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A B S T R A C T   

Mental stress is a commonly occurring phenomenon that impacts people from diverse backgrounds and is 
associated with numerous physical and psychological illnesses. The brain plays a vital role in how individuals 
perceive and react to stress, including their physiological and behavioral responses. In this study, our objective 
was to investigate the impact of varying levels of induced stress, ranging from mild to severe, on brain activity. 
Our primary interest was to determine if mental stress would influence neural coordination, as assessed through 
intertrial phase clustering (ITPC). Furthermore, we hypothesized that an increase in perceived mental stress 
would result in reduced regional connectivity as measured via phase-lag index (PLI). EEG data from 41 partic-
ipants (20 females, 21 males, age range 18 to 46; mean = 26.1; SD = 7.06) were collected while they were 
exposed to three levels of mental stress, using a parametric modulation study design. Following pre-processing, 
we extracted the two mentioned features and performed statistical analysis. As an additional analysis, we 
assessed the discriminatory power of these features using a Random Forest classifier. Statistical analysis revealed 
a significant decrease of ITPCs over frontal, central, and parietal regions accompanying increased levels of stress. 
The results obtained from the PLI analysis showed that the increase in levels of stress were associated with a 
decrease in the brain connectivity over the frontocentral, frontoparietal, and centroparietal regions. The clas-
sification result showed that the Random Forrest classifier predict three levels of stress with 83.78% accuracy. 
These findings indicate that phase-based EEG features could serve as a novel neurometric for quantifying in vivo 
stress levels. Furthermore, this study could contribute to developing more precise tools to measure mental stress 
objectively.   

1. Introduction 

Stress is a widespread phenomenon that affects individuals from 
various walks of life [1]. It has been linked to various physical and 
mental health problems [2] such as depression [3] anxiety [4] and 
cancer [5] to name a few. The brain plays a crucial role in the experience 
and physiological and behavioral responses to stress [6,7]. Stress can 
impact brain activity by altering the way the brain processes informa-
tion and affects neurotransmitter levels [8–10]. Chronic stress has been 
linked to changes in the prefrontal cortex, which is involved in executive 
functions such as decision-making, working memory, and attention 
modulation [11–13]. It can also lead to changes in the hippocampus, a 
structure long known to be involved in declarative memory and learning 

[14,15]. These changes can result in a decreased ability to focus and 
retain information, as well as an increased risk for mental and physical 
health problems. The mental stress experienced by people can vary 
greatly from low to high stress depending on the person, the context and 
situation [16–18]. High stress levels can evoke feelings of anxiety, 
discomfort, and increase cognitive load, affecting the emotional and 
cognitive responses of the individuals [19–21]. These pieces of evidence 
imply the necessity and importance of an objective and precise tool for 
an early detection of mental stress. 

Assessing mental stress is a difficult task because it affects individuals 
differently and there exist multiple methods for stress evaluation [22]. 
Electroencephalography (EEG) is a commonly used non-invasive tech-
nique that measures the electrical activity of the brain and is useful in 
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studying the effects of stress [23–25] It provides real-time information 
on how the brain processes stress [23,26]. There have been numerous 
studies assessing the effect of stressors on brain responses using EEG. 
Power spectral density [27], frontal asymmetry [28], time–frequency 
features [29], and entropy [30,31] are some of the metrics that have 
been utilized to detect different levels of stress from EEG data [32]. 

During a stressful event, the brain typically responds by increasing its 
overall level of activity [33,34] An increase in beta activity has been 
found in stressful conditions, which is associated with alertness, focus, 
and concentration [35]. At the same time, the brain also typically ex-
hibits a decrease in alpha wave activity during stress, suggesting that 
stress can suppress the alpha rhythm. An increase in Alpha band activity 
is associated with relaxation and calmness [36]. A decrease in alpha 
activity may be due to the fact that the brain is directing its resources 
toward the more immediate demands of the situation, such as focusing 
on a threat or planning a response [37]. This suppression may reflect a 
shift in the brain’s state from a passive or relaxed state to an active or 
alert state [38] For this reason, most of the previous research has been 
focused on alpha activities, with some research on beta. 

However, there is a lack of consistency in the literature regarding the 
effect of mental stress on different EEG features. For instance, [39] re-
ported an increase in alpha power and a decrease in beta band activity 
during stressful conditions. [40] reported an increase in beta and theta 
frontal and parietal midline regions during stress conditions compared 
to control and baseline conditions. Therefore, it is important to note that 
the relationship between stress and changes in the brain activity is 
complex and can vary among individuals [36,41]. Some individuals may 
exhibit suppression of alpha power in response to stress, while others 
may exhibit an increase [27,33,42,43]. This variability may reflect dif-
ferences in the brain’s response to stress and individual differences in 
stress-coping mechanisms [44,45]. In addition, since the current EEG 
metrics on mental stress suffer from high false positivity and low 
sensitivity (especially in fast oscillation activity), a robust metric that is 
associated with reproducible results in mental stress detection is missing 
in the field. 

Previous studies have primarily focused on the frequency-domain 
features and differential asymmetry features, and as mentioned earlier 
there is a lack of consistency in the results driven form these features for 
assessing stress. The investigation of stress through time–frequency (TF) 
features has yet to be investigated. TF analysis enables the examination 
of dynamic changes in amplitude and phase across frequencies, differ-
entiating between phase-locked and non-phase-locked signals [32]. TF 
analysis also estimates the consistency of phase across multiple trials of a 
specific event, known as inter-trial phase synchrony (ITPC) or intertrial 
phase clustering (ITPC/ITC). ITPC evaluates the consistency of EEG 
activity with a particular event of interest at a specific time and fre-
quency. In this method, individual trials of an EEG experiment cluster 
together based on their similarities in waveform or spectral character-
istics. ITPC has been shown as a well-suited measurement of attention, 
information processing, and executive function by representing the 
rhythmicity of cortical activation, especially in alpha [46,47]. 

Another lacking evidence in the literature is the effect of mental 
stress on the regional connection of the brain. A limited number of 
studies have investigated the relationship between stress and functional 

connectivity in EEG [48,49] and contradictory results have been re-
ported. The main drawback of interpreting connectivity result in EEG, is 
the common source problem and volume conduction effect which result 
in false positivity and showing spurious connectivity [50]. With this 
regard, other connectivity metrics such as phase-lag index (PLI) has been 
introduced [51] which is capable of reducing the effect of common 
source problem and detecting “real” connectivity in EEG. Unlike other 
measures of connectivity, PLI specifically targets phase synchronization, 
thereby eliminating the confounding effects of volume conduction. PLI 
demonstrates high specificity and sensitivity while minimizing false 
positivity, thus enhancing the reliability of the obtained results [51,52]. 

In this paper, as illustrated in Fig. 1, we aim to unravel how different 
levels of stress (induced by task difficulty) ranging from mild to severe 
while watching video materials (i.e., documentary) affects brain activ-
ity. The degree of mental stress was assessed through the use of EEG 
features, ITPC and PLI. Additionally, by applying a Random Forest 
predictive model, we classify three levels of stress using mentioned EEG 
features and show their relative contribution to the final decision of the 
model. The outcome of the present research could contribute to 
providing a better measurement with high sensitivity and specificity for 
mental stress detection. Additionally, the classification results show that 
we can improve the efficiency of mental stress detection methods with 
varying levels of intensity considering those metrics. Finally, the im-
plications of this research for commercialization are also noticeable, 
especially considering the limited number of EEG channels analysed in 
the study. 

2. Materials and method 

2.1. Participants 

A total number of 41 (20 female, 21 male) participants (age range 18 
to 46; mean = 26.1; SD = 7.06) without any reported psychiatric or 
neurological conditions were recruited in the experiment via the Neu-
rons Inc. online recruitment system. All participants were informed 
about the experiment and had read and signed the consent form prior to 
the experiment, following the Declaration of Helsinki. The experiment 
was approved by the local ethical committee and all data were analysed 
and reported anonymously. 

2.2. Experimental procedure 

The experiment consisted of three different conditions, named 
respectively low, medium, and high stress conditions. The main stimulus 
was a documentary video (“The Reality of Van Life”, Different Media © 
2018) which was around 4 min. All participants went through all three 
conditions in the same order as depicted in Fig. 2. The “low stress” 
condition consisted of just watching the video. After 1 min of rest, in the 
“medium stress” condition, participants watched the documentary and 
simultaneously were required to perform a Digit Span task. In this 
mental task, a sequence of numbers is presented for 5 s, followed by 4 s 
of a blank screen, and afterwards the subjects are required to repeat the 
sequence out loud (Fig. 2A). Following 1 min of rest, participants passed 
the “high stress” condition. While watching the video, in this condition 

Fig. 1. Flow Diagram of the study.  
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participants performed the Digit Span task of the previous conditions 
and were additionally required to remember patterns of squares. For 
this, the subjects were presented with a 4 by 4 white and red square 
matrix for 3 s followed by three digits task for 5 s. After 4 s of a blank 
screen, they were required to say the digits out loud, and consecutively 
they needed to approve whether the pattern that was presented to them 
in a box and on the screen matches the pattern that they previously saw 
(Fig. 2B). Finally, we asked each participant to rate their level of stress 
on a 7-point scale for each condition. 

2.3. EEG recording and processing 

The EEG data were recorded via Biopac B-Alert with 9 channels (Fz, 
F3, F4, Cz, C3, C4, POz, P3, P4). The ground and reference electrodes 
were placed at AFz, and mastoid, respectively. EEG data were sampled at 
256 Hz and exported to MNE Python library [53] for further analysis. 
For pre-processing, first, the data were filtered with an upper and lower 
band of 0.1 to 45 Hz, respectively using a FIR bandpass filter with 
hamming window. Independent Component Analysis (ICA) [54] was 
used to removed eyeblink and eye movement components. On average, 
3.1 components were removed for each subject through ICA. Thereafter, 
common average refencing was utilized as the reference point of the 
data. At last, the EEG data were segmented to 3 s epochs (without 
overlapping) for further analysis. 

2.4. Inter trial phase clustering 

ITPC is a measure of phase synchrony for EEG signals across trials. To 
compute ITPC for a given signal, we applied Morlet wavelets to extract 
time–frequency features. The number of cycles (time–frequency trade- 
off) for the wavelets was set to 5 which means the frequency resolu-
tion was 1 Hz (from 8 to 13) and the length of time-windows was to 
70 ms on average. Then, the ITPC was computed as follows: 

ITPC(f , t) =
1
N

∑N

1

Ek(f , t)
|Ek(f , t) |

(1) 

In which Ek (f,t) is the spectral estimate of the signal at time and 
frequency of t and f. ITPC represents the phase alignment cross trials and 
it is normalized between 0 and 1 with 0 meaning no phase locked trials 

and 1 indicating a near-perfect EEG phase coherence across trials 
[55,56]. The ITPC values of channel ×, have been averaged over the 
frequency bins ad time-samples, then, to represent ITPC of region y, 
those values have been averaged for all channels within region y. This 
procedure was repeated for each condition and each subject. 

2.5. Phase lag index 

PLI is a connectivity measurement of two signals which reflects 
consistent phase lag (or lead) between two nodes [51]. The idea behind 
PLI is to remove the phase differences around 0 or π which is induced by 
shared sources and keep the phase difference between 0 and π which is 
less probable to be affected by volume conduction [51,57]. The PLI 
between two signals is computed as follows: 

PLI = |〈sign(Δ∅(tk) > | (2) 

In which Δ∅ indicates phase difference and the <.. > operation is the 
average over time. The PLI varies between 0 and 1; PLI at 0 represents no 
phase coupling or coupling with phase difference of zero or π, and PLI at 
1 indicates perfect coupling of the two given signals which 0 < Δ∅ < π or 
0 < Δ∅ < -π. The Fourier method was used to transform the data to 
frequency domain with 256 points (~256 ms) in the alpha frequency 
band (8–13 Hz). Thereafter, by applying the sign function to the phase 
difference between two given signals (imaginary part of the cross 
spectrum of two signals), we averaged these values over frequency bins 
to represent the connectivity values for each of the two channels. Lastly, 
by averaging pairwise connectivity over Frontal, Central and Parietal 
regions (both within and between regions) the final PLI values are 
computed. 

2.6. Statistical analysis 

Since ITPC and PLI values have non-normal distributions [58], a non- 
parametric Wilcoxon signed rank test was utilized for the comparison of 
ITPC and PLI between conditions, since it does not take the assumption 
of having normal distribution for the data. For both ITPC and PLI, the 
statistical test was applied over the averaged regional values to compare 
the three given conditions. The significance level was set to 0.05 and 
Bonferroni correction was applied for multiple comparisons. For the 

Fig. 2. The general procedure of the experiment is presented in section A. and section B, the details of Digit Span task are depicted. The red box task is shown in 
section C. 
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mentioned parameters, in order to have a statistical power of at least 0.8, 
it is required to have a sample size of 25. 

2.7. Random Forrest classifier 

A Random Forrest classifier [59] was implemented to classify the 
ITPC and PLI features from the three given classes: low, medium, and 
high stress. Random Forest uses an ensemble of uncorrelated decision 
trees to vote for the output label. By randomly sampling (with 
replacement) from the data and training each decision tree, the model 
would result in a relatively low variance [59]. 

H(x) =
1
B

∑B

b=1
hb(x) (3) 

In which B indicates number of estimators (decision trees), and h(x) 
is the decision tree classifier which averaging over all of them will yield 
the Radom Forrest classifier H(x). In addition, by using Gini Impurity, 
we could evaluate the explainability power of each feature for the target 
class [60]. 

Gini Impurity ¼
∑C

c=1fc(1 − fc) (4). 
In which C indicates the number of classes and fc shows the fre-

quency of class c in a node. Gini impurity is a metric used to measure the 
level of similarity among a set of samples, indicating the difficulty of 
classifying them based on their labels. The importance of each feature is 
determined by computing the average Gini impurity across all nodes and 
trees, which reflects the reduction in impurity achieved by using that 
feature. 

3. Results 

RainCloud plots of the participants’ self-response on the stress-level 
questions are presented in Fig. 3. The average response and standard 
deviation of the participant for low, medium, and high stress conditions 
were 1.78 ± 1.17, 3.68 ± 1.47, and 4.68 ± 1.57, respectively. There was 
a significant difference (p-value < 0.00001) between all conditions 
regarding the self-report stress level. 

3.1. ITPC analysis 

The distribution of ITPC values over the scalp is represented in 
Fig. 4A. The averaged values of ITPC over the Frontal region 

(0.098 ± 0.006) in low stress condition was significantly higher than 
high stress condition (0.087 ± 0.006). No significant difference was 
observed comparing low and medium stress condition (0.094 ± 0.006) 
in the Frontal lobe. However, comparing medium and high stress con-
ditions, a significant decrease was found. The averaged ITPC values over 
the central region in low stress condition was 0.096 ± 0.006, which, 
compared to the ITPC in high stress condition 0.087 ± 0.005, which 
showed a significant decrease. No significant difference was found in the 
comparison of ITPC values over the central region between low and 
medium stress (0.092 ± 0.006) condition. In the parietal lobe, there was 
also a significant decrease in ITPC from low (0.097 ± 0.005) to high 
(0.087 ± 0.005) stress condition. ITPC values of parietal lobe in the 
medium stress condition (0.092 ± 0.006) was not significantly different 
from the low or high stress conditions. The distribution of ITPC values in 
different regions is presented in Fig. 4B. 

3.2. Connectivity analysis (PLI) 

In Fig. 5, the circle of averaged PLI values between and within the 
frontal, central, and parietal lobes are represented. A decrease in 
network synchronization was observed from low to high stress condi-
tion. In Table 1, PLI values of inter- and intra- regional pairs for each 
condition are reported. 

In Fig. 6, the p-values resulted from statistical comparison are 
illustrated. Comparing low and medium stress condition, we found a 
significant decrease of frontal-central PLI values. A significant decrease 
was observed in frontal-central, frontal-parietal, and central-parietal PLI 
values when comparing low and medium stress conditions. In the me-
dium and high stress comparison, the frontal-central PLI values 
decreased significantly. 

3.3. Classification results 

The results of the Random Forrest classifier are reported in Fig. 7A. 
70 percent of the input features was used for the training split and 30 
percent as the test. The predictive model showed a balanced perfor-
mance among the three classes using a subject-independent scheme. 
Additionally, the contribution of each input feature to the final decision 
of the model was computed via Gini criteria and is presented in Fig. 7B. 
These features were ranked based on Gini importance (reducing node 
impurity) and even though there is not a huge difference (<10%) it is 
worthed to show the discriminatory power of each feature. 

4. Discussion 

This study expands on the current research regarding the effects of 
mental stress on brain activity, specifically examining how stressors 
with varying levels of intensity can modulate the phase information of 
EEG signals. The results of the study indicate that as the level of stress 
increases, the brain loses its synchronized activity, as measured through 
the computation of ITPC in the frontal, central, and parietal regions. 
Additionally, our study found that there was a decrease in the coupled 
activity of the brain, as measured through the phase lag index (PLI) 
metric, across the three levels of stress. These results demonstrate the 
potential of phase-based EEG features as a discriminatory tool for clas-
sifying different levels of mental stress. Overall, these findings have 
important implications for our understanding of the impact of mental 
stress on brain activity. They suggest that even moderate levels of stress 
can disrupt the synchronized activity of the brain, leading to decreased 
coupling between brain regions. Furthermore, the predictive model used 
in this study highlights the potential utility of EEG signals as a means of 
objectively measuring stress levels. This study provides important in-
sights into the neural underpinnings of stress and underscores the need 
for further research in this area. The results of this study could have 
important implications for the development of interventions and treat-
ments aimed at reducing the negative effects of stress on brain function. 

Fig. 3. Survey responses of perceived stress level for three conditions. *** in-
dicates significant difference (p-value < 0.00001). 
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4.1. A decrease in brain synchronised activity associated with mental 
stress. 

Considering the frontal lobe, we found a significant decrease in ITPC 
values when comparing low to high, and medium to high stress condi-
tions. However, for the central and parietal lobes, this decrease only 
occurred significantly from low to high stress conditions. Even though 
the extreme level of stress will modulate ITPC in all regions, this mod-
ulation on ITPC could not be observed in moderate levels of stress. ITPC 
provides information in time and frequency, which in that sense, has 

advantages over time-only or frequency-only features. Despite 
numerous studies demonstrating the functional significance of ITPC in 
various cognitive processes [61], research on mental stress has until now 
not included ITPC as an analytical approach. ITPC is believed to indicate 
the coordination and synchronization of neural activity among distinct 
brain regions involved in a specific task [62,63]. The study by [46], 
provides a comprehensive overview of the impact of ITPC modulation in 
information processing, attention deficiency, and behavioral perfor-
mance. Given that mental stress can negatively impact our ability to 
maintain attention or process information, while also disrupting brain- 

Fig. 4. The distribution of the ITPC values is presented in section A. In section B, the RainCloud plots of the averaged ITPC over each region is depicted. ** indicates 
significant differences (P-value < 0.0001). 

Fig. 5. Connectivity circles of PLI values for the three conditions.  

Table 1 
PLI values (mean ± std) for inter- and intra-regional of each condition.  

Phase-Lag Index Values  

Frontal-Frontal Central-Central Parietal-Parietal Frontal-Central Frontal-Parietal Central-Parietal 

Low Stress 0.397 ± 0.009 0.399 ± 0.009 0.399 ± 0.010 0.100 ± 0.011 0.099 ± 0.011 0.099 ± 0.012 
Medium Stress 0.396 ± 0.011 0.398 ± 0.012 0.396 ± 0.010 0.094 ± 0.016 0.093 ± 0.012 0.094 ± 0.012 
High Stress 0.393 ± 0.013 0.393 ± 0.015 0.393 ± 0.012 0.088 ± 0.018 0.088 ± 0.013 0.088 ± 0.014  
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wide network functions in creativity, empathy, and other important 
mental functions, ITPC could be utilized as a potential marker to detect 
mental stress. 

4.2. Mental stress will affect between-region connectivity through phase 
information. 

The results indicate a significant reduction in the between-region PLI 
values from low to high stress conditions for all pairs, while no signifi-
cant changes occurred for within-region sites. Notably, a significant 
decrease was observed in the PLI values for the frontal-central connec-
tion between low and medium, and medium and high stress conditions, 
highlighting the critical role of frontocentral inter-dependency in 
detecting mental stress. Moreover, it is worth mentioning that none of 
the within-region connections showed a significant change in PLI values 
in any of the comparisons, emphasizing the significance of long-range 
synchronization affected by mental stress. 

Upon reviewing the literature, only a handful of studies have 
explored the use of connectivity measurements for detecting mental 
stress [49,64,65]. For example, [49] reported a decrease in alpha con-
nectivity (coherency) in anterior regions for only one of their stressors 
(sleep deprivation) compared to rest conditions. In [65] an increase and 
decrease of coherency under mental stress conditions have been 

reported over frontal, temporal, and parietal lobes, and further used 
phase differences of EEG signals to show a decrease in connectivity over 
frontoparietal and centroparietal sites. In [64] a decrease in phase 
locking value (PLV) over the frontal region in alpha band has been re-
ported under mental stress conditions. 

There are inconsistent findings in the literature regarding the effect 
of mental stress on connectivity measurements. A recent study by [66] 
suggests that the volume conduction might be a contributing factor to 
this issue. The common source problem can lead to spurious connec-
tivity and false positive results, particularly in spectral coherency 
measurements. Despite recent attempts in addressing this challenge 
[29], further considerations are still needed regarding the volume con-
duction effect. The advantage of using phase-based connectivity such as 
PLI is to reduce the volume conduction effect by ignoring the phase 
difference in 0, and π which is probably produced by common sources 
[51]. 

Another potential issue that should be considered is the multiple 
comparison effect on the statistical results. Most of the previous studies 
have used multiple features, multiple frequency bands, and a channel- 
wise statistical comparison to show their significant results, however, 
it is unclear whether this significance was affected by multiple- 
comparison. In contrast, we have reported a significant decrease of 
phase-based connectivity, at the regional level, in the alpha frequency 

Fig. 6. P-value representation for the PLI comparison. Each cell shows the P-value resulted from the statistical comparison of PLI of the two connections between the 
two given stress condition. 

Fig. 7. In section A four diffeent metrics of the predictive mdoel is represented. All of the input features were ranked based on their relative contibituon to the final 
deicson of the classifer (section B). 
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band under mental stress conditions which addresses both the common 
source problem and multiple comparison effect. 

4.3. ITPC and PLI features showed their discriminatory power to predict 
mental stress. 

The Random Forrest classifier exhibited a reasonably balanced per-
formance in predicting three different mental stress conditions, 
achieving an accuracy of 83.78%. The Precision, Recall, and F1-score of 
the classifier suggest that the predictive model has a satisfactory level of 
sensitivity and specificity. Our model’s performance was compared to a 
recently published study [67] that investigated the brain–heart inter-
action using the same dataset which achieved an accuracy rate of 77%. 
Therefore, our model outperformed the previous studies, suggesting the 
superiority of EEG phase information over brain–heart communication 
in detecting mental stress. 

To examine the contribution of each input feature to the final deci-
sion of the model, we analysed the importance of each feature using Gini 
impurity. We observed that the phase information in the central region 
had the greatest impact on the model’s decision. However, the differ-
ence between the features with the highest and lowest importance 
was<10%, indicating that each feature had a substantial contribution to 
the final decision of the model. 

5. Conclusion 

This study demonstrated that mental stress of varying intensity has 
an impact on the phase information of EEG signals. The findings of the 
present study confirmed that mental stress can lead to a decrease in 
neural coordination, as evidenced by a reduction in intertrial phase 
clustering in multiple regions. Furthermore, the study found a decrease 
in functional connections between multiple lobes as a result of mental 
stress. Despite acknowledging that PLI values are less affected by volume 
conduction, leading to a reduced occurrence of false positives, it is 
important to emphasize that this advantage is accompanied by the 
drawback of neglecting actual functional connection, thus increasing the 
likelihood of false negatives. To address this issue, a multimodal 
approach integrating EEG with fNIRs or fMRI could be employed as a 
potential solution. The predictive model used in the study showed 
promising results in detecting varying levels of mental stress using 
phase-based information of brain activity. Nonetheless, it should bear in 
mind that the performance of the model depends on the quality of the 
EEG data, signifying the importance of meticulous attention to pre- 
processing procedure. Even though the limited number of EEG chan-
nels in this study may not allow us to generalize the interpretation, this 
study still provides important insights into the neural underpinnings of 
stress and underscores the need for further research in this area. The 
results of this study could have important implications for the devel-
opment of interventions and treatments aimed at reducing the negative 
effects of stress on brain function. These results suggest that phase-based 
EEG features could be a new neurometric for measuring stress levels. 
However, future research should be cautious about the implication of 
these findings, since there are numerous variables that impact the 
findings, such as type of stressors, demographic information of partici-
pants, and data cleaning methods. 
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