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1. Introduction
Quantifying Terrestrial Water Storage Changes (TWSC) and its individual compartments (e.g., surface water, 
canopy, snow, surface/subsurface soil water, and groundwater), as well as their spatial-temporal changes is pivotal 
for understanding climate variations, sustainability and conservation of water resources (Castellazzi et al., 2016; 
Forootan, Rietbroek, et al., 2014; Scanlon et al., 2012). Knowing the storage states also plays an important role 
for many applications related to hydro-meteorology such as flood and drought prediction (see e.g., Forootan 
et al., 2017, 2019; Houborg et al., 2012; Li et al., 2019; Long et al., 2013).

Various Earth Observation (EO) data sets exist that are used to monitor the total signal or a compartment of 
large scale TWSC (i.e., known as compartments of hydrological cycle). The Gravity Recovery And Climate 
Experiment (GRACE, 2002–2017) satellite mission (Tapley, Bettadpur, Ries, et  al.,  2004; Tapley, Bettadpur, 
Watkins, & Reigber, 2004) and its Follow-On mission (GRACE-FO, 2018–onward, Tapley et al., 2019; Landerer 
et al., 2020) provide time-variable Earth's gravity fields that contain signals related to different processes such 
as non-steric sea level changes, TWSC, ice sheet melting, and Post-Glacial Rebound (PGR), with a spatial reso-
lution of few hundred kilometers and a temporal resolution of daily to monthly (Flechtner et  al.,  2016). An 
overview of the application of GRACE and GRACE-FO data can be found in J. Chen et al. (2022). Although 
GRACE/GRACE-FO TWSC fields represent an accurate superposition of water storage changes, separating this 
integrated signal into its contributors is desirable for many geodynamic and hydro-climatic applications. Moreo-
ver, the limited satellite coverage and sensing depths often restrict the reliability of the remote sensing observa-
tions (Reichle, 2008).

Advances in the EO technology have shown that surface soil moisture (top soil layer) can be measured by various 
remote sensing techniques (Bruckler et al., 1988; Du et al., 2000; Petropoulos et al., 2015). For example, surface 
soil moisture can be estimated based on optical/thermal remote sensing (Gillies & Carlson,  1995; Sandholt 
et al., 2002) at regular time intervals, and at spatial scales ranging from a few meters to kilometers.

Abstract The Gravity Recovery and Climate Experiment (GRACE, 2003–2017) and its Follow-On mission 
GRACE-FO (2018-now) provide global estimates of the vertically integrated Terrestrial Water Storage Changes 
(TWSC). Since 2015, the Soil Moisture Active Passive (SMAP) radiometer observes global L-band brightness 
temperatures, which are sensitive to near-surface soil moisture. In this study, we introduce our newly developed 
Constrained Bayesian (ConBay) optimization approach to merge the TWSC of GRACE/GRACE-FO along 
with SMAP soil moisture data into the ∼10 km resolution W3RA water balance model. ConBay is formulated 
based on two hierarchical multivariate state-space models to (I) separate land hydrology compartments from 
GRACE/GRACE-FO TWSC, and (II) constrain the estimation of surface soil water storage based on the 
SMAP data. The numerical implementation is demonstrated over the High Plain (HP) aquifer in the United 
States between 2015 and 2021. The implementation of ConBay is compared with an unconstrained Bayesian 
formulation, and our validations are performed against in-situ USGS groundwater level observations and the 
European Space Agency (ESA)'s Climate Change Initiative (CCI) soil moisture data. Our results indicate that 
the single GRACE/GRACE-FO assimilation improves particularly the groundwater compartment. Adding 
SMAP data to the ConBay approach controls the updates assigned to the surface storage compartments. For 
example, correlation coefficients between the ESA CCI and the ConBay-derived surface soil water storage (0.8) 
that are considerably higher than those derived from the unconstrained experiment (−0.3) in the North HP. The 
percentage of updates introduced to the W3RA groundwater storage is also decreased from 64% to 57%.
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Several studies have also acknowledged that microwave techniques have a high potential for retrieving soil mois-
ture on a regular basis, either from active or passive sensors (see e.g., Entekhabi et al., 2010; Kerr et al., 2010; Zribi 
& Dechambre, 2003; Zribi et al., 2005). The Sun-Synchronous-Orbit (SSO) satellite microwave missions such as 
the L-band radiometer instruments, for example, the Soil Moisture and Ocean Salinity (SMOS, Kerr et al., 2012) 
and the Soil Moisture Active Passive (SMAP, Entekhabi et al., 2010) provide global surface soil moisture prod-
ucts (Chan et al., 2016) at a spatial resolution of ∼25 − 36 km, which is currently down-scaled to 1 km spatial 
resolution using vegetation and surface temperature (Fang et al., 2013, 2018, 2020) and Sentinel-1A/Sentinel-1B 
SAR data (Das et al., 2019; Jagdhuber et al., 2019).

In recent years, various studies indicate that by integrating GRACE/GRACE-FO TWSC into hydrological 
models, one can spatially downscale and vertically dis-aggregate GRACE/GRACE-FO TWSC into its individ-
ual surface and sub-surface water storage estimates. The integration of remote sensing data and models lends 
more realism to such water storage estimates (see, e.g., Andreadis & Lettenmaier,  2006; Eicker et  al.,  2014; 
Girotto et al., 2016, 2017; Mehrnegar, Jones, Singer, Schumacher, Bates, et al., 2020; Miro & Famiglietti, 2018; 
Schumacher et al., 2018; Tangdamrongsub et al., 2018; Zaitchik et al., 2008a). It has also been shown by many 
studies that assimilation of the remote sensing soil moisture observations improves the model-based surface soil 
moisture predictions particularly over poorly instrumented areas of the world that lack good quality precipitation 
data (Blankenship et al., 2016; Lievens et al., 2015; Reichle & Koster, 2005; Ridler et al., 2014; Tangdamrongsub 
et al., 2020; Xu et al., 2015). However, it has been found that soil moisture assimilation may introduce a negative 
impact on the groundwater storage estimate (Girotto et al., 2019; Tangdamrongsub et al., 2020; Tian et al., 2017).

Tian et al. (2017), for example, used the Ensemble Kalman Smoother (EnKS, Evensen & Van Leeuwen, 2000) 
approach to jointly assimilate GRACE TWSC and SMOS soil moisture data in a water balance model over the 
Australian continent, and compared its performance against the assimilation of either these data sets, separately. 
A global extension of this study is performed by Tian et al. (2019), who showed after the joint assimilation, one 
can better estimate the impact of changes in root-zone soil moisture on vegetation vigor. Girotto et al. (2019) 
investigated whether the multi-sensor assimilation of GRACE and SMOS observations into the Catchment land 
surface model can improve the estimation of surface soil moisture, shallow soil water storage (5–100 cm), and 
(unconfined) groundwater levels. Tangdamrongsub et  al.  (2020) evaluated the benefit of jointly assimilating 
SMOS and SMAP soil moisture data and GRACE TWSC into the Community Atmosphere and Biosphere Land 
Exchange (CABLE) land surface model in South-East Australia. These studies, therefore, suggested that the 
SMOS/SMAP-only assimilation can improve the surface soil moisture estimates but it reduces the accuracy 
of TWSC and groundwater estimates, while that of GRACE-only assimilation can improve the groundwater 
estimates but it does not always produce accurate estimates of surface and shallow soil moisture compartments. 
Therefore, a multi-sensor assimilation of all these observations is considered in this study.

The objective of this study is to investigate the feasibility and benefits of a fully Bayesian integration scheme, 
known as the ”Constrained Bayesian (ConBay)” optimization approach, to jointly merge the SMAP soil mois-
ture data and GRACE/GRACE-FO TWSC with the output of a large-scale hydrological model. ConBay was 
proposed by Forootan and Mehrnegar (2022) based on the hierarchical multivariate state-space models (Koller 
& Friedman, 2009; Rabiner, 1989) (I) between GRACE/GRACE-FO observations and model outputs, and (II) 
between the second set of remote sensing observation (e.g., GNSS measurements or remote sensing of (top) soil 
moisture) and its associated water storage changes derived from (I) (e.g., post-glacial rebound or surface soil 
water storage, respectively). Therefore, ConBay is flexible to merge various EO data with model outputs, which 
can be considered as a benefit of this technique. ConBay is applied in this study, while the second state-space 
model, known as the “constraint equation”, is formulated to use SMAP soil moisture data to constrain the update 
values of surface soil water storage derived from (I). Another key point of using ConBay, as a multi-sensor 
merger, is that one can apply it in the offline mode (i.e., a sequentially running of the model after each updating 
step is not required in ConBay unlike most of the EnKF-based implementations). This means that the ConBay can 
be easily up- and down-scaled, for example, to be applied both globally and regionally and for different spatial 
and temporal resolutions.

The ConBay approach accepts model-derived storage estimates as its initial input, therefore, it is flexible to 
work with any kinds of hydrological models. The ConBay of this study is applied as a “data fusion” or “offline 
merging” technique, which is not necessarily equivalent to the on-line data assimilation implementation as in 
for example, Zaitchik et al. (2008a); Eicker et al. (2014); Girotto et al. (2016); Tangdamrongsub et al. (2018); 
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Schumacher et al. (2018). For simplicity, in the entire paper, the terms of DA is used instead of merger to describe 
the ConBay technique.

To deal with the temporal evolution of hydrological processes, which is the main difference between the 
ConBay and previous DA techniques, the update of model states within the commonly applied EnKF-based 
techniques (Girotto et al., 2016, 2017; Khaki et al., 2017; Schumacher et al., 2016, 2018; Van Dijk et al., 2014; 
Zaitchik et al., 2008b) is based on the error covariance matrices of each assimilation step. Mehrnegar, Jones, 
Singer, Schumacher, Jagdhuber, et al. (2020); Forootan and Mehrnegar (2022) showed that an effective Markov 
chain Monte Carlo (MCMC, Geyer,  1991) algorithm can improve the temporal fit (between model outputs 
and observations) because: (a) MCMC samples from the Probability Density Functions (PDFs) of unknown 
time variable weights, which are used to update model outputs against observations, and (b) MCMC allows to 
estimate the unknown temporal dependency between water storage compartments. Through this formula tion, 
the temporal dependencies can vary in time. As a result, the history of the hydrological processes can be 
updated sequentially by introducing new measurements. This feature is missing in the previous EnKF-based 
DA implementations.

Compared to other types of Bayesian approaches, such as the Particle Filter (PF) and Particle Smoother (PS, 
Särkkä, 2013), ConBay provides the ability to deal with high-dimensional fusion tasks such as global hydro-
logical application (e.g., Bain & Crisan, 2008; Snyder et al., 2008). PF and PS use a set of particles (also called 
samples) to represent the posterior distribution of stochastic processes given noisy and/or partial observations. 
Since the computational cost of them grows with the number of particles, choosing a specific number of parti-
cles in the design of the filter is a key parameter for these methods. This limitation, however, is addressed in 
ConBay by formulating the MCMC to sample the unknown parameters conditional on the observations and their 
uncertainty.

ConBay is implemented here within the High Plain (HP) aquifer in the central Unites States (US). HP is a large 
first ranked aquifer, which is known for its total groundwater withdrawals (see, e.g., Cano et al., 2018; Maupin 
& Barber, 2005; Scanlon et al., 2012). For many decades, water from HP has been served as main source for 
agriculture and public use (Maupin & Barber, 2005; Thelin & Heimes, 1987). For this study, the World-Wide 
Water balance model (W3RA, Van Dijk, 2010) has been selected to provide a priori information of water storage 
changes in ConBay, and our implementation covers the period of January 2015 to December 2021, where both 
the SMAP observations and GRACE/GRACE-FO TWSC fields are available. The gap between the GRACE and 
GRACE-FO missions (between 2017 and 2018) is filled using an in-house iterative reconstruction procedure 
proposed by Forootan et al. (2020).

To assess the impact of the newly introduced constraint, the Dynamic Model Data Averaging (DMDA, Mehrnegar, 
Jones, Singer, Schumacher, Bates, et al., 2020), which combines the benefits of Kalman Filtering (KF) and Bayes-
ian Model Averaging (BMA), is implemented to merge GRACE/GRACE-FO TWSC and SMAP soil moisture 
data (simultaneously) with the W3RA model outputs. The implementation of DMDA is equivalent with the EnKF 
in an offline mode, but unlike EnKF, it does not require to rerun the model after each DA step, thus, it is closer to 
the ConBay implementation. We also applied an “unconstrained” Bayesian merger known as the ’Markov Chain 
Monte Carlo-Data assimilation (MCMC-DA, Mehrnegar, Jones, Singer, Schumacher, Jagdhuber et al., 2020), 
which is a fully Bayesian DA approach to (only) merge GRACE/GRACE-FO TWSC with model outputs. This 
comparison will evaluate the contribution of SMAP data on the final water storage estimations. In this study, the 
outputs of the open loop model runs (of TWSC and individual water storage estimates) are shown to represent 
dynamics of the original model without the addition of DA observations. This comparison is an important indi-
cator to show how well the original model performs and how much the Bayesian DA can change its estimation.

To validate the groundwater storage estimation results, extensive records of in-situ groundwater level data for 813 
stations are used, where the required information about the Storage Coefficients (SCs) to convert these ground-
water level measurements to groundwater storage estimates is available from, for example, Gutentag et al. (2014); 
Peterson et  al.  (2016); Butler et  al.  (2020); and Scanlon et  al.  (2021). The European Space Agency (ESA)'s 
Climate Change Initiative (CCI) Active soil moisture products are used to validate the surface soil storage esti-
mates. The ESA CCI soil moisture algorithm generates consistent, quality-controlled, and long-term soil mois-
ture climate data, which generally agrees well with the spatial and temporal patterns estimated by land surface 
models and observed in-situ data (Dorigo et al., 2017).
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2. Data and Models
2.1. TWSC From GRACE and GRACE-FO

The release six (RL06) GRACE/GRACE-FO Level 2 (L2) products, with the spherical harmonics of maximum 
degree and order 60, provided by the Center for Space Research (CSR, http://www2.csr.utexas.edu/grace/) are 
used to compute monthly TWSC fields covering January 2003 to June 2017, and June 2018 to December 2021. 
In order to generate monthly TWSC from GRACE/GRACE-FO products, recommended corrections are applied. 
For example, the degree 1 coefficients, which are not observed by GRACE/GRACE-FO, are replaced by those 
from Swenson et al. (2008) to account for the movement of the mass center of the Earth. Degree 2 and order 0 
(C20) coefficients are replaced by more reliable estimates of the Satellite Laser Ranging (SLR) solutions follow-
ing J. L. Chen et al. (2007). Surface deformations, also known as the Glacial Isostatic Adjustment (GIA), are 
reduced using the output of the ICE-6G-D(VM5a) GIA model (Argus et al., 2014; Peltier et al., 2015; Richard 
Peltier et al., 2018), which is one of the most recently published models of the GIA process in the ICE-NG(VMX) 
sequence from the University of Toronto.

Correlated errors of the potential coefficients, which are caused by an-isotropic spatial sampling of the mission, 
instrument noise, and temporal aliasing from incomplete reduction of short-term mass variations (Forootan, 
Didova, et al., 2014), are reduced by applying the DDK3 filter (Kusche et al., 2009). The formulation in Wahr 
et al. (1998) is used to convert the L2 potential coefficients to 0.1° × 0.1° gridded TWSC (to be consistence with 
W3RA hydrological model outputs explained in Section 2.3) within the High Plain aquifer (96°W − 106°W, 
31°N − 44°N), while covering the period of 2015–2021. The resolution, selected for gridding the GRACE and 
GRACE-FO data, is much higher than the signal content of these missions, which is around few hundred kilom-
eters. However, since the model grids are of finer spatial resolution, we trust the spatial pattern dictated from the 
model and the amplitude is adjusted to the gridded observations.

Uncertainties of TWSC are computed by implementing a collocation error estimation, that is the Three Cornered 
Hat (TCH) method (Awange et al., 2016; Ferreira et al., 2016), using TWSC estimates from the CSR, Jet Propul-
sion Laboratory (JPL), and GeoForschungsZentrum (GFZ) L2 data. This means that, thought the formulation 
of ConBay allows one to include the information on the covariance of observations, the implementation of this 
study only considered the variance of TWSC errors. This choice is done to speed up the sampling of the MCMC 
optimization. Uncertainties of the GRACE/GRACE-FO TWSC within the HP aquifer is estimated to be 16 mm, 
on average, using the TCH method.

2.2. Filling the Gaps of TWSC Fields

Forootan et al. (2020) introduced an iterative decomposition approach to reconstruct (i.e., merging the gap of) 
GRACE and GRACE-FO data. This reconstruction approach uses the TWSC derived from the temporal gravity 
field products of ESA's Swarm mission (Bezděk et al., 2016) as initial values for the missing fields. Then, the Inde-
pendent Component Analysis (ICA, Forootan et al., 2012; Forootan & Kusche, 2013) is applied to update these 
initial values using the statistics existing in the time series of GRACE, GRACE-FO, and Swarm TWSC fields. 
This updating procedure is first affected by the Swarm fields that are much smoother than GRACE/GRACE-FO 
data due to differences in the spatial resolution. However, the iteration adjusts the empirical independent compo-
nents to make a consistent evolution derived from the original GRACE and GRACE-FO time series and those of 
the updated gap values.

2.3. SMAP Remote Sensing Soil Moisture Data

The monthly average of the enhanced Level-3 (L3) soil moisture products (O’Neill et  al.,  2021), version 5, 
retrieved by the SMAP radiometer, are used in this study to constrain the estimation of near-surface soil moisture 
(top soil layer). SMAP measurements provide direct sensing of soil moisture in the top 5 cm of the soil column 
from April 2015 to the present. SMAP L3 product is a daily composite of SMAP Level-2 (L2) soil moisture 
which is derived from SMAP Level-1C (L1C) interpolated brightness temperatures on the 9 km Equal-Area Scal-
able Earth Grid (∼0.1° × 0.1° grid data). The volumetric units (m 3 m −3) of the SMAP soil moisture is converted 
to the vertical changes in soil water storage (in mm) using the first layer (0–5 cm) of the STATSGO porosity 
values (http://www.soilinfo.psu.edu/).
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2.4. W3RA Water Balance Model

Outputs of the Worldwide Water Resources Assessment (W3RA, Van Dijk,  2010) are monthly averaged 
states of (daily model outputs of) snow, surface water storage, surface soil water (top layer), shallow-rooted 
soil water, deep-rooted soil water storage, and groundwater storage. These are used in this study as a priori 
information of TWSC components. For this study, the original code (http://wald.anu.edu.au/challenges/water/
w3-and-ozwald-hydrology-models/) is modified for the HP aquifer. For this, daily averages of 0.1° × 0.1° ERA5-
Land hourly fields (Muñoz Sabater et al., 2019) of precipitation, surface solar radiation downwards, albedo, and 
10-m wind, as well as interpolated 0.1° × 0.1° fields of minimum and maximum temperature from ERA5 hourly 
data on single level (Hersbach & Dee, 2016), with the original resolution of 0.25° × 0.25° are used as forcing 
data.

Model uncertainty is estimated following Renzullo et al. (2014) by using the perturbed meteorological forcing 
approach, where an additive error is assumed for the short-wave radiation perturbation of 50 Wm 2, a Gaussian 
multiplicative error of 30% for rainfall perturbation, and a Gaussian additive error of 2°C as the magnitude of the 
additive error air temperature perturbations.

Our motivation to select W3RA is its simplicity, which makes its computational load manageable for scientific 
applications, see examples of the W3RA's applications in, e.g., Khaki et al. (2017); Forootan et al. (2019), and its 
acceptable performance when compared with other commonly used global hydrological or land surface models 
(Schellekens et al., 2017).

2.5. In-Situ USGS Groundwater Level Data

The groundwater level data in the HP aquifer are collected from the US Geological Survey (USGS) groundwater 
network (https://water.usgs.gov/ogw/networks.html), which contains a record of groundwater levels between 1970 
until now across the Conterminous United States (CONUS). USGS groundwater observations are an independent 
validation data set to evaluate groundwater storage changes derived from W3RA with and without assimilation of 
remote sensing data. The point-wise groundwater time series within the HP aquifer are downloaded for the period 
2015–2021 and are filtered to exclude measurements with large data gaps (temporal gaps >4 months), and those 
time series which only contain linear and/or non-linear trends, without any other oscillations are excluded from 
data sets. The 813 selected groundwater level wells, which are mostly located in the Northern HP, are then tempo-
rally averaged and interpolated to produce monthly time series to be comparable with monthly calculated W3RA 
groundwater estimates before and after assimilation. Moreover, an effective storage coefficient (Sc) is applied to 
convert groundwater level to groundwater storage, where groundwater storage = Sc × groundwater level. The Sc 
values within the HP aquifer are derived from the reported values in Gutentag et al. (2014).

2.6. ESA CCI Satellite-Derived Soil Data

The European Space Agency's Climate Change Initiative (ESA CCI) soil moisture product (Gruber et al., 2019) is 
used in this study to validate the top layer (<5 cm) soil water storage of W3RA before and after assimilation with 
GRACE/GRACE-FO TWSC and SMAP soil data. The ESA CCI soil moisture algorithm generates long-term 
soil moisture climate data by harmonizing and merging soil moisture retrievals from multiple satellites into (a) 
an active-microwave-based only (ACTIVE), (b) a passive-microwave-based only (PASSIVE) and a (c) combined 
active–passive (COMBINED) product (Dorigo et  al.,  2017). According to Dorigo et  al.  (2017) and a review 
of existing literature, the ESA CCI product quality has steadily increased with each successive release and the 
merged products generally outperform the single-sensor products.

The ESA CCI PASSIVE product and the ESA CCI COMBINED product contains also SMAP data, but to a low 
degree (Gruber et al., 2019). In this study, therefore, we use the ACTIVE ESA CCI product, which is statistically 
independent from SMAP data. It means that SMAP data is not used in ACTIVE ESA CCI products. To this aim, 
version 07.1 of daily ESA CCI soil moisture with a spatial resolution of 0.25° × 0.25° and covering the period of 
1978–2021 is downloaded from the ESA website (http://www.esa-soilmoisture-cci.org). The monthly ESA CCI 
soil moisture time series between 2015 and 2021 is computed by temporal averaging of the daily products. These 
values are then spatially interpolated (using linear interpolation, Meijering, 2002) on the same 0.1° × 0.1° grid 
that is defined for the W3RA simulations. In accordance with the SMAP data, the volumetric units (m 3 m −3) of 
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the ESA CCI are converted to vertical changes in soil water storage (in mm) using the first layer (0–5 cm) of the 
STATSGO porosity values (http://www.soilinfo.psu.edu/).

3. Method
Learning dynamical systems (Thelen & Smith, 1998), also known as system identification modeling or time 
series modeling, aims to create a model or improve an existing model based on measured signals (Lennart, 1999). 
In this study, the state-space models, also known as hidden Markov models (Rabiner, 1989) or latent process 
models (Koller & Friedman,  2009), are applied. They describe the probabilistic dependence between the 
unobserved (latent) state variables (e.g., hydrological model outputs) and the observed measurement (e.g., 
GRACE/GRACE-FO TWSC and SMAP soil moisture data). The latent states contain the information about the 
dynamic system (e.g., hydrological processes within the Earth system) and they allow for a succinct representa-
tion of the dynamics in the form of a Markov chain within the state-space model.

The state-space model between GRACE/GRACE-FO observation and a priori information (unobserved varia-
bles) can be represented by the observation equation (Eq. (1)) and the state equation (Eq (2), Bernstein, 2005). as

𝑌𝑌𝑡𝑡 = 𝑍𝑍𝑡𝑡Θ𝑡𝑡 +𝑋𝑋𝑡𝑡𝛽𝛽𝑡𝑡 + 𝜀𝜀𝑡𝑡, (1)

[Θ𝑡𝑡+1, 𝛽𝛽𝑡𝑡+1] = [Θ𝑡𝑡, 𝛽𝛽𝑡𝑡] + 𝛿𝛿𝑡𝑡. (2)

In Equation (1), Yt represents the vector of GRACE/GRACE-FO observations for P spatial grid points at time 
t = 1, 2, …, T (i.e., 𝐴𝐴 𝐴𝐴𝑡𝑡 = [𝑦𝑦1, 𝑦𝑦2, . . . , 𝑦𝑦𝑃𝑃 ]𝑡𝑡 ), while Zt and Xt are two diagonal matrices to store the a priori infor-
mation from for example, W3RA hydrological model outputs. In this study, the diagonal elements of 𝐴𝐴 𝐴𝐴𝑡𝑡(𝑃𝑃×𝑃𝑃 ) 
contain  the W3RA-derived surface water, snow, shallow-soil water, and groundwater storage, and the diagonal 
elements of 𝐴𝐴 𝐴𝐴𝑡𝑡(𝑃𝑃×𝑃𝑃 ) contains the surface soil water storage (top layer) of W3RA for the spatial grid point p = 1, 2, 
…, P at time t. Each of the diagonal elements of Zt is a 1 × K vector of 𝐴𝐴

[

𝑧𝑧1,𝑝𝑝, 𝑧𝑧2,𝑝𝑝, . . . , 𝑧𝑧𝐾𝐾,𝑝𝑝

]

𝑡𝑡
 , where K is the number 

of individual water storage components. In Equation (1), Θt is a P × 1 vector, where each element itself is a K × 1 
vector containing the unknown state parameters, that is, 𝐴𝐴

[

𝜃𝜃1,𝑝𝑝, 𝜃𝜃2,𝑝𝑝, . . . , 𝜃𝜃𝐾𝐾,𝑝𝑝

]𝑇𝑇

𝑡𝑡
 , to make a relationship between the 

observation and a priori information stored in Zt. The unknown state parameters related to the surface soil water 
storage (top layer) for p = 1, 2, …, P spatial grid points at time t are shown by the P × 1 vector βt.

In Equations (1) and (2), ɛt and δt are the residuals corresponding to the observation equation and state equation, 
respectively. The distribution of ɛt is assumed to be Gaussian with the mean value of zero and the error covariance 
matrix of Vt, which varies over time and reflects the uncertainty of GRACE/GRACE-FO measurements. The 
state residual δt is assumed stationary Gaussian distributed and independent from ɛt, with the mean value of zero 
and an error covariance matrix of Q. Thus, the distribution of the additive innovations ɛt and δt can be written as

𝜀𝜀𝑡𝑡 ∼ 𝑁𝑁(0, 𝑉𝑉𝑡𝑡), 𝛿𝛿𝑡𝑡 ∼ 𝑁𝑁(0, 𝑄𝑄), (3)

where Vt is the error covariance matrix of observations.

The central hypothesis in formulating the Bayesian optimization algorithm is that the magnitude of changes in 
water storage components depends on the history of hydrological processes. However, there is no or little physical 
knowledge about how this dependency varies over time. Therefore, the error covariance matrix Q in Equation (3) 
defines the temporal dependency between various compartments of the a priori information. In practice, Q is a 
K × K matrix, where K is the number of hydrological compartments, and is unique for each spatial grid point. The 
diagonal elements of Q shows temporal dependency to the previous time steps for each TWSC compartments, 
and the other element shows temporal correlation between various compartments. Entries of Q are unknown and, 
therefore, they are simultaneously estimated with the unknown state parameters Θt and βt within the ConBay 
procedure.

The multivariate state-space model needs to define the vertical and horizontal correlations between the different 
water compartments but this is extremely difficult. If one compartment, such as the groundwater storage, is 
dominant, it has also a dominant effect on the estimation of the correlations. Thus, it might be required to use 
further remote sensing data to better constrain the less dominant compartments, such as the surface soil water 
storage. These concerns can be addressed in the Bayesian fusion technique with specific inequality/equality 
constraints on the means and regression coefficients to update different compartment of TWSC. To this aim, in 
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the ConBay approach, a hierarchical constraint equation is formulated to use the second observation data set, 
for example, SMAP soil moisture observation, for controlling the sampling of βt derived from Equations (1) and 
(2) as

𝐺𝐺𝑡𝑡 = 𝑋𝑋𝑡𝑡𝛽𝛽𝑡𝑡 + 𝛾𝛾𝑡𝑡, 𝛾𝛾𝑡𝑡 ∼ 𝑁𝑁(0, 𝑈𝑈𝑡𝑡), (4)

where Gt represent the vector of the SMAP observations, and γt is the additive innovation, which is assumed to 
be Gaussian with the mean value of zero and the error covariance matrix of Ut which contains the uncertainty of 
the SMAP data. The constraint equation in ConBay is designed to control the updating values of TWSC compart-
ments through an iteration algorithm. In other words, the updated values of W3RA water storage compartments 
using GRACE/GRACE-FO data is only accepted when the updated values of surface soil moisture (Xtβt) is fitted, 
or close enough, to the SMAP data. In summary, ConBay aims to improve W3RA water balance model in which 
(a) the summation of all water storage compartments be equal to the GRACE/GRACE-FO TWSC (Equation (1)), 
and (b) the surface soil water storage be fitted to the SMAP soil moisture data (Equation (4)).

The ConBay algorithm is formulated as a combination of forward-filtering backward-smoothing recursion 
approach (Kitagawa, 1987), and a Gibbs sampling algorithm (Gelfand & Smith, 1990; Smith & Roberts, 1993) 
to estimate the unknown state parameters Θt and βt, and the error covariance matrix Q. The generated samples 
of βt in each iteration of Gibbs sampling are not accepted automatically as posterior samples; instead they are 
introduced as candidate samples to a hierarchical Metropolis-Hastings (Chib & Greenberg, 1995) algorithm to 
be accepted or rejected based on the SMAP measurements. The mathematical formulations of forward-filtering 
backward-smoothing recursion approach, Gibbs sampling (Gelfand & Smith,  1990; Smith & Roberts,  1993) 
algorithm, and the hierarchical Metropolis-Hastings algorithm are explained in details in Forootan and 
Mehrnegar (2022). The work-flow of the ConBay approach is also summarized in Figure 1.

Figure 1. Flowchart of the ConBay method. The framework can accept an arbitrary number of models, and it can be extended to accept various types of observations to 
merge with the model outputs. PDF in this flowchart stand for the Probability Density Function.

 19447973, 2023, 9, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2023W

R
034544 by A

alborg U
niversity L

ibrary, W
iley O

nline L
ibrary on [01/09/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Water Resources Research

MEHRNEGAR ET AL.

10.1029/2023WR034544

8 of 22

3.1. Departure From the Unconstrained Bayesian Formulations

The MCMC-DA (Mehrnegar, Jones, Singer, Schumacher, Jagdhuber, et al., 2020), which is formulated based 
on the state-space model (Equations (1) and (2)) is a good candidate of an unconstrained Bayesian approach to 
separate GRACE/GRACE-FO signals without considering extra information about the surface soil water storage. 
In fact, MCMC-DA and ConBay work similarly to estimate unknown state parameters and temporal depend-
ency between them, while religiously account for the uncertainties of the observations and a priori information. 
Their main difference is that the hierarchical Metropolis-Hasting algorithm to constrain the surface soil water 
storage based on SMAP measurements is not implemented in the MCMC-DA. Thus, MCMC-DA is an “uncon-
strained” Bayesian technique. A comparison between these two techniques will show how beneficial is the joint 
application of GRACE/GRACE-FO TWSC and SMAP data in signal separation studies.

3.2. Departure From the DMDA Formulation

DMDA (Mehrnegar, Jones, Singer, Schumacher, Bates, et al., 2020) is formulated based on the state-space model 
(Equations (1), (2)) to merge GRACE/GRACE-FO TWSC with multiple a priori information in two steps: (a) a 
Kalman Filter (Kalman, 1960) approach is applied to solve the state-space model between a set of observation 
and a priori information. (b) The Bayesian Model Averaging (BMA, Hoeting et al., 1999) is considered to provide 
a time-variable weights to average the water states derived from multiple a priori information of the first step, 
yielding the best fit to the observation. In this study, for the first step we have two sets of a priori information 
for individual water storage compartments: (a) W3RA model outputs, (b) the surface soil water storage derived 
from SMAP data plus other individual water storage compartments derived from W3RA. The main difference 
between the DMDA and two other techniques is that, in DMDA, the Kalman Filter approach is formulated to 
estimate the unknown state parameters, while the unknown temporal dependency between the water states is 
empirically estimated. All the equations to implement DMDA are explained by details in (Mehrnegar, Jones, 
Singer, Schumacher, Bates, et al., 2020).

4. Results and Discussion
First, we provide an overview of the differences between GRACE/GRACE-FO TWSC and W3RA TWSC 
within the HP aquifer between 2015 and 2021. Considerable differences are found between the measured and 
modeled TWSC in terms of linear trend (Figure  2 (A1) and (B1)) and seasonality, where the annual ampli-
tudes are shown in (Figure 2 (A2) and (B2)). Statistical significance has been tested using the non-parametric 
Wilcoxon-Mann-Whitney statistical test (WMW, Fay & Proschan, 2010) with 95% levels. TWSC simulated by 
W3RA shows negative trends with the mean of ∼ − 10 mm/yr within the HP aquifer between 2015 and 2021, 
while GRACE/GRACE-FO TWSC shows strong positive trends in the east and northeast (∼15  mm/yr) and 
strong negative trends (∼  −  20  mm/yr) in the west and southwest of the region. The average of the annual 
amplitude fitted to the GRACE/GRACE-FO TWSC is estimated to be ∼38 mm, while this value is simulated 
by W3RA to be less than 10 mm in most of the HP region. Further differences between the W3RA outputs and 
GRACE/GRACE-FO TWSC can be seen in terms of the phase of annual amplitude (computed after removal of 
linear trends from TWSC), which vary between ±120° within the HP aquifer (Figure 2 (B3)).

4.1. TWSC Derived From Bayesian Data Assimilation

The obtained results indicate that after merging W3RA with GRACE/GRACE-FO TWSC, through MCMC-DA, 
the strong negative and positive trends observed by GRACE/GRACE-FO are introduced to the modeled TWSC 
(Figure 2 (C1)), and the same spatial pattern of linear trends in the GRACE/GRACE-FO TWSC is obtained. 
Similar results can be seen in the ConBay output, where we merge GRACE/GRACE-FO and SMAP soil moisture 
data with W3RA (Figure 2 (D1)). Beside the linear trends, the seasonality of W3RA TWSC has been significantly 
changed after implementing both Bayesian techniques. For example, the mean of annual amplitude increased 
from 15 to 40 mm after implementing both MCMC-DA and ConBay approaches (Compare Figure 2 (B2) with 
Figure 2 (C2) and (D2)). Therefore, as expected, both Bayesian merging techniques performed well to update 
TWSC of the model, in which the Root Mean Square of Differences (RMSD) between GRACE/GRACE-FO 
TWSC and W3RA TWSC are decreased from 38 mm to less than 5 mm after implementing both techniques. 
Another significant changes can be seen in terms of phase of the TWSC, where the phase differences of ±120° 
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between the annual component of the modeled and measured TWSC are reduced to be between ±5° after merging 
remote sensing observations with W3RA through the MCMC-DA and ConBay.

Long-term linear trends and annual amplitude of DMDA TWSC are shown in Figure 2 (E1) and (E2), respec-
tively. The results show that, after implementing DMDA, the strong negative trends and the positive trends of 
GRACE/GRACE TWSC are successfully introduced to the W3RA TWSC in more than 74% of the HP region. 
The annual amplitude of model-derived TWSC is changed after implementing the DMDA, mostly in southeast 
and northwest of HP.  However, compare to the MCMC-DA and ConBay, DMDA shows larger RMSD with 
GRACE/GRACE-FO TWSC, that is, ∼15 mm on average. DMDA also reduces the phase differences between 
modeled and measured TWSC to be between ±50° in most of the HP region. From the obtained results, it can 
be seen that MCMC-DA and ConBay performed better than DMDA to update W3RA TWSC with respect to the 
GRACE/GRACE-FO data.

4.2. Basin Average of Water Storage Changes Within the HP Aquifer

The basin averaged time series of TWSC derived from the original W3RA, DMDA, MCMC-DA, ConBay, and 
GRACE/GRACE-FO are presented in Figure 3 (A). From the obtained results, we can see the better performance 

Figure 2. Long-term linear trends [mm/yr] and annual-amplitudes [mm] fitted to TWSC derived from GRACE/GRACE-FO, W3RA, ConBay, MCMC-DA, and 
DMDA within the High Plain (HP) aquifer, covering 2015–2021. The plots in (A1) and (A2) correspond to the GRACE/GRACE-FO observations, (B1) and (B2) 
correspond to the W3RA TWSC, (C1) and (C2) shows those of derived from MCMC-DA, (D1) and (D2) shows ConBay results, and (E1) and (E2) shows those of 
DMDA results. TWSC derived from W3RA, MCMC-DA, ConBay, and DMDA are compared in terms of phase differences with GRACE/GRACE-FO TWSC in (B3), 
(C3), (D3), and (E3), respectively.
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of the MCMC-DA and ConBay, compared to DMDA. For example, considerable differences, more than 50 mm, 
between GRACE/GRACE-FO TWSC and DMDA TWSC can be seen in the years 2015 and 2019, while this 
value is close to zero for those of the MCMC-DA and ConBay approaches.

The averaged time series of surface soil water storage derived from merging remote sensing data with W3RA 
are also compared against those of ESA CCI product and the original model output in Figure 3 (B). Consid-
erable changes can be seen in surface soil water storage after implementing all three merging approaches. For 
example, it can be seen that the strong negative magnitude (∼ − 20 mm) of W3RA soil water storage in years 
2020–2021 is reduced to be −10 mm after implementing DMDA and MCMC-DA, and less than −4 mm after 
the ConBay  implementation. It can be also seen that using SMAP soil data to constrain surface soil water stor-
age considerably affects the signal separation results. For example, the RMSD between the basin averaged 
MCMC-DA and ESA CCI is estimated to be 7.5 mm, while the one between ConBay and ESA CCI is estimated 
to be less than 2.5 mm within the HP aquifer.

The basin averaged time series of groundwater storage changes of MCMC-DA and ConBay are compared against 
those of USGS data in Figure 3 (C). The results indicate better agreement between the groundwater storage of 
ConBay and the USGS data within HP, compared to those of MCMC-DA, where the temporal correlation coef-
ficients and RMSD between the basin average of ConBay and USGS are estimated to be 0.62 and 15.6 mm, and 
those of between MCMC-DA and USGS are estimated to be 0.48 and 22.5 mm, respectively. It can be also seen 
that after implementing DMDA, the negative correlations between W3RA groundwater storage and USGS data 
is increased from −0.4 to 0.3. However, the large RMSD between DMDA and USGS (e.g., 80 mm in year 2021) 
indicates that MCMC-DA and ConBay performed better than DMDA to improve model-derived groundwater 
storage changes with respect to the validation data set.

In the following, we assess the performance of ConBay and MCMC-DA, in estimating individual water storage 
changes with the focus on surface soil water storage (top layer) and groundwater storage. Surface soil water is 
important to understand the land-atmosphere interactions (Brocca et al., 2017; Levine et al., 2016) and ground-
water storage is the main source for agricultural and public water supplies in HP (Maupin & Barber,  2005; 

Figure 3. Basin averaged time series of (A) TWSC, (B) surface soil water, and (C) groundwater storage changes within the HP aquifer between 2015 and 2021. The 
basin average of water storage changes is shown for the W3RA, DMDA, MCMC-DA and ConBay. The basin averaged GRACE/GRACE-FO TWSC, ESA CCI soil 
water storage, and in-situ USGS groundwater storage changes are also shown in plots (A), (B), and (C), respectively.
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Thelin & Heimes, 1987). In this study, we also provide a simple comparison between the shallow soil water 
storage of MCMC-DA and ConBay, which can be important for deep-rooted vegetation studies (see e.g., Gaines 
et al., 2016; Jochen Schenk, 2005). Long-term linear trends and annual amplitude of the DMDA surface soil 
water and groundwater storage changes, as well as their validations against ESA CCI soil water and in-situ USGS 
groundwater data are presented in Appendix A and Appendix B, respectively.

4.3. Surface Soil Water Storage Derived From Bayesian Data Assimilation

The long-term linear trends and annual amplitudes of surface soil water storage derived from W3RA, before and 
after the Bayesian merging (MCMC-DA and ConBay), are compared with SMAP (used as constraining data set) 
and the ESA CCI soil data (independent validation data set) in Figure 4. ESA CCI and SMAP soil moisture data 
shows decreasing surface soil water storage with the small negative trends of −1.5 mm/yr in almost 70% of the 
HP region. Increasing soil water storage with the positive trends of up to 1.8 mm/yr is also detected by the ESA 
CCI and SMAP in some parts of the east and northeast of HP (see Figure 4 (A1) and (B1), respectively). The 
surface soil water storage derived from W3RA, on other hand, shows strong negative trends (∼ −4 mm/yr) in 
almost 75% of the region (Figure 4 (C1)). It can be seen that the positive trends of remote sensing soil data in 
the northeast of the HP region are not reflected in the original W3RA simulations. Instead, in southeast, positive 
trends of up to 2 mm/yr are simulated by W3RA, which cannot be seen in the remote sensing data. The ESA CCI 
and SMAP remote sensing data indicate annual amplitudes of 4.2 mm for the surface coil water storage (Figure 4 
(A2) and (B2), respectively). W3RA, however, simulates annual amplitudes of ∼12 mm in the south and north-
west, and less than 3 mm in the east part of HP.

As shown in Figure 4 (B3) and (B4), there is a high agreement between the SMAP and ESA CCI soil water obser-
vation, where the RMSD values are estimated to be less than 4 mm, and the temporal correlation coefficients 
are bigger than 0.7 in almost 80% of the study region. The RMSD and correlation coefficients between W3RA 
and ESA CCI are also presented in Figure 4 (C3) and (C4). High correlation coefficients are visible (higher than 
0.8), but significant differences are obtained in terms of RMSD (Figure 4 (C4)), with the mean value of 13 mm.

Figure 4 (D1) demonstrates that the linear trends of W3RA surface soil water are considerably changed after 
merging with GRACE/GRACE-FO TWSC through MCMC-DA. For example, the negative trends in the northern 
part of HP (∼ −4 mm/yr) are changed to positive (up to 3.2 mm), and the strong negative trends in the south-
ern part of HP are decreased from −4 mm/yr to −2 mm/yr. Moreover, in Figure 4 (D2), we can see changes in 
the annual amplitudes of the soil water storage of W3RA after implementing the MCMC-DA. For example, 
in the northwestern and southern parts of HP, the strong annual amplitude of ∼12 mm is decreased to be less 
than 5 mm, which results in reducing the RMSD with the ESA CCI soil water storage, for example, from 18 to 
8 mm (Figure 4 (D3)). The small RMSD values between the ESA CCI and MCMC-DA, compared to those of 
W3RA, confirm that merging GRACE/GRACE-FO with W3RA, improves the magnitude of surface soil water 
storage with respect to the validation data set. After MCMC-DA, however, the positive correlations between 
W3RA and ESA CCI are changed to negative in the northern HP, from for example, 0.7 to −0.1 (Figure 4 (C4) 
and (D4)), which might be caused by the introduced positive linear trends to the surface soil water storage by 
GRACE/GRACE-FO in the MCMC-DA, where no soil moisture is assimilated (shown in Figure 4 (D1)).

The ConBay merging of GRACE/GRACE-FO and SMAP with W3RA demonstrates significant improvements 
in both linear trends (Figure 4 (E1)) and seasonality of the surface soil data (the annual amplitude is shown in 
Figure 4 (E2)). In addition, the RMSD between the soil water storage of ConBay and ESA CCI is estimated to 
be less than 3 mm and the correlation coefficients bigger than 0.6 in almost entire HP (Figure 4 (E3) and (E4)). 
The small RMSD and high correlations indicate a better performance of  the ConBay approach compared to 
MCMC-DA, where positive trends have been introduced to the upper soil layer by GRACE/GRACE-FO that are 
not visible in the observed (satellite) soil moisture data. We also found that the amount of updates introduced to 
the surface-soil water storage of W3RA decreased from 21% of the total updates to 8% of the total updates after 
implementing the constrain equation using SMAP data (see also Table 1).

In Table 1, the percentage of the updated values (Sk%) introduced to the W3RA water storage components after 
implementing Bayesian merging techniques is estimated as:

𝑆𝑆𝑘𝑘% =
𝜎𝜎2
(

�̂�𝑍𝑘𝑘 −𝑍𝑍𝑘𝑘

)

Σ
𝐾𝐾

𝑘𝑘=1
𝜎𝜎2
(

�̂�𝑍𝑘𝑘 −𝑍𝑍𝑘𝑘

)
× 100 (5)
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In Equation (5), σ 2 indicates the variance estimates, Zk shows water storage components derived from W3RA, and 
𝐴𝐴 �̂�𝑍𝑘𝑘 is the Bayesian-derived water storage components, where K = 1, 2, …K identify the individual water storage 

changes such as those of surface-soil water, shallow-soil water, and groundwater storage changes.

4.4. Groundwater Storage Derived From Bayesian Data Assimilation

To assess the hypothesis that the iterative assimilation of SMAP soil moisture affects the estimation of both 
surface and sub-surface storage through temporal dependencies, we validate the results of MCMC-DA and 

Figure 4. Long-term linear trends [mm/yr] and annual-amplitudes [mm] fitted to the surface soil water storage (top layer) derived from the ESA CCI, SMAP, W3RA, 
MCMC-DA and ConBay within the High Plain (HP) aquifer, covering 2015–2021. The plots in (A1) and (A2) correspond to the ESA CCI observations, (B1) and (B2) 
correspond to the SMAP data, (C1) and (C2) shows those of derived from the original W3RA, while (D1) and (D2) show the MCMC-DA results, and (E1) and (E2) 
presented ConBay results. Surface soil water storage derived from the SMAP, W3RA, MCMC-DA, and ConBay are compared in terms of RMSD with the ESA CCI in 
(B3), (C3), (D3), and (E3), and in terms of correlation coefficients in (B4), (C4), (D4), and (E4), respectively.
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ConBay against in-situ USGS groundwater observations. As can be seen in 
Figure 5 (A1), most of the USGS groundwater stations, with reliable obser-
vations (see Section 2.5 for more details), are located in the northern part of 
HP (Nebraska), which mostly show a  increasing groundwater storage with 
linear trends up to 10  mm/yr between 2015 and 2021. W3RA, however, 
shows that groundwater storage is decreasing with negative trends between 
−2 and −8 mm/yr (Figure 5 (B1)) in almost all the HP aquifer region. After 
merging W3RA with remote sensing observations through MCMC-DA 
and ConBay, the strong negative and positive trends (∼±10 mm/yr) can be 
seen in Southern and Northern HP, respectively, which are similar to those 
of USGS in-situ observations (Figure 5 (C1) and (D1)). From the obtained 
results, we find that the major updates, which are introduced to the model by 

Water storage compartment MCMC-DA Sk% ConBay Sk%

Snow + Surface water (Lakes, Rivers, …) 1% 1%

Surface-soil water 21% 8%

Shallow-soil water 21% 27%

Groundwater 57% 64%

TWSC 100% 100%

Note. Values are calculated as percentage of total variance.

Table 1 
The Percentage of Updated Values (Sk%) Introduced to the W3RA 
Hydrological Compartments by the MCMC-DA and ConBay Approached

Figure 5. Long-term linear trends [mm/yr] and annual-amplitudes [mm] fitted to the groundwater storage (top layer) derived from SMAP, W3RA, MCMC-DA and 
ConBay within the HP aquifer, covering 2015–2021. The plots in (A1) and (A2) correspond to the USGS in-situ observations, while (B1) and (B2) correspond to the 
W3RA, (C1) and (C2) shows those of derived from MCMC-DA, and (D1) and (D2) shows ConBay results. Groundwater storage derived from W3RA, MCMC-DA, and 
ConBay are compared in terms of correlation coefficients with USGS in (B3), (C3), and (D3), respectively.
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GRACE/GRACE-FO TWSC, are assigned to the groundwater storage changes (see Table 1), in which the magni-
tudes of changes in groundwater storage (Figure 5 (B2)) is increased from 21 to 53 mm after merging W3RA 
with remote sensing data through MCMC-DA and ConBay (Figure 5 (C2) and (D2)). This is caused by the fact 
that changes in the groundwater storage of W3RA forms the biggest portion of TWSC (43% of total variance) 
within HP. Therefore, groundwater storage gains the highest value of temporal weights trough the MCMC-DA 
and ConBay, which leads to the highest value of updates from GRACE/GRACE-FO TWSC.

Bayesian-derived groundwater storage changes are found to be closer to the USGS in-situ observations with 
the mean annual amplitude of ∼52 mm. The original W3RA shows negative correlations (∼ − 0.4) with USGS 
data, in 68% of the validation points (Figure 5 (B3)), while MCMC-DA and ConBay show positive correlations 
(higher than 0.5) with USGS in 88% of the validation points (Figure 5 (C3) and (D3)). Therefore, it can be stated 
that the merging, through MCMC-DA and ConBay, introduces useful updates of groundwater storage changes 
in the model. However, the amount of updates introduced to the groundwater storage between MCMC-DA (57% 
of total variance) and ConBay (64% of total variance) is slightly different (see Table 1). This also causes small 
differences between their linear trends (±2 mm/yr) and seasonality (∼3.5 mm) and, therefore, it is resulted in the 
smaller RMSD and higher correlation coefficients between the groundwater storage of ConBay and USGS (see 
also the results in Section 4.2).

To demonstrate how the ConBay approach improves the phase shift (timing) of the groundwater storage, the 
absolute values of phase differences between annual amplitude of in situ (USGS) and model (W3RA) ground-
water storage are shown in Figure 6 (A), and the results are compared with those of between the USGS and 
MCMC-DA groundwater storage in Figure 6 (B), and between the USGS and ConBay groundwater storage in 
Figure 6 (C). The difference between Figures 6 (A) and (C) is presented in Figure 6 (D), where the positive values 
show that the phase amplitude of groundwater storage improves after implementing the ConBay. In general, after 
MCMC-DA and ConBay,  the phase differences between modeled and observed groundwater storage changes 
are decreased for 68% of the validation points (see Figure 6 (E) yellow box). This improvement can also be seen 

Figure 6. The absolute values of phase differences between the USGS groundwater storage and (A) the original W3RA groundwater storage, (B) the MCMC-DA 
groundwater, and (C) the ConBay groundwater storage changes. Differential values between (A) and (C) are shown in (D), where the positive values indicate that (A) 
is bigger than (C). The statistical comparison of the plots in (A), (B), (C), and (D) are presented in (E). The tops and bottoms of each box indicate the 25th and 75th 
percentiles (the first and third quartiles), and the red lines show the median values of each group.
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in Figure 6 (E), where the median of the absolute phase differences (red lines) between the annual amplitude of 
W3RA and USGS groundwater data (blue box) is reduced from 150° to 100° after implementing the ConBay 
approach (green box).

4.5. Shallow Soil Water Storage Derived From Bayesian Data Assimilation

In Table 1, it can be seen that after groundwater storage changes, shallow soil water (5 − 100 cm) gains the 
highest values of updates from GRACE/GRACE-FO TWSC through the ConBay approach. The obtained results 
indicate that in the MCMC-DA, where we do not use SMAP data, 21% of the total updates is assigned to the 
surface soil water storage. This value is reduced to 8% after constraining the surface soil water storage using 
SMAP. TWSC derived from the MCMC-DA and ConBay (as a summation of updated water storage compart-
ments) are almost equal and are fitted to the GRACE/GRACE-FO TWSC (with the RMSD of less than 5 mm). 
Therefore, the total updates introduced to the model should be equal for both techniques. Therefore, the reduction 
in the updated values of surface soil water storage results in increasing the updated values of other compartments, 
such as groundwater storage and shallow soil water storage. This shows the importance of acknowledging the 
connection between different storage compartments.

Long term linear trends and annual amplitudes fitted to the shallow soil water before and after assimilation are 
presented in Figure 7. Due to the lack of available in-situ or remote sensing observations to validate shallow soil 
water, here we only focus on a comparison between the shallow soil of the MCMC-DA and ConBay compared 
with the original W3RA.

The original W3RA shows a decreasing trend in the shallow soil water of HP at −2.3 mm/yr, on average, during 
2015–2021 (Figure 7 (A1)). Merging GRACE/GRACE-FO and SMAP with the model, through MCMC-DA and 
ConBay (Figure 7 (B1) and (C1), respectively), significantly change these trends to the strong positive trends 
in the northern part of HP (up to 5 mm/yr) and introduces strong negative trends to the southern HP (down to 
−5 mm/yr). Other differences can be seen in the annual amplitude of the shallow soil water storage before and 
after assimilation, where the annual amplitude of ∼7 mm in W3RA (Figure 7 (A2)) is increased to the values 
between 15 and 25 mm, for both MCMC-DA and ConBay (Figure 7 (B2) and (C2)).

Figure 7. Long-term linear trends [mm/yr] and annual-amplitudes [mm] fitted to the shallow soil water storage derived 
from the original W3RA, MCMC-DA, and ConBay within the HP aquifer, covering 2015–2021. The plots in (A1) and (A2) 
correspond to W3RA, while (B1) and (B2) represent MCMC-DA, and (C1) and (C2) show those of ConBay.
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Although similar spatial patterns can be seen in the linear trend and the annual amplitude of MCMC-DA and 
ConBay, there are some differences between them. For example, a comparison between Figure 7 (B1) and (C1)) 
demonstrates that the shallow soil water of ConBay contains stronger positive and negative linear trends in the 
north and south parts of HP compared to those of MCMC-DA. The annual amplitude of the shallow soil water of 
ConBay is also bigger than those of MCMC-DA. These differences capture 21% and 27% of the total variance of 
the difference between updated values from MCMC-DA and ConBay, respectively, see Table 1.

5. Summary and Conclusion
In this study, the performance of our newly developed “Constrained Bayesian (ConBay)” optimization approach 
(Forootan & Mehrnegar, 2022) was assessed to jointly merge the GRACE/GRACE-FO TWSC and the SMAP 
soil moisture data with the output of a large-scale hydrological model. To evaluate the contribution of the SMAP 
data on the final water storage estimates an ’unconstrained’ Bayesian merger, known as MCMC-DA, was imple-
mented to merge only GRACE/GRACE-FO TWSC with W3RA, where the SMAP soil moisture data was not 
used to constrain the estimation of the surface soil water storage. This allowed to evaluate the contribution of 
SMAP data on the final water storage estimates. The Dynamic Model Data Averaging (DMDA) was also imple-
mented here to merge GRACE/GRACE-FO TWSC and SMAP soil moisture data with W3RA model outputs. 
This is a close implementation to that of EnKF but in the offline mode, where for DMDA it is not required to 
run the model after each data assimilation (merging) step. Thus, the DMDA implementation is close to that of 
ConBay and provides an opportunity of a fair comparison. As a case study, the High Plain (HP) aquifer in United 
States (US) and the period of 2015–2021 were chosen to merge the GRACE/GRACE-FO TWSC and the SMAP 
soil moisture data into the W3RA water balance model with the spatial resolution of 0.1° × 0.1°. Validations were 
conducted with the in-situ USGS groundwater storage observations and the European Space Agency (ESA)'s 
Climate Change Initiative (CCI) soil moisture products.

From the obtained results, we found that the ConBay assimilation of remote sensing observations into the 
hydrological model successfully updated the seasonal and inter-annual components of hydrological signals and 
reduced biases and phase differences between the modeled and measured TWSC, as well as individual stor-
age compartments. We also found that using SMAP data to constrain soil water storage considerably reduced 
the updated values introduced to this compartment (8% of the total variance), compared to the assimilation of 
GRACE/GRACE-FO TWSC only in the MCMC-DA approach (21% of the total variance). Thus, the surface soil 
water ConBay showed a better agreement, in terms of both linear trends and seasonality, with the ESA CCI esti-
mates compared to those derived from MCMC-DA. This is because, in MCMC-DA, the amount of updates intro-
duced to the water storage compartment of W3RA is weighted based on the total variance of each compartment. 
In ConBay, however, these weights are optimized by considering the limited boundary defined by the constrain 
equation that uses SMAP as input. Our results confirm the finding by, for example, Tian et al. (2017); Girotto 
et al. (2019); Tangdamrongsub et al. (2020), who discussed the introduced unwanted signals to the surface soil 
water storage after implementing a GRACE-only data assimilation.

It was also found that the magnitude of updates introduced to the groundwater storage of MCMC-DA (57% of 
total variance) and ConBay (64% of total variance) was slightly different (Table 1), which caused the better agree-
ment between the groundwater storage of ConBay and USGS compared to those derived from the MCMC-DA 
approach.

A comparison between the shallow soil water derived from MCMC-DA and ConBay demonstrated that the 
updated values introduced to this compartment was also different for MCMC-DA and ConBay (21% and 27% of 
total updates, respectively), which resulted in differences between their linear trends and seasonality. These find-
ings are the evidence for the hypothesis that using SMAP soil moisture to constrain the updated values of surface 
soil water storage affects the estimation of all other hydrological compartments.

In this study, we found that the fully Bayesian integration of remote sensing data with the model outputs 
performed better than introding them individually as it is implemented in DMDA. The implementation of the 
DMDA, however, is more computationally efficient compared to the Bayesian DA techniques, which makes it 
a unique approach to integrate multiple hydrological models with GRACE/GRACE-FO data over large spatial 
domains and for applications with high spatial resolution. In what follows, some of the main remarks of this study 
are summarized.
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 • The RMSD between modeled TWSC and GRACE/GRACE-FO TWSC reduced considerably by 73% (from 38 
to 5 mm on average), on average after implementing MCMC-DA and ConBay.

 • The phase differences between the annual amplitude of GRACE/GRACE-FO TWSC and modeled TWSC were 
reduced from ±120° to less than ±5° after implementing both MCMC-DA and ConBay.

 • The surface soil water storage of ConBay showed smaller RMSD (less than 4 mm) and higher correlation coef-
ficients (bigger than 80%) with the ESA CCI compared to those of MCMC-DA.

 • The negative correlations (−0.4) between the USGS observations and modeled groundwater storage were 
significantly changed to the positive values (∼0.6) after merging them with the GRACE/GRACE-FO TWSC 
and the SMAP soil data.

 • The RMSD between the groundwater of ConBay and that of USGS was estimated to be 15.6 mm, while the one 
between MCMC-DA and USGS data was estimated to be 22.5 mm.

Appendix A: Evaluation of DMDA Surface Soil Water Storage Changes
The long-term linear trends and annual amplitudes of the surface soil water storage derived from DMDA are 
shown in Figures A1 (A) and (B), respectively. Same as MCMC-DA and ConBay, DMDA surface soil water 
storage is validated against the ESA CCI soil data in terms of temporal correlation coefficients and RMSD in 
Figures A1 (C) and (D), respectively. The obtained results indicate that after implementing DMDA to merge 
GRACE/GRACE-FO TWSC and SMAP soil data with W3RA, the strong negative trends of W3RA surface soil 
water storage (Figure 4 (C1)) is reduced by ∼50% (from −4 to −2 mm/yr) in southern HP, which is closer to those 
of the ESA CCI and SMAP data (Figure 4 (A1) and (B1)). It can also be seen that the small positive trends of 
SMAP in the northern part of HP is reflected in the DMDA results. The annual amplitude of the DMDA surface 
soil water storage is closer to those of SMAP and ESA CCI compared to the original model outputs (see Figure 4 
(A2), (B2), (C2)). For example, in the northwestern and southern parts of HP, the strong annual amplitude of 
W3RA (12 mm) is decreased to be less than 8 mm, which results in reducing RMSD with the ESA CCI soil 
water storage (compare Figures A1 (C) and 4 (C3)). After DMDA, however, the positive correlations between the 
W3RA and ESA CCI are negatively changed in ∼50% of HP (Figure A1 (D)). It might be caused by the weak-
ness of the DMDA to estimate temporal dependency between the water storage compartments, which negatively 
affects the estimations of all individual storage changes.

Figure A1. Long-term linear trends [mm/yr] and annual-amplitudes [mm] fitted to the surface soil water storage derived 
from DMDA within the HP aquifer, covering 2015–2021 (plots (A) and (B)). Surface soil water storage derived from DMDA 
is compared with the ESA CCI soil data in terms of RMSD and correlation coefficients in (C) and (D), respectively.
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Appendix B: Evaluation of DMDA Groundwater Storage Changes
Long-term linear trends and maximum magnitude of the DMDA groundwater storage changes, presented in 
Figures  B1 (A) and (B), indicate that after implementing DMDA the strong negative and positive trends of 
GRACE/GRACE-FO TWSC in the southwest and northeast of HP are introduced to the groundwater storage 
changes. The maximum magnitude of the DMDA groundwater storage, however, was not changed considerably 
after DMDA. The strong magnitude in the west of HP can be interpreted as uncertainties, since it does not appear 
in the observation data. The negative correlation coefficients between the in-situ USGS and groundwater storage 
changes of W3RA (Figure 5 (B3)) are increased up to 0.3 after implementing DMDA, which are smaller than 
those of MCMC-DA and ConBay shown in Figure 5. Negative correlations between the USGS and the groundwa-
ter storage of DMDA in the northwest of HP can be related to the positive trends of USGS in this region (Figure 5 
(A1)), while DMDA shows strong negative trends (Figure B1 (A)). MCMC-DA and ConBay, however, show 
positive correlation coefficients, up to 0.8, in most parts of HP, which indicates that the fully Bayesian integration 
of remote sensing data with model works more efficient compare to DMDA.

Data Availability Statement
All the data supporting the findings of this study are available within the article. Reconstructed GRACE/GRACE-FO 
TWSC within the HP aquifer can be downloaded from https://doi.org/10.6084/m9.figshare.23735724.v1. The 
monthly average of enhanced L3 soil moisture product (O’Neill et al., 2021), version 5, retrieved by the Soil 
Moisture Active Passive (SMAP) radiometer, is used in this study to constrain the estimation of near-surface soil 
moisture (top soil layer). For this study, the original W3RA code is modified to simulate TWSC compartment 
within the HP aquifer using the ERA5 forcing data. The original codes can be downloaded from http://wald.anu.
edu.au/challenges/water/w3-and-ozwald-hydrology-models/. The outputs of W3RA within the HP aquifer can 
be downloaded from https://doi.org/10.6084/m9.figshare.23735724.v1. The version 07.1 of the daily ESA CCI 
soil moisture with a spatial resolution of 0.25° × 0.25° and covering the period of 1978–2021 is downloaded 
from the ESA website http://www.esa-soilmoisture-cci.org as an independent validation data set for this study. 
The groundwater level data in the HP aquifer, as an independent validation data set, are collected from the 
US Geological Survey (USGS) groundwater network https://water.usgs.gov/ogw/networks.html. The code for 
implementing the ConBay approach to merge multi-remote sensing EO data with model outputs is written in the 
MATLAB based on the formulations in Forootan and Mehrnegar (2022). The code for MCMC-DA is also writ-
ten in MATLAB based on the formulations in Mehrnegar, Jones, Singer, Schumacher, Jagdhuber, et al. (2020). 

Figure B1. Long-term linear trends [mm/yr] and annual-amplitudes [mm] fitted to the groundwater storage derived from 
DMDA within the HP aquifer, covering 2015–2021 (plots (A) and (B), respectively). The groundwater storage derived from 
DMDA is compared with the in-situ USGS groundwater storage in terms of correlation coefficients in (C).
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TWSC compartments derived from ConBay and MCMC-DA approaches can be downloaded from https://doi.
org/10.6084/m9.figshare.23735724.v1.
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