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Abstract

Hydraulic servo systems are characterized by nonlinear dynamics that can render control design challenges.
Controllers for a linearized model will typically be conservative, and the stability of the closed loop system,
in the Lyapunov sense, may be difficult to prove. On the contrary, the backstepping technique can lead
to control algorithms for which stability margins can be estimated. However, these tend to be complex
algorithms that are difficult to apply. In this paper, the backstepping control design procedure is applied
to a hydraulically actuated robot. A sliding mode disturbance observer is utilized to avoid the high
complexity of the backstepping algorithm. The paper’s primary focus is hence on proving the stability of
the proposed algorithm and its applicability to a laboratory setup. However, ways to improve performance
are also discussed. Finally, results are presented where the designed controller is tested in both simulations
and applied to the laboratory setup, and compared to linear controllers.
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1 Introduction

Electric drive systems are almost ubiquitous in low-
power systems. On the other hand, for high-power ap-
plications, using a gearbox is unavoidable. However,
the gearbox introduces backlash and increased mainte-
nance costs. As a result, hydraulic drive systems can
substitute their electrical counterparts in these appli-
cations, owing to their high power density and their
ability to be used in direct drive configurations.

Notwithstanding the advantages mentioned above,
hydraulic servo systems are typically characterized by
low damping, time-varying parameters, and nonlinear
dynamics. These properties render high-performance
control design challenging.

Typically linear controllers are designed based on a
model of the system, which is linearized in a given op-

erating point. However, typically the eigenfrequency of
the hydraulic plant varies with the piston position, and
the operation dependent nature of some of the param-
eters is not considered. This leads to the controller be-
ing conservatively tuned to achieve acceptable relative
stability margins to account for the neglected dynamics
and the uncertainty in the parameters.

Nonlinear control methods applied in hydraulic servo
systems with symmetrical cylinders have been proven
experimentally to provide increased tracking perfor-
mance in Bech et al. (2013) and Andersen et al. (2015).
This results from the design procedure, which considers
the hydraulic system’s nonlinear dynamics and time-
varying parameters.

One method of designing control algorithms is the
backstepping technique. Backstepping is directly ap-
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plied to systems that are modelled by systems of equa-
tions in strict feedback form. Using the backstepping
algorithm and by appropriately selecting the control
variable, a Lyapunov function for the closed loop sys-
tem is constructed, guaranteeing the boundedness of
the states.

In the current paper, a novel simple backstepping
controller is hence presented. The main focus is here
on the stability of the system and minor on the per-
formance, although both simulation and experimental
results are presented and compared with those of some
classic linear controllers.

1.1 State of the art

Owing to the aforementioned advantages, nonlinear
controllers based on backstepping have been designed
and applied to electro-hydraulic systems. Furthermore,
different techniques have been applied alongside the
backstepping design to account for the parameter vari-
ations.

1.1.1 Combination with adaptive techniques

In Ursu et al. (2006), a backstepping controller is de-
signed for a symmetrical cylinder for force and position
control. Simulation results are performed to compare
the tracking performance of different controllers. In
Liu and Alleyne (1999), a backstepping controller is
designed for pressure tracking of a symmetrical electro-
hydraulic actuator. Full state feedback is assumed. An
adaptation algorithm based on the Lyapunov function
has been designed to account for the lack of accurate
knowledge of the valve’s discharge coefficient. In the
first part of Sirouspour and Salcudean (2000), exact
backstepping controller design is applied to an asym-
metric cylinder for position reference tracking, while
in the second part, an adaptation algorithm for the
estimation of the hydraulic parameters is established.
This algorithm is based on the Lyapunov function. In
the experimental results, the proposed controller, al-
beit complex, outperforms a PD controller. However,
the mechanical system’s parameters are assumed to be
precisely known, and that full state feedback is avail-
able.

The problem of unknown mechanical and hydraulic
parameters is solved in Kaddissi et al. (2007) by an
identification procedure based on the recursive least
squares algorithm. This procedure is realized before
the control design with a sinusoidal input plus low
power white noise. Afterward, the exact, full state
backstepping algorithm is designed and compared with
a PID controller. The nonlinear controller is found to
require less control input power for better tracking per-
formance, especially when the load is increased. The

Lyapunov function is designed so that the state matrix
of the resulting closed loop error dynamics is almost di-
agonal when the tuning parameters are selected appro-
priately. Then, the negative effects of the magnitude
of the hydraulic elements are alleviated.

In Yao et al. (1999), the Adaptive Robust Control
(ARC) method is applied to an asymmetrical cylinder.
This method is based on backstepping, and for each
step, the virtual control law is composed of adaptive
and robust terms. In Yao et al. (2001), ARC is ap-
plied on a symmetrical cylinder. The discontinuous
projection method is used alongside tuning functions
for parameter estimation. Both uncertain parameters
and uncertain nonlinearities are dealt with. The result-
ing controller is somewhat complex and many tuning
parameters are required.

In all the previous works, the use of adaptive laws
assumes that the system is linear in the parameters.
However, this assumption does not hold when the ini-
tial control volumes are unknown. This is tackled
in Guan and Pan (2008), where adaptive backstep-
ping control is applied to a valve actuated asymmet-
rical cylinder. A modified Lyapunov function is in-
troduced so that the uncertain initial volumes can be
estimated and used for control design, even though
the system is not linear in parameters regarding these
terms. Furthermore, the overall controller is composed
of many tuning parameters, which can be difficult to
select. Experimental results show that the proposed
controller provides superior tracking performance to a
non-adaptive backstepping controller and to an adap-
tive controller assuming known initial control volumes.
The same approach was applied to a pump controlled
asymmetrical cylinder system in Ahn et al. (2014).

In Choux and Hovland (2010) and Choux (2011), an
adaptive backstepping controller is designed for a sym-
metrical cylinder servo system. The tuning functions
approach is used. Simulations show that including the
valve’s second-order dynamics increases tracking per-
formance. The full state vector is considered available,
and the resulting control law is complex and compu-
tationally heavy. This is deduced by the number of
assignments and mathematical manipulations of the al-
gorithm.

To overcome the increased complexity of the back-
stepping based controllers, mainly due to the differen-
tiation of the virtual control laws, different approaches
have been made. In Choux et al. (2012), the backstep-
ping design stops at the first two steps, and the load
pressure error is regulated by a PID controller. The
simulation results, comparing the developed scheme to
the one proposed in Choux and Hovland (2010) aug-
mented with the LuGre friction model, present good
tracking performance. The complexity of the control
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algorithm is reduced by a wide margin. However, sta-
bility is not proven for the whole system, with or with-
out including the valve dynamics. Another method, de-
scribed in Schmidt (2012), is proposed to decrease the
complexity. The system is a 1 DOF manipulator, actu-
ated by an asymmetrical, servo valve controlled cylin-
der. An adaptive backstepping controller is designed
similarly to Guan and Pan (2008). For the complexity
to be reduced and ease of implementation, the final step
in the backstepping procedure is omitted. The force
controller is designed as a pressure feedback loop and
a proportional controller. Furthermore, the backstep-
ping controller for the mechanical part is reduced to a
PD controller by noticing the resulting virtual control
law of the second step. The overall tuning of the PD
controller is based on linear techniques. The result-
ing controller presents increased end-point trajectory
tracking performance compared to a linear reference
controller with flow feedforward.

Instead of adapting to an unknown disturbance, such
as the external force, a disturbance observer is uti-
lized in Bakhshande and Sffker (2017). The observer
also estimates the states of the system. The backstep-
ping design procedure then follows. The controller is
compared experimentally to a Sliding Mode Controller
(SMC) and a proportional linear controller, showing
increased tracking performance.

As mentioned above, a controller is designed using
the backstepping algorithm in this paper. The focus
is not on obtaining the most accurate tracking per-
formance but on presenting a simple algorithm, where
the increased complexity due to virtual control laws
differentiation and the high number of tuning parame-
ters for the adaptation laws, is avoided. This is hence
achieved using a sliding mode disturbance observer.
The benefit of the current algorithm is hence a ro-
bust controller with few tuning parameters, which may
cope with the non-linearities encountered in hydraulic
systems. Finally, the algorithm is experimentally val-
idated and compared with that of classical linear con-
trollers, showing that the performance of the backstep-
ping controller is worse than that of the linear con-
trollers for the considered trajectory. However, this is
partly due to the conservatively designed backstepping
controller and the limitations in the trajectory used,
where the current paper focuses on proving the sta-
bility. Finally, recommendations for how the tracking
performance may be improved are, however, given.

2 System Description - Modelling

In this section, the model of the system to be con-
trolled is developed. The system is comprised of the
load, which is the links of the manipulator in the dif-

ferent configurations, two symmetrical cylinders, and
two servo valves that control the flow to the cylinders’
chambers. An illustration of the manipulator is shown
in Figure ??. Initially, the dynamic model of the ma-
nipulator, denoted as the mechanical model, is derived.
Then, the dynamic model of the actuators, denoted the
hydraulic model, follows.

Figure 1: Illustration of the hydraulically actuated ma-
nipulator.

2.1 Mechanical model

Selecting the joint angles as generalized coordinates
and under the assumption that the position of the cen-
ters of mass for each link-actuator combination does
not vary depending on the piston position, the equa-
tions of motion are derived from the Euler-Lagrange
equations as Spong and Vidyasagar (1989):

D(q)q̈ + C̄(q, q̇)q̇ + Ḡ(q) = τ (1)

where q =
[
φ1 φ2

]T
is the vector of joint angles, D(q)

is the inertia matrix, C̄(q, q̇)q̇ is the vector of Coriolis
and centrifugal forces, Ḡ(q) is the vector of gravita-
tional forces and τ is the vector of input joint torques.
The mechanical model can be described in actuator
space, i.e. with actuator lengths as coordinates using
the law of cosines. The rate of changes of joint angles
is related to the velocity of each piston via:

q̇ = Js(xp)ẋp (2)

where x =
[
xp1 xp2

]T
is the vector of piston posi-

tions. It is more convenient to express the input vector
in terms of the forces applied by the actuators instead
of the torques applied to each link. This is achieved by
the relationship:

τ = JTs (xp)F (3)

As a result, the dynamic model of the manipulator can
be expressed in terms of piston positions as:

M(xp)ẍp + C(xp, ẋp)ẋp + G(xp) = F (4)
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2.2 Hydraulic model

The motion of the piston of each actuator is describe
the by Newton’s second law:

mpẍpi = A(PAi − PBi)−Bvẋpi − FC(ẋpi) (5)

where i = 1, 2 for each actuator. PA, PB denote the
absolute pressure of the cylinders’ chamber A and B
respectively, Bv denotes the viscous friction coefficient
and FC the Coulomb friction. The pressure dynamics
for each chamber are described via the flow continu-
ity equation Jelali and Kroll (2002). Since the ori-
fices of each servo valve are matched and symmetric
and under the assumption that the effective oil bulk
moduli in both chambers are equal, the load pressure
PL = PA−PB is used as introduced so that the order of
the system is reduced. Moreover, only internal leakage
is considered between the chambers. This leakage flow
is considered laminar. The flow continuity equation
reduces to:

ṖLi =

[
βeff

VAi(xpi
)

+
βeff

VBi(xpi
)

]
(−ClPLi

−Aẋpi +QLi
)

(6)

where VA,B is the volume of each chamber of the cylin-
der plus the initial volume of the oil contained in the
hoses and the valves. The flow through the orifices of
the servo valves is assumed turbulent and is given by
Jelali and Kroll (2002):

QL = Kvxv

√
Ps − Pt − sign(xv)PL

2
(7)

where Ps, Pt are the supply and tank pressures respec-
tively, xv is the displacement of the valve’s spool and
Kv is the discharge coefficient of the valve’s orifices. In
(7), the sign(xv) is defined as:

sign(xv) =

{
1 xv ≥ 0

−1 xv < 0

One way to obtain a model that describes the dynamic
properties of the spool position of the servo valve is via
the frequency response, given in the valve’s datasheet.
The dynamics can be approached by those of a second
order LTI system:

Xv(s) =
ω2
v

s2 + 2ζvωvs+ ω2
v

Uv(s) (8)

However, the natural frequency of the servo valve is
much higher than the frequency of operation of the
actuators and as a result, the model of the servo valve
is only considered in the simulation model. For the
analysis, it is assumed that xv ≈ uv.

The masses of the piston and the rod of each cylinder
are considered negligible compared to the elements of
the inertia matrix. Consequently, from (5), the force
applied to each link from the respective actuator can
be written as:

Fi = APLi −Bvẋi − FC(ẋi) (9)

2.3 Model of the system

In order to derive the system of differential equations
that describe the whole manipulator and actuator sys-
tem, (9) is substituted into (4):

M(xp)ẍp + [C(xp, ẋp) + Bv] ẋp + G(xp) + FC = APL

(10)

where Bv = diag(Bvi)2×2, A = diag(Ai)2×2, FC =[
FC1

(ẋp1) FC2
(ẋp2)

]T
and PL =

[
PL1

PL2

]T
. The

dynamics of the system are described by (10), (6) and
(7).

3 Problem formulation

The objective of the design is that the tool centre of
the manipulator tracks the desired trajectory. This
trajectory is illustrated alongside the workspace of the
manipulator in Figure 2. This trajectory has been de-

-1 -0.5 0 0.5 1 1.5 2 2.5
X axis [m]

-1

-0.5

0

0.5

1

1.5

2

2.5

Y 
ax

is
 [m

]

Manipulator Workspace

Figure 2: Desired tool center trajectory within the
manipulator’s workspace.

signed using a seventh-order time polynomial so that
the velocity, acceleration, and jerk at the starting and
ending position of each segment are zero. The total
completion time has been selected to be equal to 5 s.
Through the inverse kinematics of the manipulator, the
reference trajectory is expressed as piston position and
velocities references for each hydraulic servo system.

A fundamental problem in designing a control algo-
rithm to achieve trajectory tracking is the uncertain
and time-varying nature of the parameters. For ex-
ample, the value of the effective oil bulk modulus is
dependent on the oil temperature, the pressure of the

34



“Backstepping based controller utilizing a sliding mode disturbance observer’

controlled volume as well as the free air trapped in the
fluid. The last parameter is not easy to estimate, and
the two former parameters vary during operation. Fur-
thermore, the load attached to the tool center might
also vary. Finally, depending on the reference velocity
of the trajectory, the Coriolis terms can change.

In the case studied in this paper, the controllers are
designed for each servo system separately. This leads
to regarding each actuator-link combination as a SISO
system. As a result, the model of each servo system is
written from (10):

Mii(xp)ẍpi + [Cii(xp, ẋp) +Bvi ] ẋpi +Gi(xp)+ (11)

+ FCi
(ẋpi) +Mij(xp)ẍpj + Cij(xp, ẋp)ẋpj = APLi

with i = 1, 2 and j = 2, 1 for each servo system. In the
following, the arguments i or j will be dropped, since
the design is equivalent for both servo systems. The
mechanical model can be written in state space form
by selecting x1 = xpi and x2 = ẋpi :

ẋ1 = x2 (12)

ẋ2 = −ϑ1x2 − d(t) + ϑ2PLi
(13)

ṖLi = −ϑ3PLi − ϑ4x2 + ϑ5ūi (14)

where

ϑ1 =
Cii +Bvi
Mii

, ϑ2 =
A

Mii
,

ϑ3 = βCli , ϑ4 = βA, ϑ5 = βKv, (15)

β = βeff

[
1

VA(xpi)
+

1

VB(xpi)

]
d(t) =

Gi + FCi +Mij ẍpj + Cij ẋpj
Mii

with i = 1, 2 and j = 2, 1 for each servo system. Fur-
thermore, a pre-compensator has been used:

ūi = uvi

√
Ps − Pt − sign(uvi)PL

2

In the following, the error between an estimated pa-
rameter and its actual value is defined as:

ϑ̃i = ϑ̂i − ϑ, i = 1, ..4

4 Backstepping-based controller
design

To proceed with the controller design, the error dy-
namics of the system to be stabilized are developed.
The error variables are defined as:

z1 = x1 − r(t) (16)

z2 = x2 − a1 (17)

z3 = PL − a2 (18)

where r(t) is the position reference and a1,2 are the
desired values for the state variables x2 and PL respec-
tively. The procedure for designing the control algo-
rithm is presented in steps.

Step 1: The dynamics of the first error variable are
written as:

ż1 = ẋ1 − ṙ(t) = z2 + a1 − ṙ(t) (19)

In order to select a1, a radially unbounded and decres-
cent function is selected as:

V1(z1) =
1

2
z21 (20)

whose time derivative becomes, using (19):

V̇1(z1) = z1 [z2 + a1 − ṙ(t)] (21)

The derivative of V1(z1) can be rendered negative def-
inite when z2 = 0 by selecting a1 as:

a1(z1) = −k1z1 + ṙ(t) k1 > 0 (22)

Then

V̇1 = −k1z21 = −2k1V1 (23)

and the origin is the Globally Exponentially Stable
equilibrium point for z1. Ensuring that z2 = 0 is the
objective of Step 2.

Step 2: The dynamics of the second error variable,
using (18), can be written as:

ż2 = −ϑ1x2 − d(t) + ϑ2z3 + ϑ2a2 − ȧ1(z1) (24)

with ȧ1 being exactly known. The variable a2 is used
as a virtual control input to drive z2 to 0. Initially,
to tackle the uncertainty in the input term, the virtual
input variable is selected as Krstic et al. (1995):

a2 = ρ̂2u2, ρ̂2 =
1

ϑ̂2
(25)

Then, the system of the first two error state variables
can be rewritten:

ż1 = −k1z1 + z2 (26)

ż2 = ϑ2z3 − ϑ1x2 − d(t)− ȧ1 + ϑ2ρ̃2u2 + u2 (27)

where ρ̃2 = ρ̂2 − ρ2, with a decrescent and positive
definite Lyapunov function candidate:

V2 = V1 +
1

2
z22 +

1

2γ1
ϑ̃21 +

|ϑ2|
2γ2

ρ̃22 (28)
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with time derivative:

V̇2 =− k1z21 + z2 [z1 − ϑ1x2 + u2 − d(t)− ȧ1(z1)] +

+ ϑ2z2z3 +
1

γ1
ϑ̃1

˙̃
ϑ1 + ρ̃2

[
|ϑ2|
γ2

˙̃ρ2 + z2ϑ2u2

]
(29)

This is under the assumption that the rate of change
of ϑ2 is much slower than the rate of adaptation of the
parameter ρ2.

This derivative can be rendered negative definite us-
ing the certainty equivalence virtual control input and
parameter adaptation laws:

u2 = −z1 + ϑ̂1x2 + u2r + ȧ1 − k2z2, k2 > 0 (30)

˙̂
ϑ1 = −γ1z2x2 (31)

˙̂ρ2 = −γ2z2u2 (32)

under the assumption that the rate of variation of the
uncertain parameters is much slower than the rate of
adaptation and knowing the sign of parameter ϑ2. The
robust term u2r is designed to tackle the time-varying
uncertainty d(t). In order to tackle the disturbance
state dependent term d(t), the robust input term u2r
can be selected as:

u2r = −D
δ
z2 (33)

where D is the maximum absolute value of the dis-
turbance term d(t). This may be calculated using the
desired trajectory data by pre-assuming stability. δ is
a positive number, the value of which is a trade-off be-
tween having a large feedback gain and achieving z1
and z2 being close to the origin.

Using Eqs. (30) and (33), (29) may be written as:

V̇2 = −k1z21 − k2z22 + ϑ2z2z3 +

[
−z22

D

δ
− z2d(t)

]
= −k1z21 − k2z22 + ϑ2z2z3 −

D

δ

(
z2 +

δ

2D
d(t)

)2

+

+
δ

4D
d(t)2 ≤ −k1z21 − k2z22 + ϑ2z2z3 +

δ

4D
d(t)2

≤ −k0
(
z21 + z22

)
+
δD

4
, k0 = min{k1, k2}

(34)

In the last inequality of Eq. (34), the cross term ϑ2z2z3
was neglected since the next step of the design ensures
that z3 goes to 0 as t → ∞. Then, (34) is negative
semi-definite in the set:

S =

{
z ∈ R2 : |z| ≥

√
δD

4k0

}
(35)

Outside the set, the state variables’ trajectories di-
verge from the origin towards the surface of the circle

with radius
√

δD
4k0

. When inside the set, the following

holds:

V̇2 ≤ Q(z) ≤ 0

Q(z) = k0
(
z21 + z22

)
− δD

4

By applying the LaSalle-Yoshizawa theorem, from
Krstic et al. (1995), it can be shown that

lim
t→∞

Q(z) = 0

and the state variables converge ultimately on the cir-

cumference of the circle with radius
√

δD
4k0

. Here, the

trade-off in the selection of δ can be seen. The smaller
the value of δ, the larger the magnitude of the robust
term u2r when z2 6= 0 but the radius of the circle where
the states z1 and z2 converge becomes smaller. The
state variables ρ̃2, ϑ̃1 are proven to be bounded.

Step 3 The error dynamics of the system can be writ-
ten:

ż1 = −k1z1 + z2 (36)

ż2 = −z1 − k2z2 + ϑ2z3 + ϑ̃1x2 + ϑ2ρ̃2u2 + [u2r − d(t)]
(37)

ż3 = −ϑ3PL − ϑ4x2 + ϑ5ū− ȧ2 (38)

The increased complexity of the backstepping algo-
rithm, or explosion of terms, can be seen by the time
derivative of a2, which needs to be canceled. This
would also introduce the need for acceleration feed-
back. Moreover, the three uncertain terms ϑ3,4,5 would
need to be estimated, as well as ϑ2 since no tuning func-
tions were used in the previous step. These adaptation
algorithms would require more gains to be adjusted.
To avoid the increased complexity, the approach of the
paper is the following. If ū is selected as:

ū =
1

ϑ̄5
u3, ϑ̄5 =

√
|ϑ5,min||ϑ5,max| (39)

Equation (38) becomes:

ż3 = −ϑ3PL − ϑ4x2 − ȧ2 +

(
ϑ5
ϑ̄5
− 1

)
u3︸ ︷︷ ︸

g

+u3 (40)

A Lyapunov function candidate for the system is:

V3 = V2 +
1

2
z23 (41)

Its time derivative is shown in Eq. (42).
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V̇3 ≤− k1z21 − k2z22 +
δD

4
+ z3

ϑ2z2−ϑ3PL − ϑ4x2 − ȧ2 +

(
ϑ5
ϑ̄5
− 1

)
u3︸ ︷︷ ︸

g

+u3

 (42)

The control input u3 can be selected as:

u3 = −k3z3 + u3r + uC , k3 > 0 (43)

where u3r is a robust term to tackle the uncertainty
stemming from the term ϑ2z2 and uc is a term that is
assumed to directly cancel the disturbance term g and
will be designed in the following. The derivative of V3
becomes:

V̇3 ≤− k1z21 − k2z22 − k3z23 +
δD

4
+ ϑ2z2z3 + z3u3r+

+ z3 (g + uc)

≤− k1z21 − k2z22 − k3z23 +
δD

4
+
ϑ22,maxz

2
2z

2
3

2ε
+

+
ε

2
+ z3u3r + z3 (g + uc) (44)

which is valid for ε > 0, and Young’s inequality has
been used. Selecting

u3r = −z3
ϑ22,maxz

2
2

2ε
(45)

and assuming perfect cancellation of the disturbance
term g by uC ,

V̇3 ≤ −min{k1, k2, k3}|z|2 +
δD + 2ε

4
(46)

Applying the LaSalle-Yoshizawa theorem again can
prove the boundedness of the state vector z.

Design of the disturbance observer In order to se-
lect uC in (43), a disturbance observer that directly
cancels the term g in (40) is designed. Selecting a slid-
ing surface S as:

S = z3 + w (47)

with time derivative, using (40), defined as:

Ṡ = g + u3 + ẇ (48)

and w a function to be selected, the aim becomes to
drive S and Ṡ to 0 in finite time. A radially unbounded
Lyapunov function candidate for the surface S is:

VS =
1

2
S2 (49)

Its time derivative along the solutions of (48) becomes:

V̇S = S (g + u3 + ẇ) ≤ |S|G+ S (u3 + ẇ) (50)

The term G is considered as an upper bound of g and
is selected in the following. If

ẇ = vS − u3 (51)

and

vS = −ρ sign(S) (52)

then

V̇S ≤ |S|G+ SvS ≤ |S| (G− ρ) = − α√
2
|S| = −αV 1/2

S

(53)

where ρ = G + α√
2

and α > 0 selected so that the

desired reaching time for the sliding mode is achieved.
Since in finite time:

Ṡ = 0⇒ g + u3 + ẇ = 0⇒ g + u3 + uS,eq − u3 = 0⇒
(54)

⇒ uS,eq = −g (55)

a suitable selection for the term uC is uS,eq because on
the sliding surface directly cancels the disturbance g.
This is achieved by low pass filtering the discontinuous
signal uS :

uC =
1

τs+ 1
[−ρ sign (S)] (56)

The low pass filter time constant was set around five
times lower than the sampling period, which was 5e-4
s.

Selection of the term G The upper bound of the
term g, used in (50), is selected as:

G =|ϑ3|max|PL|+ |ϑ4|max|x2|+ | ˙̂α2|+
+ |β5 − 1|K3|z3|+ |β5 − 1||u3| (57)

where β5 =
√
|ϑ5,max|
|ϑ5,min| . The direct measurements of the

signal are used.
The estimation of the derivative of the second virtual

control law, α̂2, is acquired via a second order differen-
tiation using the super twisting algorithm. It has been

37



Modeling, Identification and Control

assumed that the second derivative of α2 is bounded,
an assumption that pre-requires stability.

In order to evaluate the closed loop stability using
the disturbance observer, the derivative of V3 is re writ-
ten:

V̇3 = −k1z21 − k2z22 − k3z23 +
δD

4
+
ε

2
+ z3ures (58)

where ures is a residual term stemming from the dif-
ference between uC and uS due to the low pass filter
lag. In the case that the time constant of the filter is
sufficiently small, it can be assumed that uC ≈ uS , and
the states z1,2,3 are bounded.

The closed loop system and selection of the feedback
gains k1,2,3 Assuming that uC ≈ uS,eq, the closed
loop system dynamics become:

ż =

ż1ż2
ż3

 = Az +

0
1
0

(ϑ̃1x2 + ϑ2ρ̃2u2

)
+

 0
−1
0

 d(t)

(59)

A =

−k1 1 0
−1 −

(
k2 + D

δ

)
ϑ2

0 0 −
(
k3 +

ϑ2
2,maxz2

2ε

)
 (60)

If the parameter estimation error and the disturbance
term are neglected, the resulting nonlinear system can
be investigated for its stability properties using Lya-
punov analysis. This way, the choice of the gains
k1,2,3 can be facilitated so that stability of the closed
loop system is preserved in the absence of disturbance
terms.

Selecting as Lyapunov function candidate the posi-
tive definite function

W = zT z (61)

with time derivative :

Ẇ = zT
(
AT + A

)
z ≤ λmax

(
AT + A

)
zT z︸︷︷︸
W

(62)

The origin will be exponentially stable, in absence of
any disturbances, if the real part of all the eigenvalues
of AT +A is negative. It is also noted that the variable
ϑ2 = A

Mii(xp)
is always positive and nonsingular. The

eigenvalues can be calculated symbolically as:

λ1 = −2k1

λ2,3 =
−δϑ22,maxz22 − [D + (k2 + k3) δ] ε± o

δε

o =
√
{ε [δ (k2 − k3) +D]− δz22ϑ22,max}2 + ϑ22δ

2ε2

The term o is always positive and real, since the term
under the square root is always positive. As a result
λ3 is always negative for all values of z2 and ϑ2. Fur-
thermore, since k1 > 0, λ1 is also negative. In order to
render λ2 < 0, its numerator is investigated. An initial
approach is to select k2 so that the positive term o is
minimized. This happens when

k2 = k3 −
D

δ
+
z22ϑ

2
2,max

ε
(63)

Substituting (63) in the numerator of λ2, it can be
found that in order to be negative, the following should
hold:

k3 >
ϑ2
2
−
z22ϑ

2
2,max

ε
(64)

or that k3 >
ϑ2,max

2 for robustness. It is also reminded
that, since k3 > 0, from (63) it can be deduced for k3
that

k3 >
D

δ
>
D

δ
−
z22ϑ

2
2,max

ε
(65)

Since along the required trajectory the term D
δ >

ϑ2,max

2 , it is decided that

k2 = k3 −
D

δ
+
z22ϑ

2
2,max

ε

k3 >
D

δ

with the resulting eigenvalues being

λ1 = −2k1 λ2,3 < − (ϑ2,max ∓ ϑ2) (66)

5 Simulation results

To investigate the performance of the system with the
presented controller, this has first been tested in a sim-
ulation model. Two linear controllers have, in this
regard, also been designed for comparison purposes,
namely a Proportional-Integral (PI) and Proportional-
Lead (PLead) controller. For the second servo system,
instead of a PLead controller, a simple proportional
(P) controller has been designed, given that its band-
width is sufficient to track the reference signal. As part
of designing the linear controllers a static gain pres-
sure feedback and a velocity feedforward term have
been also implemented to augment the tracking per-
formance. The pressure feedback significantly helps to
increase the damping in the system, whereas the ve-
locity feedforward helps to reduce the tracking errors.
The gain crossover frequency for the linear controllers
was selected based on the frequency content of the posi-
tion reference trajectory signals for each servo system,
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acquired using Fast Fourier Transform (FFT) analysis.
The phase margin for each servo system was designed
to be 50o with the linear compensators. The results of
all three controllers for respectively the first and sec-
ond servo system are shown in figures 3 and 4, in which
the resulting errors are also shown. The results are for
the predetermined trajectory, shown in figure 2, which
is repeated three times.
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Figure 3: Simulated response for servo system 1, where
the linear controllers are extended with a ve-
locity feedforward.
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Figure 4: Simulated response for servo system 2, with
velocity feedforward included with linear
controllers.

From the above results it is seen that for both the
first and second servo system the proposed controller
outperforms the linear controllers. In both cases with
errors which are below 1 mm in for all parts of the
trajectory. Therefore the controller has also been ex-
perimentally tested as presented next.

6 Experimental results

The feasibility of the proposed control scheme was
tested in the laboratory setup using cRIO hardware
and the LabVIEW programming language. For the

proposed control algorithm velocity measurements are
needed, however, only a position sensor was available.
As a result, a velocity observer was designed as a slid-
ing mode differentiator, using the super twisting algo-
rithm. Assuming boundedness of the states, the upper
bound of the acceleration could be estimated before-
hand, using the inverse kinematics of the manipulator
and the trajectory data. The experimentally measured
tracking performance of each servo system is presented
in figures 5 and 6 for the proposed and the comparison
control schemes.
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Figure 5: Tracking performance comparison of the pro-
posed and reference controllers for servo sys-
tem 1.
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Figure 6: Tracking performance comparison of the pro-
posed and reference controllers for servo sys-
tem 2.

Initially, it can be seen that for the first servo system,
the tracking performance of the linear controllers is sig-
nificantly better compared to the proposed controller,
unlike what was seen in the simulations. This is partly
attributed the sliding mode differentiator, which, al-
though also implemented in the simulation results, do
have to account for measurement noise in the physical
system. Secondly it is attributed the to the conser-
vative settings of the gains k1,2,3 that have been se-
lected. Hence, increasing these gains while still pre-
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serving closed loop stability, the tracking performance
will be increased. As described before, the main focus
of the paper is however not obtaining the best tracking
performance, but on proving the stability of the pre-
sented algorithm, why the same parameters as used in
the simulations are used.

To test the robustness of the proposed algorithm
against parameter changes or disturbances, a change
in the trajectory was introduced. The completion time
was changed from 5 s to 3.5 s. As a result, the dis-
turbance terms due to the cross-couplings of the two
servo system will be increased, as well as the Coriolis
terms. The tracking performance results for the faster
trajectory are illustrated in Figures 7 and 8.

Figure 7: Tracking performance comparison of the pro-
posed and reference controllers for servo sys-
tem 1, faster trajectory.

Figure 8: Tracking performance comparison of the pro-
posed and reference controllers for servo sys-
tem 2, faster trajectory.

Especially for the first servo system, a degradation
of the tracking performance for the linear controllers is
visible. For the second servo system, this is not easy
to discern from Figure 8 alone. Due to the already
wide bandwidth of the second servo system, the specific
trajectory can be tracked using only the P controller,
even for the faster completion time. This can be easily

interpreted from an FFT analysis of the piston position
reference trajectory.

In order to quantify the performance degradation
and the robustness of the proposed algorithm, differ-
ent indexes can be selected to compare. A selection of
these indexes is discussed in Mattila et al. (2017). In
this article, the indexes that will be compared are the
following:

emax = max|e| = max|xp − r|

eRMS =

√
1

n
e2

where n is the number of samples. These indices, along-
side their percent change due to the modified trajectory
are presented in Table 1.

An initial observation can be made regarding the sec-
ond servo system regarding the performance of the P
controller. It can be seen that the performance of the
P controller does not degrade by a wide margin and
its tracking performance is satisfactory. This happens
due to the selected trajectory and the implementa-
tion of the pressure feedback and velocity feedforward
terms. Its frequency content, even for the faster com-
pletion time, lies in frequencies below a gain crossover
frequency easily attainable by the use of pressure feed-
back and a simple gain. Furthermore, the PI controller
suffers from the introduction of the integrator and this
gain crossover frequency is decreased. Nonetheless, re-
garding the comparison controllers, the use of feedfor-
ward can achieve satisfactory tracking results, espe-
cially for the case where no integrator is included in
the controller.

The robustness of the proposed algorithm lies in the
sliding mode observer and the adaptation term of Eq.
(25). Even though the tracking performance cannot be
compared to that of the linear controllers, the tuning
of the gains k1,2,3 has been conservative. Other choices
that could increase the performance are:

• Choice of adaptation gains in Eqs. (31) and (32).
Different adaptation algorithms could also be used
by modifying the stability analysis accordingly.

• Selecting a smaller value for the variable δ of
Eq. (33). According to the analysis using the
quadratic Lyapunov function V2 with time deriva-
tive shown in Eq. (34), the error states z1,2 will be
bounded on an ellipse closer to the origin. How-
ever large δ can lead to large control signal and
saturate the valve. The same holds for the vari-
able ε of Eq. (45).

• Selection of α and G, which consequently affect
ρ in Eq. (52). A larger value for α leads to the
disturbance term g in Eq. (40) being estimated
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Table 1: Error indexes and percent increase for both servo systems

emax [mm] eRMS [mm]

t = 5 [s] t = 3.5 [s] ↑ % t = 5 [s] t = 3.5 [s] ↑ %

Servo system 1

PI 2.2803 4.2787 87.63 1.1621 1.9413 67.05

P-Lead 2.6390 3.1855 20.70 1.3170 1.6347 24.12

Proposed 12.8727 16.4203 27.56 7.7526 10.1904 31.44

Servo system 2

PI 0.7548 0.8589 13.79 0.2526 0.3343 32.34

P 1.2209 1.2767 4.57 0.6770 0.6857 1.28

Proposed 3.1444 3.6404 13.62 1.3661 1.6234 18.83

and cancelled faster. The term G can be estimated
in a less conservative way, leading to smaller uS,eq
values, where the low pass filter time constant can
be smaller.

7 Conclusion and future research

The purpose of this article was to investigate whether
the complexity of the backstepping control technique
may be simplified in terms of the complexity due to the
increasing amount of terms and virtual input deriva-
tives. This was approached using sliding mode the-
ory, using a disturbance observer in the last step of
the backstepping algorithm. The result is the avoid-
ance of over-parameterization, at least partially, with-
out the use of tuning functions and also the use of a
control law that is not of high complexity. The re-
sulting closed loop system is bounded under specific
assumptions, while the application to the laboratory
system was straightforward. Trajectory tracking was
performed without fine tuning a large number of pa-
rameters. Since the backstepping algorithm is intuitive
in nature and can take into consideration the dynamics
of the actuators, future research can focus on proving
tighter stability margins for this algorithm including
the dynamics of the low pass filter, as well as examin-
ing whether performance similar to the reference lin-
ear controllers can be achieved by increasing the state
feedback gains and implementing different adaptation
schemes.
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