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A methodology to estimate space heating and domestic hot water energy 
demand profile in residential buildings from low-resolution heat meter data 

Daniel Leiria *, Hicham Johra, Anna Marszal-Pomianowska, Michal Zbigniew Pomianowski 
Aalborg University, Department of the Built Environment, Thomas Manns Vej 23, 9220, Aalborg Øst, Denmark   

A R T I C L E  I N F O   
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A B S T R A C T   

This article presents a new methodology to disaggregate the energy demand for space heating (SH) and domestic 
hot water (DHW) production from single hourly smart heat meters installed in Denmark. The new approach is 
idealized to be easily applied to several building typologies without the necessity of in-depth knowledge 
regarding the dwellings and their occupants. This paper introduces, tests, and compares several algorithms to 
separate and estimate the SH and DHW demand. To validate the presented methodology, a dataset of 28 Danish 
apartments with detailed energy monitoring (separated SH and DHW usage) is used. The comparison shows that 
the best method to identify energy demand data points corresponding to DHW production events is the so-called 
“maximum peaks” approach. Furthermore, the best algorithm to estimate the SH and DHW separately is a 
combination of two methods: the Kalman filter and the Support Vector Regression (SVR). This new methodology 
outperforms the current Danish compliances typically used to estimate the annual DHW usage in residential 
buildings.   
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1. Introduction 

With the growing global concern regarding climate changes and the 
sustainability of our technologies, the different sectors of our society are 
challenged and urged to take a sharp turn to alleviate their impact on the 
environment. This is especially the case for energy production, distri
bution, and usage activities. Among them, the building sector has a 
major role in this sustainability transition. According to [1], the Euro
pean Union (EU) building sector has an estimated share of 40% of the 
total energy end-usage, where 79% of it is for space heating (SH) and 

domestic hot water (DHW) production alone [2]. Specifically, in 
Denmark, 81.8% of the annual energy is used for heating (SH and DHW) 
in a typical house, while the other appliances (electrical consumers, 
lighting, etc.) have an annual share of 18.2% [3]. Regarding the Danish 
heating demand, 64% of the housing stock is connected to the district 
heating (DH) network. Furthermore, around 50% of the building stock 
in Iceland, Lithuania, Estonia, Sweden, Finland, Russia, Poland, and 
Northern China have their energy demand for space heating, cooling, 
and domestic hot water provided by district heating and cooling (DHC) 
networks [4]. The DHC systems and their potential for cost-effective, 
flexible, and sustainable heating and cooling supply are considered a 
strategic component of the roadmap toward a low-carbon future and 
gas-free neighborhoods in Europe, the USA, Canada, and Asia [5,6]. 

Research in the field of DH system improvement and integration of 
renewable energy sources leads to new DH concepts or configurations 
called “generations”. Currently, the newly-installed and refurbished DH 
networks are transitioning from the 3rd to the 4th generation [7]. The 
4th generation of district heating (4GDH) systems is mainly character
ized by low-temperature heat-carrier fluid supply (40–70◦C). The arti
cles [7–10] outline several uprising advantages of implementing the 
4GDH systems. Some of these advantages are the increase of energy 
efficiency in the network distribution due to the lowering of heat losses, 
a higher output capacity from different low-temperature sources 
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integrated with DH systems, a smaller risk of pipe leakages caused by 
thermal stress, a better relation with the new building requirements 
regarding thermal usage, to name a few. Nevertheless, the 4GDH tran
sition also faces particular challenges in decreasing the supply temper
ature needed for the building’s SH and DHW demands. The challenges 
are the proper coordination in integrating the multiple low-temperature 
heat and waste-heat sources (renewable and recycled), the coupling to 
other energy grids (e.g., electricity, gas), the smart monitoring and 
control of such thermal grids and all its sub-components (including ac
curate prediction of production and demand, and demand-side man
agement of the heat end users), the cost-effectiveness and the 
achievement of high reliability of heat supply at all time within a given 
(and often unflexible) legislative framework, and the operation of 
oversized or faulty systems on the building side. 

It is clear from the barriers stated above that it is necessary to un
derstand the DH network in detail. Therefore [7,11], outline the 
importance of smart meter data in the future of district heating. This 
metering initiative makes it possible: to efficiently manage the energy 
production, distribution grid, and the end-consumers; to optimize the 
DH system and its interconnection with other energy sources; to detect 
and fix the different faults occurring in the system; and to provide more 
information to the end-users regarding their energy usage, instigating 
them to change their consumption behavior. 

As a front-runner, Denmark has made a great effort to install smart 
heat meters in buildings connected to the heating grid, and from 2027 it 
will be obligatory to collect dynamic heating data by using smart meters 
for every building connected to the DH grid [12]. These meters have up 
to 1-hour resolution measurements, and their collected data is easily 
accessible by utility companies. This metering initiative aims to obtain a 
detailed insight into the heat load patterns in each building and, when 
coupled with other sources of information, to unravel the reasons behind 
them. Even though this initiative is a significant step toward reaching 
the energetic goals set by Denmark [13,14] and the EU [15], it has a 
major drawback with respect to its data collection. In most buildings, 
only one smart energy meter is being installed per household. Each 
meter thus collects the total heat usage without distinguishing the en
ergy used for SH or DHW production. Regarding SH, it depends on the 
outdoor conditions, building characteristics, occupants’ preferences, 
and installed space heating systems [16]. In contrast, DHW production is 
correlated with people’s consumption habits and the installed hot water 
production system. Because these two types of energy usage are asso
ciated with different variables, it is essential to estimate them separately 

to have a deeper insight into the building itself and its occupants [17]. 
Another aspect to consider on the importance of knowing these en

ergy shares is regarding refurbishment initiatives. In [18], the authors 
argue that global building regulations have stricter SH efficiency rules 
while overlooking DHW consumption. Therefore, these new buildings, 
also known as low-energy buildings, have a much higher DHW share due 
to the continuous decrease of SH usage over the years and the higher 
levels of comfort concerning heating practices demanded by the 
residents. 

Thus, a better assessment of the thermal appliances can be achieved 
by disaggregating the energy used in buildings. This contributes to a 
more detailed understanding and control on the user side and promotes 
better decision-making strategies regarding heat production and 
distribution. 

1.1. Literature review 

As mentioned above, most installed smart energy meters only mea
sure the building’s total heat usage. These total measurements often 
equal the sum of SH and DHW in a household. Even though this is 
already a great source of information, a clear distinction between SH and 
DHW production must be made. To tackle this problem, several research 
studies have developed different methods to estimate both utilities from 
total heating measurements. The present research focuses on instanta
neous DHW production systems without thermal storage tanks, due to 
being a typical installation in Danish households, and all apartments in 
the dataset had this type of system. Hence most of the reviewed articles 
are regarding disaggregating methods applied in these systems. 

One of the first studies to explore this problem is [19], which pre
sents a statistical time-series approach to estimate the SH from the total 
heat usage measurements. The method assumes that the space heating 
demand varies smoother due to small outdoor temperature changes than 
the DHW usage, which, conversely, is more sporadic with higher peaks 
due to the very short time length of the different hot water draw-off 
events. This method estimates the SH by applying a kernel smoother 
to the total data points, where all measurements above a defined 
smoothed threshold are due to DHW usage. This method seems prom
ising, and the authors formulated several kernel functions to increase the 
estimation accuracy. Nevertheless, it still lacks validation with sepa
rated space heating and DHW usage measurements, which the authors 
did not have at the time. Another drawback of this method is the ne
cessity of high-resolution data (10-min measurements) to detect the 

Nomenclature 

Acronyms 
4GDH 4th generation district heating 
CPT Change point temperature 
DHW Domestic hot water 
DH District heating 
DHC District heating and cooling 
EU European Union 
HVAC Heating, ventilation, and air conditioning 
NA Not available – missing data point 
nZEB Nearly zero-energy building 
SH Space heating 
SMA Simple moving average 
SVR Support vector regression 
NMBE Normalized mean bias error 
CVRMSE Coefficient of variation of the root mean square error 

Symbols and variables 
A Heated area 

C Cost (SVR parameter) 
Cp,water Specific heat capacity of water 
EDHW, estim Estimated domestic hot water energy usage 
EDHW Measured domestic hot water energy usage 
EDHW, compl Yearly estimated domestic hot water energy usage by the 

Danish compliance calculation 
ESH,estim Estimated space heating energy usage 
ESH,max Maximum measured space heating in the dataset 
ESH Measured space heating energy usage 
ESH,min Minimum measured space heating in the dataset 
ESH Mean measured space heating in the dataset 
ETotal Measured total heat demand for space heating and 

domestic hot water production 
Tcold Cold water supply temperature from Danish standards 
TDHW Domestic hot water supply temperature from Danish 

standards 
α Moving average weight 
γ Gamma (SVR parameter) 
ρwater Water density  
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sporadic peaks from DHW usage. Unfortunately, most of the installed 
smart meters in Denmark do not provide these high-frequency 
measurements. 

Differently in [20], a simpler methodology is proposed to disaggre
gate the smart meters data by considering that the total measurements 
are equal to the DHW usage during summer, i.e., no SH demand. Based 
on this assumption, their approach does not estimate the different 
household heating utilities during the whole year but estimates the 
household average DHW load profile. If defined correctly, this type of 
profile provides valuable information concerning the customers’ DHW 
habits. Regarding the method’s accuracy, it is shown that it performs 
better for newly-built households with a large DHW usage share. How
ever, the authors also concluded that several houses use space heating 
during summer, invalidating their initial assumption and significantly 
decreasing the profile accuracy. Similarly, in [21], a method is proposed 
to decompose SH and DHW usage in total measurements. The proposed 
method is called hybrid summer signature. It is based on discovering the 
DHW profiles when the total heating is equal to the DHW usage (no SH 
demand), taking into account the outdoor temperature. When the DHW 
profiles are discovered, the space heating demand equals the subtraction 
of the total values and the DHW daily profiles. The method was vali
dated with several Norwegian buildings (apartments and hotels) and 
compared with other existing methods. 

In [22], another approach is proposed to separate the different 
measurements in a Norwegian hotel. Two methods were presented and 
compared. Both approaches began by estimating the SH demand 
through its linear dependency on the outdoor temperature. The main 
difference between the methods is that the first calculates the DHW 
needs by subtracting the estimated SH from the total measured heat 
demand. And the second method, before calculating the DHW usage, the 
SH (already calculated by its outdoor temperature dependency) is 
adjusted by applying a singular spectrum analysis algorithm. The second 
methodology had the highest accuracy in predicting both heating utili
ties. With a different approach [23], estimates the SH and DHW usage 
weekly profiles using grey-box models. Their study concluded that the 
calculated values were slightly overestimated compared to the actual 
measurements. However, the method is accurate, and the authors argue 
that the models can be improved to increase even further its accuracy. 
The methodology developed in [24] is also worth mentioning. A pattern 
recognition algorithm was applied to disaggregate SH from other ap
pliances in two households in the UK. Nevertheless, the household’s 
heating source is a natural gas boiler instead of DH to provide thermal 
energy to SH, DHW, and cooking utilities (e.g., oven). 

1.2. Contributions 

Some of the methods developed to disaggregate the heating mea
surements are present in the section above. However, they have some 
drawbacks that this methodology attempts to solve. Firstly, this novel 
method aims to separate these energy shares using 1-h resolution mea
surements, which was proven by [19,23] to be extremely difficult and 
susceptible to inaccurate estimations. Another problem that the present 
methodology seeks to address is its non-dependence on other sources of 
information. Some of the reviewed methods require more information 
regarding the building (e.g., thermal envelope properties) and people (e. 
g., consumption habits) to proceed with SH and DHW estimation. This 
information is usually difficult to retrieve. Therefore, the proposed 
technique requires only the hourly total recorded heating values from 
the heat meters and the associated local weather data (outdoor tem
perature and global radiation). Lastly, the methodology algorithms were 
made simple and easy to implement and do not require any grey-box 
models’ calibration. 

Moreover, the contributions of this paper are:  

1. The development of a new methodology to disaggregate SH and 
DHW from 1-h resolution total heating measurements. Besides, the 

method’s algorithm is created to be easily implemented and only 
requires weather data as input. 

2. The validation of the present methodology with a dataset of sepa
rated measurements of the different heating appliances from 28 
Danish single-family apartments. All the apartments have an 
instantaneous DHW production system without a storage tank.  

3. The comparison between DHW demand estimated through our 
disaggregation method and the current Danish annual DHW com
pliances. In order to assess the method’s performance compared with 
the current calculation used in Denmark for the energy labeling in 
buildings. 

1.3. Outline 

Following this section, the developed methodology is described. The 
results from the method’s validation are presented and discussed in 
section 3. The article closes with the main conclusions and suggestions 
for further work in sections 4 and 5. All the algorithms developed in this 
work are coded with the software Rstudio [25]. 

2. Methodology 

2.1. Research roadmap 

The method assumes that the SH system continuously operates 
during the heating season. At the same time, the DHW usage is expected 
to be produced sporadically throughout the day. Thus, during a day 
(which has 24 recorded data points – hourly resolution), only a few of 
these points will consist of collective SH and DHW production, whereas 
the other measurements will be SH usage alone. Every measurement 
identified with DHW production is converted to a missing point (NA 
point). Hence, each NA value is constituted by two energy shares, one 
for SH and another for DHW usage. Conversely, the non-NA values only 
have the SH share. Because the non-NA points in the dataset are the ones 
with SH usage alone, they are used to estimate the SH component of the 
NA points. The DHW usage in each NA point is calculated a posteriori 
through the difference between the total heat measurement from the 
smart meter and the estimated SH. 

Based on these assumptions, several approaches have been devel
oped to find the best procedure to separate and estimate the utilities’ 
heating usage. In Fig. 1, one can see the research roadmap with the 
different studied approaches. 

After the datasets are retrieved and pre-processed in step 1, different 
approaches to separate the data points are investigated in step 2. The 
energy separation stage identifies and labels all hours when the dwellers 
use DHW. In step 3, the points labeled as “not having DHW” (SH only) 
will be used to estimate the SH share of the points labeled with DHW and 
SH usage happening simultaneously. In step 4, the estimated values are 
compared to the actual separated measurements and the Danish DHW 
compliance calculations to test the methods’ accuracy. 

2.2. Dataset description and pre-processing 

The dataset used in this study for validation is constituted of 28 
apartments. All apartments are located in a social housing complex in 
Aalborg, Denmark. The complex was gradually renovated to the nearly 
Zero Energy Building (nZEB) standard from 2012 to 2020. The apart
ments included in this block were modernized in 2015. The concrete 
sandwich elements in the façade were replaced with insulated wooden 
cassettes with different façade cladding (i.e., brick wall, wood, or zinc). 
The roof construction was supported with new insolation. The heating, 
ventilation, and air conditioning (HVAC) installations were replaced 
with new ones. The interior of the apartments was fully renovated, and 
the new space heating installation includes radiators in all rooms and 
kitchens and underfloor heating in the bathrooms and hallways. The 
heat for SH and DHW is produced at the building block level and 
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distributed to each apartment. Apartments are equipped with individual 
SH and total heat demand meters (measuring SH and DHW without 
other appliances, e.g., electricity). The DHW is calculated through the 
difference between measurements from the meters. The floor area of the 
apartments is between 97 and 112 m2. 

The local weather data is extracted from the Danish Meteorologic 
Institute (DMI) website. The outdoor temperature and the global radi
ation were the only variables extracted with 1-h time resolution. The 
selected weather station is Tylstrup, as it is the closest station from 
Aalborg available in the DMI database. 

In this work, the data pre-processing consisted in detecting the 
number of missing and negative measurements and removing them. In 
the 28 apartments dataset (187 123 data points), with approximately 
nine months of monitoring for each dwelling, there are 46 661 missing 
hours (~25% of the dataset). The apartment with the lowest missing 
data has approximately 3% missing data. On the other hand, some 
apartments have up to 43% of missing data. Regarding negative energy 
usage measurements (erroneous values), there are few dwellings with 
those. In total, these values only represent 0.013% of the dataset. 
Therefore, all missing measurements and erroneous values were 
removed from the dataset before its analysis. 

2.3. Energy separation 

In Denmark, the SH system generally operates continuously during 
the heating season, while the DHW is only produced sporadically 
throughout the day. Thus, only a few hours of the day correspond to the 
majority of the DHW usage, whereas the other data points are SH usage 
alone. To estimate the SH and DHW usage, it is thus necessary to identify 
which hourly measurement data points correspond to DHW and SH use 
from those only comprising SH demand. To that matter, five new ap
proaches to identify these points are developed and investigated in this 
paper. All these methods are tested against ground truth data from the 
28-apartment dataset in section 3. 

2.3.1. Maximum peaks approach 
This method starts from the premise that the outdoor temperature 

has small fluctuations during the day, contributing to smooth SH de
mand variations throughout its continuous daily operation. Considering 
this assumption, all meters’ significant peaks in the measured heat can 
be accounted for DHW usage. Therefore, the “maximum peaks” algo
rithm detects all daily highest data points (ETotal) and considers them as 
comprising DHW production and SH (ETotal = ESH + EDHW). If a data 
point is not one of the maximum values, it is considered only SH usage 

(ETotal = ESH). For each day, the method assumes the seven-highest 
measurements as DHW production, while the other 17 hourly data 
points are considered SH alone. It is also assumed a daily sleeping period 
from 1:00–4:00 h. Therefore, only SH operates during this period, and 
the high values are due to the low outdoor temperatures. In Fig. 2, one 
can see the algorithm’s data flow diagram (a) and the representation of 
the method during a day for a single household (b). 

After detecting all data points with DHW usage, they are converted 
into NA-values, and the household’s dataset is updated with only SH 
measurements and the NA-values. 

2.3.2. Expected profiles approach 
This new method follows the same reasoning as the one used behind 

the “Maximum peaks approach”. However, it is based on the hypothesis 
that weekdays have a certain regularity (i.e., routine) regarding the hot 
water usage pattern, as opposed to weekends. In this study, weekdays 
are considered from Monday to Thursday, while weekends are consid
ered from Friday to Sunday. The reason for this division is that it is 
expected that a larger variation of hot domestic water usage occurs on 
Fridays afternoon and evening. This reasoning is also corroborated in 
[23], where Fridays were considered a different profile from the other 
weekdays. Therefore, from Monday to Thursday, the daily profile was 
separated into three groups – morning (5:00–11:00 h), afternoon 
(12:00–16:00 h), and evening (17:00–00:00 h). The highest value is 
found and considered as being “SH + DHW” in each time range. During 
the morning and evening periods, the adjacent hours (− 1 and +1 h) of 
the peak heating usage are also identified as “SH + DHW”. Concerning 
periods spanning from Fridays to Sundays, the “Maximum peaks 
approach” is used to detect the “SH + DHW” points because it is not 
likely to follow a routine. In Fig. 3, one can see the algorithm’s data flow 
diagram (a) and the representation of the method during a day for a 
single household (b). 

After detecting all data points with DHW usage, they are converted 
into NA-values, and the household’s dataset is updated with only SH 
measurements and the NA-values. 

2.3.3. Outdoor temperature approach 
It is known that building SH needs have a strong negative linear 

correlation with outdoor temperature during the heating season [26]. 
However, if this trend with the outdoor temperature is not observable 
with the total energy measurements, it is due to significant DHW pro
duction events. 

As illustrated in Fig. 4, this method starts by subsetting each 
household’s dataset with only the total measured values from 1:00–4:00 

Fig. 1. Research roadmap.  
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h (step 2). This time-conditioned subset is used because it is assumed 
that during this period, people are asleep. Thus, all total measurements 
must be SH usage only. With the subset, it is generated a piecewise linear 
regression [27] that estimates the SH demand as a function of the out
door temperature for both the heating and no-heating seasons 
(commonly known as the “heat demand signature curve”). The junction 
between the negative linear trend of the heating season and the linear 
constant (horizontal) trend of the no-heating season forms the “change 
point temperature” (CPT) [28] (step 3). 

In step 4, a prediction interval is developed for the two seasons. For 
the heating season, the interval’s tolerance is iteratively defined as 0.90, 
and for the no-heating period, a narrower tolerance of 0.60. By estab
lishing the prediction intervals, the building’s dataset is divided into 
data points that are positioned above the intervals (step 5). If the mea
surement is below the interval, it follows the SH trend and therefore is 
SH usage (ETotal = ESH). If the value is outside the interval, the total 
energy equals SH and DHW simultaneously (ETotal = ESH + EDHW). All 

points with DHW usage are converted into NA-values in step 6. The last 
step is updating the building’s dataset with only SH measurements and 
the NA-values. In Fig. 4, one can see the approach’s representation. 

2.3.4. Combined approaches 
The combined method merges the separation techniques described in 

subsections 2.3.1 and 2.3.3. Two different combined approaches were 
developed. “Combined method 1” only categorizes a data point as “SH 
+ DHW” if both approaches, “Maximum peaks” and “Outdoor temper
ature”, together label the same point as “SH + DHW”. This method’s 
data flow diagram can be seen in Fig. 5a. The “Combined method 2” 
categorizes a data point according to its measured total heating usage. If 
the total energy of the datapoint is lower than 250 Wh or higher than 
3,000 Wh, then the “Outdoor temperature approach” is used. If not, the 
“Maximum peaks approach” is used. These threshold values are estab
lished due to a preliminary investigation of the performance of the 
“Outdoor temperature” approach for one of the apartment’s data. This 

Fig. 2. a) Data flow diagram: Maximum peaks approach; b) Method representation.  

Fig. 3. a) Data flow diagram: Expected profiles approach; b) Method representation.  
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preliminary test showed that the “Outdoor temperature” method per
formed better for total heat data points below 250 Wh and above 3,000 
Wh. It is advised for each building case to perform a preliminary 
calculation to establish these heating thresholds accurately because they 
might differ for each building. The second merged method is presented 
in Fig. 5b. 

Like other approaches, after detecting all data points with DHW 
usage, they are converted into NA-values, and the household’s dataset is 
updated with only SH measurements and the NA-values. 

2.4. Space heating and DHW estimation 

At this stage, the DH dataset consists of NA-values and measurements 
that only quantify SH (ETotal = ESH). The next step is to estimate the SH 
usage (ESH,estim) in the NA-values by considering the known SH data 
points (ESH). After obtaining the ESH,estim of the NA-points, the DHW 
usage is calculated as EDHW, estim = ETotal – ESH,estim. To calculate the SH 
demand in the missing points, several methods have been implemented 
and benchmarked hereafter. 

2.4.1. Interpolation – Univariable estimator 
Firstly, linear interpolation, cubic spline interpolation, and Stineman 

Fig. 4. a) Data flow diagram: Outdoor temperature approach; b) Method representation.  

Fig. 5. a) Data flow diagram: Combined 1 approach; b) Data flow diagram: Combined 2 approach.  
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interpolation are tested. The linear method calculates the NA-value(s) 
by assuming a linear relationship between its known neighboring 
points. To estimate the missing values, the cubic spline method fits a 
third-order polynomial between the known SH data points. The Stine
man interpolation also applies a third-order polynomial into the time 
series; however, it preserves its monotonicity. These estimation algo
rithms are derived from the R-package imputeTS [29]. 

2.4.2. Moving average – Univariable estimator 
This method is one of the most commonly used in data analysis for 

smoothing time series. It consists in averaging the values with their 
neighboring points. The width of neighboring points used to calculate 
this average is designated as the “window”. This window-size variable, 
or range, must be set beforehand. A range equal to 2 (k = 2) has been 
selected in this study, which means that any NA-value is estimated by 
averaging its two previous and two succeeding points. Different weight- 
averaging techniques are also tested. These techniques are the simple 
moving average, linear weighted moving average, and exponential 
weighted moving average. 

When estimating the missing points, the simple moving average has 
equal-weighted neighboring points (α = 1/4). The linear weighted 
moving average follows an arithmetic progression by decreasing the 
weight of the furthest neighboring points. For a window-size of 2, the 
previous and succeeding points to the NA-value weigh 0.5 (α = 1/2), and 
the second previous (and succeeding) points weigh 0.33 (α = 1/3). For 
an exponential weighted moving average, the nearest points weigh 0.5 
(α = 1/21), followed by a weight of 0.25 (α = 1/22 = 1/4). These esti
mation algorithms are derived from the R-package imputeTS [29]. 

2.4.3. Kalman filtering – Univariable estimator 
A Kalman filter is tested with four different model implementations: 

a structural time series model with and without smoothing and an 
ARIMA (Autoregressive Integrated Moving Average) model with and 
without smoothing. 

The structural time series model is based on the function “StructTS”, 
which consists of a linear Gaussian state-space model for univariate time 
series. The ARIMA model is from the function “auto.arima”, which finds 
the best ARIMA model for each building’s time series. Both models are 
tested with and without smoothing. These estimation algorithms are 
derived from the R-package imputeTS [29]. 

2.4.4. Support vector regression (SVR) – multivariable estimator 
Contrary to the aforementioned methods, this estimation technique 

considers other inputs to calculate SH missing data points. The support 
vector regression (SVR) is a machine learning method that trains a 
model with the values labeled as “SH only”. The input data to estimate a 
given SH point is the outdoor temperature, the global solar radiation 
measured two and one hours prior, and the SH + DHW points (smart 
meter measurements) before and after the missing point. The SVR model 
uses a radial kernel function with the parameters C (cost) and γ (gamma) 
equal to 7 and 0.01, respectively. This estimation algorithm is derived 
from the R-package e1071 [30,31]. 

2.4.5. Combined Kalman filtering and SVR – Univariable/multivariable 
estimator 

From preliminary results, the Kalman smoothing techniques are the 
best methods to predict space heating from the total heat use. However, 
as explained, these methods depend on the neighboring data points, 
which can also be missing in some cases (missing data gap larger than 1 
h). To tackle the problem, this algorithm is refined to use the smoothed 
Kalman filter with the model “StructTS” only when the number of hours 
missing consecutively is equal to or below 2 (Gap ≤2). If the data gap is 
larger, the SVR is applied instead with the same parameters described 
above. These estimation algorithms are derived from the R-packages 
imputeTS and e1071 [29–31]. One can see in Table 1 all the tested 
estimation methods and their parameters. 

With the application of some of these methods, the estimated space 
heating (ESH,estim) can be negative or higher than the total energy 
measurements. Therefore, if ESH,estim is negative, it is set to zero; and if 
ESH,estim is larger than ETotal (SH + DHW – Smart meter’s measure
ments), it is set to ETotal. 

2.5. Methodology validation 

To benchmark the accuracy of these different estimation methods, 
two different comparison metrics are computed: the normalized mean 
bias error (NMBE) and the coefficient of variation of the root mean 
square error (CVRMSE). These metrics are commonly used to assess 
numerical models’ performance (accuracy) in the energy and building 
systems field. They can evaluate the distance between the output time 
series of a numerical simulation and a reference time series [32,33]. The 
NMBE is given as a percentage (see Equation (1)) and measures the 
global bias of the estimation methods. If the value is negative, the 
method is globally underpredicting and overpredicting if positive. 

NMBE =

∑n

i=1

(
ESH,estim[i] − ESH [i]

)

n
×

100
ESH,max − ESH,min

(1) 

The CVRMSE is also given as a percentage and estimates the point-to- 
point difference between the measurements (ground truth) and esti
mated values (see Equation (2)). 

CVRMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅∑n

i=1

(
ESH,estim[i] − ESH [i]

)2

n

√

×
100
ESH

(2)  

Where: 

Table 1 
Estimation methods.  

Method Parameters Type Input Reference 

Interpolation Linear Univariable ETotal [29] 
Cubic spline 
Stineman 

Moving average Simple, k = 2 Univariable ETotal [29] 
Linear, k = 2 
Exponential, k 
= 2 

Kalman filtering Model: 
StructTS 
Smoothing: 
True 

Univariable ETotal [29] 

Model: 
StructTS 
Smoothing: 
False 
Model: auto. 
arima 
Smoothing: 
True 
Model: auto. 
arima 
Smoothing: 
False 

Support vector 
regression (SVR) 

Kernel: Radial 
Cost: 7 
Gamma: 0.01 

Multivariable Tout [i-1, 
i-2] 
Rad [i-1] 
ETotal [i- 
1, i+1] 

[30,31] 

Kalman filtering & 
SVR 

Gap ≤ 2 h 
Model: 
StructTS 
Smoothing: 
True 

Multivariable ETotal [29–31] 

Gap > 2 h 
Kernel: Radial 
Cost: 7 
Gamma: 0.01 

Tout [i-1, 
i-2] 
Rad [i-1] 
ETotal [i- 
1, i+1]  
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NMBE: Normalized mean bias error [%] 
CVRMSE: Coefficient of variation of the root mean square error [%] 
ESH,estim[i]: Estimated space heating [kWh] 
ESH [i]: Measured space heating [kWh] 
ESH,max: Maximum measured space heating in the dataset [kWh] 
ESH,min: Minimum measured space heating in the dataset [kWh] 
ESH: Mean measured space heating in the dataset [kWh] 
n: Number of measurements in the dataset [− ] 
After selecting the best estimation method to obtain the SH demand 

using the above metrics (Equations (1) and (2)), the method is applied to 
calculate the SH in all apartments and predict the DHW need (EDHW, 

estim = ETotal – ESH,estim). The DHW estimated demand is finally 
compared with the actual DHW measurements and the Danish compli
ance calculations to investigate if the developed methodology out
performs the current Danish calculations in predicting the DHW 
household needs. 

In Denmark, the DHW consumption in households is currently pre
dicted using the compliance calculation of 250 L/m2 per year [34]. 
Similarly, the inlet water (cold) and outlet water (DHW) temperatures 
are considered to be 10 ◦C and 55 ◦C, respectively [35]. By knowing the 
area of the different apartments, the yearly energy usage for DHW 
production is calculated through Equation (3): 

EDHW,compl =
1

3600
× 0.25A × ρwatercp,water × (TDHW − Tcold) (3)  

Where: 
EDHW,compl: Estimated DHW energy usage from Danish compliances 

[kWh/year] 
0.25A: 0.25 m3 water volume per m2 of heated area per year [m3/ 

year] 
ρwatercp,water: Water density per water-specific heat capacity – Con

stant value: 4177 [kJ/m3⁰C] 
TDHW: DHW supply temperature from Danish standards – Constant 

value: 55 [⁰C] 
Tcold: Cold water supply temperature from Danish standards – Con

stant value: 10 [⁰C] 

3. Results and discussion 

This section presents the results of applying the different methods 
and their validation to find the best methodology. Moreover, the esti
mated DHW usage from the best methodology is compared with the 
current Danish compliance, which estimates the yearly DHW 
production. 

3.1. Energy demand separation 

The five DHW separation methods presented herebefore are tested 
against measurements (ground truth) from 28 apartments in Denmark 
that have separated metering of SH and DHW energy usage. The vali
dation consists in assessing the identification accuracy of the different 
approaches. 

In Fig. 6, one can see the total percentage of incorrectly identified 
points in all apartments. This percentage is divided into total heating 
intervals (measured by the smart meters) to see if the methods perform 
better at different energy demand levels. 

In Fig. 6, one can observe that “maximum peaks” and “combined 2” 
approaches are the best for categorization, with 20% incorrectly iden
tified in all apartments. The method with the highest inaccuracy is the 
“outdoor temperature” approach, with a value of 27%. It is also seen that 
for different heating intervals, some approaches performed better than 
others. However, such differences are too small to conclude that the 
measured heating intensity affects the approach’s performance. 

The quantity of correctly and incorrectly labeled (identified) points 
per approach was also analyzed without dividing by measured energy 
levels. The explanation of these attributed labels and how they affect the 
methodology are in Table 2, and its results are in Fig. 7. 

One can conclude from the results presented in Fig. 7 that the 
methods “combined 2” and “maximum peaks” have a similar identifi
cation performance. However, the “maximum peaks” approach is 
preferred as the best separation algorithm from these results because the 
“combined 2” method is rooted in the “outdoor temperature” approach, 
which has the largest percentage of incorrectly identified points. 

To conclude, the incorrect identified points percentage of each sep
aration approach is calculated for each apartment. This analysis, in 

Fig. 6. Incorrectly identified points percentage in the overall dataset for each separation approach.  

D. Leiria et al.                                                                                                                                                                                                                                   



Energy 263 (2023) 125705

9

Fig. 8, is made to understand if the different apartments influence the 
overall performance of the different methods. 

In Fig. 8, one can see the overall incorrect percentage of identified 
points (x-axis) for each apartment per separation method (y-axis/ 
colored legend). From the figure, it is possible to observe the percentage 
distribution and extreme cases. 

The results show that the different methods have their inaccuracy 
distributions between 10% and 40%, see Fig. 8. The “outdoor temper
ature” approach underperforms the most. One can observe that the best 
approaches are the “combined 2” and “maximum peaks”, with a slightly 
smaller difference in the mean value in the latter. Based on the analysis 
and application of the methods on the 28 apartments dataset, the 
preferred method to disaggregate the DH dataset is the “maximum 
peaks” approach. 

3.2. Space heating and DHW estimation 

After separating the data points, the following step estimates the SH 
based on data assumed to be only SH usage. Several methods are tested 

to determine the most accurate one for this specific application. One can 
see in Table 3 the NMBE and CVRMSE calculated for each estimation 
method for the whole dataset (28 apartments). 

The results show that most methods have similar values in both 
metrics, which means that methods differ slightly from each other. The 
worst-performing method is the cubic spline interpolation, indicating 
that cubic polynomial is not the best mathematical function to estimate 
space heating. The best method is the combined Kalman filtering and 
SVR according to both metrics. 

In Fig. 9, one can see the overall error between the estimation and the 
measurements of SH and DHW of the different apartments. The overall 
error is calculated by comparing the difference between the aggregated 
measurements and estimated values during the measurement period. 

As one can see from Fig. 9, the overall SH error (green color) is 
primarily negative (underestimated), with 18 apartments between -10% 
and 0%. Furthermore, the households with the extreme error values are 
one apartment with less than -15% error and another with almost +50% 
error (overpredicted). 

Regarding the DHW prediction (blue color), the error distribution is 
wider than the space heating. In this case, five apartments have an 
overestimated DHW demand above +25%. The extreme DHW predic
tion is one household with an overestimation of +85% and four apart
ments with an underestimation slightly higher than -10%. 

Several factors influence the method’s estimations and the overall 
error. Foremost, the separation approach inaccurately identifies some of 
the points, influencing from the beginning, the estimation accuracy. 
Another factor is the presence of missing values in the initial dataset. As 
one can see in section 2.1, the dataset comprises about 25% of missing 
measurement points. Because the estimation relies on determining the 
SH demand based on its neighboring points, several missing measure
ments negatively impact the overall method’s performance. Moreover, 
in section 2.1, it is shown that the retrieved weather data is not at the 
exact location where the dwellings are located. Besides this, the possi
bility of different heating systems, a large SH share, the unique dwellers’ 
routines, or the DHW share being equal to zero (no occupancy) may 
influence the method’s performance, and they might be the reasons 
behind the extreme cases. 

The present research also compares the estimated DHW values with 

Table 2 
Labeling types.  

Case Correct 
label 

Attributed 
label 

Type Explanation 

EDHW∕=0 “SH +
DHW” 

“SH +
DHW” 

Correct Points correctly identified and 
converted into NA-values to 
be estimated by the SH models 

“Only SH” Incorrect Incorrectly identified points 
that will be used to train the 
SH models – Will negatively 
affect the model’s training 

EDHW=0 “Only 
SH” 

“SH +
DHW” 

Incorrect Incorrectly identified points 
that will be converted into 
NAs and estimated by the 
models – Will affect the 
models’ accuracy negatively 

“Only SH” Correct Correctly identified points 
that will be used to train the 
SH models  

Fig. 7. Attributed labels percentage in the overall dataset for each separation approach.  
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the Danish compliance calculation used to predict the annual DHW 
demand in households. The results of this comparison are in Table 4. 

As shown in Table 4, there are three types of values per DHW usage. 
The actual DHW demand (EDHW), the compliance calculation of DHW 
demand used in Denmark (EDHW, compl), and the estimated DHW from 
the developed methodology (EDHW, estim). The “average” values are the 
aggregated DHW usage divided by the number of data points (hours). 
For the case of the DHW measurements and estimation, the number of 
data points is the number of measurement hours in each apartment. For 
the compliance case, the number of data points is the number of hours in 
a year. The “average” values are determined to be able to compare all 
three DHW usage types and calculate the error between the actual 
measurements and the compliance/estimation values. In most apart
ments, the developed methodology outperforms (bold values) the cur
rent Danish compliance calculations. Even though the disaggregation 

method has a good performance in estimating the DHW usage for most 
apartments, there are few cases where the error is significant. The reason 
behind it might be due to numerous measurement hours missing in the 
initial dataset or due to the lack of dwellers in the households during the 
measurement period. However, from the results, it is argued that the 
method can be applied to predict the household’s DHW energy use 
instead of what has been used to make the dwelling’s energy assessment 
in Denmark. Also, it is clear that basing the Danish DHW compliance 
calculations only on the building area is imprecise; hence the research 
must shift towards the occupancy number and its behavior. 

Even though some apartments have large SH and DHW estimation 
errors, this data-driven methodology is quite appreciable when consid
ering its simplicity and the fact that no detailed building information, 
often unknown, is required (e.g., people habits description, system 
identification, building envelope characteristics, etc.). Another advan
tage of this method over some of the existing ones reported in the 
literature is the possibility of using hourly measurement data. Finally, 
the method outperforms the floor area-based compliance method 
currently used in Denmark for estimating DHW production. 

4. Conclusion 

This article introduces a new data-driven methodology to estimate 
the SH and DHW from low-resolution heat meter data. The method’s 
novelty is the possibility of applying it to hourly heating measurements 
without in-depth knowledge of the building and its occupants. The 
developed method is the combination of two algorithms to i) identify 
from the total heat measurements the points with DHW production and 
ii) estimate from the identified DHW usage points, the SH and DHW 
usage. This research tested several alternative methods for both algo
rithms to find the best point separation and energy estimation tech
niques. The different methods can be seen in Table 5: 

The validation process shows that the best-performing method to 
detect when the DHW is being used is the “maximum peaks” approach, 
with a successful identification rate of approximately 80%. The best 
algorithm to estimate the SH demand in the identified points is the 
combination of SVR and Kalman filters (smoothed “StructTS” model). 
This estimation method has an NMBE of − 0.10% and CVRMSE of 

Fig. 8. Incorrectly identified percentage of separation approaches for each apartment (each point is one apartment).  

Table 3 
Each SH estimation method’s NMBE and CVRMSE for all apartments.  

Method Type Method 
specifications 

NMBE CVRMSE 

Interpolation Univariable Linear − 0.25% 54.67% 
Cubic spline − 0.24% 59.60% 
Stineman − 0.25% 54.96% 

Moving average Univariable Simple − 0.26% 54.62% 
Linear − 0.26% 54.60% 
Exponential − 0.26% 54.67% 

Kalman filtering Univariable StructTS – 
Smoothed 

− 0.27% 53.86% 

StructTS – No 
smoothed 

− 0.28% 55.29% 

ARIMA – 
Smoothed 

− 0.25% 54.16% 

ARIMA – No 
smoothed 

− 0.24% 56.26% 

Support vector 
regression (SVR) 

Multivariable - − 0.18% 54.46% 

Kalman filtering & 
SVR 

Multivariable StructTS – 
Smoothed 

− 0.10% 52.49% 

-  
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52.49%, being the lowest metric values of all tested SH estimation al
gorithms. Therefore the chosen overall method to disaggregate SH and 
DHW demand from the total heat measurements is the “maximum 
peaks” approach for identification purposes and the combined methods 
of SVR and Kalman filter to estimate SH needs. 

The overall methodology predicts the SH demand with an error be
tween − 10% and 10% for most dwellings. Concerning DHW estimation, 
the error is slightly wider, with most apartments falling between − 15% 
and 15%. Moreover, this study compared the estimated DHW demand 
from the method with the actual measurements and the current Danish 
DHW compliance calculations. This comparison concludes that the 
developed methodology outperforms the Danish compliance calcula
tions in most cases. Furthermore, it is argued that this disaggregation 
method can be applied to predict the household’s SH and DHW energy 
shares. The authors also argue that estimating the DHW energy usage by 
relying solely on the building’s area is erroneous (currently being done 
in Denmark and other European countries). Thus, future research efforts 
must move toward estimating the heating usage in buildings considering 
the dwellers’ number and more specific building typology regarding 
DHW use (currently, in Denmark, only two are present: residential and 
other). 

Finally, this data-driven method is simple to compute and under
stand, and if validated with more building cases and proved to be robust, 
it can be applied in the future by DH companies and energy auditors. 
Also, this methodology can be used without having additional detailed 
information about the building and its dwellers and can be used with 1-h 
resolution data, which is often the status of the buildings and their 
metering installations. The authors argue that this method is relevant to 
the energy and buildings field when considering these advantages, more 
specifically for the analysis of the energy performance gap, the DHW 
usage assessment (which has been overlooked until recent years), clus
tering of different SH usage patterns according to their systems and 
user’s practices, and energy-efficiency decision-making. 

Fig. 9. Overall error of each apartment’s SH and DHW estimation.  

Table 4 
Comparison between the Danish compliance values and the estimation results. 
The bold error values indicate the best performing method between the novel 
approach developed in this study and the Danish compliance calculations.  

Apartment 
ID 

Area 
[m2] 

EDHW 

[kWh/ 
h] 

EDHW, 

compl 

[kWh/ 
h] 

EDHW, 

estim 

[kWh/ 
h] 

Error 
between 
EDHW and 
EDHW, compl 

Error 
between 
EDHW and 
EDHW, estim 

666 112 0.314 0.167 0.315 − 47% 0% 
668 111 0.286 0.165 0.346 − 42% 21% 
669 110 0.184 0.164 0.224 ¡11% 22% 
670 111 0.588 0.165 0.555 − 72% ¡6% 
671 110 0.247 0.164 0.295 − 34% 20% 
697 111 0.692 0.165 0.606 − 76% ¡12% 
698 111 0.674 0.165 0.627 − 75% ¡7% 
699 110 0.678 0.164 0.588 − 76% ¡13% 
700 111 0.074 0.165 0.137 123% 85% 
701 111 0.167 0.165 0.196 ¡1% 18% 
702 110 0.088 0.164 0.115 87% 32% 
724 110 0.229 0.164 0.255 − 28% 11% 
726 111 0.116 0.165 0.132 43% 14% 
727 111 0.103 0.165 0.121 61% 18% 
728 110 0.148 0.164 0.203 11% 37% 
729 110 0.144 0.164 0.161 14% 12% 
730 111 0.388 0.165 0.406 − 57% 5% 
731 111 0.087 0.165 0.142 90% 63% 
732 110 0.406 0.164 0.347 − 60% ¡15% 
734 97 0.091 0.145 0.106 59% 17% 
735 111 0.328 0.165 0.347 − 50% 6% 
736 111 0.336 0.165 0.34 − 51% 1% 
739 111 0.524 0.165 0.561 − 68% 7% 
740 111 0.164 0.165 0.159 1% − 3% 
741 111 0.237 0.165 0.253 − 30% 7% 
742 97 0.145 0.145 0.167 ¡1% 15% 
743 111 0.461 0.165 0.403 − 64% ¡13% 
745 111 0.093 0.165 0.157 78% 69%  

Table 5 
List of tested methods in this study.  

i) Identification/separation methods ii) SH estimation methods 

Maximum peaks Interpolation 
Expected profiles Moving average 
Outdoor temperature Kalman filter 
Combined 1 Support vector regression (SVR) 
Combined 2 Kalman filter & SVR (combined methods)  
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5. Further work 

A suggestion for further work is the application of this methodology 
with other datasets for further validation and robustness analysis. 
Preferably, datasets should come from various countries to ensure the 
methodology’s robustness and applicability in different cases. This study 
used several algorithms to estimate space heating (e.g., SVR, moving 
average, etc.). However, this work can be further developed by inves
tigating other estimation methodologies that can be found in the liter
ature (e.g., neural networks, random forest regression, etc.). 

It is also suggested to benchmark this novel methodology with other 
existing disaggregation methods on a common dataset. Furthermore, a 
more extensive effort must be made to collect good quality datasets – 
with hourly resolution (or higher) – of separated energy usage for space 
heating and domestic hot water in buildings with instantaneous hot 
water production systems. 
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