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1.1 Abstract

Enormous amounts of time series are being collected in many different domains. These include,
but are not limited to, aviation, computing, energy, finance, logistics, and medicine. However,
general-purpose Database Management Systems (DBMSs) are not optimized for times series
management and thus significantly limit the amount of time series that can be efficiently stored
and analyzed. As a remedy, specialized Time Series Management Systems (TSMSs) have been
developed. This chapterﬂ provides a thorough survey and classification of TSMSs that are
developed through academic or industrial research and documented through peer-reviewed
papers. To document their design and novel contributions, a summary of each system is
provided. The systems are primarily classified based on their architecture. In addition, the
systems are classified based on: when and why each system was developed, how it can be
deployed, how mature its implementation is, how scalable it is, how it processes time series,
what interfaces it provides, the type of approximation it supports, how low latency it can
achieve, how it stores time series, and the types of queries it supports. The chapter concludes
with a collection of open research problems based on the limitations of the surveyed systems.

! This chapter is a heavily revised and updated version of [Jensen et al.22017]. © 2017 IEEE. Reprinted, with permission,
from S. K. Jensen, T. B. Pedersen, and C. Thomsen. 2017. Time Series Management Systems: A Survey. IEEE Trans.
Knowl. and Data Eng., 29(11): 2581-2600. DOI:|10.1109/TKDE.2017.2740932.
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Introduction
Sensors are increasingly used to monitor large industrial systems, and the ability to efficiently
analyze sensor data enables automation, fault detection, remote management, and optimization
at an unprecedented scale [[Sharma et al.[2014]. For example, the sensors in a Boeing 787 can
produce half a terabyte of data per flight [Ronkainen and Iivaril|2015]. A similar trend can
be observed in the consumer market with the deployment of smart appliances [Statistal[2022].
Sensor data can inherently be represented as time series, bounded or unbounded sequences of
data points in increasing order by time. Data series generalize the concept of time series by
removing the requirement that the ordering is based on time. Due to the volume of time series
being produced, specialized methods and systems for efficient collection, transfer, storage,
and analysis of time series have become a necessity [Bagnall et al.|2019} [Echihabi et al.[|2021]
Palpanas|2015} 2016alb, [Palpanas and Beckmann|2019) |Shafer et al.|2013| |Sharma et al.|[2014,
Zoumpatianos and Palpanas|2018]. An overview of time series data mining are provided
by [Esling and Agonl2012} |[Fakhrazari and Vakilzadian|[2017} [Fu/2011]], while more details
about sensor data management and data mining is provided by [|[Aggarwal 2013} 2015].
General-purpose Relational Database Management Systems (RDBMSs) have been invalu-
able for applications that require strong transactional guarantees. However, they are unable
to handle the velocity and volume of sensor data being produced today [Bagnall et al.[2019),
Palpanas|2015| [2016albl [Palpanas and Beckmann|2019, |Shafer et al.[2013| |Zoumpatianos and
Palpanas|2018]|. Separate applications like Python, R, or SPSS must also often be used to ana-
lyze time series, as general-purpose RDBMSs lack the necessary optimizations and algorithms
to efficiently do so [Bagnall et al.|2019| [Palpanas|2015} 2016alb, Palpanas and Beckmann/[2019]
Shafer et al.|2013| Zoumpatianos and Palpanas|2018]]. As a remedy, Time Series Management
Systems (TSMSs )| have been proposed. These systems are, e.g., optimized for monitoring
industrial machinery, analyzing time series collected from scientific experiments, or being
embedded into Internet of Things (IoT) devices. In this chapter, a TSMS is defined as any
system that is developed or extended specifically to store and query time series. TSMSs are not
a recent phenomenon and the limitations of RDBMSs, when used for time series management,
have been demonstrated in the past. In the 1990s the system SEQ and the SQL-like query
language SEQUIN were developed [Seshadri et al.|[1996]. SEQ was designed specifically
to manage sequential data using a data model [Seshadri et al.[[1995]] and a query optimizer
that utilizes that the data is ordered sequences and not a set of tuples [Seshadri et al.|[1994].
The system was implemented as an extension to the object-relational Database Management
System (DBMS) PREDATOR and supported storing and querying relational and sequential
data together [Seshadri et al.||1996]]. While additional support for sequences was added to
the SQL standard, e.g., through window queries, the development of query languages and

2 Time Series Management Systems is one among multiple names for these systems that are commonly used in the
literature, another common name is Time Series Databases.
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TSMSs continued throughout the early 2000s. For example, the algebra and query language
AQuery [Lerner and Shasha/|2003] was proposed in which data is represented as ordered
sequences that can be nested to represent structures similar to tables. Utilizing the AQuery data
model and information provided as part of the query, e.g., sort order, novel methods for query
optimization were implemented. In contrast to AQuery which uses a non-relational data model,
SQL-TS is an extension to SQL specifically designed for querying sequences in the form of
time series [Sadri et al.|2001a]. SQL-TS extended SQL with functionality for specifying which
column uniquely identifies a sequence and which column the sequence should be ordered by.
Patterns to search for in a sequence can then be expressed as predicates in a WHERE clause.
The Optimized Pattern Search (OPS) algorithm was also proposed, thus making complex
pattern matching both simple to express and efficient to execute [Sadri et al.|2001b}, [2004].

The decades of research into time series management have led to the development
of expressive query languages and efficient data processing engines. However, these past
generations of TSMSs do not exploit modern hardware such as many-core processors and the
ubiquity of distributed computing. Thus, they are unable to efficiently process the volume of
time series data being collected. These TSMSs are also generally not well optimized for specific
types of time series or use cases as they were designed to be general-purpose [Stonebraker
and Cetintemel|2005]]. As a result, a new generation of TSMSs has been developed. This
chapter provides an overview of the current state-of-the-art in the area of TSMSs presented as
a literature survey with a focus on the contributions of each system. The goal of this survey is
to analyze the current state-of-the-art TSMSs, discuss their limitations, and propose further
research directions. To focus the survey, it only includes systems that: implement methods
for both storage and processing of time series, are designed to manage numerous time series,
and are documented through peer-reviewed papers that are published in or after 2010. As a
consequence, the following types of systems are not included: systems that simply reuse a
TSMS [Kamina and Aotani|2019, |[Kamina et al.[2021]]; systems designed for spatiotemporal
data management that focus on the spatial component of the data such as UltraMan [Ding et al.
2018 and MobilityDB [Bakli et al.[2019} |[Zimanyi et al.|[2020]]; TSMSs that simply combine
general-purpose systems [Hamadou et al.[2020, Huang et al.[2021]]; TSMSs designed for low
powered sensor nodes such as Antelope [Tsiftes and Dunkels|2011]], HybridStore [Wang and
Baras|2013]], LittleD [Douglas and Lawrence|2014]], StreamOp [Cuzzocrea et al.[2014]], and
WearDrive [Huang et al.|2015] [L1 et al.|[2014]]; TSMSs for which only pre-print papers have
been published such as TritanDB [Siow et al.|2018]]; proprietary TSMSs for which no papers
have been published such as Amazon Timestream, Azure Time Series Insight, kdb+, Shapelets,
and VMware Tanzu; and open-source TSMSs for which no papers have been published such
as InfluxDB, Prometheus, Graphite, TimescaleDB, and Warp10. An overview of proprietary
and open-source TSMSs is provided by [DB-Engines Ranking of Time Series DBMS]], and a
survey of open-source TSMSs is provided in [Bader et al.|2017].
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The following method was used for collecting the papers: an unstructured search using
Google Scholar was performed to get an overview of the research performed in the area
of TSMSs and to determine the relevant conferences, terms specific to the research area,
and relevant researchers. Using these papers, iterations of structured search were performed.
Relevant papers found in each iteration were used as input for the next iteration. In each
iteration relevant papers were located by going through the following sources for each paper:

e The references included in the paper.
e Newer papers citing the paper. The citing papers were found using Google Scholar.

o All conference proceedings or journal issues published in or after 2010 for the conference
or journal in which the paper was presented or published. The most commonly used data
management outlets were ACM SIGMOD, CIDR, IEEE Big Data, and PVLDB, while the
USENIX conferences were the most commonly used system outlets.

e The publication history for each paper’s author, which was found using a combination of
DBLP and Google Scholar.

The rest of the chapter is organized as follows. Section [I.3] provides an overview of the
TSMSs included in the survey and a description of the criteria the systems are classified by.
Section describes the systems that use an internal data store, Section describes the
systems that use an external data store, and Section[I.6|describes the systems that extend an
existing DBMS. Section[I.7] proposes further research directions based on the limitations of
the current TSMSs. Last, a summary and conclusion are presented in Section [I.8]
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Figure 1.1: The three different types of architectures for TSMSs

Classification Criteria

An overview of the TSMSs included in this survey is shown in Table [I.I] It uses the
classification criteria described below. The name of each system and the papers describing
it are also included. The term Unnamed is used for systems without a name. Systems for
which source code is available at the time of writing are listed with a star (%). The information
in the survey is primarily based on the referenced papers. The systems’ source code and
documentation are used as secondary sources when specific information is not in the papers.
The TSMSs are grouped into three categories based on how the data processing engine and
the data store are connected due to the large impact this architectural decision has on the
implementation of the system. For example, using a mature external data store allows reuse
of existing infrastructure, but the system is also limited to the data store’s existing API, data
model, and storage layout. The remaining classification criteria were selected based on how
the systems differed. The full set of classification criteria are:

Architecture: The architecture of a TSMS is primarily based on how the data processing
engine and the data store are connected as shown in Figure[I.T] For some systems, the data
processing engine and the data store are integrated into the same application. For example, if a
TSMS operates directly on files or uses an embeddable DBMS. Thus, these systems use an
internal data store. Other systems use an external data store, e.g., a DBMS, a Distributed File
System (DFS), or cloud storage. Finally, some TSMSs are implemented as DBMS extensions
that add new functionality for storing and processing time series to existing DBMSs. Systems
that use multiple data stores for different types of data are classified based on the data store
they use for time series. Also, if a TSMS can use multiple different data stores for time series
it is classified based on the system’s primary use case. In Table[I.1] the architecture used by
each group of TSMSs is written in italics as the heading for that section of the table.

Year: The year the latest paper documenting the TSMS was published. This is included to
simplify the comparison of systems developed around the same time. The year of the latest
paper is used as new papers indicate that functionality is still being added to the system.
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Table 1.1: Overview of the surveyed systems in terms of the classification criteria

Pri Motivational Scall Data P i Data St
Year rimary otvationa Deployment Maturity cale ata _,c.emmm:_w API Approximation Latency A orage
Purpose Use Case Shown Engine Store Layout
Internal Data Store
tsdb¥r 2012 Monitoring Network monitoring at scale. Centralized =~ Mature 6.3 GB Proprietary (C) Client Library (C) Not Supported Near BerkeleyDB Fixed-size arrays of
Deri et al. | Created for monitoring the 1 Node Real-Time values compressed using
Italian .it DNS registry. QuickLZ and stored in
BerkeleyDB by time.
FAQ 2014  Evaluation Efficient approximate Centralized ~ Proof-of-Concept 1.9 GB Proprietary (Java) Unknown Approximate Batch KyotoCabinet Sketches and histograms
[Khurana et al] queries on time series with 1 Node Query Processing organized in a range tree.
E histograms as values.
NilmDB¥ 2014 Data Efficient management and Centralized ~ Demonstration Unknown  Proprietary (Python) ~ Web Interface, Not Supported Batch Proprietary (Python) ~ Multivariate time series
[Paris et al] Analytics  analytics of time series in 1 Node HTTP, Python stored as fixed-size data
_Mwlﬂ._ the energy domain. points in binary files and
metadata in SQLite.
Unnamed 2015 Data Fast approximate queries for ~ Centralized Proof-of-Concept ~ Unknown Proprietary (R) Extended SQL Approximate Batch Proprietary (R) Time series stored
[Perera et al.] Analytics  decision support systems. 1 Node Query Processing separately as data points
_E and different models.
RINSE 2015 Evaluation Efficient time series Centralized ~ Demonstration 1TB Proprietary (C) ‘Web Interface, Approximate Batch Proprietary (C) Files with time series in
E similarity search without 1 Node Telnet Query Processing an ASCII format that is
et m_._Non creating a full index first. indexed by ADS+.
RoundRobinson 2016  Evaluation Reference implementation Centralized Proof-of-Concept ~ Unknown Proprietary (Python)  Client Library Batch Proprietary (Python)  Python objects pickled to
E of formalisms for TSMSs. 1 Node (Python) a file or written to CSV.
PhilDBY 2016 Data Storage and analysis of Centralized ~ Demonstration 119.12MB  Proprietary (Python), ~Client Library Not Supported Batch Proprietary (Python) ~ Data points stored as
[MacDonald] Analytics  versioned time series. 1 Node Pandas (Python) triples in binary files and
g updates in HDF5.
Chronos¥r 2016  Monitoring Monitor hydroelectric plants ~ Centralized ~ Demonstration 11.5GB Proprietary (C++) Client Library Not Supported Near Proprietary (C++) Data points stored
[Chardin etal] using industrial PCs with 1 Node (C++) Real-Time quasi-sequentially and
_g CompactFlash for storage. indexed by a B-Tree.
LittleTable 2017 Monitoring Manage time series Centralized ~ Mature 6.7 TB Proprietary (C++), SQL Not Supported Near Proprietary (C++) SSTables grouped by
Rhea et al. collected by remotely 1 Node SQLite Real-Time recency and compressed
E monitoring IoT devices. using LZO1X-1.
SummaryStore¥r 2017  Data Fast approximate analytics Centralized Demonstration 10TB Proprietary (Java) Client Library Lossy Near Proprietary (Java), Approximated segments
[Agrawal and | Analytics  of time series on a single 1 Node (Java) Compression Real-Time  RocksDB stored in RocksDB
Vulimiri] node using approximate grouped by time series
representations. and ordered by time.
MDDS 2017 Monitoring Efficient and fast ingestion Centralized Demonstration 22.8GB Proprietary (C++), SQL Not Supported Near Proprietary (C++) Data Records stored in
Colmenares of multivariate time series 1 Node SQLite Real-Time row order and indexed

on a single node.

by KD-Trees and an
R"-Tree.
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Primary Motivational Scale Data Processing Data Storage
Ye Depl t Maturit; API A imati Late

ear Purpose Use Case eploymen aturity Shown Engine pproximation atency Store Layout
TS-NSM 2021 Monitoring Efficient management of Centralized Demonstration Unknown Proprietary Client Library Not Supported Near Proprietary 4K blocks storing regular
[Cai et al. time series from IoT using 1 Node (Unknown) (Unknown) Real-Time  (Unknown) segments as a timestamp
2021 both solid-state drives and and values compressed

persistent memory. using a duplicate values
counter and deltas.

Mach 2022  Monitoring Ingesting from billions of Centralized Demonstration Unknown Proprietary (Rust) Client Library Lossy Near Proprietary (Rust), Fixed-size segments with
[Solleza et al. data sources while also 1 Node (Rust) Compression Real-Time  ClickHouse, a column-based layout
2022 executing queries with low Amazon S3 Glacier  stored compressed in

blocks that match the
OS’s page-size.

latency, especially for the
most recent data points.
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Table 1.1: (continued)

Year Primary Motivational Deployment Maturity Scale Data E,o.nmmmm:w API Approximation Latency Data Storage
Purpose Use Case Shown Engine Store Layout
Storacle 2015 Monitoring  Efficient monitoring of Centralized ~ Demonstration 541 MB Proprietary (Java) Client Library Not Supported Near Proprietary (Java), Java objects as the
[Cejkaetal] smart grids using edge nodes 1 Node (Java) Real-Time  Cloud Storage in-memory format and
E with limited hardware and Protocol Buffers as the
scalable cloud storage. on-disk format.
BTiDBY 2016 Monitoring Analyzing time series with Distributed Mature 2757 TB Proprietary (Go) Client Library (Go, ~ Not Supported Near Proprietary (Go), Versioned copy-on-write
[Andersen | nanosecond timestamps and 2 Nodes Python) Real-Time  Ceph trees with aggregates in
and Culler| out-of-order data points at the internal nodes and
E multiple resolutions. compressed data points
in the leaf nodes.
FluteDB 2018 Monitoring Efficient and reliable time Distributed Proof-of-Concept 17475 MB  Proprietary SQL Lossy Near Proprietary Timestamps compressed
ILi et al.2017] series management in 1 Node (Unknown), Compression Real-Time  (Unknown), using delta-of-delta
@ domains where very fast PostgreSQL Persistent Storage, compression and values
ingestion is a requirement. PostgreSQL, Redis ~ compressed using lossy
XOR compression.
M-DB 2019 Monitoring  Storage and periodic Distributed Demonstration Unknown Apache Storm Unknown Approximate Near Apache Kafka, Key-value pairs with
[Aroraetal] processing of data points 10 Nodes Query Processing  Real-Time Apache Cassandra multiple data points
@ from unreliable sensors. stored for each key.

UPS 2020 Data Support both real-time Distributed Demonstration Unknown Proprietary (Go) Client Library (Go) ~ Not Supported Near Proprietary (Go), Cache with three levels
[Kosen et al.| Analytics  monitoring and data 11 Nodes Real-Time BTrDB, Ceph that store time series as
@ analytics simultaneously. data points or k-ary trees,

and an on-disk format
indexed by k-ary trees.
TimeCrypt’¥ 2020 Data Support storage and sharing ~ Centralized =~ Demonstration Unknown Proprietary (Java) Client Library Approximate Batch Apache Cassandra Encrypted segments of
[Burkhalter | Analytics  of private time series using 1 Nodes (Java) Query Processing data points indexed by a
E an untrusted data store. k-ary tree with statistics
in the internal nodes.
2020 Data Efficient cloud-based time Distributed Mature 172 GB Proprietary (Go) REST API Approximate Batch Proprietary (Go), Segments of data points
Analytics ~ series management in terms 7 Nodes Query Processing HDFS, Amazon S3  stored in a row-based
of performance and cost. layout and compressed
using delta compression
followed by ZStandard.
Db2 Event 2020 Data Efficient ingestion, storage,  Distributed Mature Unknown Proprietary (C++), SQL Not Supported Near Proprietary (C++), Apache Parquet files in
Store Analytics  and complex real-time 9 Nodes Db2 BLU Real-Time  Shared Storage shared storage accessible
[Garcia-] analytics of time series from the compute nodes,
[Arellano et al.] stored in an open storage e.g., cloud storage, a
format in the cloud. DFS, or a NAS device.
2020 Monitoring  Unify monitoring across Distributed Mature 750 TB Proprietary Monarch’s Novel Not Supported Near Proprietary Timestamps that are
Google’s internal systems. Unknown (Unknown) Query Language. Real-Time  (Unknown), stored once for multiple
Colossus, time series and values
Long-term compressed by RLE and
Repository delta compression.
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Table 1.1: (continued)

Primar Motivational Scale Data Processin, Data Storage
Year Y Deployment Maturity . 2 API Approximation Latency 8
Purpose Use Case Shown Engine Store Layout
DBMS Extensions
F’DB 2012 Data Effective and efficient Centralized Demonstration Unknown Proprietary Extended SQL Not Supported Near PostgreSQL Data points stored in
Fischer et al. Analytics  forecasting of time series 1 Node (Unknown), Real-Time tables and models stored
2012b stored in an RDBMS. PostgreSQL in a model pool with a
model index on top.
TimeTravel 2012 Data Forecasting of power Centralized Demonstration Unknown Proprietary SQL Approximate Near PostgreSQL Data points stored in
[Khalefa et al’| Analytics  consumption in smart grids 1 Node (Unknown), Query Processing  Real-Time sorted arrays with
using a uniform interface for PostgreSQL models organized in a
queries on historical and hierarchical index on top.
forecasted data points.
Unnamed 2014 Monitoring  Efficient support for time Distributed Mature 53.05 GB Proprietary SQL Lossy Near IBM Informix Segments stored as
[Huang et al] series data, relational data, 1 Node (Unknown), Compression Real-Time values; timestamps and
and complex SQL queries. IBM Informix values; or device ids,
timestamps, and values.
TRISTAN 2014 Data Efficient low-latency Centralized ~ Demonstration Unknown  Proprietary Unknown Approximate Near Proprietary Sparse representation of
[Marascu et al] Analytics  analytics of noisy, irregular, 1 Node (Unknown), Query Processing  Real-Time  (Unknown), fixed-size segments
E and misaligned sensor data. HYRISE HYRISE created through online
dictionary compression.
Unnamed 2016  Evaluation  Analysing time series as Centralized ~ Proof-of-Concept 23 MB Proprietary SQL Approximate Batch Oracle Database Data points and model
IBakkalian | ordered sequences of events 1 Node (PL/SQL), Query Processing parameters in tables.
et al.201 using linear functions. Oracle Database
Chronix¥¢ 2017  Data Efficient storage and Distributed Demonstration 8.7GB Proprietary (Java), HTTP Lossy Batch Apache Solr Segments stored using
ILautenschlagér Analytics  analysis of time series 1 Node Apache Solr Compression lossy compression for
[etal 2015] collected by monitoring timestamps and lossless
E distributed systems. compression for values.
EdgeDB 2019 Monitoring  Efficient management of Centralized ~ Demonstration Unknown Proprietary (Go), Unknown Lossy Near Proprietary (Go), Fixed-size segments that
[ Yang et al. | time series on the edge by 1 Node BTrDB Compression Real-Time BTrDB are compressed, grouped,
E storing them in groups. and indexed by trees.
tspDB¥Y 2020 Data Incremental imputation and ~ Centralized Demonstration Unknown Proprietary (Python), Extended SQL Approximate Near PostgreSQL Data points and model
Analytics  forecasting using matrix 1 Node PostgreSQL Query Processing  Real-Time parameters in tables.
factorization in an RDBMS.
Heracles¥r 2021 Monitoring  Efficient storage of Centralized Demonstration Unknown Prometheus PromQL Not Supported Near Proprietary (Go), Groups with a sequence
Wang multivariate time series as a 1 Node Real-Time  Prometheus of timestamp deltas and
timestamp column and sequences of XORed
multiple value columns. values in aligned blocks.
TVStore?r 2022 Data Limit the amount of storage  Distributed Demonstration Unknown Apache IoTDB Client Library (Go,  Lossy Near Proprietary (Java), Files consisting of pages
[An‘etal] Analytics  used to a user-defined upper 1 Node C++, Python, Java), ~Compression Real-Time ~ Apache [oTDB with data points that are

A

bound while also preserving
the accuracy of the time
series as much as possible.

SQL-like, REST
API

compressed using lossy
and lossless compression,
metadata, and statistics.
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Primary Purpose: The primary type of workload the TSMS was designed and optimized for.
A system can be designed for monitoring to assist with detection and correction of faulty
behavior, extraction of value from time series through advanced data analytics, or exclusively
as an evaluation of research into novel formalisms, architectures, and methods for TSMSs.

Motivational Use Case: The intended use case for the TSMS based on the specific problems
it was designed to solve. As multiple systems designed for the same primary purpose can be
designed with different trade-offs, the specific problems a system is designed to solve indicates
which trade-offs were necessary for a particular TSMS.

Deployment: The type of deployment the system is designed for. A system can be designed for
a centralized deployment on a single node or to scale out through both distributed computing
and storage. It is included due to the effect this decision has on the architecture of the system
and the constraints a centralized system has in terms of scalability.

Maturity: The maturity of the system using a three-level scale: proof-of-concept systems
implement only the functionality necessary to evaluate a new technique. Demonstration
systems also implement the functionality necessary for users to interact with the system and
are mature enough for the system to be evaluated with a real-life use case. Mature systems have
implementations robust enough to be deployed to solve real-life use cases and be supported
through either an open-source community or commercial support.

Scale Shown: Scale shown is used as a concrete measure of scalability and is defined as the
size of the largest data set and the highest number of physical nodes a TSMS can manage as
documented by the referenced papers. The size of the largest data set and the highest number of
nodes need not be from the same experiment. The size of the data set is the amount of storage
used by the system when storing the data set, thus, the use of compression affects the size of
the data set. Results where the data set’s size is documented as a number of data points are not
included. This is because the size of data points differs significantly depending on the number
of values they contain, the data types used, and the amount of metadata they contain.

Data Processing Engine: The data processing engine used by the system for querying, and
if supported, analyzing the time series. Also included as it often provides the system’s
external interface. The name of the system is written if an existing system is used. For TSMSs
where a new data processing engine has been developed, it is listed as proprietary with the
implementation language added in parentheses. Multiple data processing engines are listed if a
system supports more than one. Both the term proprietary and the name of a system are also
listed if a significant amount of functionality for data processing has been implemented on top
of or as extensions to an existing data processing engine.

API: The primary interface provided by the TSMS. It can be unknown, an existing query
language, an extended version of an existing query language, a new query language, a client
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library with the implementation language added in parentheses, a web service, or a web
interface. The interface of embeddable systems is listed as a client library.

Approximation: Describes the primary method for approximation that each system supports
if any. Approximation can reduce the amount of storage required and the query processing time.
It can be implemented either with or without error bound guarantees. Common approaches for
approximation include: reducing the precision of timestamps and values, representing time
series using models such as polynomial functions or sketches, and using only a sample of
the data points in a time series to answer a query. Answering queries using pre-computed
aggregates may also produce an approximate result, e.g., if the time interval the aggregates are
pre-computed for and the time interval the aggregate query is restricted to do not match exactly.
Approximation can be performed during ingestion by using lossy compression to approximate
time series or during query processing by using Approximate Query Processing (AQP) to
approximate query results. Systems that do not implement any functionality for approximation
are listed as not supported. A survey of model-based management of time series is provided
by [Sathe et al.[2013]], while information about sampling and integration of AQP into a DBMS
can be found in [Mozafari and N1u|2015]].

Latency The degree to which a system can ingest and process time series online with low
latency. A system is categorized as batch if a data set must be fully ingested offline or in large
batches before it can be queried, as near real-time if it supports executing ad-hoc queries on a
data set while ingesting data points of it, and real-time if it supports executing user-defined
continuous queries using stream processing. For an overview of how stream processing differs
from traditional query processing see [Babcock et al.[2002], while an in-depth introduction to
stream processing is provided by [Garofalakis et al.|[2016].

Data Store: The data store used by the system for storing time series. The name of the system
is written if an existing system is used. For TSMSs where a new data store has been developed,
it is listed as proprietary with the implementation language added in parentheses. Multiple
data stores are listed if a system supports more than one. Both the term proprietary and the
name of a system are also listed if a significant amount of functionality for data storage has
been implemented on top of or as extensions to an existing data store.

Storage Layout The internal representation used by the TSMS for storing time series. Included
due to the impact the internal representation has on the system’s query processing capabilities
and the amount of storage it uses.

An overview of the functionality provided by each TSMSs is shown in Table[T.2} It is split
into three sections like Table[L.Tland the information in the table is also based on the referenced
papers. To describe the functionality with a uniform set of well-known terms, SQL keywords
are primarily used. The table uses black circles to show if a system implements functionality
to: append data points to the end of a time series; insert data points into a time series at any
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location; update data points already part of a time series; delete data points or time series;
restrict queries to where data points has specific timestamps, values, or metadata; compute
aggregates from a time series; join multiple time series on timestamps, values, or metadata;
group by timestamps, values, metadata, or a number of data points; and perform data analytics.
A black circle is only shown in a cell if the referenced papers explicitly state that the TSMS
implements that functionality, otherwise the cell is left empty. For data analytics, only the
methods the referenced papers state as implemented in the corresponding systems are listed.
The following three sections describe the primary contributions of each system in relation to
its motivational use case and the classification criteria. There is one section for each of the three
architectures. To make the systems simpler to compare despite the papers using different terms,
the following terms are used throughout the chapter: a data point is a timestamp and one or more
values, a time series is a sequence of data points ordered by time, a segment is a sub-sequence
of a time series, and a univariate time series has one value per data point while a multivariate
time series has multiple values per data point. From a user’s perspective, most TSMSs only
support univariate time series, so it is only explicitly stated if a TSMS supports multivariate
time series. Figures redrawn from the referenced papers are also used to describe the systems.
Two types of figures are used depending on the contribution of each system: architecture
diagrams and method illustrations. Architecture diagrams show system components as boxes
with full lines, undefined connections as /ines between components, data as boxes with rounded
corners, data flow between components as arrows, logically related components inside boxes
with dotted lines or as components separated by dotted lines, data storage as cylinders, nodes
as components surrounded by boxes with dashed lines, and annotations as text labels. The
definition of a component depends on the level of detail in the original figure. For an embedded
system it may be a buffer pool while it may be a set of nodes for a large distributed system.
Method illustrations are not as regular because they show different aspects of each system. The
layout of data in memory is drawn as boxes with full lines while squares with rounded corners
are nodes in trees. Constructs only used for a single figure are described as part of the figure.
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Table 1.2: Overview of the surveyed systems in terms of their functionality

Append Insert Update Delete Where Aggregates Join Group By Data Analytics

Internal Data Store

tsdb¥y
[Deri et al.
2012

FAQ ° ° Cosine Similarity, Distinct Count, Empirical Entropy, Frequency Esti-
[Khurana et al. mation, Frequency Moments, Histogram Distances, Jaccard Coefficient,
2014 p-Norms, Rank Correlation, Set Membership, Top-K

lT\]l)l]r\leB ] ° ° ° ° ° Transient Event Identification, User-Defined, Visualization
aris_et_al.
2014

Ili]nnamed , ° ° ° Histogram
erera_et_al.
2015

RINSE
[Zoumpatiano§
etal.2015a

° ° ° Similarity Search, Visualization

RoundRobinson
[Serra et al.
2016,

PhilDB¥¥ Pandas
[MacDonald
2016

Chronos¥s
{Chardin et al.
2016,

LittleTable
[Rhea et al.
2017

SummaryStorew ° ° ° ° Distinct Count, Frequency Estimation, Set Membership
[Agrawal and:

Vulimiri

2017

MDDS
|Colmenares
et al. 2017

TSMMDB
[Lan et al.
2019

MetricQ¥%
[llsche et al.
2019

Visualization
[ ] [ [ ] [ ]

ChronicleDB Pattern Matching
[Seidemann

and _ Seeger

2017} |Seide]

mann.__et_al.

2019

Plato ° ° ° ° ° Correlation, Interpolation, Standard Deviation
[Katsis et al.

2015/ Lin et al.

2020;

AtriumDB Query for Data Quality
[Goodwin
et al. 2020,

Timon ° ° ° ° ° ° Anomaly Detection, Cauchy Distribution, Distinct Count, Mean Ab-
[Cao et al. solute Deviation, Median, Pearson Correlation, Percentiles, Standard
2020; Deviation

Apache ° ° ° ° ° ° ° ° Similarity Search
IoTDBY

[Wang et al.
2020;
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Table 1.2: (continued)
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Append

Insert Update Delete Where

Aggregates

Join  Group By Data Analytics

TubeDBYY
[Wollauer
et al. 2021

Interpolation, Quality Control, User-Defined, Visualization

VergeDB
|Paparrizos
etal. 2021

Clustering, Outlier Detection, Sampling

TS-NSM

[Cai__et al.

2021

Mach

[Solleza et al.

2022

External Data

Store

TSDS¥

[Weigel et al.

2010

Sampling

SensorGrid
[Cuzzocrea
and Sacca
2013

Visualization

Respawn

[Buevich et al.

2013

Bolt¥r

[Gupta et al.

2014

Sampling

Druid¥r

[Yang et al.

2014

Cardinality Estimation, Quantile Estimation

Unnamed

[Guo et al.

2013/
2014alb

Interpolation

Unnamed
[Williams
etal.2014

Standard Deviation

Unnamed
[Mickulicz
etal. 2015

Distinct Count, Frequency Estimation

servIoTicyw
[Pérez  and
Carrera 2015

Gorilla¥
[Pelkonen
etal. 2015

Pearson Correlation

Storacle

[Cejka et al.

2015

BTrDBY
[Andersen and:
Culler2016

Versioning

FluteDB
|Li et al. 2017]
2018

M-DB

[Arora et al.

2019

Event Detection, Prediction, User-Defined

UPS

[Kosen et al.

2020
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Table 1.2: (continued)

Append

Insert Update Delete

Where Aggregates

Join  Group By

Data Analytics

TimeCrypts¥
[Burkhalter
et al.[2020;

Approximate Quantiles, Histogram, Prediction, Standard Deviation,
Trend Detection, Variance

Peregreen
| Visheratin
et al.[2020;

Difference, Moving Average, Percentiles, Sampling, Standard Deviation

Db2  Event
Store

|Garcia-
Arellano et al.
2020;

Monarch
[Adams et al.
2020;

Histogram

TorqueDB
|Garg et al.
2020;

ByteSeries
[Shi et al.
2020

BitemporalDB
[Sedighi et al.
2020;

Versioning

ModelarDB3¢
[Jensen et al.
2018] [2019]
2021]2023

DBMS Extensions

F’DB
|Fischer et al.
2012b

Forecasting

TimeTravel
[Khalefa et al.
2012

Unnamed
[Huang et al.
2014

TRISTAN
[Marascu et al.
2014

Interpolation

Unnamed
|Bakkalian
et al.2016;

Interpolation

Chronix?r
[Lautenschlagér
et al.| |2015]
2017

Derivative, Difference, FastDTW, Integral, Moving Average, Outlier De-
tection, Percentiles, SAX, Scaling, Standard Deviation, Trend Detection,
User-Defined

EdgeDB
[Yang et al.
2019

tspDBY
[Agarwal et al.
2020’

Imputation, Forecasting

Heraclesvr
[Wang et al.
2021

TVStorevt
[An et al.
2022

Similarity Search
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Internal Data Store

Overview

Implementing a TSMS with an internal data store allows the data processing engine to be
tightly integrated with the data store. As the data store is only accessible from the TSMS, the
API and storage layout of a new data store can be optimized exclusively for the data processing
engine. However, if a new data store is developed, no prior knowledge exists about how to best
use it. On the other hand, if an existing data store is used, existing knowledge about how to use
it can be reused and development time may be reduced, but the TSMS may be restricted by
the data store’s API and storage layout. The use of an internal data store may also simplify
deployment due to the reduction of external dependencies, but the TSMS cannot reuse existing
infrastructure such as a distributed DBMS or a DFS. Also, systems with an internal data store
generally do not allow the data processing engine and the data store to be scaled separately.

Systems

tsdb presented by [Deri et al.|2012] is a centralized open-source TSMS designed for monitoring
the large quantity of requests the .it DNS registry receives. It is implemented as a C library that
can be embedded and uses the embeddable key-value store BerkeleyDB as its data store. The
use of BerkeleyDB provides a uniform mechanism for storing the time series and the metadata
used by the system. tsdb requires that all time series must start at the same time, have the same
sampling interval, and contain the same number of data points. Thus, the system essentially
stores a single multivariate time series. These restrictions make it simpler to perform analyzes
that use multiple time series, but it also means that tsdb is not applicable for domains where
the time series are sampled at different or irregular intervals. When ingesting, tsdb first sets
the timestamp to use for the next batch of data points. Then an in-memory array is allocated,
and the values of the data points are written to it. Afterward, the in-memory array is split into
chunks, compressed using QuickLZ, and stored in BerkeleyDB with the timestamp and chunk
id as the key. tsdb does not implement a query language, so data points must be manually
inserted and retrieved using the library’s C APL. It also does not support approximation.

The centralized TSMS FAQ proposed by [Khurana et al.|2014] uses sketches organized
in a range tree to efficiently execute approximate queries on time series with histograms as
values. The system consists of multiple components as shown in Figure[I.2} The Index contains
multiple types of sketches and histograms. Multiple representations are used to support different
types of queries and different trade-offs between the accuracy of the query result and the query
response time. The current prototype requires that users manually tune the index as automatic
selection of parameters is listed as future work. The Index Manager and Error Estimator are
used by the Query Planner to select the best representation of the data for a given query. The
representation that provides the lowest query response time and a result within the required
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E Query Index E
Planner Manager
: T é 5
1 E 1
' .rror Index !
' Estimator .

Figure 1.2: The architecture of FAQ, redrawn from [Khurana et al.|[2014]

error bound is considered the best. Thus, FAQ supports approximation through AQP. However,
detailed information about the Query Planner and the system’s API is not included in the paper.

[Paris et al.|2014] designed NilmDB as a centralized open-source TSMS for managing
multivariate time series from the energy domain. The system manages data points as Intervals,
metadata that represents which time intervals each time series stores data points for. User-
defined and system metadata are stored in SQLite, while the data points are managed by a
novel append-only data store named BulkData. It stores each time series in a separate directory
containing binary files of approximately 128 MB in size. During ingestion, the data points
received for a specific time series are simply appended to the current file using a fixed number
of bytes per data point. Specific data points from a time series can be retrieved from NilmDB
using HTTP requests. User-defined Python scripts can also be submitted to process large data
sets on the server before returning the result. NilmDB locates the data points by first retrieving
all Intervals for the queried time series from SQLite. Then, the relevant Intervals are located
using a red-black interval tree and the matching data points are retrieved from BulkData. When
retrieving data points, BulkData exploits the files fixed layout to compute their location. Data
points are deleted by storing their ids in a separate file and marking the space they occupy
in the data file as unused. Both files are deleted when all data points in the data file have
been deleted. A separate NILM Manager provides additional functionality, e.g., support for
configuring NilmDB instances, transient event identification, and real-time visualization of
time series from NilmDB. When creating visualizations, NILM Manager tries to retrieve time
series with an appropriate level of aggregation. NilmDB does not support approximation.

A centralized TSMS with support for model-based AQP was proposed by [Perera et al.
2015]. The system represents each time series using a set of model types so an appropriate type
of model can be used for each query. The data points can also be stored and used as a fallback
if necessary. The system fits models to time series by splitting each time series into smaller
segments and then attempts to fit models to each segment within an error bound. The use of
segmentation allows models optimized for the structure of each segment to be used. If a model
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cannot be fitted to a segment with the necessary precision, the data points are stored for that
segment. Multiple extensions to SQL are also proposed. Specifically, support for specifying
which model type to use for answering the query, an error bound for the query result, and the
maximum query response time. The current R-based implementation supports simple aggregate
queries and performing histogram analysis. Approximation is supported for both query types,
so the system supports AQP. Also, a Model Advisor is planned that will collect query statistics
and use these to decide how a specific query should be executed within the constraints specified
in the query. The authors also proposed using error bounded model-based approximation of
time series to reduce the storage requirement of materialized OLAP cubes [Perera et al.|2016]].
RINSE is a centralized TSMS proposed by [Zoumpatianos et al.|2015af]. It supports
efficient time series similarity search using the adaptive tree-based ADS+ index [Zoumpatianos
et al.[2014, 2016]. The system is split into two sets of components: a Frontend and a Backend.
The Backend consists of NodeJS and the ADS+ Server that stores time series in an unspecified
on-disk ASCII format indexed by ADS+. The Frontend provides a web interface that allows
users to submit similarity search queries to the Backend by drawing the time series to search
for using a mouse or a touch screen. The Frontend also provides a command-line interface
based on telnet. As ADS+ is adaptive, it does not add the time series being indexed to its leaf
nodes until they are requested by a query, thus reducing the amount of time required to create
the index. Also, it dynamically adjusts the size of its leaf nodes to improve query performance.
ADS+ supports executing exact and approximate similarity search queries using the same index.
Thus, RINSE supports approximation though AQP. Following from the work on RINSE and
ADS+, multiple new indexes for time series similarity search have been proposed [Palpanas
2020] and preliminary results have been published for NESTOR, a TSMS that automatically
optimizes its storage layout based on the received queries [Zoumpatianos et al.|[2019].
Pytsms and RoundRobinson were proposed by [Serra et al.|2016]] as proof-of-concept
implementations of two formalisms [Llusa-Serra et al.|[2013| [Serra et al.|[2016]. Thus, no
attempt was made to make them efficient or comparable in functionality to existing TSMSs.
Pytsms is a simple centralized TSMS that provides a small set of operations that can be
performed on time series. For example, computing the union of two time series and verifying
that a time series is regular. RoundRobinson provides a multiresolution abstraction on top of
Pytsms. This is implemented as Buffers and Discs. Buffers store data points for a time interval,
e.g., five hours. Data points are added to the Buffers and aggregates are computed when data
points outside the time interval are ingested. The aggregates are then added to Discs that
function as fixed-size round-robin data stores, thus they discard old aggregates when new ones
are added. The use of multiple Discs allows the system to provide a multiresolution view of a
time series. For example, the most recent data can be stored using high-resolution aggregates,
while older data are stored at much lower resolutions. An example of such a configuration
is shown in Figure[I.3] It shows a schema for time series represented at different resolutions
where the resolution used depends on the age of the data. The lowest resolution aggregates
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Figure 1.3: A time series stored at multiple resolutions, redrawn from [[Serra et al.[2016]

are for fifty days so only twelve are needed for the entire six hundred days of the time series.
However, the data for the latest five days are stored as twenty-four aggregates, one for each
five-hour interval. Thus, RoundRobinson supports approximation through lossy compression.
PhilDB proposed by [MacDonald|2016] is a centralized open-source TSMS designed for
data analytics that preserves the existing data points when updates are performed. It uses
different data stores for each type of data. Metadata is stored in SQLite, e.g., time series are
identified by user-defined strings and they can be associated with additional attributes such as
their data source. Data points are stored sequentially in binary files where each data point is
stored as a timestamp, a value, and an integer flag. The flag contains metadata about the data
point, e.g., if the value is missing. Updates are stored in HDF?5 files collocated with the binary
files storing the data points. The HDFS5 files store updated data points as two timestamps, a
value, and an integer flag. The additional timestamp indicates when the update was performed.
As the original data points are unchanged, queries can request a specific version of a time series
based on a timestamp. Support for reading and writing time series to disk is implemented as
part of PhilDB, however, the system uses Pandas as its in-memory representation. The use of
Pandas allows PhilDB to interface with Python’s data science ecosystem without converting
the time series to another format first. However, the system does not support approximation.
The centralized open-source system Chronos by [Chardin et al. 2016]] is a TSMS for
monitoring industrial systems in hydroelectric power stations. In the power stations, the
persistent storage is flash-based due to its endurance. However, it has substantially lower
write performance than hard disk drives. To remedy this, Chronos implements an abstraction
layer [[Chardin et al.|2011] so that writes to the file system or the raw flash-based storage are
performed close to each other. The addition of the abstraction layer makes the TSMS’ write
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pattern close to sequential. This is preferable as the performance of a write to the flash-based
storage decreases the further from the previous write it is performed. Chronos indexes the
stored data through B-Trees which use a novel splitting algorithm that is optimized for time
series. The system supports efficient out-of-order inserts within a limited window by buffering
and sorting ingested data points before persisting them. The size of the buffers is a trade-off
between the time interval for which out-of-order inserts are assumed to occur and the possibility
of data loss as their data are only stored in memory. Chronos does not support approximation.

The TSMS LittleTable was developed at Cisco Meraki by [Rhea et al.|2017] to efficiently
manage multivariate time series collected from customer IoT devices. It is designed as a
centralized relational system for time series and requires that each table defines a composite
primary key with a timestamp column as the last column in the key. However, the system
lacks functionality commonly provided by RDBMSs, e.g., NULL values and support for
updates. LittleTable’s client is implemented using SQLite’s Virtual Table Interface. When
ingesting, SQLite batches data points before transferring them to LittleTable which inserts
them into MemTables implemented as binary trees. Each MemTable stores data points for a
predefined time interval so data points with very different timestamps are not stored together.
The MemTables become read-only at a configurable size or age and are asynchronously written
to disk as Sorted Strings Tables (SSTables). An SSTable contains key-value pairs ordered by
the keys and was popularized by BigTable [Chang et al.[2006, 2008]. If LittleTable terminates
abnormally, the clients try to re-insert the lost data points. Each SSTable also contains an
index of the keys and time intervals it contains. The SSTables are grouped using the same
time intervals as used for the MemTables and SSTables within each group are periodically
merged. Queries are processed by a combination of the SQLite client and LittleTable. The
client transfers the query to LittleTable which returns the requested data points in sorted order.
The client then computes the final result if necessary. Query processing and ingestion can be
performed in parallel, but LittleTable provides no guarantees about which of the data points
currently being ingested will be in the query result. The system does not support approximation.

[Agrawal and Vulimiri|2017] designed the centralized open-source TSMS SummaryStore
to provide efficient approximate analytics by storing approximate representations of time series.
Thus, SummaryStore primarily supports approximation through lossy compression. The system
is specifically designed for analytics in domains where the most recent data points are the most
relevant. Important data points, such as outliers, can manually be stored separately to ensure
they are preserved without any error. During ingestion, SummaryStore splits time series into
segments and approximates each using multiple representations, e.g., lightweight statistics,
histograms, Count-Min Sketches, and samples. This allows different types of queries to be
answered efficiently. The representations to use for each time series can be configured, and
additional representations can be added through an API. For a representation to be used with
SummaryStore, it is a requirement that two instances of the representation can be combined.
Segments and the representations they contain are combined as they age, so recent data is
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Figure 1.4: The architecture of MDDS, redrawn from [[Colmenares et al.[2017]

stored in short segments while older data is stored in longer segments. As the same amount of
storage is allocated for each segment, the data stored in the older segments is inherently less
accurate. When answering queries, SummaryStore may approximate the result depending on
the representation used. For example, when computing a sum over a time interval that spans
half a segment, it is assumed that each part of the segment contributes equally to it. The error
of each query result is estimated using the mean and variance of the deltas between adjacent
timestamps and the mean and variance of the values for each time series. An in-memory tree
mapping from time intervals to segments is used to make retrieving segments efficient.
MDDS was proposed by [[Colmenares et al.2017] as a centralized TSMS for managing
multivariate time series with metadata. It is purposely optimized for fast ingestion on a single
node instead of horizontal scalability. The system is designed for sensor data but generalizes
data points to Data Records which are tuples containing fields. All Data Records in a time
series must contain the same fields, and at least two of the fields must be numeric for indexing.
The architecture of MDDS is shown in Figure and consists of a separate ingestion and
data processing pipeline with a shared R*-Tree and storage. MDDS ingests Data Records in
micro-batches and divides these micro-batches into Data Segments. A Data Segment contains
Data Records, lightweight statistics, and a KD-Tree that indexes the Data Records. Each Data
Segment is added to the R*-Tree and asynchronously written to storage. The Query Processor
is implemented using SQLite’s Virtual Table Interface and executes queries by determining
which Data Segments are relevant using the R*-Tree and then retrieving them from the cache or
storage. MDDS requires that the user specifies the Data Records structure, the fields to index,
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Figure 1.5: MetricQ’s Hierarchical Timeline Aggregation, redrawn from [Ilsche et al.[2019]

the maximum micro-batch size, and the maximum Data Segment size. It stores Data Records
in row order instead of column order for simplicity, and does not support approximation.
[Lan et al.[2019] designed TSMMDB to be a centralized in-memory TSMS for analyzing
time series with metadata without transferring the data points from the TSMS to other
applications. Instead, an application embeds TSMMDB and interacts with its Reader and
Writer components directly. Configuration is performed using a Manager component. The
system stores ingested data points in files. Each file contains both data points for a specific
time interval and indexing information. These files are modified by memory mapping them and
then modifying the corresponding memory. While new data points are flushed asynchronously
to the disk, they can immediately be read from the mapped memory. TSMMDB maintains an
in-memory mapping of metadata to files using red-black trees. A data retention policy can also
be set to move older files out of the database. The system does not support approximation.
MetricQ is a distributed open-source TSMS designed by [Ilsche et al.[2019] for monitoring
the LZR data center at Dresden University of Technology. It consists of multiple separate
components that communicate over the RabbitMQ message-broker using AMQP messages
and through JSON RPC. MetricQ stores metadata and configuration in CouchDB and provides
access to it through a Manager. Data Sources ingest data points, encode them using Protocol
Buffers, and add them to RabbitMQ. Sinks consume data points, e.g., for a dashboard or
persistent storage. The message-broker guarantees that the messages will be received in order.
Transformers operate as both a Data Source and a Sink as they apply operations to data points
and then write back the result. The Sinks writing data points to persistent storage are specialized
as they also process queries. MetricQ stores data points as timestamp and value pairs in files.
The files are ordered by time, so new data points can be appended and data points for specific
time intervals can be located using binary search. Multiple levels of pre-computed aggregates
are also stored so MetricQ can answer aggregate queries efficiently as shown in Figure[I.3] The
aggregates are computed for fixed time intervals at each level, so the location of an aggregate
can be computed directly during query processing. Aggregate queries are answered using the
highest levels that provide an aggregate within the requested time interval (light grey). Queries
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can also include the minimum resolution required, e.g, for visualizations, which also enables
MetricQ to return aggregated values (dark grey). The system does not support approximation.
ChronicleDB is a centralized TSMS designed by [Seidemann and Seeger|2017, Seidemann
et al.2019] to provide a high ingestion rate for multivariate time series, fast ad-hoc queries,
and fast recovery. The system can be embedded or used as a standalone server. To minimize
random reads and writes, the log is used as the database and it is assumed that the time series
the system ingests, generally, are ordered. The data points for each time series are ingested into
a separate queue. A set of worker threads managed by a Load Scheduler writes the data points
to disk in blocks. The data points are added to fixed-size L-Blocks which are compressed using
LZ4 to produce C-Blocks. These are densely packed into fixed-size Macro Blocks and split if
necessary. However, some storage in each Macro Block is reserved for out-of-order data points.
As the C-Blocks are of different sizes, mappings from the L-Block ids to the corresponding C-
Blocks’ physical location are stored interleaved with the Macro Blocks as Address Translation
Tree Blocks (ATT-Blocks). These are named TLB-Blocks in the original paper [Seidemann
and Seeger|2017]]. This allows the mappings and the data to be read as part of one sequential
scan. For fast recovery, each ATT-Block keeps a reference to the previous ATT-Block. The
data points are indexed by time using a novel Temporal Aggregated B*-Tree (TAB™). This is
an extended B*-Tree with timestamps as the keys, nodes the size of an L-block, and where
each node contains references to both the next and previous nodes. ChronicleDB also stores
user-extensible statistics in the TAB* nodes as a lightweight index on values. Log-structured
indexes and Bloom Filters are also supported as secondary indexes. Depending on the workload,
ChronicleDB can increase its ingestion rate by temporarily not updating the secondary indexes
and by indexing the data points by the system’s current time. If queries are commonly executed
over time intervals of a specific size, e.g., a month, users can configure the system to create
TAB™s that match this time interval. ChronicleDB can also replay continuous queries from
stream processing systems. However, the system does not support approximation. ChronicleDB
was also used in a case study that evaluated multiple different methods for improving the
performance of TSMSs through the use of persistent memory [[Glombiewski et al.[2020].
Plato is a centralized TSMS proposed by [Katsis et al.2015] that implements model-based
AQP. The system provides similar functionality to an RDBMS and combines these features
with methods from signal processing. Plato is designed for analytics and thus removes the need
for exporting the time series to other tools such as R or SPSS. Plato’s architecture consists of
three layers as shown in Figure Users can add new model types through the Extensibility
Layer, fit models to time series through the Storage Layer, and query tables containing data
points or models through the Query Layer. By providing an interface for implementing new
model types, Plato can be extended for new domains. However, a user must manually select
the model type to use for a time series as automated model selection is future work. Plato
supports two SQL-like query languages: ModelQL and InfinityQL. ModelQL is designed for
data analysts familiar with R or SPSS, while InfinityQL is designed for users familiar with
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Figure 1.6: The architecture of Plato, redrawn from [Katsis et al.[2015]

SQL. Approximation is supported through AQP by executing queries using models. Queries
are evaluated directly on models if they implement the functionality necessary for the query.
Otherwise, data points are reconstructed from the models at the resolution necessary for the
query. As future work, the authors propose that models are not used only as a method for
representing time series, but also returned as the query result to provide information about the
structure of the data. In [Lin et al.|2020], methods were proposed that enable Plato to provide
results within deterministic error bounds for some queries. For example, error bounds can
be provided for arithmetic operations, product, and inner product. It does so by segmenting
time series into fixed-size or variable-size segments depending on a parameter, compressing
each segment using a user-configurable model type that minimizes the Euclidean distance
between the actual and approximated values, and associating one to three error measures with
the segment. These measures are then used to provide the error bounds for the query results.
[[Goodwin et al.[2020] proposed AfriumDB as a centralized TSMS for long-term storage
and analytics of time series collected from medical equipment. It is designed to be device
agnostic, provide lossless compression of high-frequency time series, and support efficient
retrieval of data for parallel and distributed data processing. Existing software collects data
points from the medical equipment, converts them to JSON, and stores them in RabbitMQ.
AtriumDB retrieves the JSON messages and stores them in a separate file for each combination
of bed, time series, and hour. At the end of each hour, the data points are compressed and
the JSON files are archived on another server as a backup. The compression method splits
the time series into segments with a user-configurable length and compresses the timestamps
and values separately. The values are scaled to integers by a suitable power of ten. Then the
timestamps and values are compressed using a set of unspecified pre-processing procedures,
delta compression, and bzip2. AtriumDB uses the novel TSC file format as its on-disk format.
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It consists of a header with information about the segments in the file followed by the segments.
Each segment consists of a header followed by the compressed timestamps and values. The
header contains information about the compression used and lightweight statistics about the
data. The compressed TSC files are stored in a folder hierarchy organized by time. Information
about the files and the time series, e.g., the scaling factors used and lightweight statistics about
the values, are stored in MariaDB. Queries are given through a REST API from which JSON is
returned, and they can only be executed on data points that have been written to TSC files. They
are executed by mapping from metadata to files using the metadata in MariaDB, decompressing
the required segments from the TSC files, removing irrelevant data points, and transferring the
result to the user as JSON. Alternatively, a library written in Julia can be used to query the data
points more efficiently as it operates directly on their binary representation without serializing
the data points to JSON. As some use cases require time series that only contain a few or no
gaps, users can query AtriumDB for time intervals where a time series contains gaps of at most
a specified size. Users can also query AtriumDB for time intervals where data points have been
collected for a specific set of time series. However, the system does not support approximation.

[Cao et al.|2020]] implemented the distributed TSMS Timon as the data store for the real-
time monitoring infrastructure at Alibaba Cloud [Cao et al.|2018]. The data points are initially
added to a message queue before a stream processing system forwards them to Timon. The
system supports multivariate time series with metadata as the monitored entities usually expose
multiple metrics. It leverages that many queries can be answered by aggregates computed using
associative and commutative operators to remove the need for a read-modify-write sequence
when ingesting out-of-order data points. The architecture of Timon consists of five components
as shown in Figure The Writer component ingests data points in batches, maps their
metadata to UUIDs using the Metadata component, and forwards the data points and UUIDs to
the In-Memory component. As the message queue uses incrementing ids, duplicate data points
can be detected by storing the highest observed ids. The In-Memory component performs
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Figure 1.8: The architecture of Apache IoTDB, redrawn from [Wang et al.[2020]

write-ahead-logging and inserts the data points into MemTables with a row-based layout.
Out-of-order data points are stored in separate MemTables. Initially, the MemTables store the
data points in unordered pages that each contain data points for a specific time series. When a
page is full, it is sorted and data points with equivalent timestamps are aggregated. The Storage
component writes full MemTables to disk as SSTables with a column-based layout. Periodically,
the SSTables are merged to reduce the number of small files on disk. The data points in the
SSTables are indexed by time-partitioning k-ary trees, while the MemTables and SSTables
are indexed by novel Time-Segment Log-Structured Merge-Trees. Queries are specified using
TQL, an SQL-like language with pipes, and executed by the Query component together with
the In-Memory and Storage components. Timon determines the resolution at which data points
should be returned based on the requested time interval. Materialized views can be created
and are assigned derived UUIDs. Thus, the Writer component will also update the relevant
materialized views when forwarding data points to the In-Memory component. Timon supports
approximation through AQP, e.g., by calculating distinct values using HyperLogLog sketches.

Apache loTDB was proposed by [Wang et al.[2020] as a distributed open-source TSMS for
the edge and cloud as shown by the system’s architecture in Figure [I.8] Specifically, it was
designed to be used as an embedded TSMS on small edge nodes, a standalone TSMS on large
edge nodes, and a distributed TSMS in the cloud. The time series are uniquely identified by
metadata organized in a tree structure. When ingesting, Apache IoTDB batches data points
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using MemTables before flushing them to disk as TsFiles. A TsFile is a novel column-based
file format similar to Apache Parquet. It stores time series in sorted chunks containing multiple
pages with a timestamp and a value column. The columns are compressed using lossless
compression methods such as Gorilla’s compression method and RLE. Snappy is also used for
historical data. Lightweight statistics are stored for each file, chunk, and page to improve query
performance. Out-of-order data points are stored in separate MemTables which are flushed to
separate TsFiles and asynchronously merged with the other TsFiles. Similarly, updates and
deletes are first written to differential files before being merged with the TsFiles. The TsFiles
can be transferred to other Apache IoTDB instances using the File Sync component. Queries
can be submitted through a REST API, over JDBC using an SQL-like query language, or using
Apache [0T’s native API. To improve the performance of analytical queries, Apache [oTDB
uses the KV-match index [Wu et al|2019] for sub-sequence similarity search and the PISA
index [Huang et al.|2016] for aggregation. It can reuse existing infrastructure, e.g., TsFiles
can be written to local storage or HDFS. Also, data processing engines like Apache Hive and
Apache Spark can read TsFiles through libraries. The system does not support approximation.
[Wollauer et al.[2021]] designed the centralized open-source TubeDB to simplify manage-
ment of sensor data from climate stations for researchers that lack experience with computer
science or the used sensors. It is designed to have low system requirements and can be installed
by simply extracting a ZIP archive. TubeDB can ingest the file formats exported by a variety
of climate stations. Data points can also be pushed to TubeDB’s HTTP interface. The ingested
time series are stored in an ordered key-value store backed by MapDB. A collection is created
for each climate station and sensor pair, and in each collection, the data points are partitioned
by year. The timestamps and the values are compressed separately using quantization, delta-of-
delta compression, sign-magnitude representation, and fastPFOR. Queries are specified through
a web interface that dynamically visualizes the result when the query is modified. Alternatively,
TubeDB can be queried through R using the rTubeDB package. The queries are executed
by operators that are connected as specified in the web interface or through rTubeDB. The
system implements data processing and analytics methods commonly used for climate research.
TubeDB can, e.g., create regular time series from irregular time series using aggregation and
approximate missing values using interpolation. Thus, it supports approximation through AQP.
Many aspects of the system can also be extended through Java and a custom text format.
VergeDB is a centralized TSMS designed by [Paparrizos et al.|2021] for ingesting,
storing, and analyzing time series on the edge. The architecture of VergeDB can be seen
in Figure [I.9] Ingested data points are added to fixed-size arrays. When an array is full it is
pushed to the Uncompressed Buffer, compressed using one or more compression methods, and
added to the Compressed Buffer. The methods used depend on the configuration. The system
supports different lossless and lossy compression methods. Thus, it supports approximation
through lossy compression. A component is in development that will automatically select
the compression methods to use based on the available resources, the ingestion rate, and the
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Figure 1.9: The architecture of VergeDB, redrawn from [Paparrizos et al.|2021]]

analytics to be performed. RocksDB is used for storage and both the Uncompressed and
Compressed Buffer can be written to disk. For query processing, VergeDB uses an unspecified
query interface and supports multiple types of analytics, e.g., clustering and outlier detection.

[Cai et al.|2021]] proposed TS-NSM, a centralized TSMS for IoT that is designed to
efficiently use solid-state drives and persistent memory. As file systems add significant overhead
to IO operations, the system is implemented as extensions to the NVMe and PMEM Linux
drivers, thus bypassing the file system. The system’s interface is a set of system calls added to
the Linux kernel as shown in Figure [I.T0] TS-NSM uses persistent memory as fast storage and
stores data points in 4 KiB blocks. The data points of each time series are stored in separate
blocks. Each block contains a header and scaled delta values as shown in Figure [[.T1} The
header contains the timestamp from the first data point, the value from the first data point, the
number of duplicate instances of the value from the first data point, a reference to the previous
block, and a reference to the next block. Only the first timestamp is stored as the time series
are assumed to be regular. TS-NSM’s compression component operates in two different modes.
While the ingested data points contain the same value as is stored in the header, the values
are stored by incrementing the duplicate counter. When a data point with another value is
received, the compression component switches to storing the values as scaled deltas until the
current block is full. The most recent data points are stored in persistent memory while older
data points are transferred to solid-state drives by the Hierarchical Management component.
Metadata, indexes, and the location of migrated blocks are also stored in persistent memory.
The blocks in persistent memory are stored in a reverse linked list for each time series. A
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hash-based index maintains a mapping from time series ids to the matching lists. The locations
of the migrated blocks are indexed using a B-Tree. TS-NSM does not support approximation.
Both the throughput and latency of InfluxDB, OpenTSDB, and TS-NSM were improved by
TS-PMEM, a version of the PMEM Linux driver optimized for TSMSs [Cai et al.|2022].
Mach is a centralized and embeddable TSMS implemented by [Solleza et al.[2022] to
manage multivariate time series with metadata collected by monitoring systems. The system is
designed based on experience with monitoring at Slack Technologies [Karumuri et al.[2020].
Mach is optimized for both managing large volumes of data points and ingesting from a large
number of data sources simultaneously. Queries are assumed to predominately read recent
data points. Segments that are rarely queried can be migrated to an external data store for
analytics, e.g., ClickHouse, or archival, e.g., Amazon S3 Glacier. Mach is designed with a
minimum of shared state so threads can operate independently. Thus, Mach can efficiently
scale by simply increasing the number of threads. For ingestion, each data source is assigned
to a writer thread. Each thread maintains a fixed-size Active Segment per data source and
appends data points to it. Active Segments use a column-based layout. Out-of-order data points
are assumed to rarely occur. If an out-of-order data point is received it is added to a separate
buffer which is periodically merged with the other data points. When the Active Segment is
full, it is compressed and stored in an Active Block that matches the operating system’s page
size. Mach allows a different compression method to be used for each column. Thus, methods
optimized for a specific type of data can be used. Mach also supports approximation through
lossy compression. When the Active Block is full, it is flushed to a thread-local file and its
location is added to a global Block Index. If the compressed Active Segment is too large for
the current Active Block, it is split and stored in multiple blocks. New files are created based
on a size threshold. Queries are executed by first creating a snapshot representing the data
points currently ingested for the queried data source. The snapshot is lightweight as it only
consists of a few pointers and metadata. By creating a snapshot, the reader thread need not hold
any locks during query execution. Then the relevant data points are retrieved from the Active
Segment, Active Block, and the blocks persisted to disk. The locations of the relevant persisted
blocks are retrieved from the Block Index. Mach does not cache the blocks retrieved from disk.
Instead, it relies on the operating system’s page cache to store the recently accessed blocks.

Discussion

A high-level overview of the surveyed TSMSs that use an internal data store is shown in
Table [1.3] These systems are predominantly centralized with the only exceptions being
MetricQ [lIsche et al.[2019]], Timon [Cao et al./[2020], and Apache IoTDB [Wang et al.
2020]. Instead, distributed TSMSs are generally implemented using an external data store as
shown in Section[I.5] In addition, few of the TSMSs reuse existing systems as components.
Of the twenty-two systems, nineteen implement an entirely new proprietary data processing
engine, while seventeen implement an entirely new proprietary data store. One reason could
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Table 1.3: High-level overview of the surveyed systems with an internal data store

Primary

Year Purpose Deployment Maturity Approximation Latency
tsdbve 2012  Monitoring Centralized =~ Mature Not Supported Near Real-Time
FAQ 2014 Evaluation Centralized ~ Proof-of-Concept ~ Approximate Query Processing ~ Batch
NilmDB¥¢ 2014 Data Analytics Centralized =~ Demonstration Not Supported Batch
Unnamed 2015 Data Analytics Centralized Proof-of-Concept ~ Approximate Query Processing ~ Batch
RINSE 2015 Evaluation Centralized Demonstration Approximate Query Processing ~ Batch
RoundRobinson 2016  Evaluation Centralized Proof-of-Concept  Lossy Compression Batch
PhilDBYr 2016 Data Analytics Centralized =~ Demonstration Not Supported Batch
Chronos¥¥ 2016  Monitoring Centralized =~ Demonstration Not Supported Near Real-Time
LittleTable 2017 Monitoring Centralized ~ Mature Not Supported Near Real-Time
SummaryStore¥r 2017 Data Analytics Centralized =~ Demonstration Lossy Compression Near Real-Time
MDDS 2017 Monitoring Centralized =~ Demonstration Not Supported Near Real-Time
TSMMDB 2019 Data Analytics Centralized Proof-of-Concept  Not Supported Near Real-Time
MetricQ¥ 2019  Monitoring Distributed Mature Not Supported Near Real-Time
ChronicleDB 2019  Monitoring Centralized Demonstration Not Supported Near Real-Time
Plato 2020 Data Analytics Centralized =~ Demonstration Approximate Query Processing ~ Batch
AtriumDB 2020 Data Analytics Centralized =~ Mature Not Supported Batch
Timon 2020 Monitoring Distributed Mature Approximate Query Processing  Near Real-Time
Apache IoTDBYr 2020 Data Analytics Distributed Mature Not Supported Near Real-Time
TubeDBw 2021 Data Analytics Centralized =~ Mature Approximate Query Processing  Batch
VergeDB 2021 Data Analytics Centralized Proof-of-Concept  Lossy Compression Near Real-Time
TS-NSM 2021 Monitoring Centralized Demonstration Not Supported Near Real-Time
Mach 2022  Monitoring Centralized Demonstration Lossy Compression Near Real-Time

be that TSMSs that use an internal data store are primarily designed in this manner to allow
for deep integration between a novel data processing engine and a novel internal data store.
While existing systems are generally not reused, only five TSMSs have a proof-of-concept
implementation: FAQ [Khurana et al.|2014], the system by [Perera et al[|2015]], Pytsms and
RoundRobinson [Serra et al.[2016[], TSMMDB [Lan et al.|2019]], and VergeDB [Paparrizos
et al.2021]]. Ten systems are classified as demonstration in terms of maturity. For example,
Chronos [Chardin et al.|[2016]], TS-NSM [|Cai et al.|2021]], and Mach [Solleza et al.|2022]].
Surprisingly, seven of the twenty-two systems have mature implementations. For example,
tsdb [Deri et al.|2012]], MetricQ [IIsche et al.|[2019]], and TubeDB [Wollauer et al.|2021]].
Approximation is supported by ten of the twenty-two systems. Six support AQP, while four
support lossy compression. Of the systems with a mature implementation, only Timon [[Cao
et al.|2020]] and TubeDB [Wollauer et al.|2021]] support approximation and both implement
AQP. So AQP is, in general, the preferred approach for approximation. None of the systems
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with an internal data store support real-time data processing. In summary, most of the TSMS
that use an internal data store are centralized and developed without reusing existing systems
as components. Despite not reusing existing systems, only a few of the TSMSs have simple
proof-of-concept implementations. Instead, the majority of the TSMSs with an internal data
store have implementations that are robust enough to evaluate new methods and architectures
with real-life use cases, and a significant number of them are also ready to be or are already
used in production. However, approximation is not even implemented by half of the systems
and only two of the TSMSs with a mature implementation support approximation. In addition,
none of the systems support real-time data processing.
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External Data Store

Overview

Implementing a TSMS with an external data store allows the data processing engine and the
data store to be scaled separately. However, it also requires that multiple systems be deployed
and managed. In addition, data must be transferred between these systems. In addition, it
may be necessary to configure an external data store sub-optimally for the TSMS if it is also
being used by other systems with different requirements. Using an existing external data
store simplifies the deployment if existing infrastructure can be reused, significantly reduces
development time, and existing knowledge about how to best use it may be reused. However,
the TSMS will be restricted to the data store’s API and storage layout. If a new data store is
developed, its API and storage layout can be specifically optimized for the TSMS. However,
no prior knowledge about how to best use it exists and no existing infrastructure can be reused.

Systems
TSDS developed by [Weigel et al. 2010] is a centralized open-source system designed to
simplify time series analytics. TSDS operates as a query interface and data processing engine
for multivariate time series stored in different formats. It can, e.g., access times series stored
in ASCII files, RDBMSs, and a TSMS developed as part of TSDS named TSDB. The TSMS
TSDB is primarily used for caching to reduce query response time. It stores each time series
separately using either two or three different files. The values are always stored in a binary
file. If the time series is not regular, then the timestamps are stored in another binary file.
Both timestamps and values are stored as 64-bit floating-point values. Metadata, such as start
time and end time, are stored in a separate file using the XML-based NcML format. HDF5 is
used as an interim file format for long time series. TSDS provides a REST API as its query
interface. Transformations, such as filtering and sampling, can be specified so only the time
interval and resolution required are retrieved from the system. As a result, the system supports
approximation through AQP. The output format can also be specified as part of the query.
SensorGrid is a grid framework proposed by [[Cuzzocrea and Sacca|2013] that can execute
exact and approximate aggregate queries on sensor data efficiently. It consists of sensors and
two types of grid nodes: Stream Sources that ingest data points from the sensors, and Stream
Servers that store the ingested data points and execute queries. To reduce query response time
for aggregate queries, the Stream Servers pre-compute two-dimensional aggregates for the
time and sensor dimensions. The time intervals to group by and how the sensors should be
grouped must be defined based on the requirements of the domain. Succinct versions of these
aggregates are copied to the other Stream Servers. Thus, a Stream Server can answer queries
that require time series data managed by another Stream Server using multiple methods. It
can redirect the entire query, use its local succinct aggregates, or decompose the query into
multiple sub-queries and send them to other Stream Servers. If the pre-computed aggregates are
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used, the result is approximate if the time interval of the query does not match the aggregates.
Thus, approximation is supported through AQP. The framework also supports window and
continuous queries. The SensorGrid grid framework was realized as a distributed TSMS and
used for hydrogeology risk analysis at IRPI-CNR, by integrating the Stream Sources and
Stream Servers with Microsoft SQL Server 2000 and a web interface for visualization.

The distributed TSMS Respawn presented by [Buevich et al.[2013]] is designed to manage
time series collected from large sensor networks. The system runs on both edge nodes and
cloud nodes as shown in Figure[T.12] The edge nodes are ARM-based devices with a large
amount of flash storage. They are placed at the edge of a sensor network and ingest the data
points it produces. As its data store, Respawn uses the Bodytrack DataStore extended with
lossless compression. It continuously computes aggregates at multiple resolutions to reduce
query response time. A subset of the collected data points is continuously migrated to the
cloud nodes using two preemptive strategies. Periodic Migration exploits that users usually
use low-resolution data to determine which time intervals are of interest before requesting
high-resolution data for that specific time interval. Thus, Respawn continuously migrates
low-resolution segments to the cloud nodes. The system also continuously migrates segments
based on their standard deviation using Proactive Migration. Standard deviation is used as
it is efficient to compute and is often a good indicator of statistically important segments. A
Dispatcher provides an HTTP query interface and routes queries to the relevant edge nodes and
cloud nodes. The result is transferred from the nodes to the user as JSON over HTTP. While
Respawn supports pre-aggregation, it does not support approximation. Respawn was utilized
as a part of the Mortar.io platform for building automation infrastructure [Palmer et al.2014]).

Bolt was developed by [Gupta et al.|2014]] and is a centralized open-source TSMS for
multivariate time series that is designed to be easily embedded into IoT applications. The
system stores time, metadata, and values as data points. Each data point consists of a timestamp
and a collection of tag and value pairs. A value can be associated with multiple tags, and the
number of values in a time series can change over time. Bolt’s interface is based on encrypted
streams produced by one writer and consumed by multiple readers. The writer splits the stream
into segments with only the latest segment being mutable. Each segment contains a log file
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Figure 1.13: The architecture of Druid, redrawn from [Yang et al.[2014]]

with the values and an index that maps each tag to a sorted list of timestamps and log file
offsets, thus allowing queries for values with a specific tag or a specific tag in a given time
interval to be executed efficiently. The entire index for the latest segment is kept in memory,
while only a mapping from tags to the time intervals for which values are available is kept in
memory for the immutable segments. The current segment is made immutable when the index
reaches a pre-specified size. Readers can retrieve the latest values from a stream, values with
a specific tag in a given time interval, or the tags in a given tag range. Readers can request
that some data points be skipped when retrieving values with a specific tag in a given time
interval. Thus, approximation is supported through AQP. Bolt also supports sharing data with
other instances through the use of a trusted metadata server and untrusted cloud storage. The
location of available streams, their metadata, and the application’s keys are exchanged using
the metadata server, while the encrypted streams are written to and read from cloud storage.
[Yang et al.[2014] implemented Druid, a distributed open-source TSMS that can efficiently
ingest, manage, and perform data warehouse-style analytics with sub-second latency on
multivariate time series with metadata. Druid is optimized for availability and uses a shared-
nothing architecture. Apache ZooKeeper is used for coordination. A Druid cluster consists of
multiple specialized node types as shown in Figure[I.13] Real-Time Nodes are designed to
efficiently ingest data points and execute queries on recent data. The data points are initially
stored in an in-memory row store and later written to an immutable columnar format on disk.
Periodically a background task compacts the data point on disk into a large immutable segment
and transfers it to Deep Storage which is usually a DFS. Historical Nodes retrieve segments
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Figure 1.14: Model-based query processing using an in-memory tree for indexing the segments
as implemented by the TSMS by [Guo et al.[2013| 2014alb], redrawn from [|Guo et al.|[2014a]

from Deep Storage and execute queries on the retrieved segments. They also maintain a local
persistent cache of segments. Coordinator Nodes manage the cluster’s configuration stored in a
MySQL database and controls which segments each Historical Node should serve. Last, the
Broker Nodes accept queries formatted as JSON through HTTP POST requests, route them to
the relevant Real-Time Nodes and Historical Nodes, and merge their partial results. The partial
results from the Historical Nodes are also cached and used to serve subsequent queries. Druid
supports approximation through AQP, e.g, in the form of approximate quantile estimation.
[Guo et al. 2013} 2014a/b]] proposed a distributed TSMS that stores data points as models
in a key-value store. The model-based representation is created by splitting the time series
into segments and approximating the values of each segment using a model. Thus, it supports
approximation through lossy compression. The system consists of three components: a key-
value store, an index consisting of two in-memory binary trees, and a MapReduce-based data
processing engine. The index consists of two binary trees to efficiently index the segments
by both their time and value interval. Similarly, two tables are created in the key-value store
as one includes the start time and end time of the segments as part of its row-key, while the
other table includes the minimum and maximum value of the segments as part of its row-key.
Query processing is shown in Figure[I.T4] First, the index is traversed to find relevant segments
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according to the time and value interval specified in the query. Then, the data processing engine
retrieves the relevant segments from the key-value store and creates time series with a regular
sampling interval. As each node in the trees can reference multiple segments, the mappers
prune the list of candidate segments to remove those that do not match the query before the
reducers construct data points with approximate values from the model-based representation.
[Williams et al.2014]] proposed a distributed system that is optimized for monitoring while
also providing low-latency analytics for a limited amount of recent data. It is specifically
designed for time series produced by sensors monitoring industrial installations. The system is
based on Pivotal’s Gemfire in-memory data grid to prevent hard disk drives from becoming
a bottleneck. Data points are ingested by a stream processing platform that cleans them and
performs real-time analytics. Afterward, the data points are partitioned by the entity from
which they were collected and inserted into bins in the in-memory data grid. Each bin stores
data points collected from a sensor for a fixed-size time interval using a doubly-linked list.
Storing multiple data points together makes retrieval faster by reducing the number of bins
and allow the data point’s metadata to be stored once per bin. However, only data points for a
few minutes are stored in each bin to ensure queries never have to retrieve large amounts of
irrelevant data. The data points are stored in a doubly-linked list as it provides comparable
read and write performance to a statically allocated circular buffer and allows memory usage
to scale with the number of data points currently in the bin. As the TSMS is limited by the
amount of available memory, integration with a disk-based data store for cold data and a unified
query interface across both is future work. The system also does not support approximation.
For more information about in-memory big data storage and analytics see [Zhang et al.[2015].
[Mickulicz et al.|2015|] proposed a distributed TSMS for data analytics that can efficiently
execute approximate aggregate queries over multivariate time series. The system is designed
for analyzing events from mobile applications and consists of: a set of Aggregation Servers,
multiple MySQL RDBMSs, and a Query Service that executes queries against the MySQL
RDBMSs. During data ingestion, the system creates a hierarchy of aggregates based on a set
of predefined aggregate queries, the time intervals the aggregates will be computed for, and
their error bound. For example, a simple counter will be stored for queries that count specific
events, while HyperLogLog can be used to approximately compute the number of distinct
values, and Count-Min Sketches can be used for approximate frequency estimation. Thus, the
system supports approximation through AQP. Each aggregate is stored with a start time and a
duration to specify which part of the time series was aggregated. The hierarchy is organized
with aggregates spanning the smallest time interval at the bottom and aggregates spanning
the longest time interval at the top. The aggregates in each level are indexed by their start
time using a binary search tree. Aggregate queries can be answered using the hierarchy by
combining multiple pre-computed aggregates from the different levels. Thus, the hierarchy
enables efficient execution of approximate aggregate queries for different time intervals.
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and the size of the values in bits written in parentheses, redrawn from [Pelkonen et al.[2015]]

servloTicy is a distributed open-source TSMS implemented by [Pérez and Carrera)2015]]
for storing multivariate time series with metadata from IoT devices. The system is split into
a Frontend and a Backend. The Frontend provides the system’s interface in the form of a
REST API that serves JSON over HTTP. However, to increase the number of devices that
can communicate with the system, the REST API is also accessible through STOMP and
MQTT. The Backend provides storage and query processing using Couchbase, Elasticsearch,
and Apache Storm. The data is stored in Couchbase using two types of JSON documents. The
first is used to store metadata about the IoT devices the system is ingesting data from, while the
second is used to store the data received from the IoT devices. To reduce query processing time,
the documents in Couchbase are indexed by Elasticsearch. The integration of Apache Storm
allows the system to provide stream processing using user-defined topologies. servloTicy also
implements support for dynamically modifying the code executed by an Apache Storm Bolt.
As a result, an Apache Storm Bolt can execute different versions of its code depending on the
data being processed. However, changes to a topology still require that the topology is stopped
before it can be modified. servloTicy does not support approximation, but was integrated with
the web service discovery system iServe to augment the stored time series [Villalba et al.[2015]].

[Pelkonen et al.[2015] implemented the distributed in-memory TSMS Gorilla at Facebook
to more efficiently monitor their infrastructure. It is designed to reduce the query response
time of an existing TSMS based on Apache HBase by operating as a cache that stores the data
points collected in the last 26 hours. This time interval was chosen by analyzing the queries
executed by the existing TSMS, and a cache was implemented instead of a replacement for
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the existing TSMS as it contained petabytes of data. Data points in Gorilla consist of a key, a
timestamp, and a value. The key is unique for each time series and is used for partitioning, thus
ensuring each time series is mapped to a single host. Gorilla stores each time series as two-hour
segments. Only one segment per time series is being appended to at a time while older segments
are immutable. Gorilla uses a novel lossless compression method that stores timestamps and
values interleaved as shown in Figure[I.T5] Each segment has a header that contains the starting
time of its two-hour window. The first data point’s timestamp is stored as the delta between
the segment’s timestamp and the data point’s timestamp. The first data point’s value is then
stored. Subsequent timestamps are compressed by first computing the deltas between the
current and previous timestamps and then storing a delta of these deltas using a variable-length
binary encoding. Values are compressed by first XOR’ing the current value with the previous
value and then storing the result with the zero bits trimmed if possible. Both methods store
a zero bit if the computed delta-of-delta or XOR value is zero. For persistence, Gorilla also
writes the time series to the DFS GlusterFS. In addition, the data points are written to two
separate Gorilla instances located in different data centers to increase their availability if the
network is partitioned. However, no consistency guarantees are provided. Queries are executed
through a client library that retrieves compressed segments from Gorilla. The low query latency
provided by Gorilla has made new methods for time series analytics feasible. For example,
tools have been developed that can search for correlated time series, perform real-time plotting,
and periodically compute aggregates. Gorilla does not support approximation. Facebook also
published an open-source version of Gorilla named Beringei, but it was last updated in 2018.

The centralized TSMS Storacle was developed for monitoring smart grids by [Cejka et al.
2015]. It is designed to be deployed throughout a smart grid on edge nodes with limited
hardware to manage time series with metadata. The system uses Protocol Buffers as its storage
format and a three-tiered storage model as shown in Figure [I.16] Thus, it is assumed that data
points can be periodically transferred to the cloud for permanent storage and offline processing.
The most recent data in each tier is not immediately deleted when it is transferred to the next
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Figure 1.17: BTrDB’s copy-on-write k-ary tree that contains data points in the leaf nodes and
lightweight statistics in the internal nodes, redrawn from [Andersen and Culler|2016]

tier. Instead, it is temporarily stored in both tiers to provide higher durability without increasing
latency when accessing the latest data points. Storacle also supports storing metadata in the
form of tags, meta-fields, and lightweight statistics. Both tags and meta-fields are mutable lists
of strings, but only tags can be used as part of a query. The lightweight statistics are purposely
chosen so they can be updated using only the current data point. For example, the number
of data points, their average value, and a histogram of the observed values. The system does
not support approximation. Storacle’s behavior is controlled through a set of parameters with
functionality for dynamically adapting to the currently available resources being future work.
Storacle was later integrated with a smart grid management framework [Faschang et al.|[2017]]

BTrDB was proposed by [Andersen and Culler|2016] and is a distributed open-source
TSMS designed to manage high-frequency time series with nanosecond timestamps and out-
of-order data points collected from high precision power meters. It stores these time series in
Time-Partitioning Copy-on-Write Version-Annotated K-ary Trees. An example is shown in
Figure The leaf nodes contain a configurable number of data points while each internal
node contains lightweight statistics for the data points in its sub-trees and version annotated
references to its child nodes. The version number associated with each reference specifies
when it was added. Each insert operation creates a new root node through which that version of
the tree can be accessed. Thus, aggregate queries can efficiently be answered using the multiple
levels of statistics, while the use of copy-on-write k-ary trees allows previous versions of the
time series to be queried. The complete system consists of three applications. BTrDB provides
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Figure 1.18: Ingestion and query processing in FluteDB, redrawn from [Li et al.[2017]

the query interface, data processing, data ingestion with buffering, and manipulation of the
k-ary trees. A DFS in the form of CEPH is used to store the k-ary trees, while MongoDB is
used to store metadata and parameters. Both the trees’ internal and leaf nodes are compressed
before they are stored. Each value is first reduced to a delta, then a delta to the mean of the
previous deltas in the sequence, and finally stored using Huffman encoding. This method
is only lossless for integer values so floating-point values are split into their mantissa and
exponent before they are compressed. Thus, BTrDB does not support approximation. The
TSMS was integrated with the DISTIL stream processing framework [Andersen et al.|2015].
[Li et al. 2017, 2018] proposed FluteDB, a distributed TSMS for multivariate time series
that provides a high ingestion rate. FluteDB’s ingestion and query processing pipeline is shown
in Figure Ingested data points are stored in a Write Buffer before being written to disk
in batches. The Write Buffer is flushed if a query encounters a Query Cache miss, if the time
interval the Write Buffer stores data for becomes too large, or if the amount of data stored in
the Write Buffer becomes too large. The data points are also written to a log for durability.
If a query causes the Write Buffer to be flushed, the system serves the query from the Write
Buffer before it is flushed if possible. Afterward, it populates the Query Cache with the data. To
improve the hit rate of the Query Cache, multiple adjacent data blocks are added to the cache
instead of just the one requested. FluteDB stores the ingested data points in a columnar format
and uses the novel Sliced Delta of Deltas (SDD) compression algorithm for timestamps and the
novel AXOR compression algorithm for floating-point values. SDD compresses timestamps
using a predefined delta so the delta-of-deltas can also be computed for the second value.
Each of the delta-of-deltas is stored as multiple blocks containing a fixed number of bits. The
size of the blocks is based on the average size of the delta-of-deltas. Each block stores one
flag bit to indicate if it is the last block, while the remaining bits store the partial or entire
delta-of-deltas. AXOR is a lossy compression method that converts each value to a 64-bit
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Figure 1.19: The architecture of M-DB, redrawn from [Arora et al.[2019]

floating-point number and sets a number of its trailing bits to zero based on the precision of the
original value. Thus, FluteDB supports approximation through lossy compression. The initial
value is stored in full, while subsequent values are XOR’d with the previous value and stored
as three control bits, the start position of the first one bit, the number of bits from the first to
the last one bit, and the sequence including all non-zero bits. The control bits indicate if the
result of the XOR operation was zero, if the first one bit is at the same position as the previous
value, and if the length of the sequence containing one bits is the same. For indexing, FluteDB
uses a novel variant of the B*-Tree named a Triggered Time Series Merge Tree to index the
time series by time. The latest data points are stored in in-memory trees, while the remaining
are stored in trees on disk. The in-memory trees’ are updated by appending data points to the
trees’ rightmost leaf nodes. FluteDB keeps the latest data points in memory when flushing an
in-memory tree by splitting it into a cold and a hot data tree before flushing the cold data tree.

M-DB is a distributed TSMS proposed by [Arora et al.|2019] for storage and periodical
processing of data points from unreliable sensors using user-defined functions. The system
consists of two sets of components as shown in Figure[I.T9] M-Store is an ingestion layer
and data store implemented using Apache Kafka and Apache Cassandra, respectively. M-DB
ingests data through Apache Kafka Producers that write the data points from each sensor to
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Figure 1.20: The architecture of UPS, redrawn from [Kosen et al.|[2020]

different topics, while data requests are served through Apache Kafka Consumers. If missing
values are requested from M-Store they can either be ignored or predicted using a user-defined
prediction model. By default, a weighted moving average is used. Thus, the system supports
approximation using AQP. For long-term persistence, the data points are also written to Apache
Cassandra. Data points can automatically be deleted based on a time-to-live parameter. M-
Stream is a stream processing component implemented using Apache Storm that periodically
requests data points from M-Store and processes them using a pipeline of operators, each
implemented as a user-defined Model-based Operator (MBO). M-DB supports four types of
MBOs, each designed to transform a set of data points using a user-defined function. T-MBOs
process a window of data points from a single sensor, S-MBOs process data points from
multiple sensors with approximately the same timestamp, while TS-MBOs and ST-MBOs
combine the functionality of T-MBOs and S-MBOs. As the data points collected from the
sensors are considered unreliable and their values could have been predicted, each of the MBOs
outputs both the result and the result confidence based on a user-defined confidence function.

[Kosen et al. 2020] proposed UPS as a distributed TSMS that can be used for both
monitoring and data analytics simultaneously. The system consists of three sets of components
as shown in Figure .20} The Compute Layer manages queries and organizes data transfers
between the Storage Layer and the PMUCache Layer. It is implemented as a Job Manager
that receives queries and adds them to a queue for scheduling, and a Compute Scheduler
that determines when each query should be executed based on its metadata. The queries are
primarily scheduled based on their priority classes (e.g., near real-time or offline analytics) and
their quality-of-service requirements. Queries that do not define these are scheduled based on a
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Figure 1.21: The architecture of TimeCrypt, redrawn from [Burkhalter et al.[2020]]

best-effort policy. The Compute Scheduler also determines when data should be transferred to
the caches based on the queries being executed. The amount of data being transferred depends
on the queries’ priority classes. For example, UPS transfers data points for twenty-four seconds
for near real-time queries, while data points for one day are transferred for offline analytics.
The PMUCache layer stores data points using three different caches to efficiently serve queries
with different priority classes. The Raw Stream Cache (RSC) stores the ingested data points as
key-value pairs, handles out-of-order data points through sorting, and deletes duplicate data
points. The Distillated Stream Cache (DSC) receives batches of data points from the RSC
and stores them in the copy-on-write k-ary trees proposed for BTrDB. When data is evicted
from the DSC, it is moved to the Data Transfer Cache (DTC) and stored in an in-memory
format suitable for high-throughput offline analytics. The data stored in the caches are managed
by a Metadata Manager and stored on a set of cache nodes. UPS can change the amount of
memory allocated for each cache based on the requirements of the queries and migrate data
between the caches based on the queries received. Data evicted from DTC is moved to the
Storage Layer, where it is stored in CEPH and indexed using the tree-based method proposed
for BTrDB. Applications interact with UPS through a client library that uses the Unified 10
Interface provided by the PMUCache Layer’s Metadata Manager. The API provided consists
of a small set of put, get, and delete methods that abstract away that data might be written to or
retrieved from the caches or the Storage Layer. The system does not support approximation.
TimeCrypt is a centralized open-source TSMS proposed by [Burkhalter et al.2020] that
provides fine-grained access control and data sharing at multiple resolutions. The architecture of
TimeCrypt is shown in Figure[T.21] Time series with metadata are ingested from Data Producers.
During ingestion, they are split into fixed-size segments and each segment is encrypted with
a different key before they are transferred to the data store. Encrypted lightweight statistics
about the data points it contains are also computed for each segment. Thus, the segments and
the lightweight statistics are stored encrypted and ordered by time in the data store. The keys
are not stored in the data store to ensure that the data is not readable even if the data store
is compromised. However, TimeCrypt can compute aggregates directly from the encrypted
statistics. The segments are indexed by a k-ary tree with lightweight statistics in the internal
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Figure 1.22: The compression method used by Peregreen, redrawn from [[Visheratin et al.|2020]]

nodes and data points in the leaf nodes. Thus, TimeCrypt can efficiently answer queries at
multiple resolutions using the internal nodes. To share data, Data Owners can allow a Data
Consumer to access data points for specific time intervals by creating a token encrypted with
the Data Consumer’s public key and then transfer it to the data store. Access can also be given
to an aggregated time series without allowing the Data Consumer to access the individual time
series that form the aggregate. It also supports computing approximate quantiles using AQP.
[Visheratin et al.|2020] designed the distributed TSMS Peregreen to efficiently manage
time series using cloud storage as a data store. It was specifically designed to use Amazon S3.
The system consists of three sets of components: Core, Modules, and Cluster. Core implements
functionality for ingesting and compressing time series as well as uploading, deleting, and
retrieving them from the data store. Modules are interfaces through which Peregreen can be
extended with new functionality, e.g., new transformations can be implemented as methods that
take values as input. The Cluster components allow nodes to operate together for scalability
and fault tolerance. Peregreen is designed to ingest data points in batches to reduce the amount
of data transferred to and from the data store. Each batch is split into Data Chunks that contain
data points for a configurable time interval. For each Data Chunk, an Index Block is created
that contains metadata and lightweight statistics for the Data Chunk. Index Blocks are stored
in sorted Index Segments. Each Index Segment contains Index Blocks for a configurable time
interval, metadata, and lightweight statistics computed from the Index Blocks. A sorted Index
per time series stores the Index Segments together with metadata. Each Index is stored as files
in the data store. The Data Chunks use a row-based layout to minimize the number of read
requests to the data store. For compression, the timestamps and values are reduced to deltas
and then compressed using Zstandard as shown in Figure For the first data point, the
previous timestamp (Tp) is computed from the metadata in the Index Segment. If the values
are integers, the delta is computed using subtraction, while the difference between the binary
representations is used for floating-point values. The compressed Data Chunks are appended to
Data Segments which are written to the data store as files. Peregreen accepts queries through a
REST API and supports two types of queries. Querying by values uses predicates that consist
of the following three parts: lightweight statistic, operator, and value. More complex predicates
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can be created using conjunction and disjunction. The predicates are evaluated against the
lightweight statistics stored in each part of the index. Extraction queries allow data points for
specific time intervals to be retrieved for a time series. The index is used to efficiently compute
the specific bytes to retrieve. Transformation, aggregation, and sampling can also be performed
as part of an extraction query. Thus, Peregreen supports approximation through AQP. However,
queries on multiple time series and a SQL-like query language are purposely not supported.
[Garcia-Arellano et al.|2020] proposed Db2 Event Store as a distributed cloud native
TSMS for multivariate time series. The system is designed to provide high availability, high
ingestion speed, efficient storage using an open format, and support for complex analytics. It
consists of compute nodes with fast local storage backed by shared storage, e.g., a DFS or
cloud storage. A hierarchy of caches with a lock-free epoch-based eviction policy is used to
hide the latency of the shared storage. The system’s catalog is stored in the shared storage
and cached on an available node. Each table is split into partitions based on a user-defined
key and each node is assigned a set of partitions to manage. If a node fails, the partitions it
was responsible for are assigned to other nodes. Apache ZooKeeper is used for coordination.
Internally Db2 Event Store stores the data points of each table in three immutable zones: the
Log Zone, the Pre-Shared Zone, and the Shared Zone. The Log Zone contains recently ingested
data points that are stored in the nodes’ logs. To provide durability in the case of a node failure,
data points are synchronously replicated to additional nodes during ingestion. The data points
are asynchronously transferred to the Pre-Shared Zone in the form of small Apache Parquet
files written to the shared storage. By using an open data format, software like Apache Spark,
Python, and R can also access the data points. When the amount of data in the Pre-Shared
Zone reaches a threshold, it is written to the Shared Zone as a few larger Apache Parquet files.
The files in the Shared Zone are usually approximately 64 MB in size. Manual updates and
deletes are not supported, but a time-to-live parameter can be set per table after which data
points are deleted. To enable efficient pruning during query processing, UMZI indexes [Luo
et al.[2019] are created for the Pre-Shared and Shared Zones. In addition, lightweight statistics
stored in separate Apache Parquet files are maintained for the Shared Zone. To efficiently
handle complex SQL queries, Db2 Event Store uses Db2’s query optimizer and the Db2 BLU
column-based data processing engine [Raman et al.|[2013]]. Initially, Db2 Event Store used
Apache Spark as its data processing engine, but it was abandoned due to its high query latency
and poor performance for complex queries. Db2 Event Store does not support approximation.
The distributed in-memory TSMS Monarch was proposed by [Adams et al.|2020]] to provide
monitoring for Google’s internal infrastructure. It is designed so each team need not operate
their own monitoring infrastructure and provides high availability, relational schemas, support
for querying multivariate time series with metadata from multiple entities, and histograms.
The architecture of Monarch is shown in Figure[T.23] It consists of monitoring Zones with a
geographically replicated global management and data processing layer. Each Zone consists of
independent clusters for reliability and can operate independently if necessary. It originally
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Figure 1.23: The architecture of Monarch, redrawn from [[Adams et al.[2020]]

used a pull-based approach for ingestion, but switched to a push-based approach to reduce
complexity and improve scalability. The received data points are transferred to the correct Zone
by Ingestion Routers, while Leaf Routers transfer the data points to the correct Leaves inside
the Zone based on the partitioning provided by the Range Assigner. Time series from the same
entity are stored on the same Leaf. To ensure high availability, Monarch is designed with as
few external dependencies as possible. For example, Leaves write data points to memory and a
DFS, but do not wait for the DFS to acknowledge. Thus, the system can operate even if the
DFS is unavailable. The data points in the DFS are later moved to an external long-term data
store. To reduce the amount of memory required, timestamps are only stored once per entity
while delta compression and RLE are used to reduce the size of the values. Only lightweight
compression is performed to balance CPU and memory usage. Monarch supports ad-hoc and
periodic queries. They are specified as a sequence of operators using Monarch’s novel query
language. The periodic queries are issued by Evaluators and the results are written to Leaves.
Queries are split into sub-queries by Mixers and executed by Leaves. To efficiently prune
irrelevant data, a novel Field Hints Index is used to index the time series metadata. A Field
Hint is a part of a metadata value, e.g., trigrams are commonly used. The index can efficiently
prune based on exact predicates and regular expressions, but may return false positives. They
are maintained for each Zone and Leaf and are stored in the Index Servers. Similar indexes
are stored in the Leaves. Should network partitioning occur, the system continues to serve
queries, but indicates that the data might be incomplete. However, Monarch does not support
approximation. Configuration is managed by a global Configuration Server which is mirrored
in each Zone. Monarch itself is monitored by an older known stable version of Monarch. While
Monarch was designed to unify monitoring at Google, some services have requirements that
could not be supported. For example, YouTube required a system that provided both reporting,
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dashboarding, real-time statistics, monitoring, and complex queries. Thus, they created a data
processing engine with support for standard SQL named Procella [Chattopadhyay et al.|2019].
TorqueDB proposed by [Garg et al.|2020] is a distributed TSMS that is designed to be
deployed on a combination of desktop-class fog nodes and Raspberry Pi-class edge nodes.
The edge nodes run ElfStore [Monga et al.|2019]] and are used for storage. Data points are
ingested from sensors and then stored in ElfStore blocks. Metadata and lightweight statistics
are also stored for each block and used to look up specific blocks. For reliability, the blocks
are replicated across edge nodes based on a block-specific replication level. Each edge node is
associated with a fog node. A fog node and its associated edge nodes form a private network
with the fog node serving as a gateway to the other fog nodes and the internet as shown in
Figure[I.24] Each fog node maintains an index of the block ids and the metadata for the blocks
which are stored on its associated edge nodes. They also maintain an approximate index of
the data stored on the edge nodes managed by other fog nodes using bloom filters. For query
processing, TorqueDB retrieves relevant blocks from ElfStore and then uses InfluxDB instances
deployed on the fog nodes to execute the queries. When a fog node receives a query, it becomes
the query’s Coordinator and uses the indexes to determine the ids of relevant blocks. The
Coordinator can also optionally further filter these block ids based on the actual metadata of
each block. The block ids and relevant sub-queries are then assigned to the available fog nodes.
These fog nodes then load the blocks into InfluxDB, execute the query, and return the results to
the Coordinator. If necessary, e.g., for aggregates, the Coordinator computes the final result.
The blocks loaded into InfluxDB are purposely not deleted. Instead, InfluxDB is used as a cache
and TorqueDB’s query planner takes the location of cached blocks into account using a lazily
updated mapping from block ids to fog nodes. TorqueDB does not support approximation.
[Shi et al.2020] proposed the distributed in-memory TSMS ByteSeries as a replacement
for the existing in-memory TSMS named tsdc used by ByteDance’s infrastructure monitoring
system. This monitoring system uses an in-memory TSMS to store the most recent data points
while HDFS is used for long-term storage. As the monitored tasks often only run for a short
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Figure 1.25: The segment types used by ByteSeries, redrawn from [|Shi et al.|2020]

amount of time, the collected time series are usually very short. Thus, more than 80% of the
storage used by tsdc was for metadata. To provide a high ingestion rate, ByteSeries ingests
data points into an Active Buffer which consists of multiple independent uncompressed Active
Segments. The Active Segment to use is selected based on the time series key and the data
points are both appended to an array and inserted into a local inverted index. Asynchronously,
the data points in the Active Segments are compressed and added to a Static Buffer as shown in
Figure [I.25] The decision to move data from the Active Buffer to the Static Buffer is made by
the Data Conversion Scheduler based on the amount of metadata stored in an Active Segment
and the segment’s total size. Both of these parameters are user-configurable. The Active
Segments are first converted to Temporary Static Segments in parallel and then merged to form
Static Segments. The data points in the Static Segment are then sorted by key and compressed
using Gorilla’s compression method to create Compressed Segments. By compressing larger
segments, the cost is amortized. The compression process is also controlled by the Data
Conversion Scheduler based on user-configurable parameters. To efficiently retrieve data
points based on metadata, a novel Compressed Inverted Index is stored as part of the Static
and Compressed Segments. The index consists of a trie and two arrays compressed using
p4nzenc64. During query processing, ByteSeries first prunes by time and then by metadata
using the Compressed Inverted Index. The system does not support approximation.
BitemporalDB is a centralized TSMS for financial time series designed by [Sedighi et al.
2020]]. To ensure all changes can be audited, it purposely does not support deleting or updating
data points in place. Instead, a new version is created with a timestamp that specifies when
the update was performed, thus allowing past versions of a database to be queried. For this,
BitemporalDB uses two types of timestamps: As-Of timestamps specify when the data was
written to the database, and As-At timestamps specify when a value was updated. The system
stores the data in Azure Cosmos DB using three tables. The Value table stores the time series
with each column containing a data point with an As-Of timestamp. Additionally, a column
may contain one or more data points with an As-At timestamp if updates have been performed.
By storing updates as new data points, the previous state of the database can be queried. The
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Figure 1.26: The architecture of ModelarDB’s cloud worker nodes, redrawn from [Jensen et al.
2023|]. The architecture of a single cloud worker node is used when it is deployed on the edge.

Log table stores all inserted data points without any updates and is used to improve query
performance. The Index table is used to look up specific time series based on their metadata.
It also contains Markers which are references to specific timestamps. Markers are used to
efficiently retrieve a specific data point or a range of data points. They can be automatically
created by the system or manually by the user. Bitemporal DB supports multiple specialized
querying methods. Latest Search returns the most recent data point with an As-Of timestamp
and any data points with an As-At timestamp associated with it. Marker Search returns data
points associated with a specific Marker. Last, Marker to Marker Search returns the range of
data points between two Markers. Users can also provide hints as part of a query. These hints
are an expanded time interval that BitemporalDB should also include when looking up data
points if the initial query produces an empty result. The system does not support approximation.

ModelarDB is a distributed modular open-source TSMS proposed by [Jensen et al.|2018,
2019, 2021}, 2023] that splits regular time series into variable-size segments and compresses
them as models with metadata. The system uses models for both lossy and lossless compression.
Thus, it supports approximation through lossy compression. Aggregate queries can also be
efficiently answered from the metadata and models. ModelarDB consists of the portable
Java library ModelarDB Core which can be interfaced with different data processing engines
and data stores depending on the use case. The current implementation of ModelarDB is
designed to be deployed on both edge nodes and a cluster of cloud nodes using the same
binary. On the edge, it uses H2 as its data processing engine and either an RDBMS or a novel
file-based data store backed by the local file system as its data store. In the cloud, it uses
Apache Spark as its data processing engine and either Apache Cassandra or the file-based
data store backed by HDFS as its data store. None of the existing systems were modified
to interface them with ModelarDB, thus existing infrastructure can be reused. ModelarDB
supports continuously transferring segments between instances using Apache Arrow Flight.
The architecture of ModelarDB’s cloud worker nodes is shown in Figure[T.26] ModelarDB uses
the same architecture as a single cloud worker node when deployed as a single node system on
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Figure 1.27: ModelarDB’s compression method, redrawn from [Jensen et al.[2023]]

an edge node. The Data Ingestion components can pull data points from a variety of sources
and fit models to these data points using model types. Alternatively, segments from another
instance of ModelarDB can be pushed to them. A set of included and, optionally, user-defined
model types are used for compressing each time series as their structure generally changes over
time. ModelarDB includes PMC-Mean [Lazaridis and Mehrotra2003[], Swing [Elmeleegy et al.
2009], and Gorilla’s compression method. Groups of similar time series can be compressed
together to further reduce the amount of storage required. These groups can either be created
manually by the users or automatically by ModelarDB using the time series metadata. To
compress data points from a group of time series within a user-defined error bound, ModelarDB
uses a window-based approach as shown in Figure The data points are first added to a
buffer and a model is then fitted to the data points using the first model type the system is
configured to use, which is the constant model type PMC-Mean in Figure [I.27] When data
points are received that this model type can no longer fit a model to within the error bound, f¢
in Figure the system switches to the next model type and initializes it using the buffer,
which is the linear model type Swing in Figure[T.27} For lossless model types like Gorilla’s
compression method, a length bound is used instead of an error bound. This continues until all
model types have been evaluated. A segment containing metadata and the model that provides
the best compression ratio is then emitted, a model of type Swing in Figure[T.27] Afterward,
the corresponding data points are deleted, and the fitting process restarted by initializing the
first model type with the remaining data points in the buffer. The Query Processing components
store recently constructed and queried segments in an in-memory cache and use one of the
data processing engines to execute SQL queries on reconstructed data points or directly on
the segments if applicable. The Segment Storage components cache metadata and mappings
between different types of metadata. They also interface ModelarDB with one of the data stores.
An optimized storage layout is used for each data store, but they generally store segments so
retrieval of segments for specific time series and time intervals is efficient. ModelarDB also
supports storing time series that can be derived from another time series as a single dynamically
compiled user-defined function, e.g., cos(value x ©/180), instead of the time series segments.
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Table 1.4: High-level overview of the surveyed systems with an external data store

Year Primary Deployment Maturity Approximation Latency
Purpose

TSDS¥ 2010 Data Analytics Centralized =~ Demonstration Approximate Query Processing  Batch
SensorGrid 2013  Data Analytics Distributed Demonstration Approximate Query Processing  Real-Time
Respawn 2013  Monitoring Distributed Demonstration Not Supported Near Real-Time
Bolt¥r 2014  Monitoring Centralized Demonstration Approximate Query Processing ~ Near Real-Time
Druidvr 2014  Data Analytics Distributed Mature Approximate Query Processing ~ Near Real-Time
Unnamed 2014  Evaluation Distributed Proof-of-Concept  Lossy Compression Batch
Unnamed 2014  Monitoring Distributed Mature Not Supported Real-Time
Unnamed 2015 Data Analytics Distributed Mature Approximate Query Processing  Near Real-Time
servloTicy ¢ 2015 Monitoring Distributed Demonstration Not Supported Real-Time
Gorillave 2015 Monitoring Distributed Mature Not Supported Near Real-Time
Storacle 2015 Monitoring Centralized =~ Demonstration Not Supported Near Real-Time
BTrDBY 2016  Monitoring Distributed Mature Not Supported Near Real-Time
FluteDB 2018 Monitoring Distributed Proof-of-Concept  Lossy Compression Near Real-Time
M-DB 2019  Monitoring Distributed Demonstration Approximate Query Processing  Near Real-Time
UPS 2020 Data Analytics Distributed Demonstration Not Supported Near Real-Time
TimeCryptys 2020 Data Analytics Centralized =~ Demonstration Approximate Query Processing ~ Batch
Peregreen 2020 Data Analytics Distributed Mature Approximate Query Processing  Batch

Db2 Event Store 2020  Data Analytics Distributed Mature Not Supported Near Real-Time
Monarch 2020  Monitoring Distributed Mature Not Supported Near Real-Time
TorqueDB 2020 Monitoring Distributed Demonstration Not Supported Near Real-Time
ByteSeries 2020 Monitoring Distributed Mature Not Supported Near Real-Time
BitemporalDB 2020  Evaluation Centralized Proof-of-Concept  Not Supported Near Real-Time
ModelarDB¥¢ 2023 Data Analytics Distributed Demonstration Lossy Compression Near Real-Time

1.5.3 Discussion
A high-level overview of the surveyed TSMSs that use an external data store is shown
in Table [T.4] These systems are predominately distributed with the only exceptions being
TSDS [Weigel et al.|2010]], Bolt [Gupta et al.|[2014], Storacle [Cejka et al.|2015[], Time-
Crypt [Burkhalter et al.||2020]], and BitemporalDB [Sedighi et al.|2020]]. Instead, centralized
TSMSs are generally implemented using an internal data store and as DBMS extensions as
shown in Section [I.4] and Section [I.6] respectively. Surprisingly, only TSDS [Weigel et al.
2010] implements an entirely new proprietary data store. The other systems instead reuse
existing data stores such as Apache Cassandra, Apache HBase, and Couchbase to varying
degrees. However, thirteen of the twenty-three systems implement an entirely new proprietary
data processing engine. So while existing systems are reused as components to a high de-
gree, the development of new data processing engines has been a higher priority than new
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data stores. One reason could be that TSMSs that use an external data store are primarily
designed in this manner so an existing external data store can be reused. Although existing
systems are often reused as components, three of the TSMSs have simple proof-of-concept
implementations: the system by [Guo et al.|2013]2014alb], FluteDB [Li et al.|[2017} 2018]], and
BitemporalDB [Sedighi et al.|2020]. Also, two systems exist only to evaluate new methods:
the system by [Guo et al.[2013] 2014ab] and BitemporalDB [Sedighi et al.|2020]. Eleven
systems are classified as demonstration in terms of maturity. For example, Respawn [Buevich
et al.|2013]], servloTicy [Pérez and Carreral2015[], and ModelarDB [Jensen et al.|2018],[2019]
2021} 2023]). Despite the significant reuse of existing systems as components, only nine of
the twenty-three systems have robust mature implementations. For example, Druid [[Yang
et al.|2014], Gorilla [Pelkonen et al.[2015]], and ByteSeries [Shi et al.[2020]. Approximation
is supported by eleven of the twenty-three systems. Of these, eight support AQP while only
three support lossy compression. Interestingly approximation is even supported by three of
the nine mature systems. Specifically, Druid [[Yang et al.|2014], the system by [Mickulicz
et al.[2015], and Peregreen [Visheratin et al.[2020] support AQP. So AQP is, in general, the
preferred approach for approximation. Real-time data processing is only supported by three of
the twenty-three systems. SensorGrid implements support for continuous queries [Cuzzocrea
and Saccal[2013]], the system by [Williams et al.[|2014]] uses a proprietary stream processing
platform as a component of the TSMS, while servloTicy [Pérez and Carreral2015]] uses Apache
Storm as a component of the TSMS. In summary, most of the TSMSs that use an external data
store are distributed. Almost all of the systems use an existing data store as a component, while
over half implement an entirely new proprietary data processing engine. Despite the significant
reuse of existing systems as components, a few of the TSMSs have simple proof-of-concept
implementations. However, the majority of the TSMSs with an external data store have imple-
mentations that are robust enough to evaluate new methods and architectures with real-life use
cases, and a significant number of them are also ready to be or are already used in production.
Advanced functionality like approximation and real-time data processing is implemented by
over half of the systems. However, only four of these systems have mature implementations.
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DBMS Extensions

Overview

Implementing a TSMS as DBMS extensions allows the DBMS’s existing data processing
engine and data store to be reused. This can reduce development time, and existing knowledge
about how to efficiently use the DBMS can be reused. Also, the data processing engine can
retrieve data directly from the data store, however, they generally cannot be scaled separately.
Unless the DBMS is modified and not just extended, the TSMS must also be designed and
implemented within the constraints provided by the DBMS’s extension APIs, data model, and
storage layout, possibly limiting the optimizations that can be performed. The DBMS may also
have features that are not needed by a TSMS but adds overhead, e.g., support for transactions.

Systems
[Fischer et al.[2012b] proposed extending PostgreSQL to support model-based forecasting
of time series in the form of the TSMS F2DB. This centralized system is designed to provide
forecasting for use in data warehouse-style business intelligence without needing to export
the time series to other tools such as Python or R. Its architecture is shown in Figure [T.28]
F?DB supports creating models using ARIMA or exponential smoothing. However, it also
provides a generic interface for implementing different forecasting methods. Thus, the system
can be extended if the included model types are insufficient. Users must manually fit models to
time series using a CREATE MODEL SQL statement. The models are then stored in the Model
Pool and automatically indexed and maintained by F?DB [Fischer et al.[2010]. To reduce the
number of models to maintain, the system can answer forecast queries using models from
other levels of the hierarchy than the one queried. To do so, users must specify the functional
dependencies using CREATE FORECAST HIERARCHY and, optionally, how forecasted data
points can be disaggregated using CREATE DISAG SCHEME. Based on the current set of
models, their past accuracy, and a query workload, an alternative configuration of models can
be computed using a Model Advisor [Fischer et al.[2011} [2013|]. The advisor uses multiple
heuristics to reduce the number of models it evaluates. Each heuristic is focused on one time
series or the relationship between multiple time series. The choice of one of multiple models
is determined based on a trade-off between their accuracy and performance. The final model
configuration can be loaded into F2DB. The system does not support approximation.
[Khalefa et al.|2012] implemented TimeTravel by extending PostgreSQL with support
for model-based AQP and forecasting. Thus, it is centralized and provides a uniform SQL
interface for exact queries on historical data points, approximate queries on historical data
points, and forecasting. TimeTravel stores ingested data points in arrays ordered by time and
creates models organized in a novel Hierarchical Model Index on top of the time series. The
architecture of TimeTravel can be seen in Figure [[.29] and consists of Offline components
for building and compressing the index, and Online components for query processing and
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maintenance of the index. The Hierarchical Model Index consists of multiple levels of models,
with each level providing more detailed models. This hierarchy enables the system to efficiently
process queries using models with an appropriate level of detail based on the required accuracy
of the result. TimeTravel stores statistics about the index in the system’s catalog for query
planning. To build a Hierarchical Model Index for a time series, the user must specify the time
series’ seasonality, the required error bounds, and the forecasting method to use. The system
then builds the index by first creating a model over the entire time series. Then it recursively
splits the time series into disconnected segments and fits models to them according to the
specified error bounds. The system automatically maintains the models in the index when new
data points are ingested if they exceed the error bounds. To use the index for query processing,
TimeTravel extends PostgreSQL’s query optimizer with support for estimating the cost of
using the index, e.g., for pruning, compared to only executing the query using the time series.
As part of the MIRABEL smart grid project, the methods created for TimeTravel were also
incorporated into an Electricity Data Management System (EDMS) [Fischer et al.[2012a]].
[Huang et al.[2014] implemented a distributed TSMS as extensions to IBM Informix that
provides a uniform SQL interface for querying multivariate time series and relational data
together. The system primarily consists of three components and a set of data stores as shown
in Figure [T.30] The Configuration component manages information about the data sources the
system is ingesting from and the data stores available to the system. The Storage component
ingests data points, organizes them into an appropriate storage format, and compresses them.
The storage format and compression method used depend on the time series characteristics,
e.g., how often data points are collected and if it is done at a regular or irregular time interval.
The three supported storage formats are shown in Figure[I.31] For all formats, B-Trees are used
to index the timestamp and id field. The first two formats store the data points of a single time
series in a blob. For regular time series only the values are stored, while both the timestamps
and values are stored for irregular time series. The last format stores multiple time series
together by replacing the device id with a group id and storing the device id, timestamp, and
value of each data point in the blob. The Mixed Grouping Data Structure is generally used for
regular and irregular time series with a low sampling interval. For compression, the system
stores stable values as linear functions while quantization is used for highly fluctuating values.
Both methods support lossless compression and lossy compression within an error bound.
Thus, the TSMS supports approximation through lossy compression. The Query component
is implemented using IBM Informix’s Virtual Table Interface and exposes the time series as
virtual tables, thus allowing both relational data and time series to be queried together using
standard SQL. IBM Informix’s cost model is also extended to support the new storage formats.
TRISTAN is a centralized TSMS designed by [Marascu et al.[2014] for low-latency analysis
of noisy irregular time series through the use of online dictionary compression and AQP. The
system is based on the MiSTRAL architecture [Marascu et al.[|2013] and is implemented
as extensions to the open-source in-memory DBMS HYRISE. This architecture is shown in
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Figure 1.30: The architecture of the TSMS implemented as extensions to IBM Informix
by [Huang et al.[2014]]. The figure was redrawn from [Huang et al.|[2014]]

Regular Time Series Data Structure (RTS)

| Timestamp | Device ID | Count | Value Blob

Irregular Time Series Data Structure (IRTS)

| Timestamp | Device ID | Count | Value Blob

| (Time Delta,.V,) | (Time Delta,,V5) | |

Mixed Grouping Data Structure (MG)

| Timestamp | Group ID | Count | Value Blob

|(Device ID, Time Delta|,V|)|(Device ID, Time Deltaz,V2)| |

Figure 1.31: The data structures used for storing time series in the TSMS by [Huang et al.
2014]. The figure was redrawn from [Huang et al.[2014]]
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Figure 1.32: The MiSTRAL architecture realized by TRISTAN. Data flow that mainly occurs
offline is shown as dotted lines. The figure was redrawn from [Marascu et al.[2013]]

Figure and consists of three layers: the Data Acquisition and Compression Layer, the
Storage Layer, and the Query Execution Layer. The Data Acquisition and Compression Layer
ingests time series and splits them into fixed-size segments which are temporarily stored in
the Uncompressed Store managed by the Storage Layer. The time series can be ingested from
a stream or be batch-loaded from the Historical Store managed by the Storage Layer. Then
the segments are compressed as a sequence of weighted smaller fixed-size time series using a
pre-trained dictionary provided as a parameter to the system. This dictionary is created offline;
however, the system can adjust it at run-time if patterns emerge that cannot be efficiently
represented using the current dictionary. The Query Execution Layer executes queries received
through an undefined interface. Queries on recent data that have yet to be compressed are
executed against the Uncompressed Store. Queries on data stored as compressed segments in the
Compressed Store may be executed directly on the compressed representation or on data points
reconstructed from the compressed segments. TRISTAN supports approximation through
AQP as the number of weighted smaller fixed-size time series used from the compressed
representation can be adjusted at query-time. The CORelation-Aware compression of time
series streams based on sparse Dictionary coding (CORAD) extends TRISTAN’s compression
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method by taking correlation into account [Khelifati et al.|[2019]]. When compressing a set
of time series, CORAD normalizes the time series, splits them into segments, and computes
their inter-segment correlation. Segments that are not correlated with a stored segment are
compressed as a sequence of weighted fixed-size time series from a dictionary like in TRISTAN.
If a segment is correlated with a stored segment, it is stored as a reference to that segment and
a scaling factor. Thus, multiple segments might be read by a query to retrieve a single segment.
[Bakkalian et al.[2016]] extended Oracle Database with support for storing and querying
time series with metadata as models instead of data points. The centralized system stores time
series using two different tables. One table stores the data points while the other table stores
models that represent the intervals between consecutive data points. The current implementation
only supports using linear functions as models. The use of linear functions allows the system
to interpolate values between the data points. Thus, it supports approximation through AQP.
Support for forecasting is also listed as a benefit of storing time series as models. However,
forecasting is currently not supported by the system. Queries are executed using data points
reconstructed from the models. The system builds directly on the following two papers. The
first paper [Bebel et al.|2012] proposed a data model for OLAP analysis of sequential data that
formalizes Events as n-tuples and Sequences as ordered collections of Events. Building upon
this data model, the second paper [Koncilia et al.|2014]] formalized the notion of Intervals as
the gap between consecutive Events and defines Sequences as ordered collections of Intervals.
Chronix is a distributed open-source TSMS proposed by [Lautenschlager et al.[2015,2017]
for analyzing time series with metadata collected by monitoring distributed systems. Thus,
it has comprehensive support for different types of operational data such as metrics, traces,
and logs. It is implemented by extending Apache Solr and optimized for few large writes and
many reads. When ingesting, the system first, optionally, creates a derived representation from
the time series that is optimized for the intended queries. If all of the intended queries can
be efficiently answered using this representation, the ingested time series may optionally be
deleted. The time series or the derived representation is then split into fixed-size segments.
These are then compressed and stored together with user-defined and system metadata such as
the data format, ids, and the time interval the segment contains data for. For compressing the
timestamps, Chronix uses the novel Date-Delta-Compaction (DDC) lossy compression method.
It computes the delta-of-deltas between consecutive timestamps and discards the delta if the
delta-of-delta is below a threshold. Also, if the cumulative difference becomes too large, a delta
that corrects the difference is stored. As a result, Chronix supports approximation through lossy
compression. After DDC the segment is compressed by a lossless compression method like
gzip, LZ4, or XZ. The metadata is used for retrieving specific segments and a user-configurable
subset is indexed by Apache Solr. Chronix executes queries by requesting the relevant segments
from Apache Solr and then applying functions to the query result. The system is also extensible,
e.g., administrators can add new data analysis methods or query-optimized representations.
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[Yang et al. 2019] proposed the TSMS EdgeDB by extending BTrDB with support
for managing correlated time series in groups to improve both ingestion speed and query
performance. Specifically, the system is designed to run centralized on powerful edge nodes
and execute queries on groups instead of on individual time series. The groups are created by the
user based on metadata or for specific time series. The groups can also be changed dynamically
at run-time. EdgeDB consists of a Data Merging component, an Indexing component, and a
Data Storing component. Ingested data points are first split into segments based on a predefined
time interval. Then the Merging component reorganizes the segments into tablets according to
the groups. Each tablet also includes a header with the location of the segments in the tablet
together with lightweight statistics about them. The size of the segments can also optionally be
reduced using lossless or lossy compression. Thus, EdgeDB supports approximation through
lossy compression. The Indexing component then indexes the tablets using a novel Time
Partitioned Elastic Index. This index extends the k-ary tree proposed for BTrDB by storing
tablets in the leaf nodes and creating multiple trees for different time intervals and resolutions.
For example, seven trees that index the tablets created each day for the latest week, and five
trees that index the tablets created each week for the latest month except those created in the
latest week. As EdgeDB assumes that the data points are received in order, it only keeps the
latest tree with the highest resolution in memory. The trees with the second-highest resolution
are created from these, while the trees with the third-highest resolution are created from the
trees with the second-highest one, and so on. During query processing, the location of the nodes
on disk can be computed as the trees’ structures are stored in memory. The Storing component
merges tablets from different groups together using a novel Time Merged Tree. Its internal
nodes contain a time interval and references to its child nodes. The leaf nodes contain a time
interval, references to tablets storing segments for that time interval, and a bitmap indicating
which time series the referenced tablets store data for. Leaf nodes are flushed when tablets have
been inserted for all time series or a timeout occurs, e.g., if a sensor has failed. By batching
writes, EdgeDB trades durability for faster ingestion speed based on the assumption that there
is a high degree of redundancy in time series and that some sensors can retransmit their data.

[Agarwal et al.[2020] proposed extending PostgreSQL with support for multivariate time
series prediction in the form of the open-source TSMS #spDB. This centralized system supports
imputation and forecasting using a novel incremental prediction method based on matrix
factorization. A prediction model is created using CREATE PREDICTION_MODEL with a
table, the timestamp column, and the value columns as the arguments. By default tspDB
automatically maintains the models when new data points are ingested. The system stores both
data points and model parameters in tables. For each model, the parameters associated with
the singular value decomposition and the linear regression coefficients are stored. Parameters
derived from these are pre-computed for the latest models using a materialized view for query
performance. Prediction is done using a PREDICT query which functions like SELECT but



64 Chapter | Time Series Management Systems: A 2022 Survey

Iﬂ-Memory Heracles Model (11-3‘:1?11;2;5:) | Timestamp 1-8 | Offset,; | Offset, | Offset, | | Timestamp 9-16 | Offset, | Offset, | Offset; |

Data PoInts =~ srerererememememe s oo
Values (Unaligned
<tlv Vl_l’ V2_l’ V3_l> ( e TS, | First Valuel Vii-Vig | Vio-Viie | Vi-Via |

—» Compressed Tuples)
<ty, Vi 2, V2 2, V3 2>

Periodical

TS, | First Value | Voi-Vag | Vao-Vaoi6 | Vai7-Voou | Conversion
<t3, Vi 3, V2.3, V33> and
TS; | First Value | Vii1-Vig | Vio-Viie | Viin-Via | Flushing
¥
On-Disk Heracles Model
(Scaling; | Starting Time | Interval |Ahgned Lengthl Diff, | Diff, |
Values (Aligned TS, | Quantile, | Quantile, |Offsel Alignment |Otfsel\|---|Oﬂset,,|Block, |Tuple Aligned Length | Tuple, |---|Tuple,, "l Block, |

Blocks with Aligned
Compressed Tuples) TS, | Quantile, | Quantile, |0ﬂ'set Alignment |Oﬂ"scll|~4|Oﬂ'scl,,|Block, |Tuple Aligned Lenglh|Tuple| |---|Tuple,, "l Block, |

Blocks Starting Offsets

Figure 1.33: The two storage models used by Heracles, redrawn from [Wang et al.|[2021]]

performs imputation or forecasting depending on the queried time interval. Thus, the system
supports AQP. The query results include both the estimated mean and the prediction interval.

Heracles is implemented as extensions to the TSMS Prometheus and is proposed by [Wang
et al.[|2021]]. It is centralized, open-source, and optimized for multivariate time series with
many values as these are often collected when monitoring entities. Specifically, Heracles
splits multivariate time series into fixed-size segments and stores the timestamps and values
separately as Tuples. Each Tuple contains a fixed number of timestamps or values as shown in
Figure[I.33] In memory, timestamps are compressed using delta compression, while the values
are compressed using an XOR-based compression method similar to the one used by Gorilla.
As the timestamps and values are compressed online, Heracles checks if the encoding used by
each value Tuple can be improved once it has been filled. Mapping from timestamps to values
is done using offsets. When Tuples are flushed to disk, Heracles changes the compression
methods used and how it maps from timestamps to values. A Tuple of timestamps 7S is
compressed as get(TS,i) — (first(TS) + i x interval) where i is the index of the timestamp being
compressed and interval = (last(TS) — first(TS))/length(TS). Values are compressed using
the same XOR-based compression method, but the initial value is selected based on the values’
quantiles. Offsets are not stored for the on-disk format, instead, padding is used so the value
Tuples have a known alignment. Heracles does not immediately delete flushed Tuples from
memory as they can be used to answer queries. Instead, an epoch-based memory manager is
used that gradually reuses older memory blocks. It ensures that the blocks currently in use are
not reused by assigning the current epoch to all queries when they start executing and then
only reusing blocks from epochs earlier than the currently executing queries. Heracles queries
consist of metadata specifying which time series to query and a time range. A query is first
translated to group ids, time series ids, and a time range. Then, Heracles retrieves the relevant
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Figure 1.34: The compression method used by TVStore, redrawn from [An et al.[2022]

data points from memory before retrieving the relevant data points from disk. Binary search is
used in both cases to prune based on the time range. Heracles does not support approximation.

[An et al.[2022] implemented the distributed open-source TSMS TVStore by extending
Apache IoTDB. TVStore supports limiting the amount of storage used by the system to a
user-defined upper bound while storing important segments with little or no error. Instead of
immediately deleting the oldest segments to reduce the amount of storage required, TV Store
uses the novel Time-Varying Compression (TVC) framework to store segments with different
amounts of error. Thus, TVStore supports approximation through lossy compression. TVC
determines the compression ratio required for each segment using Time-Dependent Functions.
These are non-decreasing functions that map from the age of a segment to a compression
ratio. The exponential, power-law, and constant functions are included. TVC uses power-law
by default. Thus, the system is generally designed for analytics in domains where the most
recent data points are the most important. TVC only supports fixed-ratio compressors, i.e.,
compression methods that target a specific compression ratio. In addition, the compression
methods must support recompression of segments without decompression, decompression
that does not change if a segment has been compressed multiple times, and computation of
error bounds when recompressing. TVC uses Piecewise Linear Approximation by default.
However, both user-defined Time-Dependent Functions and compression methods can be added
by implementing their respective Java interfaces. TVC also stores the compression ratio and
error for each compressed segment and supports dropping segments based on a user-defined
compression ratio or error threshold. While ingesting, TV Store automatically determines when
to compress segments so the user-defined storage bound is not exceeded and the amount
of error is not increased unnecessarily. TV Store also allows users to specify an amount of
recent data points that should be stored without any error. The segments are compressed in
batches to reduce the number of times each segment is recompressed. To determine how much
and when compression is required to not exceed the storage bound, TVStore continuously
monitors the amount of data stored, the disk’s average read throughput, the disk’s average write
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Table 1.5: High-level overview of the surveyed systems implemented as DBMS extensions

Primary

Year Purpose Deployment Maturity Approximation Latency

F?DB 2012 Data Analytics Centralized =~ Demonstration Not Supported Near Real-Time
TimeTravel 2012  Data Analytics Centralized =~ Demonstration Approximate Query Processing  Near Real-Time
Unnamed 2014 Monitoring Distributed Mature Lossy Compression Near Real-Time
TRISTAN 2014  Data Analytics Centralized Demonstration Approximate Query Processing ~ Near Real-Time
Unnamed 2016  Evaluation Centralized Proof-of-Concept ~ Approximate Query Processing ~ Batch

Chronix? 2017 Data Analytics Distributed Demonstration Lossy Compression Batch

EdgeDB 2019  Monitoring Centralized =~ Demonstration Lossy Compression Near Real-Time
tspDB 2020 Data Analytics Centralized =~ Demonstration Approximate Query Processing ~ Near Real-Time
Heraclesw 2021 Monitoring Centralized ~ Demonstration Not Supported Near Real-Time
TVStorevs 2022  Data Analytics Distributed Demonstration Lossy Compression Near Real-Time

throughput, and the ingestion throughput. Using this information, compression is started at a
storage threshold which guarantees that compression can be performed without exceeding the
storage bound. After the lossy compression, Apache IoTDB’s lossless compression methods
are used as shown in Figure Like Apache IoTDB, TVStore stores statistics and metadata
about the compressed data. Decompression is performed before the data is returned to the data
processing engine, so TV Store provides the exact same query functionality as Apache IoTDB.

Discussion

A high-level overview of the surveyed TSMSs implemented as extensions to existing DBMSs
is shown in Table These systems are predominately centralized with the only exceptions
being: the system by [Huang et al.|[2014]], Chronix [Lautenschlager et al.|2015| [2017]], and
TVStore [An et al.|2022]. Instead, distributed TSMSs generally use an external data store
as shown in Section [I.5] Five of the ten systems extend an RDBMS, with three extending
PostgreSQL [Agarwal et al.[2020\ [Fischer et al.|2012bl Khalefa et al.|2012]], one extending
IBM Informix [Huang et al.|[2014], and one extending Oracle Database [Bakkalian et al.
2016]). Surprisingly, only three of the latest systems extend an existing TSMS. Specifically,
EdgeDB [Yang et al.[2019] extends BTrDB, Heracles [Wang et al.[2021]] extends Prometheus,
and TVStore [An et al.|2022] extends Apache [oTDB. The implementations of most of the
TSMSs are classified as demonstration. Specifically, only the system by [Bakkalian et al.|2016]
is classified as a proof-of-concept system, eight of the ten TSMSs are classified as demonstra-
tion systems, and only the system by [Huang et al.[2014] is classified as a mature system. Many
of the implemented extensions add support for advanced query functionality such as forecast-
ing [Agarwal et al.[2020, [Fischer et al.[2012b} Khalefa et al.[2012], interpolation [Bakkalian
et al.|[2016| Marascu et al.|2014]], and anomaly detection [Lautenschlager et al.[2015| [2017]].
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However, the system by [Huang et al.|[2014]] also supports multiple different storage formats,
Chronix [Lautenschlager et al.[2015]2017]] can store time series using query-optimized repre-
sentations in addition to compressed data points, EdgeDB [Yang et al.[2019] manages time
series in groups to improve read and write performance, Heracles” [Wang et al.[[2021]] data
store is optimized for multivariate time series, and TV Store [[An et al.|2022] limits the amount
of storage used to a user-defined upper bound. Approximation is supported by eight of the
ten systems, with four systems supporting AQP [[Agarwal et al.|2020, Bakkalian et al.[2016}
Khalefa et al.|[2012, [Marascu et al.[2014] and four systems supporting lossy compression [An
et al.[2022, Huang et al.|2014} Lautenschlager et al.|2015} 2017} Yang et al.[2019]. None of the
systems implemented as DBMS extensions support real-time data processing. In summary, the
TSMSs that are implemented as extensions to DBMSs are generally: not mature, centralized,
implemented as extensions to RDBMSs, add advanced query functionality, and almost always
support approximation. However, none of them support real-time data processing.
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Future Work

Support for Data Analytics

The majority of the surveyed TSMSs only provide a few built-in methods for data analytics, if
any at all. For example, only NilmDB [Paris et al.|2014], RINSE [Zoumpatianos et al.|2015a],
MetricQ [Ilsche et al.|[2019], TubeDB [Wollauer et al.|2021]], and SensorGrid [[Cuzzocrea and.
Saccal[2013] support visualization. So the time series must be exported to external applications
like Python or R before they can be analyzed, thus adding an unnecessary performance
overhead and additional complexity for the user. By integrating support for data analytics
directly into the TSMSs the need for exporting the data can be avoided completely. Information
about which analyses will be performed may also enable the creation of sophisticated
dynamic optimizers that can optimize the entire data analytics pipeline instead of only data
retrieval [Bagnall et al.|[2019, |Palpanas|2015} 2016alb, [Zoumpatianos and Palpanas|2018]].
Another limitation of the current TSMSs for data analytics is the lack of extensibility which
limits users to the few methods included with the systems. Of the surveyed systems only
NilmDB [Paris et al.|2014]], TubeDB [[Wollauer et al.|2021]], M-DB [Arora et al.|2019]] and
Chronix [Lautenschlager et al.|2015] 2017]] support adding user-defined methods for data
analytics. Similarly, only SensorGrid [[Cuzzocrea and Sacca2013]], the system by [Williams
et al.|2014], and servIoTicy [[Pérez and Carrera|2015] support real-time query processing using
user-defined continuous queries. So to fully benefit from integrating data analytics with TSMSs,
the systems must be very simple for users to extend and they must treat user-defined methods
like native methods instead of black boxes [Sichert and Neumann|[2022].

Integration of Edge and Cloud

Time series collected from sensors are often ingested on the edge and then transferred to the
cloud for analysis. However, most of the surveyed systems are only optimized for one type of
deployment. Thus, users generally have to use multiple TSMSs and manually transfer the data
points safely, e.g., ensuring that lost data points are retransmitted. Of the surveyed systems,
only Apache IoTDB [Wang et al.[2020]], Respawn [Buevich et al.[2013]], Storacle [Cejka et al.
2015]], and ModelarDB [Jensen et al.[2018} 2019|2021}, |2023] support transferring data points
from the edge to the cloud, while VergeDB [Paparrizos et al.[2021]] optimizes the representation
used for the time series on the edge based on the analytics that will be performed in the cloud.
However, Apache IoTDB, ModelarDB, Respawn, and Storacle provide limited functionality
for data analytics while VergeDB does not implement any support for transferring the ingested
data points to the cloud. For a TSMS to manage time series across both the edge and the cloud,
it must provide ingestion and compression on the edge, transfer of compressed data points from
the edge to the cloud, and query processing across both the edge and the cloud. Deploying
an integrated TSMS across the edge and the cloud also enables the system to be resource
and workload aware. For example, the system may use different strategies for deciding which
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data points to transfer to the cloud based on the available bandwidth and the queries being
executed in the cloud. Similarly, the sampling strategy and compression methods used on the
edge could also be dynamically changed to minimize latency or error [[Chiariotti et al.|2022}
Holm et al.|2021} [Hulsmann et al.|2020} 2021}, Paparrizos et al.|2021}, [Traub et al.|2017]]. For
example, a lossy compression method with little or no impact on the query results becomes
functionally lossless [An et al.[2022, Lautenschlager et al.|2015|[2017]]. However, the impact
of lossy compression is not well understood and should be investigated [Cappello et al.|[2020]].

Standardization and Portability

There is very little standardization across the surveyed TSMSs despite all of them being
designed for managing time series. Specifically, there are currently no standard query interfaces,
query languages, data models, or benchmarks for TSMSs. The lack of a standard interface
significantly reduces interoperability between the systems. Multiple systems expose time
series as relations and use SQL for queries, e.g., Db2 Event Store [Garcia-Arellano et al.
2020], ModelarDB [Jensen et al.|[2018} 2019, [2021}, [2023]], and the system based on IBM
Informix by [Huang et al.|[2014]]. While this allows the systems to interface with existing
tooling and makes them accessible to users familiar with RDBMSs, the relational data model
and SQL are arguably not effective for time series [Palpanas|2015| [2016alb, [Solleza et al.|2022]
Zoumpatianos and Palpanas|2018]]. Standardization of benchmarking is also an open problem.
Multiple benchmarks for TSMSs have been proposed, e.g., IoT-X [Huang et al.|2014], the
benchmark by [Zoumpatianos et al.2015b]], and TS-Benchmark [Hao et al.[2021]]. However,
the surveyed TSMSs are generally evaluated using system-specific benchmarks instead of a set
of standard benchmarks like TPC, thus making comparing the TSMSs unnecessarily complex.
Of course, how to design benchmarks that use both synthetic data sets and query workloads
while still being representative of real-life use cases is in itself an open problem [Kraska[2021]].
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Conclusion

The enormous amount of time series being collected has created a need for specialized TSMSs.
This chapter provided a thorough survey and classification of TSMSs that are developed through
academic or industrial research and documented through peer-reviewed papers. Directions for
future work have also been proposed based on the limitations of the surveyed TSMSs.

The surveyed TSMSs with an internal data store are predominately centralized and
developed without reusing existing systems as components. Instead, most of the TSMSs
implement entirely new proprietary data processing engines and data stores. Thus, a significant
increase in development time is traded for the opportunity to create deeply integrated systems.
Despite not reusing existing systems, the TSMSs’ implementations are generally robust enough
to evaluate new methods and architectures with real-life use cases, and a significant number of
them are ready to be or are already used in production. However, approximation is not even
supported by half of the TSMSs and none of the TSMSs support real-time data processing.

The surveyed TSMSs with an external data store are predominately distributed and
developed by reusing existing systems as components. Although, over half implement an
entirely new proprietary data processing engine. Thus, the possibility to create deeply integrated
systems is traded for significantly reduced development time. Their implementations are also
generally robust enough to evaluate new methods and architectures with real-life use cases,
and a significant number of them are also ready to be or are already used in production. In
addition, over half of the TSMSs support approximation, real-time data processing, or both.

The surveyed TSMSs implemented as extensions to existing DBMSs are predominately
centralized. However, only one of them has a mature implementation. They mostly extend
RDBMSs instead of existing TSMSs. Many of the implemented extensions add advanced query
functionality such as forecasting, interpolation, and anomaly detection. In addition, almost all
of the TSMSs support approximation but none of them support real-time data processing.

Based on the limitation of the surveyed TSMS:s it is clear that support for data analytics,
better integration of TSMSs designed for deployment on the edge and in the cloud, and
development of standard interfaces and benchmarks are all relevant directions for future work.
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