmen-
tal material has a 
PDA of 0.68 

OMIT Paintings 
OMIT_0011154 

Seafoor Nucleic Acids has a 
CSS score of 0.98 

Heterocyclic Com-
pounds 1-Ring has a 
CSS score of 0.46 

Chlorofuorocarbons 
has a PSS score of 
0.94 
Food has a PSS score 
of 0.25 

Stramenopiles has a 
PDA of 0.99 

Silicon Dioxide has a 
PDA of 0.75 

SWEET Civil aviation, man-
agement system, re-
crystallization 

Resin Ecosystem has a CSS 
of 0.98 

Volcanic Activity has 
a PSS of 0.92 

Bioprospecting has a 
PDA of 0.96 
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Table (10) The comparison of expert-provided concepts to extracted domain concepts and the three ontologies 
Concept Name Domain Concepts ENVO OMIT SWEET 

Lagrangian analysis 
analysis, reanalysis, 
microanalysis, 
lagrangian 

- - lagrangian 

biogeography biogeography - - -
jellyfsh jellyfsh - - jellyfsh 
coccolithophores coccolithophores - - -
slicks slicks - - -

sea surface microlayer 
sea surface, 
sea surface waters, 
microlayer 

oceanic sea surface 
microlayer biome 

- -

mixed layer depth mixed layer depth - - -
stratifcation stratifcation stratifcation - -
water masses water masses - - -
ocean circulation ocean circulation - - ocean circulation 

mesoscale mesoscale 
mesoscale marine eddy, 
marine mesoscale 
eddy feld 

-

mesoscale wind, 
mesoscale disturbance, 
mesoscale cellular convection, 
mesoscale convective complex, 
mesoscale eddy 

thermohaline circulation thermohaline circulation - - thermohaline circulation 
Ekman transport ekman transport - - -
upwelling upwelling upwelling - upwelling 
sea surface height sea surface height - - -
geostrophic currents currents - - -
nitrate nitrate nitrate - -
thermocline thermocline thermocline - thermocline 
altimetry altimetry - - altimetry 
ocean colour ocean, colour - - -
carbon cycle global carbon cycle carbon cycle Carbon Cycle carbon cycle 
phytoplankton phytoplankton - Phytoplankton phytoplankton 
diatoms diatoms diatoms Diatoms -
sediment traps sediment traps - - -
transparent exopolymer 
particles 

transparent exopolymer 
particles - - -

chlorophyll chlorophyll chlorophyll Chlorophyll chlorophyll 

remote sensing remote sensing - Remote Sensing 
Technology 

remote sensing 

Phycosphere - - - -
Heterotrophic bacteria heterotrophic bacteria - - -
SAR11 SAR - - -
Copiotroph - - - -
Succession succession - - succession 
Phytoplankton bloom phytoplankton bloom - - -

Carbon use efciency 
carbon fuxes, 
carbon cycling, 
carbon biomass 

- - -

Sinking fux sinking, sinking rates - - -
Choanofagellate - - - -
Redfeld ratio redfeld ratio - - -

Biomass objective 
function 

biomass values, 
biomass productivity, 
biomass accumulation 

- - -

Monod equation - - - -
Plume plume plume - plume 
Difusion boundary layer difusion, layer, boundary - - -
Eddy eddy - - eddy 
Quorum sensing - - Quorum Sensing -
TOTAL: 43 38 10 6 15 
Coverage 88.37% 23.25% 13.95% 34.88% 
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