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Abstract

Marine renewable energy devices harvest sustainable and safe energy from everlasting
sources such as wind and waves. To compete with fossil fuels,the offshore renewables
must offer profitable solutions. Consequently, cost savings on foundations are desir-
able. Bucket foundations are a suitable and cost-effectivesolution for various offshore
structures, and not least marine renewable devices. The present thesis focuses on the
tensile axial response of bucket foundations in dense sand.The thesis addresses sev-
eral critical design problems related to the tensile response. Among those are the
soil-structure interface parameters, tensile loading under various displacement rates
and tensile cyclic loading.

For the analysis of realistic soil-structure interactions, a physical model was designed.
A new laboratory testing facility was built allowing model testing in scale of 1:10
prototype size. Furthermore, an overburden pressure was evenly applied on the sand
surface for the simulation of different soil depths. Thus, higher soil stresses were cre-
ated, diminishing scaling effects and providing more information about the interface
parameters. Furthermore, the test set-up allowed examinations of long-term cyclic
loading. Up to 40,000 harmonic load cycles were applied withconstant mean loads
and amplitudes. The test set-up provided high quality data about loads, displacement
and pore pressure.

A different test set-up – a pressure tank – was employed for the displacement rate
analysis. The pressure tank enabled the simulation of 20 m water depth, allowing for
the generation of various pore pressure levels during the examinations.

The extensive testing campaign provides valuable data about bucket foundation be-
haviour under tensile loading. State of the art analytical methods are employed for
the verification and analysis of the data. Back-calculationof the drained tensile ca-
pacity shows that the lateral earth coefficient decreases non-linearly with increasing
soil depth. An interaction diagram is drawn for a summary of the cyclic loading test
results. The diagram indicates the range of mean loads and amplitudes within which
the foundation model remains in a stable condition. No excessive upward displace-
ments are accumulated in the range. Finally, the displacement rate tests show that
large tensile capacity is available.
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Resumé

Vedvarende marine energimaskiner høster bæredygtig og sikker energi fra evige kilder
som vind og bølger. For at konkurrere med de fossile brændstoffer, skal vedvarende
energimaskiner tilbyde rentable løsninger. Der ønskes derfor besparelser på blandt
andet fundamenterne. Bøttefundamenter er en velegnet og omkostningseffektiv løs-
ning til forskellige havkonstruktioner, ikke mindst til devedvarende energimaskiner.
Denne afhandling fokuserer på bøttefundamenternes egenskaber i sand med en høj
lejringstæthed ved aksiale trækbelastninger. Afhandlingen henvender sig til kritiske
designproblemer relaterede til trækrespons. Blandt dem erparametre, der beskriver
berøringsfladen mellem jord og struktur, træklaster under forskellige forskydnings-
hastigheder og cykliske træklaster.

For at analysere en realistisk interaktion mellem jord og struktur, var en laborato-
riemodel designet. En ny forsøgsopstilling som gav mulighed for at undersøge funda-
mentetsmodeller i en skala på 1:10 var konstrueret, hvor en varierende overfladebelast-
ning på sandet simulerede forskellige jorddybder. Dermed blev skabt højere jordtryk
som reducerede skalleringseffekterne og indhentede mere information om berørings-
fladen. Endvidere tillod laboratorieudstyret forsøg med lang tids cyklisk belastning.
Bøttemodellen blev udsat for op til 40.000 harmoniske lastcykler med konstant mid-
dellast og lastamplitude. Forsøgsopstillingen producerede kvalitetsresultater for laster,
flytninger og poretryk.

En anden forsøgsopstilling – en tryktank – blev brugt til undersøgelse af forskyd-
ningshastigheder. Tryktanken muliggjorde simulering af 20 m vanddybde, som tillod
udviklingen af poretryk under forsøgene.

Testkampagnen giver værdifulde data om bøttefundamentetsegenskaber ved træk-
belastning. Nyeste analytiske metoder er anvendt for verificering og analysering af
data. En genberegning af den drænede trækkapacitet viser, at den vandrette jordtryks-
koefficient falder ikkelineært med stigende jorddybde. Et interaktionsdiagram, som
sammenfatter resultaterne af de cykliske forsøg, er udarbejdet. Diagrammet viser in-
tervallet for middellaster og amplituder hvori fundamentets model forbliver i en stabil
tilstand. Ingen overdrevne flytninger bliver akkumuleret iintervallet. Endelig viser
forskydningshastighedsforsøg at stor trækkapacitet er tilgængelig.
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CHAPTER 1
Introduction

The current knowledge of offshore geotechnical design stems from experience gained
in the offshore oil and gas sector. However, offshore areas are also of interest in
the design of wind and wave energy generators. Compared to oil and gas industry
structures, they are usually significantly lighter, operate in shallower waters and are
subjected to severe cyclic loading and dynamic excitations. These factors result in
different structural behaviours. For example, a lightweight structure supported by a
tripod will transfer horizontal wind and wave loads to axialcomponents as well as
sliding and moment on each of the foundations. Due to the low structural self-weight,
the foundations may be exposed to complicated loading combinations, such as cyclic
tensile loading. Consequently, the geotechnical design solutions should reflect the real
structural behaviour.

The wave energy sector is still experiencing challenges in providing cost competi-
tive solutions compared to other energy sectors, such as fossil fuels and wind. How-
ever, the offshore wind energy sector is under continuous development and is able
to provide knowledge of relevance to the other green energy devices fixed on the
seabed. The present thesis addresses the geotechnical design of offshore foundations
for lightweight structures. Cyclic tensile loading on bucket foundations is of particu-
lar interest to this research. For investigation of the realistic behaviour of foundations,
physical modelling is required. This project describes a reliable modelling technique
that can provide knowledge of the interaction between soil and structure.

The following sections of this chapter provide an overview of the research activities
related to marine renewable energy generators. Typical offshore structures and their
foundations are presented. The last section outlines the structure of the thesis.

1.1 Research projects related to marine
renewables

Offshore conditions offer rich opportunities for supporting a greener and more sus-
tainable environment by utilizing the renewable energy that can be provided by wind,
waves, tides, currents and sun. At the moment, a large numberof research projects

— 1 —



2 Introduction

related to such renewable technologies are in progress the world over. A few of them
are mentioned here. The projects generally focus on cost-effectiveness, which is es-
sential to success in the marketplace.

A number of research and development projects related to theelectricity and gas sector
are financed by Energinet.dk (Energinet.dk, 2016). Throughthe ForskEl-programme,
Energinet.dk has financed the Cost Effective Foundation andInstallation of Wave
Energy Converters project that was developed by three organisations: Aalborg Uni-
versity, Universal Foundations A/S and Wave Star A/S. Essential financial support for
this PhD work has been provided by the project.

Mooring Solutions for Large Wave Energy Converters is an ongoing project which
concerns cost reduction and structural solutions for the mooring systems of large
floating wave energy converters. The project has seven participant organizations and
is financed by the EUDP (in DanishEnergiteknologisk udvikling og demonstration)
programme. (Energiforskning.dk, 2016; DAE, 2016)

Innovative Wind Conversion Systems (10-20 MW) for Offshore Applications was an
ambitious project that aimed at the design of a 20-MW wind turbine. The project in-
cluded the analysis of specific technological improvementsrequired to transform the
vision of a 20-MW offshore wind turbine into reality. The five-year project involved
27 European partners. (INNWIND.EU, 2015)

The Performance Assessment of Wave and Tidal Array Systems (PerAWaT) project
aimed to create software tools for wave and tidal energy device arrays and to assess
production costs. The project was developed by seven organizations and financed by
the Energy Technologies Institute. (ETI, 2016)

1.2 Offshore structures

The majority of the existing offshore structures were builtfor the oil and gas industry.
Each oil/gas platform is a unique and expensive structure that requires detailed design
work. Moreover, for permanently manned structures, attention must be paid to safety
and physical working environment. As failure in such a structure may be fatal, the
design of offshore platforms is often guided by conservatism and relatively expensive
design solutions.

Offshore platforms are usually located in much deeper waters when compared to ma-
rine renewable devices. For example, the Perdido platform stands at a water depth
of 2450 m, making it the world’s deepest oil structure (Shell, 2016). Platforms and
terminals can be moored to the seabed or fixed using various types of foundations,
e.g. gravity based, pile, skirted foundations, etc. Snorrewas the first TLP with mul-
tiple caisson foundations in the North Sea (Tjelta et al., 1986). Four bucket founda-
tions were used to support the jacket structures of the Europipe 16/11E and Sleipner T

2



Offshore loading conditions 3

(Tjelta, 1995).

At present, more than 90% of offshore wind installations arefound in the European
waters (GWEC, 2016a). In 2014, about 268,000 wind turbines (onshore and offshore)
were in operation the world over (GWEC, 2016b). Danish Vindeby, erected in 1991,
was the first offshore wind park ever (EWEA, 2016). We are seeing a global expan-
sion in the size and distribution of offshore wind parks. By the end of 2012, 74% of
offshore wind turbines were supported by monopiles, 16% by gravity based founda-
tions while the remaining 10% utilized other types of foundations (EWEA, 2016). The
design of offshore wind turbines is constantly being improved, leading to increasingly
efficient and reliable technology. The sector may currentlybe characterized as one of
the most developed renewable energy sectors.

Wave energy is another promising source of renewable energy. Wave energy con-
verters (WECs) can be divided into three major groups, depending on their structural
properties and their method of energy extraction: point absorbers, terminators and
attenuators (Jakobsen, 2015). Figure 1.1 shows three examples of WECs:

• Wavestar WECs belong in the point absorber group. Since 2009,a 1:2-scale test
section of Wavestar WEC has been in operation in Hanstholm, off the west coast
of Denmark (Wavestar, 2016). The structure can be lifted above the sea level
during storms for protection from excessive wave loads. Itsfour gravity based
foundations rest on a chalk seabed. A full-scale Wavestar device would be a very
large structure which would require the development of a more cost-effective
foundation system.

• The floating wave energy device, the Wave Dragon, is characterized as a termina-
tor (Figure 1.1b). A prototype was launched in Denmark in 2003 (WaveDragon,
2009). The position of the device is secured through a systemof cables connected
to the foundations such as suction anchors.

• Attenuators are exemplified by the Pelamis (Figure 1.1c). In2004, the first full-
scale Pelamis WEC was launched, with a length of 120 m and a diameter of 3.5 m
(EMEC, 2016). From a geotechnical point of view, the device requires a similar
foundation solution to that of the Wave Dragon.

1.3 Offshore loading conditions

Offshore structures are subjected to structural, operational and environmental loads.
Böker (2009) divided the loads into four groups based on their intensity:

• Permanent and quasi-static loads are low frequency loads that may last for hours
or days; e.g. mean environmental loads.

3



4 Introduction

A B

C

Figure 1.1 Wave energy converters: A) Wavestar (point absorber); B) Wave Dragon (terminator); C)
Pelamis (attenuator).

• Cyclic loads are harmonic loads with specific load periods and amplitudes, for
example wind and wave loads.

• Stochastic loads are random loads, e.g. from irregular winds.

• Transient loads are brief loads, such as loads from ship collisions and breaking
waves.

Loads are transferred through the structure on to the foundation and subsequently to
the soil underneath. The frequently very large and heavy oiland gas platforms are
typically supported by fixed foundation systems. The large horizontal wind and wave
loads to which such structures are exposed create large moment loads that are trans-
ferred in several ways: a gravity based foundation has an effective area that resists
the moment load, while a system of separate foundations transfers dominating axial
components to the soil. Whichever foundation type the platform is supported by, the
self-weight of the upper structure results in significant compressive loads.

Offshore wind turbines are significantly lighter compared to offshore platforms. Thus,
their foundations may be subjected to tensile loads. However, with sufficient spacing
between them, tensile loads will rarely occur. Against sucha solution speaks its high
cost.

As seen in Figure 1.1, wave energy converters have various shapes and sizes. Conse-
quently, different loading scenarios must be considered. The foundations of the three
WECs shown in the figure will need to resist cyclic loadings.

Presently, there are no international standard guidelinesthat provide detailed instruc-
tions on how to deal with cyclic loading on offshore foundations. DNV (1992) men-
tions cyclic axial loading on the offshore pile foundations:
"The effects of cyclic loading on the axial pile resistance and displacement should be
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considered in the design. The main objective is to determinethe shear strength degra-
dation along the pile shaft for different loading intensities."(DNV, 1992)

The evaluation of the cyclic loading is a complex task because it presupposes assess-
ments of the cyclic degradation of soil properties and rate effects. A safe foundation
design is required to ensure that the structure is able to carry all relevant loads safely
and without excessive displacements.

1.4 Bucket foundations and installation

Shallow foundations with a soil-penetrating skirt are generally called skirted foun-
dations. They are used for the support of a variety of offshore structures. Suction
buckets, caissons, anchors and skirted plate foundations are synonyms for can-shaped
foundations with a lid and a skirt. As shown in Figure 1.2b, the foundations may have
different shapes (cylindrical, cubic, multi-shell). Offshore structures may be supported
by a single or several skirted foundations (monopods or multipods). The foundations
may be made of different materials, such as steel and combined concrete-steel.

Tjelta (2015) briefly describes the Trial Installation Project, which showed that bucket
foundations are applicable for any type of seabed, excepting rocks and areas with large
boulders in the soil volume. He warns that foundation design, installation technique
and preparation for it must be performed by experienced professionals, in particular
in locations characterized by stiff clay on a sandy soil (Tjelta, 2015). The author lists
limitations on the application of bucket foundations, suchas sandy seabed, because
of the tensile resistance both in the short and the long-termand the cyclic behaviour
under two-way loading.

The installation of a bucket foundation starts with the self-penetration caused by the
weight of the structure. After the first 1-2 meters of skirt penetration, a hydraulic
seal is created around the tip. Sea water is trapped inside the foundation and can be
pumped out creating a hydrostatic pressure difference under the lid. Figure 1.2a shows
the installation process, with the water being pumped out and flowing around the tip.
Suction pressure may be limited by two factors: pump efficiency, which depends on
water depth (cavitation pressure), and piping in sandy soilor a lift-up of soil volume
in clay (Houlsby et al., 2005a).

Tjelta (1995) further discusses the geotechnical aspects of bucket foundation instal-
lation based on experiences from the Europipe 16/11E project. Houlsby and Byrne
(2005a; 2005b) were the first to introduce a theoretical solution for the installation of
skirted foundations in various soils. On the basis of empirical data and extensive prac-
tical experience, Andersen et al. (2008) suggest that calculations of the installation of
skirted foundations need to consider bearing capacity and CPT data in dense sand.

The concept of bucket foundation design has been subjected to considerable research
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water flow

Figure 1.2 Bucket foundation: A) under installation; B) circular and multi-shell skirt section.

efforts since it was introduced by Hogervorst (1980). However, experience with this
type of foundation stems mainly from the oil and gas sector where loading condi-
tions differ from those of renewable energy structures, as mentioned in Section 1.3.
Standard design guidelines are available for pile and gravity based foundations while
knowledge of bucket foundation design is limited.

1.5 Overview of the thesis

Figure 1.3 sketches the usual stages in the design of a bucketfoundation. The first
step comprises the collection of local soil data and information on loads at the site.
When a geotechnical profile has been prepared, the initial dimensioning may start.
Analytical design methods are used for the estimation of diameter, skirt length and
the calculation of bearing capacity and displacements. Model testing can provide
useful empirical equations and clarify design issues related to atypical geotechnical
structures, loads and soil-structure interaction. Havingdone primary geotechnical di-
mensioning, the suction installation and structural analyses are performed. The later
design stages include design verification and scour assessment. This thesis addresses
design methods relevant to the topics indicated by yellow inFigure 1.3.

The following outlines the structure of the thesis:

• Chapter 2 presents a short review of the methods developed for offshore founda-
tion design. The division of the review reflects the topics ofrelevance to tensile
loading on bucket foundations in sand.

• Chapter 3 indicates the scope of the thesis. This chapter defines the methods de-
scribed in Chapter 2 that are used in the thesis and leads to the aim and objectives.
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geophysical site
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Bearing
capacity (ULS)

Displacements
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Cyclic effects
(FLS)

Model testing

Finite element
modelling

Model testing

Model testingModel testing

Figure 1.3 Bucket foundation design steps. Sections marked yellow are addressed in this thesis.

• Chapter 4 provides a summary of the research performed during this PhD project.

• Chapter 5 summarizes the main achievements of the work and describes the vi-
sion for future work.

• Appendix A: conference paper entitled "Comparison of Foundation Systems for
Wave Energy Converters Wavestar".

• Appendix B: conference paper entitled "Comparison of Design Methods for Axi-
ally Loaded Buckets in Sand".

• Appendix C: conference paper entitled "New Medium-Scale Laboratory Testing
of Bucket Foundation Capacity in Sand".
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• Appendix D: technical report entitled "Testing of Axially Loaded Bucket Foun-
dation with Applied Overburden Pressure".

• Appendix E: journal paper entitled "Bucket Foundation Model Testing under
Tensile Axial Loading".

• Appendix F: journal paper entitled "Bucket Foundation Response under Various
Displacement Rates".

• Appendix G: technical report entitled "Bucket Foundationsunder Axial Loading
– Test Data Series 13.02.XX, 13.03.XX and 14.02.XX".
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CHAPTER 2
Literature Review

2.1 The behaviour of coarse grained soils

Various experimental observations with skirted foundations have shown that, under
rapid loading conditions, medium- to fine-grained sands do not have enough time to
be drained. The drainage level depends on load rate, soil permeability, fluid viscos-
ity and the size of the foundation structure. However, if theloading is quasi-static
or static, the fluid drains in the soil. Drainage conditions are extremely important in
grained soils since they affect foundation bearing capacity and settlement.

Jafarzadeh and Sadeghi (2012) performed cyclic loading tests in a simple shear ap-
paratus with two uniformly graded sands (Babolsar sand and Toyora sand). The focus
of their study was to examine dynamic soil parameters depending on the soil satu-
ration level. The authors found that changes in saturation level significantly affect
the dynamic properties of sand, e.g., soil shear modulusG is significantly reduced
at saturation level above 75%. The difference in saturated and unsaturated soil shear
modulus increases with the number of cycles applied. Damping ∆ of loose sand in-
creases with the soil saturation level, while damping of dense sand is nearly the same
in saturated and dry soil. Jafarzadeh and Sadeghi (2012) furthermore compared the
drained and undrained test results. In both conditions,G increased and∆ dropped
due to the increase in the effective vertical stress.

Ibsen and Lade (1998) and Ibsen (1999) found that in static and cyclic loading con-
ditions, the volume changes of dense sands are governed by the characteristic line
which is unique for each type of sand. Dense sand behaviour changes when shifting
from contraction to dilation, and vice versa. Via a triaxialtesting campaign, Ibsen
(1995) found that the negative pore pressure is maintained during soil failure, a fact
that should be taken into consideration for the foundation design under rapid loading.

Ibsen et al. (2009) analysed test data from laboratory cone resistance tests and drained
triaxial tests performed with Aalborg University sand No. 1. Sand classification prop-
erties were described by Ibsen and Boedker (1994) and Hedegaard and Borup (1993).
Ibsen et al. (2009) related the laboratory cone resistance to the relative soil density.
Moreover, they derived the basic soil strength and stiffness parameters, i.e., tangential
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Figure 2.1 Aalborg sand No. 1 parameters dependence on the horizontal stress. Ibsen et al. 2009

ϕt and secantϕs friction angles, tangential cohesionct, angle of dilationψ and the
secant Young’s modulusE50. Parametersϕs andψ decreased with the increasing ho-
rizontal stressσ3 (especially in the range of [0; 100] kPa), whileE50 had a tendency
to increase with the increasingσ3 (Figure 2.1).

2.2 Bucket foundation behaviour under various
axial loading conditions

A bucket foundation under axial compressive loading behaves like a gravity based
foundation. Thus, the usual methodology for bearing capacity and settlements is ap-
plicable. The tensile response depends on soil type, water depth and loading intensity.
Section 1.3 described four load groups representing different loading intensities.

Figure 2.2 visualizes the bucket foundation response underaxial tensile loading. The
system acts like a syringe. The upward displacement createsa gap between the soil
surface and the lid. As the pressure tends to drop under the lid, water streaming is
created through the soil volume to the gap. If the displacement rate is slow enough,
the water flows to the gap. But if the rate is high (transient loading), the water cannot
fill the gap fast enough and negative pressure is establishedin the gap and the soil
pores.

Permanent and quasi-static tensile loads are carried by theweight of the structure,
external skirt friction and the lower of internal skirt friction or plug weight. This
corresponds to the drained tensile capacity, with a magnitude of only 1% of the com-
pressive capacity in dense sands.

Cyclic, transient and stochastic loads have higher load rates compared to quasi-static
loads. If a bucket foundation is installed in a relatively fine grained soil, partially
drained or undrained conditions will arise during rapid tensile loading. The drainage
situation depends on several factors: drainage path (proportional to skirt length and
diameter), soil hydraulic conductivity and load rate (or displacement rate).

10
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At extremely high loading rates, there is no water flow in the pores which indicates
completely undrained conditions. The undrained tensile capacity is a result of exter-
nal skirt friction and end bearing capacity. The upper limitfor the undrained tensile
capacity is estimated by the multiplication of the negativepressure under the lid and
the inner area of the lid. The negative pressure is limited bywater cavitation pressure,
that is, water depth.

Deng and Carter (2002) suggested three analytical design models for pull-out ca-
pacities under drained, partially drained and undrained conditions in cohesive soils.
Accordingly, three different failure modes were given (Figure 2.3): sliding (failure
around the internal and external skirt walls), bottom resistance (soil plug plus external
wall friction) and reverse bearing capacity (plus externalwall friction).

Senders (2009) described two extremes in the theoretical pull-out capacities for bucket
foundations in cohesionless soils (Figure 2.4): pure frictional resistance (failure around
the internal and external skirt walls), and reverse bearingcapacity (corresponding to
fully undrained loading). The latter capacity is significantly higher than the first one,
but the real foundation response appears to lie somewhere inbetween of the two limits.

As for any other embedded geotechnical structure, soil-structure interface characteris-
tics are very important for bucket foundation design. Frictional resistance is developed
in a narrow contact zone between the structure, e.g. a bucketfoundation skirt, and soil.
This narrow zone has different properties compared to the rest of the soil body. For
granular materials, the interface conditions are dependent on grain size, relative den-
sity, relative roughness of the structure (skirt), soil stress conditions, etc.

Under shear loading, granular materials can contract or expand, behaviours that are
very important for the interface zone. If dense sand is sheared in the interface, the
dilation of grains will increase normal interface stress, resulting in higher frictional
response. The behaviour is diminished in higher stress conditions (deeper soil) where
the frictional response is more constant. (Boulon and Foray, 1986)

The Coulomb failure criterion for the estimation of friction, such as pile shaft re-
sistance is as follows:

τ = Kσ′

vtanδ, (2.1)

Whereτ is frictional response,K is earth pressure coefficient relating the effective
vertical stressσ′

v to the effective horizontal stressσ′

h andδ is the interface friction
angle.

API (2011) provides thatδ correlates with the mean particle diameterd50 and has
an upper limit of 28.8◦. δ may be assessed through advanced laboratory tests. Oth-
erwise, API (2011) suggests a product ofKtanδ that ranges from 0.29 for medium
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water flow

upward
displacement

Figure 2.2 Water flow in the soil to the gap between the soil surface and the lid under tensile loading.

dense sand-silt soil to 0.56 for very dense sand.

For pile design,K is between 0.8 and 1 (API, 2011). In bucket foundation design,
the expression (2.1) is also applicable, but there are no clear guidelines forK value.
Larsen (2008) usedK = 1 − sinϕ, a rather conservative expression, which corres-
ponds to the in-situ lateral pressure coefficientK0. Villalobos (2006) showed that
K for a bucket foundation under tensile load may be expressed by equation (2.2)
where soil arching in the soil-structure interface due to friction on the skirt is taken
into consideration. In this caseK values increase from 0.2 to 0.6 forϕ correspond-
ingly from 55◦ to 30◦. Based on test results and literature review, Boulon and Foray
(1986) showed thatK changes with sand depth, as given in Figure 2.5. The very high
lateral earth pressure coefficient of 3.2 at low soil stress was explained by high dilata-
tion. Based on cone penetration test results performed by Gaydadzhiew et al. (2015),
Thomassen (2016) showed thatK changes from approximately 3 to 0.5 parallel to
increasing effective vertical stress from 0 to 100 kPa. Houlsby and Byrne (2005b)
explained thatKtanδ are always used as a coupled term. They showed that in earlier
large suction caisson installation projectsKtanδ values were in the range of 0.48-0.8.
Byrne and Houlsby (2002b) commented thatKtanδ=0.5 is a good estimate for most
cases of bucket foundations under tensile loading.

K =
cos2ϕ

2− cos2ϕ
, (2.2)
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Figure 2.3 Tensile resistance in cohesive soil: (from left) drained response; partially drained response;
undrained response. (Deng and Carter, 2002).
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Figure 2.4 Tensile resistance in cohesionless soil: (left) drained response; (right) undrained response.
(Senders, 2009).
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Figure 2.5 Lateral earth stress coefficient vs vertical soil stress. Reproduced from Boulon and Foray
(1986).
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2.3 Bucket foundation design methods

2.3.1 Design practise

Several standard design guidelines for offshore structures and foundations are ac-
knowledged around the world. Among them DNV (2014), DNV (1992), API (2011)
and ISO (2003) should be mentioned. Obviously, the application of standard guide-
lines depends on local conditions; many countries have standard guidelines that must
be taken into account. The following gives a short overview of the foundation types
considered in standards:

• DNV (2014) describes offshore foundation concepts for windturbines: piled,
gravity based and skirted (bucket) foundations as well as solutions for moored
floating structures. DNV (2014) refers to DNV (1992) regarding the recom-
mended design methodology for gravity based foundations, piles, foundations for
jack-up platforms and the prediction of the installation ofskirted foundations.

• API (2011) provides the recommended design methodology forshallow and pile
foundations, including recommendations for foundations with skirts regarding
vertical and horizontal capacity as well as installation with suction application.

• ISO (2003) provides the recommended design methodology forpile and shallow
foundations, with general guidelines for foundations withskirts.

• ISO (2007), besides the recommended design methodology forpile and shallow
foundations, comments that skirted foundations are able toresist cyclic uplift
waves of several seconds’ duration, even in sand.

As seen above, standard design guidelines are available forpile and gravity based
foundations while information related to bucket foundation design is very limited.
Generally, the bucket foundation should be assessed as a gravity based foundation
with a skirt. There is ample scope for geotechnical designers choice, for example
in using alternative methods for the evaluation of cyclic loading. The assessment of
cyclic degradation and the relevant displacements is a complex task as the cyclic prop-
erties should be examined under various loading regimes. Moreover, a determined
methodology on this topic is unavailable.

2.3.2 Analytical expressions for tensile capacity

Iskander et al. (1993 and 2002) performed tensile loading tests on caisson foundation
in sand. The tests led to an analytical method for the calculation of the tensile capa-
city of caisson foundations in drained and undrained conditions. The drained tensile
capacity was found to reflect frictional response on the bucket skirt. The undrained
capacity included consideration about the hydraulic gradient induced by the tensile
loading.

Houlsby et al. (2005b) introduced a theoretical solution for the skirted foundations
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subjected to tensile loading. Their design methodology considered possible pore suc-
tion generation due to the tensile loading. The authors proposed a method for the
prediction of the suction pressure. The solution was verified by model testing at vari-
ous scales and in different soils, including field tests (Houlsby et al., 2006).

2.3.3 Finite element models (FEM)

Bye et al. (1995) presented geotechnical design method for bucket foundations in
dense sand. Bucket bearing capacity was estimated using undrained soil strength pa-
rameters. The proposed method included pore pressure effect estimation according to
Andersen and Lauritzsen (1988). Moreover, a method was proposed for the calcula-
tion of cyclic bearing capacity.

As a result of their finite element analysis (FEA) of suction caissons in cohesive soil,
Deng and Carter (2002) developed and verified simplified solutions for three tensile
loading failure modes. Caisson tensile capacity was estimated through displacement
controlled calculations in which a load-displacement response was achieved. A non-
dimensional parameterT was introduced to evaluate the effects of the displacement
rate as follows:

T =
cv
vD

(2.3)

cv =
k

mvγw
(2.4)

Where: cv is the coefficient of soil consolidation,v is displacement rate,D is cais-
son diameter,k is the hydraulic conductivity of the soil,mv is the coefficient of
1-dimensional volume decrease andγw is the unit weight of pore water.

Thieken et al. (2014) presented FEA for tensile loading on bucket foundations in sand.
Different tensile loading rates were applied on a bucket foundation. The analysis
showed that under small displacement rates, the drained tensile capacity was mobi-
lized while under high displacement rates, the undrained conditions occurred. In the
latter case, large upward displacements occurred.

Cyclic loading analysis using FEM

Cyclic axial loading is extremely important for relativelylight offshore structures with
multi-pod foundation systems, such as jackets with severalfoundations. In storm load-
ing, large cyclic loading amplitudes can arise compared to mean cyclic loads. More-
over, it is hard to expect that the cyclic loading would be restricted in the compres-
sive direction as that would inevitably increase the production costs. The best-known
testing campaigns for cyclic loading on piles are describedby Jardine et al. (2005).
According to Abdel-Rahman et al. (2014), axial pile capacity decreases with the num-
ber of load cycles due to the loss of the ultimate skin friction. Through a new finite
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element calculation for the cyclic tensile loading on pilesin dense sand, the authors
showed that the reduction of the ultimate skin friction increases with the number of
cycles, soil depth (normal stress) and cyclic loading level.

Niemunis et al. (2005) applied a high-cycle accumulation (HCA) model for the pre-
diction of strains and stresses in sand. The model is applicable for large numbers of
cycles (>103) and small strain amplitudes (<10−3). The HCA model was based on an
extensive laboratory testing programme performed by Wichtmann (2005). Niemu-
nis et al. (2005) implemented the HCA model in a finite elementroutine. Later,
Zachert et al. (2015) compared the HCA finite element model results to a cyclic load-
ing test with a full-scale gravity foundation, showing goodagreement for settlement
and pore pressure prediction.

A complex design method for cyclic loading on offshore foundations was created by
the Norwegian Geotechnical Institute (NGI) (Andersen et al., 1992; Andersen, 2009;
Jostad et al. 2014). The method requires triaxial and directshear tests on relevant soil
samples to provide the cyclic soil parameters. It is worth noting that each foundation
location requires at least ten cyclic laboratory tests and/or access to rich in-house
database for the supplementation of the knowledge of the relevant soil behaviour.
In the NGI method, cyclic loading on the structure is systematized to the equivalent
loading parcels, after which the data is processed in a finiteelement program for the
calculation of the cyclic capacity and settlements of the foundation. The method is
valid also for offshore wind turbine foundations, as arguedby Skau and Jostad (2014).
While it is estimated to be among best methods for the design ofthe cyclically loaded
foundations, it presupposes high-level expertise and access to a number of design aids,
such as advanced laboratory testing data, specific finite element programmes, etc.
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2.4 Physical modelling of bucket foundations

Acosta-Martinez and Gourvenec (2008) presented cyclic loading tests on caisson foun-
dations for buoyant offshore structures in overconsolidated soft clay. The foundation
model (d/D = 0.3) was scaled 167 times. Caisson model was installed by pushing at
a constant displacement rate. The installation ended with apredetermined compres-
sive pre-load which nearly reached the primary consolidation. The test results showed
that cyclic loading increased the undrained post-cyclic uplift capacity and some con-
solidation developed after the cyclic loading program. However, the permanent uplift
displacement arose when higher cyclic loading amplitudes were applied on the foun-
dation model.

Clukeley et al. (1995) performed cyclic loading tests on caisson foundations in clay.
The foundation model (d/D = 2) was scaled 100 times. The tests were performed in a
centrifuge and showed that the post-cyclic static uplift exceeded the calculated virgin
static uplift capacity. On this basis, the authors developed a method for TLP’s suction
caissons subjected to cyclic loading.

Iskander et al. (1993 and 2002) tested tensile loading of a caisson foundation in dense
sand (water saturated). The caisson model had a diameter of 0.11 m and a skirt length
of 0.19 m (d/D = 1.76). In addition to reporting load, displacement and pore pressure
results for monotonic tensile loading, the authors back-calculated the tensile capacity.

Bye et al. (1995) presented field tests on bucket foundationswith a height of 1.7 m
and diameter of 1.5 m (d/D = 1.13) in dense sand locations. The test data were
used to verify design methods for bucket foundations for theEuropipe 16/11E and
Sleipner T. Furthermore, laboratory tests were performed on different size bucket
foundation models withd/D = 0.38. One model had a diameter of 0.55 m and a skirt
length of 0.21 m in skirt length, while another model was 3.5 times smaller. The two
model tests showed identical behavioural characteristics. NGI model tests for cyclic
loading showed that low frequency cycling increased the undrained cyclic capacity,
probably due to the compaction of sand or a stress change.

Feld (2001) performed bucket foundation model tests in a 1g test set-up. A half bucket
model was constructed to provide visual information about soil behaviour and seep-
age. The bucket was 0.2 m in diameter and 0.1 m in skirt length (d/D = 0.5). The
testing programme included pull-out tests with several displacement rates and cyclic
loading tests. Feld (2001) showed that tensile resistance increases with increasing dis-
placement rate. Unfortunately, the documentation of the testing programme and the
results on the cyclic behaviour were scarce.

Kelly et al. (2003, 2006b) reported cyclic axial loading tests on a model foundation
with a diameter of 0.28 m and a skirt length of 0.18 m (d/D = 0.64). The tests were
performed in a pressure chamber where water depths of up to 20m could be simu-
lated. The foundation model was installed in dense water saturated sand. Cyclic
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loading tests with mean compressive loads were followed by afinal tensile pull-out.
Later, Houlsby et al. (2006) performed field tests with two large bucket foundations;
the first withD = 3 m andd = 1.5 m (d/D = 0.5) for moment loading tests, and the
second withD = 1.5 m andd = 1.0 m (d/D = 0.67) for axial loading tests. Finally,
Kelly et al. (2006a) compared the data and a proposed methodology for the compari-
son of the field and laboratory testing data. However, it is worth mentioning that the
cyclic axial loading tests had mean compressive load and only a small part of the cyclic
amplitudes were on the tension side. Furthermore, Kelly et al. (2006a) compared cais-
son installation methods of suction and pushing for severalcaissons of different sizes,
documenting that the suction installation disturbed the soil, although it was more evi-
dent in the small-scale model tests.

Senders (2009) analysed the response of wind turbine bucketfoundations in a tri-
pod combination. Centrifuge tests on model foundations of scale 1:100 were per-
formed. The dimensions were 49-120 mm in diameters and 60-114 mm in skirt lengths
(d/D = 0.5-1). Various aspects of the testing were documented, including suction
and push-installation, the permeability of different soiltypes, and pull-out and cyclic
loading. Frictional resistance during installation and tensile loading were successfully
predicted using a cone resistance measurement. Pull-out tests showed that the devel-
opment of underpressure led to large upward displacements.No cyclic degradation
was found where the tensile load did not reach the drained capacity limit.

Thomassen (2016) performed drained tensile loading tests on a segment of pile foun-
dation which had a diameter of 0.5 m and an embedded shaft length of 0.96 m. The
pile was installed in dense sand. The author has shown that tensile peak loads were
mobilized at upward displacements of about 5 mm.

2.4.1 Model size and set-up size (scaling)

Obtaining a correct scaling of the geotechnical design parameters is one of the main
challenges when planning a testing campaign. Corte (1989) provided a useful overview
of the scaling laws for small-scale tests (1g and centrifuge). Recently, Byrne (2014)
discussed laboratory-scale modelling issues focussing onoffshore geotechnics. A set
of similarity conditions between the prototype and small-scale test ensures that the
results confirm with real physical conditions. However, geotechnical soil parameters
are often dependent on the effective stresses, i.e. secant friction and dilation angles
decrease with increasing effective stresses and vice versafor the modulus of elasticity
(Section 2.1).

Achieving an ideal scaling is therefore often impossible due to equipment or mate-
rial limitations. For example, a bucket foundation subjected to cyclic loading should
be examined in a 1g test set-up. In a scale of 1:10 model, a loading frequency of 1Hz
should be selected to simulate 0.1 Hz load rate in the full-scale. Depending on the test
set-up properties, this loading frequency may cause severedamage of the foundation
model and the connected measuring equipment. This may give dynamic effects that
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are not found in real, full-scale foundation behaviour.

Bye et al. (1995) commented on field and 1g laboratory test differences. The field
tests were performed with a rather large size foundation model, but difficulties were
experienced when considering scaling (in relation to the prototype size) of the soil
consolidation parameters and foundation geometry. It impossible to get the real pro-
totype sand and prepare it to the correct density in the laboratory. Furthermore, the
correct consolidation behaviour in the scaled model was unattainable. The authors
mentioned that for the smaller laboratory tests with slowerloading rates, silicon oil
was used instead of water, which resulted in reduced peak friction angle and dilation.

Sørensen et al. (2012) commented on scaling problems in small-scale laboratory tests,
where effective stresses are generally low. They proposed anew method for labora-
tory tests in a pressure chamber which allowed application of water pressure on the
soil surface. The effective stresses can only be increased by negative pore pressures
in such a test set-up. As the performed tests were quasi-static, no significant change
of pore pressures could be expected. Furthermore, the pore pressure results were not
commented on (or recorded), it is therefore difficult to see the potential for overcoming
low stress parameters. Sørensen et al. (2012) proposed a method for the normalization
of laboratory results based on total parameters for the small-scale piles and claimed it
to be promising for the scaling to the prototype dimensions.

Buckingham (1914) introduced the dimensionless similitude theory, which may be
applied to any physical system. He stated that any physical system can be described
by dimensionless units of mass, length and time. Two systemsare similar if the phys-
ical parameters are similar. The theory was used by Byrne andHoulsby (2002a) for
the analysis of bucket foundation models (small-scale only) under cyclic axial load-
ing. Kelly et al. (2006a) successfully applied dimensionless groups for model test
results performed with various bucket foundation models subjected to axial and mo-
ment loads. The authors made proposed dimensionless groupswith regard to load,
displacement and stiffness in drained cyclic loading tests.

For comparison of laboratory size and full-scale foundation loading rates, Kelly et al.
(2004) used a non-dimensional parameterT (eq. 2.5), which is somewhat the same as
expression (2.3). The authors compared the tensile loadingrate of a foundation model
and a prototype. It is worth mentioning that an assumed prototype case was used for
the comparison.

T =
cvt

H2
(2.5)

Where:cv is the coefficient of soil consolidation,t is time of 1/4 cycle period,H is
the length of the drainage path (equivalent to the skirt length).

Foglia (2014) proposed non-dimensional groups for displacement rate analysis when
suction pressure and soil permeability are known as equation (2.6). The non-dimensional
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groups were successfully used for a comparison of testing results of two different
bucket foundation models.

s

γwD
= g

(

vd

kD

)

(2.6)

Where: s is pore pressure,γw is the fuild unit weight,D is bucket foundation dia-
meter,d is bucket foundation skirt length,v is displacement rate,k is soil hydraulic
conductivity andg is a function for the relationship between two models in different
scales (can be found by model testing).
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CHAPTER 3
Scope of the Thesis

3.1 Main findings of the literature review

The expanding offshore energy sector is demanding increasingly cost effective engin-
eering solutions. Failure in an offshore foundation can result in tremendous financial
losses. The pressure for wind turbine generators and waver energy devices to increase
their competitiveness compared to other methods of energy extraction also applies to
the design of their foundations. As shown in Chapter 1, research on offshore founda-
tions is highly relevant. Standard design guidelines are useful tools for the design of
offshore foundations. Section 2.3 gave an overview of several design codes, indicating
the need for addressing certain design issues. The responseof axially loaded bucket
foundations for offshore renewable structures is among thetopics to be uncovered in
the following.

It is generally accepted that when subjected to compressiveloads, bucket foundations
behave similarly to gravity based foundations. Section 1.5indicated some of the crit-
ical problems in bucket foundation design, such as the estimation of long- and short-
term tensile capacity. In Section 1.4, it was seen how a suction installation creates
seepage around the foundation skirt, inevitably reducing the strength of the grained
soil surrounding the skirt. Although the frictional interface capacity is affected, this
is likely to be regained as a result of the light cyclic loading that compacts the soil
interface. But designers are facing difficulties in choosing appropriate parameters for
the prediction of the interface resistance (Section 2.2). The usual considerations for
the design face two extremes: either the drained capacity (very low) or the undrained
capacity with the water cavitation determining the limit (i.e., the highest tensile capa-
city). However, the real response is somewhere in between the two limits for a design
storm loading case.

At present, model testing and advanced finite element modelling may be applied for
the investigations. The displacement of axially loaded bucket foundations should be
accurately predicted. This concerns in particular foundations that are subjected to ten-
sile loading. While it remains unclear how displacements areinfluenced by the partial
drainage, they should be expected to be larger than under fully drained conditions
(Section 2.4).
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The evaluation of the cyclic degradation and displacementsof bucket foundations un-
der cyclic loading leaves considerable leeway in the designprocess. The complexity
of the assessment of cyclic degradation is due to the necessity of examining the varia-
tion of cyclic properties under different loading regimes.This often requires advanced
soil laboratory testing or, even more expensive and time consuming, model testing.

3.2 Aim and objectives

It is crucial that the design methods ensure sufficient foundation capacity to prevent
the permanent and oscillating loads from causing significant deformation. The cyclic
tensile capacity of bucket foundations continues to be a topic of concern. On the one
hand, the drained tensile capacity of skirted foundations is generally very low. On the
other hand, the negative pore pressure generation may increase the tensile capacity
significantly. The key issues are thus to predict the actual drainage conditions during
the lifetime of the structure and to evaluate the related settlements.

In the design of bucket foundations in tension, it is typically assumed that the re-
sponses can be categorized as drained (low capacity) or undrained (high capacity).
However, the real tensile resistance may be expected to lie somewhere in between the
two limits for a design storm loading case. Upward displacements related to tensile
loading are difficult to predict. Moreover, although the cyclic behaviour of bucket
foundation in tension is expected to be very critical, no quantifying prediction ana-
lytical methods are available at the moment. The key analysis method is laboratory
testing, which is often related to scaling issues (Section 2.4.1). Thus, steps to over-
come problems related to low soil stress in laboratory models should be taken.

The aim of the present thesis is to clarify a number of design problems concern-
ing bucket foundations in sand that are subjected to tensileloading (static, rapid and
cyclic). The specific objectives of the study are as follows:

• To examine the tensile capacity of bucket foundations undervarious axial loading
conditions.

• To investigate the parameters governing the strength of soil-structure interfaces.

• To investigate the dependency of upward displacements on the tensile loading.

• To assess possible cyclic degradation of axially loaded bucket foundations in
tension.

• To evaluate the influence of displacement rate on the ultimate tensile strength.

• To design a new test set-up that is able to provide consistentdata for the afore-
mentioned objectives.
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The present study provides valuable experimental testing results applicable for the
primary foundation dimensioning as well as for advanced finite element model cali-
bration. The novel findings of the thesis include:

• A new laboratory testing facility was designed and built providing consistent
results of medium-scale testing. The scale of bucket foundation model was 1:10
compared to prototype size.

• An extensive testing programme of bucket foundations in tension was performed,
thoroughly visualizing tensile behaviour under monotonicloads as well as long-
term cyclic behaviour with mean tensile loads.

• Pore pressure behaviour was assessed under tensile loadingwith various dis-
placement rates.

• High-quality displacement measurements were documented.

• Soil-structure parameters were assessed in the new testingfacility which allowes
for the simulation of different soil depths.
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CHAPTER 4
Research Outcomes

The thesis is based on seven papers that include three conference papers, two journal
papers and two technical reports. The papers cover the aims of the PhD project re-
garding the scientific analysis and the laboratory testing of bucket foundations in sand
subjected to axial loading. Providing an overview of the papers, this chapter indicates
the main findings as well as some additional issues that were not addressed in the pa-
pers.

4.1 Overview of the papers

Primary dimensioning-

axial loading on bucket foundations 

Model testing
Analytical design 

methods

Design of 

set-up

Tensile 

capacity

Upward 

displacement

Cyclic 

effects

Tensile 

capacity

Compressive 

capacity

Paper 3 Paper 4, Paper 5, Paper 6, Paper 7 Paper 1, Paper 2

Figure 4.1 Overview of the research and relevant publications.

The aim and objectives were defined in Section 3.2. Figure 4.1gives an overview
of the topics addressed in the thesis. The papers provide thescientific background for
the thesis and are as follows:

• Paper 1: Vaitkunaite, E., Ibsen, L. B., Nielsen, B. N., and Devant Molina, S.
(2013). Comparison of Foundation Systems for Wave Energy Converters Waves-
tar. In 10th ewtec 2013 European Wave and Tidal Energy Conference Series:
Proceedings of the 10th European Wave and Tidal Energy Conference, Aalborg,
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Denmark. Technical Committee of the European Wave and Tidal Energy Con-
ference. No. 10.

• Paper 2: Vaitkunaite, E., Nielsen, B. N., and Ibsen, L. B. (2015). Comparison
of design methods for axially loaded buckets in sand. InFrontiers in Offshore
Geotechnics III proceedings of the third international symposium on frontiers in
offshore geotechnics (isfog 2015), Oslo, Norway, 10-12 June 2015. (Vol. 1, pp.
331-342). London: C R C Press LLC.

• Paper 3:Vaitkunaite, E., Ibsen, L. B., and Nielsen, B. N. (2014). NewMedium-
Scale Laboratory Testing of Bucket Foundation Capacity in Sand. InProceedings
of the Twenty-fourth (2014) International Ocean and Polar Engineering Con-
ference, Busan, South Korea. (Vol. 2, pp. 514-520). International Society of
Offshore and Polar Engineers.

• Paper 4: Vaitkunaite, E., Ibsen, L. B., and Nielsen, B. N. (2016).Testing of
Axially Loaded Bucket Foundation with Applied Overburden Pressure. Aalborg:
Department of Civil Engineering, Aalborg University. DCE Technical Reports;
No. 209.

• Paper 5: Vaitkunaite, E., Ibsen, L. B., and Nielsen, B. N. Bucket Foundation
Model Testing under Tensile Axial Loading.Canadian Geotechnical Journal.
Submitted 14-10-2015 [cgj-2015-0497], Re-submitted 06-06-2016 [cgj-2016-0301].

• Paper 6: Vaitkunaite, E., Nielsen, B. N., and Ibsen, L. B. (2016) Bucket Foun-
dation Response under Various Displacement Rates.International Journal of
Offshore and Polar Engineering, 26(2), 116-124.

• Paper 7:Vaitkunaite, E. (2015).Bucket Foundations under Axial Loading: Test
Data Series 13.02.XX, 13.03.XX and 14.02.XX. Aalborg: Department of Civil
Engineering, Aalborg University. DCE Technical Reports; No. 199.

4.2 Foundation solutions for the Wavestar wave
energy converter

The section is based on Paper 1:
Comparison of Foundation Systems for Wave Energy Converters Wavestar. InPro-
ceedings of the 10th European Wave and Tidal Energy Conference, Aalborg, Denmark.

The Wavestar wave energy converter (WEC) was briefly presented in Section 1.2.
Wavestar C6-600kW (Figure 4.2) is designed to operate in water depth of up to 20 m.
The structure would be 80 m long and 17 m wide. When Paper 1 was written, the
structural design had not been completed. A section of Wavestar C6-600kW is con-
structed in Hanstholm and is under continuous development.For this WEC to be
competitive with other offshore energy devices, more cost-effective technical solu-
tions are needed for various parts of the device, including the suitable foundation.
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Paper 1 is a feasibility study considering six possible foundation solutions for the
Wavestar C6-600kW. Pile, bucket and gravity based foundations were dimensioned
for two-column and four-column combinations. As the structural design details were
unknown at the time of analysis, some assumptions were made:

• In the first case of a two-column solution, the foundations had rigid connections
to the columns. The foundations thus had to resist large moment loads as well as
vertical loads and sliding.

• In the second case of four-column solution, the foundationshad hinged connec-
tions to the columns. The foundations should therefore be able to resist vertical
loads and sliding.

Under storm conditions, the floaters are locked and the WEC is lifted above the water
surface. This protects the floaters them from large wave loads. Wavestar A/S pro-
vided loads for a storm case as follows: wind load on the structure, wave loads on the
columns at water surface level and self-weight of the device. The self-weight of the
structure was relatively large. Thus, the foundations are exposed to a small portion
of the tensile loads. In dimensioning of the foundations, all loads were considered as
permanent loads.

A soil profile containing layered sands was assumed for the design. The foundations
were designed in three steps considering the ultimate limitstate (ULS) and service-
ability limit state (SLS) as follow:

• The primary foundation dimensioning in ULS was based on DNV (1992).

• A 2D model was applied for the secondary dimensioning in ULS,employing the
commercial LimitState:GEO program.

• A 3D finite element model verified the ULS and SLS conditions. The commercial
program Plaxis3D was used in this step.

The last design step was a 3D finite element modelling in whichsatisfactory ULS and
SLS conditions were verified.

The feasibility study shows that even though the two-columncase would require larger
foundation dimensions, the total amount of material for their manufacture would be
smaller than for the foundations in the four-column case. While the installation costs
were not assessed, it is expected that the two-column designwould be cheaper than the
four-column design. When comparing bucket foundations withpile foundations, the
latter is found to require about 1.4 times more steel. The bucket foundations thus ap-
pear to be a cost-effective solution for the WEC. Even though the two-column design
seems to be more profitable, the lifting system of the device might require the four-
column design (Figure 4.3). The section of Wavestar C6-600kW in Hanstholm is sup-
ported by four columns, which requires a reliable design methodology for the bucket
foundation axial capacity, especially with respect to cyclic tensile axial loads.
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Figure 4.2 Wavestar C6-600kW wave energy device. (Wavestar, 2011)

Figure 4.3 Four-column Wavestar with bucket foundations. (Wavestar, 2011)
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4.3 Current design methods for bucket foundations

The section is based on Paper 2:
Comparison of design methods for axially loaded buckets in sand. InFrontiers in Off-
shore Geotechnics III proceedings of the third international symposium on frontiers in
offshore geotechnics (isfog 2015), Oslo, Norway.

As lightweight marine structures may be subjected to quasi-static loads that result in
dominating axial components on the foundations (Chapter 1), the drained axial capa-
city of a bucket foundation should be determined. Section 2.3 noted that design guide-
lines in this topic are incomplete. Paper 2 gives an overviewof the available methods
for the estimation of drained compressive and tensile capacity of bucket foundations.
The analysis includes analytical expressions from available design codes and several
research institutes and numerical simulations using an axis-symmetric finite element
model. The aim of Paper 2 is to investigate the available methods and highlight the
differences between them.

The capacities were determined for a hypothetical case study where two bucket foun-
dations of equal diameters (10 m) but with different skirt lengths (5 m and 10 m)
were assessed (Figure 4.4). In all the cases, the foundations were analysed as separate
units under purely axial loading, either compression or tension. A uniform dense sand
was assumed, with the properties given in Table 4.1. As some of the found methods
required information on cone resistance, a profile was created based on Baldi et al.
(1986) (Figure 4.5).

As it was mentioned in Section 2.2, a bucket foundation behaves as a gravity based
foundation under compressive loading. The following list contains the methods (M)
used for the estimation of the compressive bearing capacityRc:

• (M1) Plaxis 2D axis-symmetric Mohr-Coulomb soil model

• (M2) Plaxis 2D axis-symmetric Hardening Soil model

• (M3) Davis and Booker (1971)

• (M4) API (2011)

• (M5) EC-7 (2004)

• (M6) Bolton and Lau (1993)

• (M7) Larsen (2008)

• (M8) Caquot and Kerisel (1953)

• (M9) Brinch-Hansen (1970)

• (M10) Lundgren and Mortensen (1953)
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The first two items on the list are finite element calculations. The remaining items are
various expressions from research papers and standards addressing bearing capacity
factors used in the general Terzaghi’s bearing capacity formula. Moreover, Hansen
(1979) has suggested using a reduced friction angleϕred in analytical solutions based
on the non-associated plasticity theory. The new friction angle accounts for the non-
associated plasticity in soils considering friction angleϕ and dilation angleψ (eq. 4.1).
Thus, it was included in the methods where possible.

tanϕred
=

sinϕcosψ

1− sinϕsinψ
, (4.1)

Figures 4.6 and 4.7 summarize the results on compressive bearing capacity. It is noted
that the ten methods give very different results for the bearing capacity depending on
the selected parameters. Indeed,ϕred contributes to the estimatedRc values in the
sense that the results become more consistent. Methods M3, M5, M7-9 lead to similar
estimated capacities. The overall scatter in the results isexplainable by considering
the exponential increase of the bearing capacity factorsNq andNγ together with the
friction angle. This indicates that the bearing capacity may be significantly overesti-
mated in dense sand locations.

The static tensile capacity was estimated as the sum of external skirt friction and the
lowest value of either internal friction or plug weight. Fewmethods were found to
be capable of determining tensile resistance. The methods considered for the tensile
capacityRt calculation were as follows:

• (M1) Plaxis 2D axis-symmetric Mohr-Coulomb soil model

• (M2) Plaxis 2D axis-symmetric Hardening Soil model

• (M11) Senders (2009), CPT based method

• (M12) Houlsby et al. (2005b)

• (M13) DNV (1992) tensile loading

• (M14) API (2011) CPT based method I

• (M15) API (2011) CPT based method II

• (M16) API (2011) CPT based method III

• (M17) API (2011) CPT based method IV

Just as before, the first two items on the list are finite element calculations. Five tensile
capacity methods (M11, M14-M17) require data from cone penetration testing (CPT).
One CPT based method, M11, is calibrated for tensile loadingon bucket foundations,
while the other four methods (M14-M17) are used for axially loaded pile design. The
latter four were considered purely out of curiosity and, as realized later on, the re-
sults indicated that only specially calibrated methods forbucket foundation tensile
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Table 4.1 Soil parameters used for the analysis.

Parameter Unit Value
Density ratioDR [%] 80
Soil unit weightγ [kN/m3] 20.25
Triaxial friction angleϕtriax [◦] 38.8
Plane friction angleϕpl. [◦] 42.7
Interface friction angleδ [◦] 32.2
Angle of dilationψ [◦] 9
Effective cohesionc′ [kPa] 0
Effective Young’s modulusE′ [MPa] 39.3
Lateral earth pressure coeff.K [-] 0.37

Figure 4.4 Bucket foundations used for the study with dimensions in meters.

response were valid for the design. Methods M12 and M13 are based on the Coulomb
failure criterion. The first method includes stress reduction due to frictional loads in
the soil-structure interface, while the second is also known as theβ-method used for
the determination of the axial resistance of piles.

Figure 4.8 shows the calculation results for the tensile loading capacity. The four
CPT based methods are excluded from the data presentation inthe figure because they
resulted in up to 9 times larger capacities. The results of the other methods show some
considerable scatter. A comparison between the methods is difficult because they are
based on different assumptions. To validate of some of the analysed expressions, a
new laboratory equipment was designed for a testing campaign. The results are pre-
sented in the following Section 4.4.
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Figure 4.5 An assumed cone resistance profile, based on Baldi et al. (1986).
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Figure 4.6 Normalized drained bearing capacity for a bucket foundationd/D=0.5. (Vaitkunaite et al.,
2015)
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Figure 4.7 Normalized drained bearing capacity for a bucket foundationwith d/D=1. (Vaitkunaite et al.,
2015)
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Figure 4.8 Normalized drained tensile capacity for bucket foundationswith d/D=0.5 andd/D=1.
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4.4 Design of the "Large Yellow Box" test set-up

The section is based on Paper 3 and Paper 4:
Paper 3: New Medium-Scale Laboratory Testing of Bucket Foundation Capacity in
Sand. InProceedings of the Twenty-fourth (2014) International Ocean and Polar En-
gineering Conference, Busan, South Korea.
Paper 4:Testing of Axially Loaded Bucket Foundation with Applied Overburden Pres-
sure. Aalborg: Department of Civil Engineering, Aalborg University. DCE Technical
Reports; No. 209.
Vaitkunaite (2015) described the step-by-step test procedure. The report is publicly
available on Aalborg University databasehttp://vbn.aau.dk/.

Based on the literature study (Chapter 2), several aspects of bucket foundation design
remain unclear, e.g., long- and short-term tensile capacity, and tensile cyclic axial re-
sponse (settlements and cyclic degradation). A new testingfacility was designed for
the examination of foundation behaviour under tensile loading conditions (Figure 4.9).

The new testing facility was launched in summer 2012, since when it has undergone
many improvements. The testing rig consisted of a sand container of 2.5 m diameter
and a loading frame supported on four fixed columns. The loading frame carried two
hydraulic cylinders of 200 kN and 300 kN loading capacity. One cylinder was used
for the push installation of a foundation model while the other cylinder was used for
loading.

Two bucket foundation models were designed for the testing campaign. They were 1 m
in diameterD and 0.5 and 1 m in skirt lengthsd. The skirt material was structural steel
that was unprotected from corrosion. The skirt wall thickness was 3 mm. It should be
noted that most of the tests were performed on the smaller foundation, whose lower
self-weight and shorter skirt length made it much easier to handle (Figure 4.10). Each
of the buckets were equipped with a system of narrow steel pipes allowing for inspec-
tion of possible pore pressure development at different soil levels around the skirt.
The pore pressure transducers were placed on the top of the foundation models, which
allowed easy access for adjustments and calibration or re-calibration as needed. An
automatic loading system allowed for the application of axial loads or displacements
on the bucket foundation model. A successful loading sequence typically resulted in
high-quality measurement data with information about time, load, displacements and
pore pressures.

The sand container was filled with Aalborg University sand No. 1, as described in
detail by Hedegaard and Borup (1993). The sand consisted mainly of fine quarts and
a small fraction of feldspar and biotite. The larger particles were rounded, the smaller
particles sub-angular. The sand was submerged in water and compacted with a rod
vibrator. The same sand specimen was kept in the sand container during the entire
testing programme. However, the soil conditions were "reconstructed" before each
test, taking the following steps:
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1. Loosening sand with an upward water gradient.

2. Compacting it with the rod vibrator.

3. Inspecting sand conditions with a CPT test of our own design, as described by
Larsen (2008). Ibsen et al. (2009) suggested a set of equations relating the lab-
oratory cone resistance to the sand properties, such as relative density. Further
analysis of the laboratory CPT outside the scope of this thesis.

A bucket foundation model was installed by mechanical pushing. Every installation
ended with an elastic compressive pre-load, after which themodel was completely
unloaded. The pre-load ensured that the procedure is repetitive from test to test. After
the installation, the loading sequence started for tests without overburden pressure.

As explained in Section 2.1, Aalborg University sand No. 1 properties changed dras-
tically in the first 0-100 kPa horizontal stress. This creates scaling effects related to
the change of the sand properties in low-stress tests. Consequently, the effective stress
was increased in the soil to enable analysis of soil-structure interaction under more
realistic conditions.

The effective stress was increased using a latex membrane that was specially pre-
pared to cover the surface of the sand and the bucket model. Four narrow pipes were
connected to the membrane and used for the suction application on the surface of
the sand. A filter layer between the membrane and the sand surface prevented sand
particles from being sucked out of the container. By this method, a pressurepm of
0-70 kPa was uniformly applied on the surface of the sand to simulate the installation
of the bucket model installed at different soil depths (Figure 4.11).

Ideally, if the entire volume of sand had contained no air bubbles and the membrane
had been perfectly tightened, the suction application would have had resulted in two
favourable effects: (1) an increase in effective soil stresses; (2) keeping the sand sub-
merged in water. However, in practise such conditions were very demanding. Any
holes in the membrane were regularly expected. It was furthermore cleaned from sand
particles before each test. All interfaces of membrane-sand container, membrane-
bucket model, membrane-suction hoses were tightened. Despite many attempts for
improvements, the tests were performed with a leaky system.As a consequence, the
water was sucked out of the sand container, leaving the soil volume just moist (Figure
4.12). Luckily, the effective stresses were successfully increased and, knowing the
moist soil unit weight, the testing programme proceeded with the available facilities.
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Figure 4.9 "Large Yellow Box" test set-up.

Figure 4.10 Bucket foundation model, 1 m in diameter and 0.5 m in skirt length.
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Figure 4.11 Vertical stress distribution on a bucket foundation: prototype (left), model simulations (right).
(Vaitkunaite, 2016)

Figure 4.12 Slightly moist sand after a test with the membrane pressure.
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4.5 Tests performed in the "Large Yellow Box"

The section is based on Papers 4-7:
Paper 4:Testing of Axially Loaded Bucket Foundation with Applied Overburden Pres-
sure. Aalborg: Department of Civil Engineering, Aalborg University. DCE Technical
Reports; No. 209.
Paper 5: Bucket Foundation Model Testing under Tensile Axial Loading. Canadian
Geotechnical Journal. Submitted.
Paper 7:Bucket Foundations under Axial Loading: Test Data Series 13.02.XX, 13.03.XX
and 14.02.XX. Aalborg: Department of Civil Engineering, Aalborg University. DCE
Technical Reports; No. 199.

The testing programme performed in the "Large Yellow Box" aimed at showing the
behaviour of bucket foundations subjected to axial tensileloading during a normal
serviceability situation. Thus, the foundation model was examined under long-term
cyclic loading at low intensity. During most tests, drainedconditions arose. The
testing programme focussed on the development of cyclic displacement and cyclic
degradation. The first part of examinations contained slow monotonic pull-out tests
that provided reference capacities for the cyclic tests. The bucket was pulled up im-
mediately after the installation with a displacement ratev=0.002 mm/s. The second
part of examinations contained cyclic loading tests of 20,000-40,000 harmonic cycles
N and cyclic frequencyf of 0.05-0.1 Hz. The cyclic tests ended with a post-cyclic
monotonic tensile load that indicated the level of cyclic degradation (Figure 4.13).

Table 4.2 shows the results of ten monotonic loading tests. For each of the mono-
tonic loading tests, a test ID is given that indicates the membrane pressure level. For
example, in a test with the ID M40.1, M indicates a monotonic test, 40 a membrane
pressure aiming at 40 kPa and .1 is the attempt number. Reference tensile capacities
FTR at variouspm were derived as the average of the corresponding peak tensile re-
sistances.FTR were used for the normalization of cyclic loads.

Table 4.3 shows the results of 18 cyclic loading tests. The test IDs marked the mem-
brane pressure and loading conditions as follows: in test C70A0.24m-0.23, C - cyclic
test, 70 - aimed membrane pressure of 70 kPa, A0.24 - cyclic loading amplitude in
the testξA=0.24 and m-0.23 - the mean cyclic load in the testξm=-0.23. The last two
coefficients express the corresponding load divided by the reference tensile loadFTR.

4.5.1 Main findings

In most monotonic loading tests, the tensile peak resistance was reached at the upward
displacement of up to -10 mm. Iskander et al. (2002) examineda caisson ofD=0.1 m
andd=0.2 m, which resulted in drained tensile peak loadFT mobilized at a displace-
ment of -4 mm. Thomassen (2016) performed tests with a pile segment ofD=0.5 m
andd=0.95 m, which resulted inFT reached at about -5 mm. Vaitkunaite et al. (2016)
performed tests with a bucket foundation model ofD=0.5 m andd=0.25 m, which
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resulted inFT mobilized at displacements of maximum -3.6 mm. All these results
indicate that the upward displacement has no correlation neither with diameter nor
with skirt/shaft length. Moreover, it may be stated, that the drained tensile capacity is
generally reached within a displacement of up to -10 mm in dense sands.

The development of the load and displacement was expressed by peak loading stiff-
nesskpeak, which was around 1 MN/m for the monotonic loading tests.

Unit skin friction fs is analysed for the monotonic loading tests at different levels
of surcharge (Figure 4.14).fs corresponds to the tensile peak load divided by the sum
of the inner and outer area of the skirt.fs is back-calculated according to API (2011)
usingKtanδ=0.46 as recommended for dense sand withDR in the range of 65-85%.
The method under-predictsfs at surcharges of 2 kPa and 77 kPa, but fits well the
otherfs values. Based on performed tests,fs indicates a non-linear increase of the
unit skin friction with the overburden pressure. The non-linear increase offs may be
explained by the non-linear change of the lateral earth pressure coefficientK (Figures
2.5 and 4.15). The highK value of about 3 at very low soil stress may be generated
by the dilative behaviour of dense sand at low stress which isalong with findings of
Thomassen (2016) and Boulon and Foray (1986).

While most of the cyclic tests resulted in very small cyclic displacements|wcyc|<0.01D,
five of them were interrupted because of an excessive development of vertical dis-
placement. In those tests, tensile peak loads reached the reference load or even
succeeded it. It was noticed that during the critical tests in saturated sand, namely
C0A0.7m-0.4.1 and C0A0.7m-0.4.2, a minor pore suction developed, contributing to
the additional capacity of the tensile resistance. Consequently, these tests could resist
more cycles compared to the tests where the membrane pressure was applied.

Eight cyclic loading tests finished with a monotonic post-cyclic loading. The peak
capacityFPc was up to 25% lower than the virgin tensile capacityFT in tests with
pm=0 kPa. Rather few post-cyclic tests were performed with membrane pressures
pm>0 kPa; they did not indicate any cyclic degradation.

Cyclic loading and unloading stiffness were higher than thevirgin loading stiffness
kpeak, with the magnitude depending on the loading amplitude and the mean cyclic
load. Post-cyclic monotonic loading tests also resulted inhigher peak loading stiffness
kPc than the virgin loading stiffness. The averagekPc was 2.1 MN/m.

Cyclic loading tests showed that mean tensile loads of up to 50% of the tensile drained
capacity can be allowed for the design without resulting in excessive accumulated dis-
placement. Figure 4.16 summarizes all cyclic loading test results. The stable zone
marks the region where the accumulated displacement was|wcyc|<0.01D.
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Table 4.2 Summary of monotonic loading tests. (Vaitkunaite, 2016)

Loading Installation
pm Test ID d/D FT wT v FP dinst
[kPa] [kN] [mm] [mm/s] [kN] [mm]
0 M0.1 0.5 -5.7 -6.3 0.001 49.6 483
0 M0.2 0.5 -6.3 -5.8 0.001 50.6 474
0 M0.3 0.5 -5.3 -4.6 0.002 49.5 473
0 M0.5 0.5 -5.9 -5.5 0.002 73.0 491
19 M20.1 0.5 -19.0 -24.3 0.001 45.3 486
21 M20.2 0.5 -15.3 -11.4 0.001 46.1 495
20 M20.3 0.5 -23.3 -7.5 0.002 57.3 487
41 M40.1 0.5 -28.2 -5.0 0.001 68.3 487
40 M40.2 0.5 -26.9 -5.2 0.002 72.8 487
73 M70.1 0.5 -96.3 -72.2 0.002 74.0 490
pm - membrane pressure,FT - peak tensile load,wT - displacement atFT ,
v - pull-out rate,FP - installation load,dinst - installation depth.

Table 4.3 Summary of cyclic loading tests. (Vaitkunaite, 2016)

Cyclic loading Post-cyclic load
pm Test ID Fmean Fcyc wcyc N FPc wPc

[kPa] [kN] [kN] [mm] [Hz] [kN] [mm]
0 C0A0.2m-0.4 -2.11 1.02 -0.88 39,592 -5.34 -3.83
0 C0A0.3m-0.4.1 -2.05 1.93 -1.35 38,227 -5.95 -7.60
0 C0A0.3m-0.4.2 -2.05 1.93 -6.23 39,753 -4.74 -0.53
0 C0A0.7m-0.4.1 -2.05 3.85 -63.76 8,100 - -
0 C0A0.7m-0.4.2 -2.05 3.85 -65.80 1,285 - -
0 C0A0.7m0.3.1 1.80 3.85 0.15 28,263 - -
0 C0A0.7m0.3.2 1.80 3.85 0 39,980 -4.85 -1.30
0* C0A0.4m0.3 1.91 2.30 0.04 19,629 -5.03 -3.43
0 C0A0.3m-0.1 -0.30 1.66 -0.64 39,729 - -
0 C0A0.2m0.0 0 1.00 -0.29 40,020 -4.86 -4.84
43* C40A0.4m0.4 11.76 11.38 0.72 19,900 -31.33 -12.35
41 C40A0.7m-0.5 -13.03 18.37 -67.55 67 - -
41 C40A0.3m-0.7 20.12 9.33 -63.81 202 - -
71* C70A0.3m0.0.1 2.01 29.38 0.74 19,970 - -
70 C70A0.3m0.0.2 1.92 29.30 1.25 40,867 -93.26 -28.29
73 C70A0.2m-0.2 -22.39 23.08 0.10 31,619 -93.90 -26.53
71 C70A0.3m-0.5 -51.67 24.49 -75.01 19,081 - -
71 C70A0.5m-0.5 -50.61 45.78 -81.90 5 - -
*Tests withf=0.05 Hz, other tests are withf=0.01 Hz
Fmean - mean cyc. load,Fcyc - cyc. loading amplitude,wcyc - cyc. displacement,
N - number of cycles,FPc - peak post-cyc. load,wPc - displacement atFPc.
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Figure 4.13 Cyclic loading with post-cyclic monotonic pull-out (test C0A0.7m0.3.2). (Vaitkunaite, 2016)
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Figure 4.14 Peak tensile load developed at different surcharge levels.(Vaitkunaite, 2016)
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Figure 4.15 Back-calculated lateral earth pressure. (Vaitkunaite, 2016)
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Figure 4.16 Interaction diagram for cyclic loading tests with overburden pressure: 0 kPa (empty marks),
40 kPa (blue) and 70 kPa (green). Red line marks limit of the drained tensile capacity. (Vaitkunaite, 2016)
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4.6 Tests performed in the pressure tank

The section is based on Paper 6 and Paper 7:
Paper 6: Bucket Foundation Response under Various Displacement Rates.Interna-
tional Journal of Offshore and Polar Engineering, 26(2), 116-124.
Paper 7:Bucket Foundations under Axial Loading: Test Data Series 13.02.XX, 13.03.XX
and 14.02.XX. Aalborg: Department of Civil Engineering, Aalborg University. DCE
Technical Reports; No. 199.

As mentioned in Section 2.2, soil drainage depends on the size of the foundation,
loading intensity and soil permeability. Cavitation pressure limits the pore suction
that can be induced by loading. When performing cyclic loading tests in the large
sand container (see Section 4.5), it was noticed that highercyclic loading rates in-
duced some negative pore pressures. The drainage conditions are very important for
bucket foundation design. The soil below the full-scale bucket foundations would nor-
mally experience partial drainage of some degree if permeability is sufficiently low.
The test set-up presented in Section 4.4 was not applicable for investigations of con-
dition under higher pore pressures. Thus, the opportunity to test bucket foundation
responses in a pressure tank was taken (Figure 4.17).

The test set-up was described by Nielsen et al. (2016) and a short description was
given in Paper 6. The aluminium bucket foundation model had dimensions of 0.5 m
in diameter and 0.25 m in skirt length. The model had a very smooth skirt wall, which
allowed focussing on pore pressure development when subjected to tensile loading.
The bucket was installed in dense Aalborg University sand No. 1. The sand sample
was prepared in the way as described in Section 4.4 for the previous test set-up.

The bucket was installed by mechanical pushing, compressively pre-loaded and com-
pletely unloaded. Afterwards, the tank was closed and a pressure of 200 kPa estab-
lished (300 kPa including the atmospheric pressure). The bucket model was pulled
axially with various displacement rates. Fifteen tests were performed of which ten
were documented in Paper 6 showing data with different pull-out rates of 0.01-152
mm/s. The results are summarized in Table 4.4. Tests are numbered according to the
pull-out rate; for example, the bucket model has been pulled-out with a velocity of 0.1
mm/ in test v0.1

4.6.1 Main findings

The testing programme showed that the tensile capacity (peak tensile resistance) cor-
related with the pull-out rate (Figure 4.19). Moreover, thetensile capacity was reached
at increasing displacements that were directly dependent on the pull-out rate. Based
on the performed tests, it was noticed that much larger than the drained tensile ca-
pacity was available even considering the design limit for the upward displacement.
Partial drainage in sand should thus be accounted for when estimating tensile capacity.
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Table 4.4 Summary of pull-out rate tests in pressure tank. (Vaitkunaiteet al., 2016)

Loading Installation
pt Test No. FT wT v FP dinst DR γ′

[kPa] [kN] [mm] [mm/s] [kN] [mm] [%] [kN/m3]
0 v0.01 (0) (0) 0.01 31.0 240.5 79 9.3
200 v0.05 -2.7 -0.7 0.05 32.0 239 85 9.6
200 v0.1 -4.08 -0.65 0.10 31.4 240.7 86 9.6
200 v1 -8.02 -3.61 1 37.6 242.0 88 9.7
201 v10 -30.79 -16.01 10 43.7 241.5 90 9.8
200 v22 -44.07 -14.73 21.70 33.0 236.2 83 9.5
200 v27 -48.84 -14.29 27.20 31.5 239.0 85 9.6
200 v47 -65.36 -48.78 46.71 31.5 236.4 83 9.5
200 v98 -71.65 -60.48 98.30 31.0 239.3 82 9.5
200 v152 -75.17 -68.18 152.30 37.0 236.0 84 9.5

Figure 4.18 shows peak pore pressure distribution for four tests. The higher the pull-
out rate that was applied, the lower negative pressure was generated. The final test
resulted in cavitation pressure, with all inner pore pressure transducers showing nearly
identical suction values, indicating undrained behaviour(Figure 4.18, test v152).

Two analytical methods by Iskander et al. (2002) and Houlsbyet al. (2005b) were
considered for the back calculation of the test data. While the second method gave a
very good match with the test data, successful capacity prediction presupposed know-
ledge of the particular suction induced by the pull-out rate.
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Figure 4.17 Pressure tank used for the displacement rate tests.

Figure 4.18 Pore pressure distribution around the bucket skirt at peak tensile load for tests with displace-
ment ratesv in mm/s. (Vaitkunaite et al., 2016)
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Figure 4.19 Load and displacement results for tests with displacement ratesv in mm/s. (Vaitkunaite et al.,
2016)
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CHAPTER 5
Conclusion and future work

The thesis has addressed a number of critical loading conditions for bucket founda-
tions in sand. Physical modelling was the key tool applied for the analysis as this
showed the largest potential for clarifying real bucket foundation behaviour under ax-
ial loading. A new test set-up was designed for the analysis of long-term cyclic loading
conditions. A pressure tank was furthermore employed for the examination of pore
pressure distribution around a bucket foundation model subjected to various pull-out
rates. The research work has been documented in seven scientific papers that form the
basis of this thesis.

The following Section 5.1 presents the overall outcome of the research, based on
its study objectives (Section 3.2). Section 5.2 provides recommendations for future
analyses regarding model testing and investigation into the tensile loading on bucket
foundations.

5.1 Conclusion

A new laboratory testing facility was designed for the examination of long-term cyclic
loading on a bucket foundation model. This allowed for the testing of a large bucket
foundation model in laboratory conditions on a 1:10 scale model with a diameter of
1 m and a skirt length of 0.5 m. To the best knowledge of the author, this is the largest
model foundation ever tested under laboratory conditions.The model skirt was natu-
rally corroded and installed in fine dense sand providing realistic interface parameters.
The size of the sand container was maximally utilized testing mainly tensile loads and
minor compressive loads. The boundaries of the sand container thus had no influence
on the results. The application of suction under the membrane simulated an evenly
distributed overburden pressure, which allowed for the examinations of friction re-
sponses at different soil depths. Overall, the design of thetest set-up was successful
in that it provided high-quality data and consistent results that were essential for the
data analysis.

Monotonic displacement controlled tests were performed atvarious overburden pres-
sure levels. With the slow displacement rate of 0.002 mm/s, drained responses were
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obtained. The tensile peak load was achieved within the first10 mm of upward dis-
placement, followed by an even reduction due to the diminishing area of the soil-
structure interface as well as soil softening. The higher the membrane pressure level
that was applied, the higher peak resistance was measured, while the stiffness was
similar for majority of the tests, at approximately 1 MN/m. The peak resistance val-
ues were used for the analysis of interface parameters. It was noticed that the unit skin
friction increased non-linearly with the overburden pressure, which may be explained
by a non-linear change in the lateral earth pressure. Back-calculation of the lateral
earth coefficientK resulted in values from 3 for the low vertical stresses to 0.5for the
higher vertical stresses. The rapid change ofK may be expected in the first five me-
ters from the seabed surface. The tests results show that during static tensile loading,
lateral earth pressure is higher than may be predicted with the conventional methods.

The next set of examinations involved cyclic load controlled tests at various over-
burden pressure levels. The mean cyclic loads and amplitudes were normalized with
the measured drained tensile capacity. The bucket foundation model was subjected
to long-term cyclic loading containing up to 40,000 cycles at a constant frequency
of 0.05 or 0.1 Hz. Two-way (compression-tension) and one-way tensile loads were
applied in the test programme. It was noticed that mean tensile loads of up to 50%
of the tensile drained capacity could be allowed for the design without causing an
excessive accumulated displacement during the 40,000 cycles. However, all testing
with tensile mean loads resulted in an incremental upward displacement, even though
it was as small as -10−4 mm. While the cyclic test resulted in very small accumulated
displacements|wcyc|<0.01D, the model was exposed to gradual pull-out when peak
loads reached the drained tensile capacity.

Values for the cyclic loading and unloading stiffness were higher than those found
for virgin loading stiffness. The magnitude depended on theloading amplitude and
the mean cyclic load. Post-cyclic monotonic loading showeda stiffer response com-
pared to the virgin loading. The post-cyclic peak tensile capacity was up to 25%
lower than the virgin tensile capacity in tests with no membrane pressure. Relatively
few post-cyclic tests were performed with membrane pressurespm>0 kPa; no indica-
tion of cyclic degradation was observed.

The final set of tests concerned tensile loadings in a pressure tank. The tank enabled
the examination of very low negative pore pressures in a simulation of conditions at
20 m water depth. A bucket foundation model with a diameter of0.5 m and a skirt
length of 0.25 m was installed in dense sand. The smoothness of the model skirt (cor-
rosion free) allowed a focus on the pore pressure distribution and the tensile capacity.
The model was subjected to various pull-out rates. A rapid pull-out generated fully
undrained behaviour, based on the measurements of the pore pressure transducers.
The peak tensile resistance was found to increase with the pull-out rate, as did the
upward displacement. The initial loading stiffness showedno clear dependency on
the displacement rate. It was found that much larger than thedrained tensile capacity
is available, even when the limitations of the upward displacement are considered. To
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integrate this finding in design practise, a reliable methodof negative pore pressure
prediction in relation to loading intensity needs to be identified.

Natural seabed conditions are extremely changeable, characterized by complex lay-
ering of soils and rich variation in their stiffness, strength parameters and various
hydraulic conductivities. Furthermore, offshore loadingconditions are complex, with
their various loading regimes, amplitudes and mean loads. Model testing provides
valuable information about soil and foundation behaviour.But large amounts of data
and experimental analysis are still needed before all design aspects are clarified and
standardized solutions can be proposed. The data provided in this thesis offer valuable
information regarding the behaviour of bucket foundationsunder tensile cyclic loads
in uniform dense sand.

5.2 Recommendations for Future Work

Designing a new model testing facility has been a laborious process. It required much
reflection supported by the understanding of physical systems, and not least, imagina-
tion. Although the two-year development process of the "Large Yellow Box" testing
facility has already yielded significant results, a number of improvements are sug-
gested below:

• The possibility of enabling sand saturation should be investigated if further test-
ing at overburden pressures are to be performed. This is especially relevant for
increased loading rates.

• The effect of sand compaction with a rod vibrator on the horizontal stress level
should be assessed. This would provide more exact values forthe lateral earth
pressure coefficient.

• Correct interface properties are essential to successful designing. Further soil-
structure interface analysis should be performed considering various sand and
gravel types and metal surfaces. Interface tests performedin direct shear box
tests may supplement the model test data.

• Even though the main focus of the present project was long-term cyclic loading
and drained response, it was observed that small negative pore pressures occurred
in a few cyclic loading tests. The pore suction developed gradually during the
long-term cyclic loading under constant mean and cyclic loads. In the performed
tests, the measuring range of the pore pressure transducersexceeded the needed
range at least 50 times, with the result that their accuracy was slightly unsatis-
factory (+/-2 kPa). Selecting the measuring sensors according to the required
measuring range is likely to provide more accurate results.

• The accuracy of cyclic loading interaction diagrams would benefit from cyclic
loading loading tests with different model diameters and skirt sizes. The results
would be directly applicable for prototype design.
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        Abstract. In order to deliver cost competitive solutions, Wave Energy Converters 

(WEC) must be optimized in several fields, e.g. transportation, installation, structure, 

machinery etc. Large expenses lie on the superstructure support, i.e. the offshore foundation. 

Geotechnical analysis and optimization of six possible foundation solutions for WEC are 

presented in this article. The study is performed for WEC superstructure supported by two or 

four foundations.  In the four-column system horizontal wind and wave loads are transformed 

as a pair of vertical forces, acting in tension and compression. When the overturning moment 

is large, it might be desirable to increase the width distance, achieving smaller vertical forces. 

For this reason, several distances between the supporting columns are investigated. 

Additionally, a two-column system is analysed as it is expected to be more cost effective. In 
such a solution horizontal wind and wave loads are dominant.  

Gravity based, pile and bucket foundations are universally applied solutions for the offshore 

structures. The suitability of these types for a WEC is analysed and commented. The 

foundations are designed to satisfy ultimate and serviceability limit state requirements. For 

each of the foundation solutions, three geotechnical design steps are followed, employing 
analytical calculations, numerical 2D and 3D finite element programs. 

        Keywords: bucket, pile, gravity based foundation, geotechnical design, wave energy 
converter, Wavestar. 

A.1  Introduction 

Wavestar C6-600 kW is a wave energy converter (WEC) designed to deliver 600 kW of 

electrical power to the grid (Figure A.1). It can operate in up to 20 m water depth including 

storm surcharge. At present, Wavestar has a grid-connected prototype installed in Hanstholm 

(Denmark), which is a section of Wavestar C6-600 kW. The prototype has been installed on 
four concrete foundations in soil predominated by chalk. (Marquis et al. 2012) 

 
Figure A.1 Wavestar wave energy machine (Wavestar, 2011). 

The purpose of this paper is to compare and evaluate six foundation solutions for a WEC 

discussing their applicability and construction materials used. The proposed systems are based 

on bucket, pile and gravity based foundation. These types are widely used in offshore 
structures and therefore may be well applicable 

There are several different ways to transfer the loads into the foundations. The study is 

performed for WECs supported by two or four columns, which makes the difference in load 
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transfer from the structure through the foundation to the soil. The loading phase is explained 

in details in the following subsections. Six possible foundation solutions are presented and 

analysed using three geotechnical tools. The programs used are analytical models, the 

numerical 2D program LimitState:GEO and the finite element program Plaxis 3D. 

A.1.1  Dimensioning Procedure 

A foundation dimensioning scheme is shown in Figure A.2 and it describes the concept study 

process of the foundation solutions for the static analysis. The first three steps shown in the 

scheme are presented in this paper. Primary dimensioning is done with an analytical program, 

which differs depending on foundation type. Afterwards, a numerical 2D program 

LimitState:GEO is employed for secondary dimensioning and optimization. Finally, Plaxis 

3D is employed for the last optimization and verification in ultimate limit state (ULS) and 

serviceability limit state (SLS). A completed geotechnical design could be followed by a 

structural foundation design and the price estimation could be carried out for the foundation 

and installation costs. The last two parts are not analysed in this article. 

 

 

Figure A.2 Design scheme. The first three from top are analysed in this article. 

A.1.2  Structural Solutions 

As previously mentioned, Wavestar has an active prototype in Hanstholm. The superstructure 

is supported on four concrete foundations. The distribution of loads on the foundations 

depends on the overall structural solution. At the time of writing the detailed structural design 

for the new Wavestar C6-600 kW was unknown. Hence the upper structure is assumed to be 

perfectly rigid and supported by four pinned foundations, as shown in Figure A.3. In this case 

vertical compression and tension loads are dominating. It is planned that the new WEC      

C6-600 kW will be supported on four legs positioned with distances of 17 and 80 m.  When 

the overturning moment is large, it could be desirable to increase the 17 m distance between 

legs achieving smaller vertical loads and resulting into smaller foundations. That is why the 

30 m distance is also investigated, see Figure A.3. 

 

Additionally, a solution with two foundations is considered in this paper because it is 

expected to be more economical. In such a solution horizontal wind and wave loads dominate, 

which leads to large moment loading on the foundations, see Figure A.4. However, a rigid 

foundation connection is assumed here, because it ensures the overall stability of the structure.  
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Figure A.3 Pinned support structure for four-column WEC C6-600kW. Wave loads marked in green and 

wind load marked in blue. The superstructure is assumed to be perfectly rigid. 

A.1.3  Load Conditions 

Loads on the foundation are provided by Wavestar A/S. This paper presents only calculations 

in a storm load case, where the superstructure is lifted to the highest position and locked. In 

such a case, it is expected that the structure will have to resist the highest wind and wave 

loads creating the least favourable situation.  

 

 

Figure A.4 Rigid support structure for two-column WEC C6-600kW. Wave loads marked in green and 

wind load marked in blue.  

The assumed water depth is 16 m. Loads are estimated for several column diameters, i.e. 2, 3 

and 4 m. The loads are presented in Table A.1 and Table A.2. Calculations are performed for 

the ULS and SLS. Safety factors are taken from DNV (2013) and applied for the 

characteristic loads and material strength parameters. 

 

A.1.4  Soil Conditions 

Seven soil layers up to 33 meters depth are derived from a representative soil profile. The soil 

parameters: unit weight, γ, friction, φ’, dilation, ψ, are presented in Tables A.3 and A.4. The 

last soil layer is silty clay with a characteristic undrained shear strain strength, su = 563 kPa. 

 
Table A.1 Characteristic Loads on 1 Column of the 2-Column System. 

Description Units Column diameter 

  Ø2 m Ø3 m Ø4 m 

Wind load on WEC kN 467 467 467 

Moment arm for wind load m 29.3 29.3 29.3 

Wave force  kN 1007 1557 2280 

Moment arm for wave load m 15.8 16.0 16.2 

Weight of superstructure  kN 7840 7840 7840 
 



66 

 

66 

 

Table A.2 Characteristic Loads on 1 Column of the 4-Column System. 

Description Units Column diameter 

  Ø2 m Ø3 m Ø4 m 

Pull/compression load, 17 m kN 2679 3743 5137 

Pull/compression load, 30 m kN 1518 2121 2911 

Horizontal load  kN 1241 1791 2514 

Weight of superstructure  kN 3920 3920 3920 
                 
                   Table A.3 Characteristic Soil Properties 1. 

No. Alt. 

[m] 

Description γ φ’ ψ 

  [kN/m3] [°] [°] 

1 -6.5 Medium Sand  19.5 38 12 

2 -7.9 Coarse Sand 19.5 38 12 

3 -12 Medium Sand 19.5 35 8 

4 -24.8 Gravely Sand 20.0 38 9 

5 -26.5 Fine Clayey Sand 19.5 32 4 

6 -30.5 Silty Sand  18.0 32 2 

7 -33 Silty Clay 18.5 - - 

 
                                              Table A.4 Characteristic Soil Properties 2. 

No. Alt. Description ���
���

 ����
���

 �	���� 
 [m]  [kN/m2] [kN/m2] [kN/m2] 

1 -6.5 Medium Sand  88427 70083 265281 

2 -7.9 Coarse Sand 128559 101890 385678 

3 -12 Medium Sand 72548 63774 217644 

4 -24.8 Gravely Sand 130291 103262 390872 

5 -26.5 Fine Clayey 

Sand 77169 75712 231508 

6 -30.5 Silty Sand  138459 135844 415376 

7 -33 Silty Clay 66766 96435 200297 

 

 

A.1.5  The Design Criteria 

The deformation tolerances are usually derived from the offshore structure’s operational 

requirements. The requirement for WEC is divided into two contributions: one from 

installation and one from the loads causing deformation. In this case, the requirement is set to 

a total rotational deformation of 0.50°, where 0.25° originates from the installation and 0.25° 
is from foundation settlements. According to WEC manufacturer (Wavestar A/S) the machine 

is able to perform with this inclination, and a limit for the SLS is chosen. Moreover, the 

requirement was critical for most of the cases, e.g. the inclination of 0.25° in SLS gave the 
final dimensioning for two-column systems. 
 

A.2  Bucket Foundations 

The Bucket Foundation, also known as the Universal Foundation, is found to be a competitive 

concept for various offshore structures. It provides several positive properties, e.g. short 

installation time and smaller impact on the natural environment during the installation. The 

technology was initiated by a research team from Aalborg University, Nielsen and           



67 

 

67 

 

Ibsen (2011). The dimensioning methodology for bucket foundations is used according to 
Vaitkunaite et al. (2012). 

The WEC C6-600 kW supported by buckets is visualized in Figure A.5. Results are presented 

in tables for each calculation model. There are two variables: bucket diameter, D, and skirt 
length, d. It is assumed that the wave impact is on a 2 m diameter column.  

 

Figure A.5 Wavestar C6-600kW supported by buckets (Aalborg University, 2011) 

A.2.1  Analytical Model for Bucket Foundations 

Analytical model (Ibsen, 2002) determines the ultimate bearing capacity of bucket foundation 

subjected to static loads. Wind and wave loads are combined to one horizontal load, H, acting 

with a corresponding moment arm, hm. The foundation is also subjected to vertical bucket and 

superstructure self-weight load, V. It is assumed that the foundation rotates as a solid body 

around one point in some depth, dr. The point of rotation can be located below the foundation 

level or in between the soil surface and the foundation level. In order to calculate the earth 

pressure, it is assumed that the walls are rotating synchronically around a point in each of 
them, as shown in Figure A.6. 

When calculating the bearing capacity of the bucket foundation, the location of the rotation 

point is found iteratively. During the iteration process, the vertical, horizontal and moment 

equilibrium must be ensured. It is done by the use of earth pressures, E, (Figure A.7) as well 

as friction, F, on the skirt and contribution of the end resistance. The point of rotation which 

is the centre of the line failure must also be the point of rotation used in the earth pressure 

calculation. The largest moment capacity is obtained if earth pressures, epre, are utilized to the 
full depth. epre is calculated by the following equations, Ovesen et al. (2012).  


���� = ������ + �′�� + c′����	, drained	   													 (A.1) 


��� = ����� + ��� + "	����	, undrained																																																										                  (A.2) 

Where p is passive earth pressure, kN/m2; γ – soil unit weight, kN/m3; su – undrained shear 

strength, kN/m2; c’ –  cohesion in kN/m2;  Kγ, Kp, and Kc – dimensionless earth pressure 

factors for the active and passive sides on rough skirt walls,  Ovesen et al. (2012); z – soil 
depth, m; D – bucket skirt diameter, m. 
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Figure A.6 The assumed rotation of bucket walls around a point O, after (Ibsen, 2002). 

 
Figure A.7 a) Resultant earth pressure when rotation point is below foundation level; b) earth pressure, 

rotation point above foundation level, after (Ibsen, 2002). 

An extremely eccentric loading is considered. The eccentricity, e, lies within the range 

0.3b’<e<0.5D. Dimensionless factors (s, i, N) are employed to the bearing capacity (Equation 
A.3 and Equation A.4) according Appendix G in DNV (2013). 

$%
&' = ��(�)��"�*�� + c′)��"�*��+1.05 + 01234�5, drained											                                           (A.3) 
$%
&' = 1.05	"	)��"�*�� , undrained	                                                                                     (A.4) 

 

Where Rd is bearing capacity, kN; A’ – effective area, m2; c’ is cohesion in kN/m
2;                  

γ’ – effective soil unit weight, kN/m3; N –bearing capacity factor; s – shape factor; i – 

inclination factor, b’ – width of the effective bearing area, see Figure A.15. 

 
Table A.5 Analytical Model Results, Bucket Foundations, ULS. 

Distance D d 

[m] [m] [m] 

Two-column support 

- 8 7 

Four- column support 

17 8 7 

30 9 7 
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A.2.2  Numerical 2D Model for Bucket Foundations 

This software is capable of estimating the ultimate limit state prior to failure of various 

geotechnical structures as well as retaining wall problems. The program allows 2D 

calculations. Moreover, it is possible to design pulled and compressed foundations at once for 

the four-leg supported structure. With several assumptions the program is used for estimation 
of circular bucket foundation in ultimate limit state. 

LimitState:GEO performs numerical analyses utilizing Discontinuity Layout Optimization 

(DLO). DLO discretises the soil body in a number of nodes. Afterwards, the potential slip-

lines discontinuities – sliding blocks – that configure the failure mechanism are assessed 

through the node connections; see Figure A.8. Results are presented in Table A.6.  

 

Figure A.8 DLO in LimitState:GEO done for bucket foundation in homogeneous soil layer. 

Table A.6 Numerical Model Results, Bucket Foundations, ULS. 
Distance D d 

[m] [m] [m] 

Two- column support 

- 8 7 

Four- column support 

17 6 5 

30 4 4 

 

A.2.3  Finite Element Model for Bucket Foundations 

Plaxis 3D is a geotechnical software that employs the finite element method (FEM) for the 

calculations. This numerical technique enables the user to set up a model in three dimensions 

with the desired geometry and boundary conditions, see Figure A.9. Subsequently, a number 

of soil constitutive models are available and may well approximate the soil response when the 

soil properties are well known. In the study presented, Plaxis 3D is used for estimation of the 
bearing capacity as well as the serviceability conditions. 

The Hardening Soil model is an advanced model that is used for analysis of soil behaviour 

and is selected for the foundation modelling. It directly describes the non-linearity in stress-

strain curve as well as stress level dependency. Three elasticity moduli are required, meaning 

more precise soil stiffness estimations: triaxial loading stiffness,	���
���

; triaxial unloading 
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stiffness,	�	����; and the oedometer stiffness,	����
���

, Schanz et al. (1999). All of the mentioned 

stiffness parameters for the Hardening Soil model are presented in Table A.4.  

 

Figure A.9 Plaxis 3D model for two of four bucket foundations. Distance between the buckets 17 m, 

foundation diameter 5 m, skirt length 4 m. 

Table A.7 FEM Results, Bucket Foundations, ULS. 
Distance D d Rotation 

[m] [m] [m] [°] 
Two-column support 

- 8 7 0.22 

Four-column support 

17 5 4 0.12 
30 4 4 0.22 

 

Pulled and compressed foundations are modelled at once for the four-column supported 
structure. The serviceability limit state is also assessed. 

Results are presented in Table A.7, i.e. in 17 m case buckets with diameter and skirt length of 

4 meters resulted in maximum rotation of 0.26°, hence, the diameter was increased by a meter 

and the final dimensioning resulted in rotation of 0.12°. Due to time consuming calculations, 

the intermediary and more optimal dimensions were not considered. The same procedure was 
applied to the following foundation types.  

   
A.3  Pile Foundations 

Pile foundations have been used for decades to support offshore structures. Steel piles are 

rather easy to manufacture, and the installation procedure, which requires a hydraulic 

hammer, is well known. The WEC C6-600 kW supported by piles is visualized in Figure 

A.10. Results are presented in tables for each calculation model. There are two variables: pile 

diameter, Dpile, and shaft length in the soil, L. It is assumed that the wave impact is on a 4 m 

diameter in two-column support and 3 m diameter in four-column support.  
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Figure A.10 Wavestar C6-600 kW supported by piles (Aalborg University, 2011). 

A.3.1  Analytical Model for Pile Foundations 

The analytical method for assessing the required pile dimensions is based on DNV (1992) and 

API (2000). The ultimate resistance of the pile is determined from the theory of plasticity 

where lateral and moment loadings are supported by the unit earth pressures developed along 

the pile shaft. The unit earth pressures estimation is divided into two separate regions, 

depending on whether the pile is installed in moderate or great depth. Moderate depth, 

0<d<dt, is estimated from the soil surface until the level where soil moves to surface when 

laterally loaded. In the great depth, d>dt, the soil moves around the pile due to lateral loading. 

The transition point between both calculations is called the transition depth, dt. Presumably in 

this point, the unit earth pressure calculated for moderate depth presents the same results as 

the unit earth pressure calculated for great depth. Detailed estimation is presented in          

DNV (1992) and API (2000). Additionally, the earth pressures are assessed along the pile for 

different soil layers. This assessment distinguishes between friction soils where earth 

pressures are calculated by Equation A.5 and Equation A.6. In case of cohesive soils, the unit 
earth pressure is calculated by Equation A.7 and Equation A.8. 

�	 = 789 �
: + 8;< ��=,								for	0 < = < 	=A																																																																								          (A.5) 

�	 = 83��=,																									for	= > =A 																																																																																													(A.6) 

�	 = 3"	 + ��= + D �: "	, for	0 < = < 	=A 																																																																																			(A.7)   

�	 = 9"	,																													for	= > =A 																																																																																													(A.8)  
Where pu is ultimate resistance, kN/m2; c1, c2 and c3 – coefficients according to DNV (1992), 
d – depth, m;  and D – diameter, m. 

The axial resistance is obtained by the skin friction combined with the tip resistance. When 

the pile is axially loaded after the installation, the total resistance against axial loading, Q, is 

calculated differently either for pile acting unplugged or plugged manner, corresponding 

Equation A.9 and Equation A.10. The parameters are illustrated in Figure A.11.  

F = 	0.9FG,H + F�,I + FG,J ,				unplugged																																																																																				(A.9) 

F =	F� + F�,I + FG,J,											plugged																																																																																					   (A.10) 

Where Q is total resistance against axial loading, kN; Qm  - inside/outside shaft resistance, kN; 
Qp  - tip resistance, kN.  
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Figure A.11 Parameters for pile axial resistance calculation after (Roesen, 2011). 

Term ‘plugged’ specifies that the developed unit skin friction inside of the pile is larger than 

the tip resistance, Qm,i > Qp. The term Qm,y cannot be utilized when the soil outside the pile is 

used for lateral loading. Therefore, Qm,y should be set to zero unless additional length is added, 

which is unwanted as additional length means additional cost. The skin friction, qm, is 

calculated for the different soil layers. For drained cases Equation A.11 is used, and for 
undrained cases Equation A.12. DNV (1992) 

NG = 	�	���	012O < PQ																																																																																																				   (A.11) 
NG = 	R"																																																																																																																										  (A.12) 
Where qm is the skin friction, kN/m

2; K – earth pressure coefficient, 0.8 according to         

DNV (1992); ���	 - effective overburden pressure, kN/m2; δ – angle of soil friction in the pile 

shaft interface, degrees; fl – the upper limit for skin friction, kN/m2; α – factor, equal or 

smaller than 1. The end resistance is calculated for drained conditions according to Equation 

A.13 where the limiting resistance, ql, corresponds to the resistance at critical depth. The end 
resistance in undrained case is calculated by Equation A.14. 

N� =	���	)S ≤ NQ																																																																																																																															(A.13) 

N� = 	9"	U�																																																																																																																																								(A.14) 

Where qp is the end bearing, kN/m
2; ql – resistance at the critical depth, kN/m

2; Fc – soil 
strength correction factor; Nq – bearing capacity factor.  

If Qm,i can fulfil Equation A.15, then vertical equilibrium can be achieved without any 
additional length for the pile. 

FG,H ≥ 	W − F�,I 																																																																																																																															 (A.15) 

Where V is vertical load, kN.  

Pile dimensions are estimated by the analytical model and provided in Table A.8, where     
Dpile stands for pile diameter and L for shaft length. 
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     Table A.8 Analytical Model Results, Pile Foundations, ULS. 

Distance Dpile L 

[m] [m] [m] 

Two-column support 

- 4 15.8 

Four-column support 

17 3 9.6 

30 3 9.6 

 

A.3.2  Numerical 2D Model for Pile Foundations 

The same strategy is applied as for bucket foundations in numerical 2D modelling. Results are 

presented in Table A.9.  

Pulled and compressed piles are designed at once for the four-column supported structure, see 
Figure A.12. 

 

Figure A.12 Two of four piles modelled in LimitState:GEO. Distance between the piles 17 m, pile 

length in the soil 11 m 

     Table A.9 Numerical Model Results, Pile Foundations, ULS 

Distance Dpile L 

[m] [m] [m] 

Two-column support 

- 4 15.5 

Four-column support 

17 3 11 

30 3 10 

 

A.3.3  Finite Element Model for Pile Foundations 

With the use of Plaxis 3D, the final dimensions as well as verification for SLS and ULS 

conditions are achieved. The same strategy as for buckets is followed. Results are presented in 
Table A.10. 
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Figure A.13 Two of four piles modelled in Plaxis 3D. Distance between the piles 30 meters, pile length 

in the soil 7 m, diameter 3 m. 

A.4  Gravity Based Foundations 

The weight and foot print on the seabed allow gravity foundation to resist environmental 

loads. They can be produced in various shapes providing advantages in material saving, 

sustaining ice-loads etc. In this article, gravity foundations are of a very simple square prism 

shape. The WEC C6-600 kW supported by gravity based foundations is visualized in Figure 

A.14. Results are presented in tables for each calculation model. There are three variables: 

length and width, a, and height, hgrav. It is assumed that the wave impact is on a 4 m     

diameter column.  

 

Figure A.14 Wavestar C6-600 kW supported by gravitational foundations (Aalborg University, 2011). 

Table A.10 FEM Results, Pile Foundations, ULS & SLS. 

Distance Dpile L Rotation 

[m] [m] [m] [°] 
Two-column support 

- 4 15 0.18 

Four-column support 

17 3 7 0.20 

30 3 7 0.18 
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A.4.1  Analytical Model for Gravity Based Foundations 

Bearing capacity formulae for gravity based foundations are taken from Appendix G in     

DNV (2013). All the external loading and foundation self-weight forces are transformed into 

design horizontal, Hd, and vertical loads, Vd. The bottom surface of the foundation is in direct 

contact with the soil in an effective area, A', calculated by Equation A.17. The size of the 
effective area depends on the foundation shape and loading eccentricity. 

 

Figure A.15 Effective bearing area (dashed) of square and circular section gravity based foundations 

(DNV, 2013) 

Several possibilities are visualized in Figure A.15. Eccentricity of the foundation is estimated 

by Equation A.16, and it satisfies the requirement for eccentrically loaded foundation, 
emax=0.3b’.   


 = Y
Z 																																																																																																																																																		  (A.16) 

[′ = (′\′																																																																																																																																															(A.17)   
Where M is moment load, kNm; and V – vertical load, kN. 

The structure is supported on two or four circle-section concrete columns. Bearing capacity is 

estimated by Equation A.18, DNV (2013). Layer no. 3 is taken for the calculation. This layer 

consists of medium sand, see Table A.3. It is chosen because it presents less material strength 

than the two upper layers and can provide a more conservative dimensioning. Cohesionless 

fully drained soil is assumed. 

$%
&' = 0.5��(�)�"�*� + ���)S"S*S + c′)�"�*�																																																																											   (A.18) 

Resistance to sliding is ensured by Equations A.19 and A.20. 

] < 	8′[� + W0124																																																																																																																										 (A.19) 
^
Z < 0.4                               (A.20) 

Where H is horizontal sliding load, kN. 

Gravity based foundation dimensions estimated by the analytical model are provided in    
Table A.11, where a stands for the length and width of the foundation and hgrav for the height. 

                     
 



76 

 

76 

 

Table A.11 Analytical Model Results, Gravity based Foundations, ULS. 

Distance a hgrav 

[m] [m] [m] 

Two-column support 

- 11 4.5 

Four- column support 

17 9 4 

30 8 4 

 

A.4.2  Numerical 2D Model for Gravity Based Foundations 

The same strategy is applied as for other foundations in numerical 2D model, see Figure A.16. 

Results are presented in Table A.12.  

 

Figure A.16 Two of four gravity based foundations modelled in LimitState:GEO. Distance between the 

foundations 17 m, foundation height 4 m, width and length 11 m. 

                           Table A.12 Numerical Model Results, Gravity based Foundations, ULS.  

Distance a hgrav 

[m] [m] [m] 

Two- column support 

- 11 4.5 

Four- column support 

17 11 4 

30 9 4 

 

A.4.3  Finite Element Model for Gravity Based Foundations 

With Plaxis 3D the final dimensions as well as verification for SLS and ULS conditions are 

achieved. The same strategy as for buckets is followed. On the contrary to the previous two 

types of foundations, the final dimensions of gravity based foundations in four-column case 

were determined by the ultimate limit state conditions. Results are presented in the following 

Table A.13. 
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Table A.13 FEM Results, Gravity based Foundations, ULS & SLS. 

Distance a hgrav Rotation 

[m] [m] [m] [°] 
Two-leg support 

- 9 4 0.24 

Four-leg support 

17 8 4 0.07* 

30 7 4 0.03* 
*Rotation due to differential vertical settlement of the foundations 

A.5  Limitations 

While modelling the four-column case, it was assumed that equal lateral loading would 

impact both, compressed and pulled, foundations. This assumption is conservative, because 

during the storm case the wave length is larger than e.g. 17 m, and the waves cannot hit the 

pile with an equal force. However, the comparison between foundation types is still valid as 

long as the same conditions are assumed. 

In the long-term perspective, cyclic loading influence should be considered. It is noticed that 

even not large but constantly repeating pull-out loads tend to impact strongly the stability and 

serviceability of the foundations. This can be another issue for a WEC supported on four 

foundations. Presently a study on cyclically axially loaded buckets and piles is performed at 

Aalborg University.   

 

Figure A.17 One of two gravity based foundations modelled in Plaxis 3D. 

A.5.1  Discussion about Dimensioning Steps 

Significant optimization was performed for the WEC supported by four bucket foundations. 

This is due to the fact that analytical model Ibsen (2002) is created for buckets subjected to 

dominating moment loading. The numerical 2D model provided rather good primary results 

for the WEC supported by four buckets. When support is on two buckets, the analytical Ibsen 
(2002) model gave a fast and precise result compared to the final estimations in Plaxis 3D.  
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The dimensioning procedure for piles was followed according to Figure A.1. Small 

optimization was done for two-column support, when dimensions from the analytical model 

were minimized by 5%. Larger optimization was not achieved for four-column structure. The 

analytical model was taken from the monopile foundation calculations, where the pile is 

subjected to dominating moment loading DNV (2013). That is why it is more suitable for 

two-column support. However, the analytical model provided a good primary dimensioning, 
which was optimized by Plaxis 3D afterwards.  

The procedure for two-column support with gravity based foundations was rather 

conservative during the analytical and LimitState:GEO estimations, because it was possible to 

optimize the dimensions by 40% during the last step. A smaller optimization of maximum 

23% was done for four-column support comparing analytical and Plaxis 3D models. Yet for 

the primary dimensioning the analytical model works better than the present numerical 2D 
model.   

A.6  Comparison 

The comparison is done only from the geotechnical point of view. Other influences of 

installation and structural design would give a better overview. Figure A.18 shows the main 

dimensions taken into account when comparing the materials used for the foundation. 

 

Figure A.18 Dimensions taken into account when estimating the materials used for the manufacturing of 
the foundation. 

A.6.1  Two vs. Four Foundations 

With the analysis of the buckets in Table A.7, it can be stated that the dimensions of each 

foundation unit slightly differs in two and four legs cases. As expected, larger foundations are 

required for the first case. However, 1.3 times more material would be used for the WEC 

supported on four foundations. The influence of distance between pulled and compressed 

foundation is minor too, which is seen only in small fluctuations of rotations in SLS and 

material used. 

 

With the analysis of the piles in Table A.10, it can be seen that in the two legs case a pile is 

significantly longer. However, 1.2 times more material would be used for WEC supported on 

four piles, because the upper column from the seabed to the WEC has to be taken into 
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account. The influence of distance between pulled and compressed foundation is minor too, 
which is seen only in small fluctuations of rotations in SLS. 

Similarly to the previous types, gravity based foundations in Table A.12 are larger in two legs 

case. There is a difference between foundations in the four legs cases, where 30 meters 

distance results in smaller foundation dimensions. It happens due to smaller vertical load. 

However 1.7 times more material would be used in the four-column case (30 m) compared to 
the two-column case.  

Finally, it can be seen that increasing the distance between the columns from 17 to 30 meters 

gives small benefits for the foundation size, but requires more complicated upper structure 

design. Therefore, the smaller distance of 17 m between the supporting columns is more 

favourable  

A.6.2  Buckets vs. Piles 

In both two- and four-column cases, 1.4 more steel is required when using piles. However this 

is just the basic dimensions done from the geotechnical calculations. The structural design 

should be the following step. The connection to superstructure should be considered in order 

to estimate more exact results. It is known that piles are connected to the superstructure by the 

use of transition piece. The bucket foundation does not need this element to be connected to a 

WEC. However, the production of the foundation itself is rather expensive.  

 
Three foundation concepts for wave energy converters were performed and presented in this 

paper. The proposed systems are based on foundations widely used to support offshore 

structures: buckets, piles and gravity based foundations. Dimensioning was done in three 

steps employing various geotechnical calculation models and providing the optimised results. 

Analytical models, the numerical 2D program LimitState:GEO and the finite element program 

Plaxis 3D were used for the design. The comparison showed that two foundations provide a 

good stability and economical solution in the means of material use. By comparing piles and 

buckets, it was found that the latter requires less material. A full cost estimation needs a 

structural analysis, taking fatigue limit state into account, and an installation analysis, where 
the need for seabed preparation, scour protection and penetration analysis would be estimated.  

        Acknowledgment. This research is done via the project “Cost Effective Foundation and 
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Introduction 83

Abstract. A study of the present knowledge about the bucket resistance for axial
loading was performed considering analytical and numerical design methods as well
as physical models. A case study was performed with two bucket foundations of
equal diameter, but different skirt lengths installed in dense sand. It was found that
bearing capacity from the surcharge increases approximately twice if thefoundation
skirt is two times longer. However, the predicted compressive soil capacity can differ
by 3.6 times depending on the chosen bearing capacity parameters. Fewmethods are
available for the estimation of the static tensile resistance for a bucket foundation.
Furthermore, the predicted tensile resistance can differ up to 12 times indicating that
further analysis is needed approaching this issue.

B.1 Introduction

Offshore energy industry is greatly expanding. Wind turbines, wave and tidal energy
devices can harvest beneficial and ecological energy. Thesestructures are subjected to
strong environmental loads and require some complex support systems. Geotechnical
design solutions are often inspired by valuable experiencefrom the oil and gas sec-
tor. Suction foundations have been used for decades as a suitable support for various
offshore structures worldwide. Recently, the first jacket foundation with three buckets
designed for a wind turbine was installed in Borkum Riffgrund wind turbine park in
Germany. However, standard guideline for bucket foundations is not yet available.

In 1990s, NGI and Oxford University performed detailed studies of bucket founda-
tions for the Europipe 16/11E and SLT jacket. The campaign included model tests,
finite element analysis and a complete foundation design. Comprehensive information
regarding the bucket behaviour was provided by Bye et al. (1995), Tjelta (1995) etc.
A historical overview of the bucket foundations and NGI developed design procedure
are presented by Skau and Jostad (2014).

Oil and gas platforms transfer mainly compressive loads to the foundations. Ten-
sile capacity is considered only for the short-term events such as storms. Compared
to the oil and gas platforms, wind turbines are very light. The foundation of a wind
turbine has to sustain long-term tensile loads. Consequently, this study focuses on
the ultimate tensile and compressive bucket capacities estimated by various analytical
methods, found in the available research papers and standards.

Aalborg University started an extensive study about bucketfoundations for wind tur-
bines in 2002. The relevant experience is reflected in this paper. It was chosen to
perform a case study for two buckets of different embedment ratios illustrating the
differences of the methods in a straightforward manner.
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B.2 Methods for Compressive Capacity

The compressive capacity of shallow foundations is calculated using the traditional
Terzaghi (1943) bearing capacity formula. The formula estimates capacity of shal-
low onshore strip foundations. It is also applied for offshore shallow foundation cal-
culations when improved by various modification factors to convert the plane strain
problem to the axis-symmetric problem. Suction bucket is a skirted shallow offshore
foundation of circular shape. The soil that is trapped inside makes the bucket behave
as a gravity based foundation. Thus, the bearing capacity ofsuction bucket can be
estimated using the traditional formulae. Bucket compressive capacityRc consists of
four main parts: soil self-weightRγ , surchargeRq, effective cohesionRc and outer
skirt frictionRfric. Each of these parts can be estimated in various ways which differ
slightly from method to method. The skirt friction makes less than one percent of
the total compressive capacity. Frictional resistance is addressed in section B.3. For
comparison reasons,Rfric is ignored in the compressive bearing capacity estimation.

Factor for surchargeNq increases exponentially with an increase of soil friction an-
gle ϕ. Most of the methods presented suggestNq value derived by Prandtl (1920),
except Larsen (2008) and Bolton and Lau (1993), who combinedmodifications for
foundation roughness and shape and the bearing capacity factors. Ibsen et al. (2012)
has shown howNq value for bucket foundations is influenced by surface roughness
which was analysed using a finite element program. Bearing capacity factor for the
self-weightNγ depends on the values ofNq, ϕ and surface roughness. Detailed anal-
ysis and comparison of bearing capacity factors are done by Ibsen et al. (2012).

Formulae forNq andNγ are provided in this paper. Most of the methods require
modification factors for foundation shapes, embedment depthd and load inclination
i. The specific formulae can be found in the references. A largeamount of laboratory
tests on axially loaded bucket foundations was performed atAalborg University. Ver-
tical bearing capacities of rough circular surface footingand buckets of various shapes
were tested and analysed by Ibsen et al. (2012, 2013, 2014a and 2014b) . These re-
sults are discussed in section B.5.1. The tests were followed by a new expression for
the bearing capacity of laboratory bucket models.

B.2.1 Design codes

DNV (1992)

DNV (1992) provides (B.1) based on Terzaghi (1943) and describes the calculation of
bearing capacity for offshore foundation stability as rough but good estimate for the
early stage of design.

Rc = A′(0.5γ′B′NγKγ + q′NqKq + c′NcKc), (B.1)

Nq = tan2(45 + 0.5ϕ)eπtanϕ, (B.2)

Nc = (Nq − 1)cotϕ, (B.3)
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Ki = sidiii, (B.4)

wherec′ is the effective cohesion,q′ surcharge,A′ effective bearing area of the foun-
dation,B′ effective width of the foundation,Nq,Nγ ,Nc bearing capacity factors,Kq,
Kγ ,Kc modification factors to account for foundation shape, embedment and load in-
clination.
DNV (1992) suggests two methods forNγ . The first one was found by Brinch-Hansen
(1970):

Nγ = 1.5(Nq − 1)tanϕ. (B.5)

The second was suggested by Caquot and Kerisel (1953):

Nγ = 2(Nq + 1)tanϕ. (B.6)

EC-7 (2004) and API (2011)

Eurocode 7 Geotechnical design EC-7 (2004) and API (2011) adopt equations (B.1)
and (B.6). However, the shape and depth factors are different. Eurocode 7 Geotech-
nical design (EC-7, 2004) is taken into consideration despite that it is intended for
onshore foundation design.

B.2.2 Bolton & Lau (1993)

Bolton and Lau (1993) proposed bearing capacity factorsN∗

q andN∗

γ . These factors
were estimated for the axis-symmetric calculation.

Rc = A′(0.5γ′DN∗

γ + q′N∗

q ), (B.7)

B.2.3 Larsen (2008)

Larsen (2008) derived new bearing capacity factorsNq andNγ for the drained bearing
capacity. The study was performed using an axis-symmetric numerical model with
bucket foundations and lead to equations (B.8) and (B.9). Detailed information is
provided in Larsen (2008) and Ibsen et al. (2014b).

Nq = c3e
c4πtanϕtan2(45 + 0.5ϕ), (B.8)

Nγ = c1((Nq − 1)cosϕ)c2 , (B.9)

whereci are available for circular and strip foundation with rough and smooth surface
in Larsen (2008).

B.2.4 Davis & Booker (1971)

Davis and Booker (1971) performed a rigorous plasticity solution which resulted in
Nγ for rough foundation:

Nγ = 0.1054e9.6ϕ. (B.10)

85



86 Comparison of Design Methods for Axially Loaded Buckets in Sand

B.2.5 Lundgren & Mortensen (1953)

Lundgren and Mortensen (1953) estimatedNq based on laboratory tests.

Nγ = 0.25((Nq − 1)cosϕ)1.5. (B.11)

B.3 Methods for Tensile Capacity

Applying the theory of anchoring systems, three failure modes for tensile loading on
bucket foundation can be considered. When the tensile load isapplied rapidly, suction
under the lid is generated creating the reverse bearing capacity. However, in long-term
loading conditions, two components resist the tensile load: friction on the outer skirt,
and the lower value of the soil plug weight and friction on theinner skirt. Obviously,
foundation self-weight would be the third component, but itis not considered in this
study as mentioned earlier.
Rather few methods are available for the estimation of the long-term tensile capacity
of bucket foundations. Houlsby et al. (2005) and Senders (2009) have proposed the
tensile capacity estimations for this type of foundation, that are considered in this
paper. However, design codes, such as DNV (1992) and API (2011), do not provide
guidelines for bucket foundations in tension. This paper includes onlyβ-method, as
described in DNV (1992), and four CPT-based methods, as described in API (2011).
The CPT-based methods are derived from various slender piletests and they are not
intended to be used for other type of foundation design. However, the applicability of
CPT data to bucket foundation design would be ideal as it resembles the seabed soil
conditions very well.

B.3.1 DNV (1992)

DNV (1992) recommends the following expression for axiallyloaded offshore piles.

Rt = −((Ktanδ)oDo + (Ktanδ)iDi)π
γ′d2

2
, (B.12)

whereγ′ effective unit weight,D is outer diameter,d skirt length,δ interface friction
angle,K coefficient of horizontal stress, indicesi ando are indications for the inner
and outer skirt correspondingly.

B.3.2 Houlsby et al. (2005)

Houlsby et al. (2005) proposed to take into account the reduced vertical stress down
the bucket. The authors stated that if the reduction is not included into the tensile
capacity calculations, bucket strength is overestimated.

Rt = −γ′Z2

oy

(

d

Zo

)

((Ktanδ)oDoπ

−γ′Z2

i y

(

d

Zi

)

((Ktanδ)iDiπ, (B.13)
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whereZi/o are are interface parameters withm = 1.5.

B.3.3 Senders (2009)

Senders (2009) performed centrifuge model tests with scaled buckets where the foun-
dation behaviour was analysed during the installation, uplift and cyclic loading. Cone
resistanceqc was used for the estimation of the tensile bucket capacity. Foundation
resistance is expressed as the sum of the inner friction and the outer friction of the
skirt.

Rt = Fi,t + Fo,t, (B.14)

Fi,t = πDikf,t

∫ d

0

qc(z)dz, (B.15)

Fo,t = πDokf,t

∫ d

0

qc(z)dz, (B.16)

kf,t = −0.375C

[

1−

(

Di

Do

)2
]0.3

tanδ, (B.17)

wherekf,t coefficient,C coefficient equal to 0.012 based on back-calculations from
the laboratory tests.

B.3.4 API (2011)

API (2011) contains four CPT-based methods for the frictioncontribution to pile ca-
pacity. This paper adopts the four methods for the estimation of the tensile bucket
foundation capacity in the main equation (B.18). Authors kindly refer to API (2011)
for the formulae and relevant factors.

Rt = π(Do +Di)

∫ d

0

ft(z)dz, (B.18)

B.4 Finite Element Modelling

Plaxis 2Daxis-symmetric Mohr-Coulomb and Hardening-Soil models were used for
the research. The first model requires information about triaxial friction angleϕtriax,
dilation angleψ, effective cohesionc′, Poisson’s ratioν and effective Young’s modu-
lusE′. Whereas, the Hardening-Soil model requires knowledge about the soil stiffness
at a reference pressure, i.e,Eref

50
, Eref

ur andEref
oed . The parameters serve to describe

the non-linearity in stress-strain curve as well as stress level dependency. The ad-
vanced parameters can be estimated, for example, from triaxial test. However, the
case study uses assumed, but realistic dense sand parameters.

87



88 Comparison of Design Methods for Axially Loaded Buckets in Sand

B.5 Laboratory Testing at Aalborg University

B.5.1 Compressive loading

Recently, Ibsen et al. (2014b) have published data from a number of vertical bearing
capacity laboratory tests performed on buckets with diameters of 50-200 mm and
embedment ratiosd/D from 0 to 1. The buckets were installed in uniform dense sand.
The soil conditions were relatively constant from test to test. Ibsen et al. (2014b) have
found a new theoretical relationship of the bucket bearing capacity introducing the
reduced friction angleϕred for the analysis of the small-scale laboratory results.
Hansen (1979) suggested (B.19) to account for non-associated plasticity theory, i.e.,
considering friction and dilation angle.

tanϕred =
sinϕcosψ

1− sinϕsinψ
, (B.19)

whereϕ friction angle andψ angle of dilation.
Measured bearing capacities of laboratory buckets were normalized and a general
bearing capacity equation derived (B.20). This equation isvalid for dense saturated
Aalborg University sand No. 1 with a mean reduced friction angleϕred = 42o for the
non-associated plasticity flow. Detailed information about the procedure and analysis
employing the reduced friction angle is provided in Ibsen etal. (2014b) and Ibsen et al.
(2012), sand properties are reported by Hedegaard and Borup(1993).

Rc

Rγ

= 1 + 2.9
d

D
, (B.20)

Introduction of reduced friction angle allows realistic interpretation of small-scale test
results and possible application to full-scale design. To visualize this, Larsen (2008)
method is compared to the laboratory derived equation (B.20). Bearing capacity of
full-scale buckets withD = 10 m and various embedment ratiosd/D is calculated by
the two methods. Consequently, dense sand with very high friction angleϕred = 42o

must be used resembling laboratory conditions. Bearing capacityRγ of a rough plate
withD = 10 m was estimated using (B.9) and inserted to (B.19). Estimated capacities
(dashed line in figure B.1) fit very well the expression for rough buckets by Larsen
(2008).

B.5.2 Tensile loading

Presently, a study about pure axial loading on bucket foundations is in process at Aal-
borg University. A new medium scale laboratory test set up was designed and installed
in 2013. Vaitkunaite et al. (2014) presented the main test set up features and the first
results of monotonic tensile loading on bucket foundations. The tested bucket models
have a diameter of 1 m and skirt lengths of 0.5 and 1 m. The previously mentioned
methods, DNV (1992) and Houlsby et al. (2005), are based on the interface friction
angleδ and the coefficient of lateral earth pressureK. If the laboratory findings were
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Figure B.1 Normalized vertical bearing capacity vs. bucket embedment.

compared to such methods,K value would be significantly higher than the usual ex-
pressionK = 1 − sinϕtriax. However, the CPT based method (Senders, 2009) can
be compared to the laboratory results. The cone penetrationdata is available for every
experiment which is a part of the usual procedure at Aalborg University. Normalized
measured tensile peak capacities are compared to equation (B.14) and presented in
figure B.2.

Figure B.2 Laboratory tensile capacity vs. predictions using CPT based method (Senders, 2009).

B.6 Case Study

Some of the best known calculation methods as well as the latest research findings
are presented in this paper. In order to compare and visualize the differences of these
design tools, an idealized case study is created. In this study, two bucket foundations
of different geometries are compared. The comparison is done for the pure axial
capacity of a single foundation. For the comparison reasons, any influence of the
foundation self-weight is omitted. Table B.1 provides the numbered marking for the
previously mentioned methods which is used in the comparison. Each method requires
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Table B.1 Methods used for ultimate capacity analysis.

No. Method Variables
M1 Plaxis 2D, Hard.-Soil δ, ϕtriax, pa
M2 Plaxis 2D, Mohr-Coulomb δ, ϕtriax, pa
M3 Davis & Booker (1971) ϕpl., ϕred

pl.

M4 API compression ϕtriax, ϕred
triax

M5 EC 7: Geotech. Design ϕpl., ϕred
pl.

M6 Bolton & Lau (1993) ϕtriax, ϕred
triax

M7 Larsen (2008) ϕtriax, ϕred
triax

M8 Caquot & Kerisel (1953) ϕpl., ϕred
pl.

M9 Brinch-Hansen (1970) ϕpl., ϕred
pl.

M10 Lundgren & Mortensen (1953)ϕpl., ϕred
pl.

M11 Senders (2009) δ, qc
M12 Houlsby et al. (2005) δ
M13 DNV (1992) tensile loading δ
M14 API (2011) method 1 δcv, qc, pa
M15 API (2011) method 2 δcv, qc, pa
M16 API (2011) method 3 δcv, qc, pa
M17 API (2011) method 4 δcv, qc, pa

information about skirt lengthd and soil unit weightγ′, while other variables are given
in the table B.1.

B.6.1 Soil Parameters

The assumed seabed contains ideal uniform dense sand with soil parameters given in
Table B.2 . Horizontal soil stress parameterK is often recommended to be in the
range of 0.5-0.8 (DNV (1992), Byrne and Houlsby (2002)). This recommendation
originates from the offshore pile design criteria. However, suction bucket installation
is slightly different andK = 1 − sinϕtriax is used instead in this study according
to Larsen (2008). Where possible, the reduced friction angleis introduced, see Table
B.1. Furthermore, where the formulae are based on plane strain solution, the plane
friction angleϕpl. = 1.1ϕtriax is used.

B.6.2 Geometry of the Foundation

Two weightless bucket foundations are considered for the analysis. Both of them have
a diameterD of 10 m. The skirt lengthsd are 5 m and 10 m, and thickness is 30 mm.
During the comparison they are identified by the geometric ratio d/D, which is 0.5
and 1 correspondingly. Foundation surface is rough.
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Table B.2 Geotechnical soil parameters.

Parameter Unit Value
Triaxial friction angleϕtriax [◦] 38.8
Red. triaxial friction angleϕred

triax [◦] 34.5
Plane friction angleϕpl. [◦] 42.7
Red. plane friction angleϕred

pl. [◦] 36.8
Interface friction angleδ [◦] 32.2
Angle of dilationψ [◦] 9
Density ratioID [%] 80
Soil unit weightγ [kN/m3] 20.25
Effective cohesionc′ [kPa] 0
Effective Young’s modulusE′ [MPa] 39.3
Triaxial unloading stiffnessEref

ur [MPa] 260.9
Oedometer stiffnessEref

oed [MPa] 43.7
Triaxial loading stiffnessEref

50
[MPa] 87

Poisson’s ratioν′ [-] 0.2
Plaxis interface factorR [-] 0.78
Plaxis factorm [-] 0.58
Reference pressurep [kPa] 100
Lateral earth pressureK [-] 0.37
Cone penetrationqc at 5 m d. [MPa] 10.3
Cone penetrationqc at 10 m d. [MPa] 15.1

B.6.3 Comparison

Compression

During the case study, the vertical bearing capacity is estimated according to previ-
ously presented analytical and numerical methods. Figure B.3 and figure B.4 present
the normalized bearing capacities. The values deviate significantly when the reduced
friction angle is included to the calculation. Interestingly, finite element estimations
(M1 and M2) are in the same range with the methods whereϕred is used. M4 re-
quires using the triaxial friction angle; consequently, the difference between results
usingϕred

triax andϕtriax is small, because the difference between the bearing capacity
factorsNq andNγ is smaller comparing to other analytical methods. On the contrary,
M3 and M8 for the d/D=1 and M5 and M6 for the d/D=0.5 are the mostsensitive to
the change in the friction angle. It can be concluded that thescatter in the bearing
capacity estimation is important for the dense or very densesands, becauseNq and
Nγ increases exponentially at the higher friction angles and the dilation angle effects
the bearing capacity estimation.
As it was shown earlier, the estimation ofRγ andRq differ from method to method

depending on the bearing capacity factors. When analysing the analytical methods, it
was found thatRq value increases approximately twice if the skirt is two times longer.
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Figure B.3 Normalized compressive capacity for bucket with d/D=1.

Figure B.4 Normalized compressive capacity for bucket with d/D=0.5.

However, it increased 2.27 times using M10 while only 2 timesusing M5, M6 and
M7. Obviously,Rγ was equal for both foundations as it depends on the foundation
area.

Tension

Cone resistance highly depends on location and sand properties. However, an ide-
alized profile is assumed which corresponds to possible conepenetration values for
dense sands, as shown in Table B.2. Figure B.5 presents the normalized pull-out ca-
pacities. It can be seen that the values deviate significantly from method to method
indicating that it is difficult to predict the tensile capacity precisely. M11, M12, M13
are in the same range with the finite element estimation. However, these methods pre-
dict quite low tensile capacity for the bucket d/D=0.5 compared to M1 and M2. A
great difference in the estimated tensile resistance is seen in the four CPT-based meth-
ods (M14-M15). The methods were derived from tests on slender piles and should not
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Figure B.5 Normalized tensile capacity.

be used for the bucket design until all relevant adjustmentsare done. Overall in the
selected case, M11 gives the lowest estimate.

B.7 Conclusions
The intention of this article was to collect an up-to-date methodology for the compres-
sive and the tensile bucket bearing capacity estimation. Ten different expressions were
used for the estimation of the compressive capacity and ninefor the tensile capacity.
Quite some scatter between the compressive and tensile capacities was seen, which in-
dicated that more testing and analysis would be favourable to clarify the design of the
bucket foundations. Despite the doubts regarding the influence of the non-associated
plasticity in the bearing capacity problems (e.g., Davis and Booker (1971)), the influ-
ence is significant in dense and very dense soils because of the exponentially increas-
ing bearing capacity factors and high dilation. In the select case study, the precise
tensile bucket capacity was complicated to estimate. It wasshown that the CPT-based
methods from API (2011) can predict very high tensile capacities.
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         Abstact. This article presents a new testing rig for axially loaded bucket foundations. 

The medium-scale physical model gives the ability to examine the influence of axial loading 

on bucket foundations subjected to various levels of overburden stress. The properties of the 

test set-up allow long-term examination. Tests can be done with specimens of up to one meter 

in diameter and one meter in skirt length. The overburden pressure can be as large as 70 kPa 

using a tight latex membrane which covers the specimen and the soil surface. In addition to 
the description of the rig, results from several monotonic tensile tests are presented. 

         Keywords: Bucket foundation; laboratory test; medium-scale; dense sand; tension; axial 
loading; overburden pressure.  

C.1  Introduction 

Offshore structures, such as wind turbines or wave energy machines, require complex support 

systems in order to withstand the large environmental loading. Due to the size of the 

structures and the water depth, jacket and tripod foundations supported with three or four 

suction buckets are often considered by the engineers. Jacket and tripod foundations are 

mainly subjected to axial loads. Suction caissons can resist large compressive loads. 

However, monotonic tensile or cyclic capacity can be rather small compared to the 

compressive capacity.  

Environmental loads are greatly variable, and offshore foundations must bear cyclic wind and 

wave loads. However, the cyclic loads are difficult to model and predict. Real soil behavior is 

best analyzed by a proper full-scale physical model. Unfortunately, it is also the most 

expensive and time consuming method. Until today, most of the examined bucket foundations 

were modelled using small-scale laboratory equipment. Only a few experiments were done in 

large-scale, but often the results are not publicly available information. Regarding the ultimate 

tensile capacity of a bucket, loading rate, and the corresponding displacement, several studies 
were performed. 

C.1.1  Physical Models until Today 

Feld et al. (2000) performed axially loaded bucket tests. The physical model had a half bucket 

with diameter of 200 mm and skirt length of 100 mm installed in sand. Several dynamic pull-

out tests with velocities of 2 mm/s, 3.7 mm/s, and 5.3 mm/s and several cyclic loading tests 

were done. It was found that the tensile capacity is very dependent on the displacement rate. 
The higher pull-out speed, the higher tensile maximum capacity is.  

Kelly et al. (2003) tested a bucket with a diameter of 280 mm and a skirt length of 180 mm 

installed in dense saturated sand in a pressure chamber. The bucket was subjected to some 

cycles and dynamic tensile load with velocity of 5 mm/s. Cavitation of the pore fluid did not 

appear. Conclusion was drawn that the ultimate tensile capacity is mobilized at the 

displacements of 10-20% of the bucket diameter. Further research with the same small-scale 

testing equipment and pull-out velocity of 100 mm/s showed that the maximum tensile load 

was mobilized at the displacement of 3.5% of diameter (Kelly et al. 2004).  

Houlsby et al. (2006) performed a series of field trials of bucket foundations in sand. The 

axially loaded specimen had 1500 mm in diameter and in skirt length. The pull-out velocity 

was low compared to the previous test, approximately 0.23 mm/s. During pull-out tests it was 
found that a rather high tensile resistance and large displacements were generated.  

Senders (2009) performed many tests with axially loaded buckets in dense sand in a 

centrifuge. The buckets were manufactured on a scale 1:100 which resulted in diameters of 
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49-120 mm and skirt lengths of 60-114 mm. It was found out that the resistance under drained 

conditions depends on the skirt friction. It was stated that in drained conditions, the maximum 

tensile capacity is mobilized at displacement of 0.2% diameter. However, in partially drained 

conditions, it is much larger, 2-10% of foundation diameter.  

To sum up, most of the present experiments were performed on small-scale suction caissons. 

Knowledge about displacement mobilization during axial loading of a bucket foundation 

would be valuable. Furthermore, the researchers and engineers are interested in a realistic 

prediction of the full-scale bucket displacement after long-term cyclic axial loading. Having 

these goals, a new testing rig for axially loaded bucket foundations was designed (Figure 

C.2). The design of this test set-up allows long-term examination with more than 40 000 

cycles. It is also possible to apply overburden pressures, which simulate different soil depths. 

The paper describes the main features of the test set-up. Moreover, the results of the first six 

static tensile tests with various overburden pressures are presented. Attention is paid to the 

ultimate tensile capacity of a bucket foundation in dense sand and the corresponding 
displacement. 

C.2  Test Set-Up 

The test set-up consists of a 2.5 meters diameter sand box, a large installation and loading 

frame equipped with two hydraulic cylinders and an automatic load regulation system. The 

tests can be done with bucket specimens of up to 1 meter in diameter and 1 meter in skirt 

length. Throughout the procedure, loads, displacements and pressures are measured in various 

points to ensure the knowledge about foundation behavior and influence of the testing 

equipment. Overburden pressure can be applied as large as 70 kPa using a tight latex 

membrane which covers the specimen and the soil surface. 

C.2.1  Sand Container 

A rigid sand container is made of steel with an inner diameter of 2.5 m. Figure C.1 shows the 

cross-sectional view of the test set-up. The box was filled with 0.3 m of gravel and 1.2 m of 

sand. The sand was saturated before every test. The bottom of the sand container had a 

drainage system with equally distributed perforated pipes, draining material (gravel) and a 

sheet of geotextile. The geotextile ensured that the drainage material was kept clear of sand 

grains which could potentially block the drainage system. The equally distributed perforated 
pipes ensured homogenous draining and inflow of water to the entire area. 
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Figure C.1 The cross-sectional view of the test set-up.  

The inflow of water to the container came from a water reservoir located in a position higher 

than the soil surface (Figure C.2). The water level inside the container was regulated by a 

valve on the inlet pipe, and the level was controlled through a piezometer connected directly 

to the bottom of the container. 

C.2.2  Overburden Pressure 

Several research studies regarding the geotechnical testing of offshore foundations has 

marked the favorability of small-scale testing with overburden pressure (Sørensen et al., 2013; 

Foglia et al., 2012). The main issues of the small-scale tests are the small soil stresses which 

result in very high friction angle and elastic Young’s modulus. For example, the friction angle 

is such tests can be as high as 53 degrees. More explanations about the estimation of the 

friction angle and Young’s modulus in the small stresses can be found in Ibsen et al. 2009. 

Obviously, such properties are different from real offshore soil properties. The problem would 

be overcome if full-scale foundation was tested. However, this is a very expensive solution. 

At Aalborg University, a new method was created to increase the soil stresses in the 

laboratory sand box by applying an overburden pressure. Moreover, the bucket foundation 

samples were increased to a scale of approximately 1:10, which contributes to larger soil 
stresses.  

Figure C.3 shows air-tight latex membrane specially installed on the sand surface. Four 

suction hoses were attached to it and used for pumping the excess water out of the sand box 

creating the differential pressure. A transducer installed on the membrane measured the 

pressure continuously. The level of the overburden pressure was regulated by a control valve 
and kept constant during each test.  
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Figure C.2 The test set-up of axially loaded bucket foundations. 

 

Figure C.3 Yellow latex membrane on the sand surface, suction hoses no. 1 and 2, and three pressure 

transducers P.P. 

C.2.2.1  Measuring System 

Every preparation and testing procedure was recorded. Soil preparation, installation, suction 

application and loading was inspected using various transducers. During the installation, a 

250 kN load cell U10M from HBM measured axial resistance. Furthermore, displacement 

transducer WS17KT from ASM GmbH provided information about the installation depth.  

Figure C.4 shows pressure transducers placed on the skirt and under the lid of the specimen. 

They were used to investigate the pore pressure state. They helped to ensure the state of sand 

drainage. A rapid pull-out force generates suction under a bucket foundation installed in dense 

sand. In such a case, the soil experiences undrained condition. However, the pore pressures 
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are expected to dissipate after the long term cyclic loading. This behavior is difficult to 

predict, because it depends on the soil type and the dimensions of the foundation. Moreover, 

during static loading tests, the pore water is able to drain. In such a case, pore pressure sensors 

should measure no pressure changes. Six transducers PPM-S330A-5 BAR 0~5bar measured 

pore pressure variations during the test.  

An automatic system was designed and installed to regulate and monitor the loading. A 

powerful hydraulic cylinder, a 250 kN load cell, and a displacement transducer were 

connected into one system regulated by the MOOG program. The program allows various 

loading regimes, such as tension/compression and periodic loading with various 

force/displacement amplitudes and frequencies. The system is able to work continuously for 

many days or weeks, which is important for the long-term analysis. The program can record 

the loading information at any moment. 

Two external position sensors WS10-125-R1K-L10 from ASM GmbH were placed on the 

bucket lid, which measured the exact vertical displacements of the specimen during the 

loading.  

All measurement equipment was connected to two data acquisition systems, HBM Spider and 

MGCplus, which transferred the measured data to the computer. All the sensor signals, such 

as time and force, were sampled with a rate of 1 Hz during the tests.  

C.2.3  Soil Specification 

Borup and Hedegaard (1995) defined the material properties of Aalborg University sand     

No. 1 (Baskarp Sand No. 15), which was used in the tests. The material properties are 
provided in Table C.1.  

 

 

Figure C.4 Pressure and displacement sensors attached to the bucket. 

Table C.1 The material properties of Aalborg University Sand No.1. 

Specific grain 

density ds 

[g/cm3] 

Maximum 

void ratio 

emax  

 

Minimum 

void ratio 

emin  

 

50%-

quantile 

d50 

[mm] 

Uniformity 

coefficient 

U= d50/d100 

2.64 0.858 0.549 0.14 1.78 
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Table C.2 The material properties of sand during tests. 

Test No. Relative density ID [%]  

130207 83 

130208 83 

130211 79 

130209 81 

130212 79 

 

C.2.4  Preparation of Soil 

Prior to each test, the soil was loosened by an upward gradient of 0.9 applied through the 

drainage system. Systematic mechanical vibration with a rod vibrator ensured the uniform 

sand compaction and saturated conditions (Figure C.5). The rod vibrator was penetrated to    

1.1 meter in the sand. Larsen (2008) has analyzed in details and proved that this preparation 

method ensures high quality and uniform conditions in the soil. Moreover, the uniformity and 

soil properties were examined by a laboratory size cone penetration test prior to every test 

(Figures C.6~7). Table C.2 shows the properties of sand during tests. Sand with a relative 

density of 79-81% was prepared, corresponding to the sand commonly found in the North 
Sea.  

 
Figure C.5 The equipment of sand vibrations. 
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             Figure C.6 CPT cone resistance vs. depth (Test 130209). 

 

Figure C.7 Relative density vs. depth (Test 130209). 

C.2.5  Installation 

In offshore sites, a part of the bucket foundation is self-penetrated due to its dead-weight, and 

another part is installed by suction which generates differential pressure and pushes the 

foundation into the soil. In the laboratory, the installation was done mechanically by pushing, 

because it was impossible to apply suction. The installation velocity was 0.2 mm/s. Two 

valves were attached to the lids of every specimen. They were kept open during installation, 

which allowed free air flow from the buckets. The valves were closed immediately after the 
specimen was positioned. 

 

Figure C.8 The installation of bucket d/D=0.5. 
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C.2.5.1  Test Program 

The axial tensile capacity of buckets was tested in the geotechnical laboratory of Aalborg 

University, Denmark. Two steel buckets were used with a diameter D of 1000 mm, skirt 

lengths d of 500 and 1000 mm, and a skirt wall thickness of 3 mm.   

When the sand had been prepared and the bucket installed, the measuring equipment was 

connected: pore pressure sensors, load cell, and displacement transducers. Afterwards, the 

loading program was started. During every monotonic pull-out test, the bucket was loaded 

with displacement rate of 0.002 mm/s. When the tensile capacity had reached the highest 

value and started to decrease, the test was stopped. The sand was saturated during all the 

procedure of the tests without the overburden pressure. Drained sand behavior was present 

during static loading. It was recorded by the pore pressure sensors, which measured no build-

up of the pore pressures (Figure C.9). However, the sand was brought to dry condition when 

suction system was applied. 

Table C.3 presents six tensile loading test results with several overburden stress levels. The 
ultimate capacity and the corresponding displacement are presented. 

        Table C.3 Laboratory tests with buckets foundations. 

Test 

No. 
d/D d/D* Overburden 

pressure 

[kPa] 

Max. 

tensile 

load [kPa] 

Displ. 

[mm] 

130207 0.5 0.5 0 10.2 4.2 

130208 0.5 0.5 0 9.4 4 

130211 0.5 0.75 20 35.7 4 

130209 0.5 0.87 40 46.5 8.8 

130212 0.5 0.86 40 45.7 6 

130210 1 1 0 43.1 3.9 

* Equivalent skirt length and diameter ratio 

 

Figure C.9 Pore pressure build-up during loading is less than 1 kPa (Test 130208). 
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C.2.6  Equivalent Skirt Length 

The idea behind the application of the pressure on the soil surface is that it allows 

investigation of the soil-foundation behavior in larger depths. The stresses created by suction 

under the membrane can be scaled to the equivalent stresses without overburden pressure, but 

a deeper soil layer and a greater skirt length. Figure C.10 visualizes the idea of the equivalent 
overburden pressure to a considerably larger skirt length. 

 

 

Figure C.10 Overburden pressure used for skirt length simulation: a) real soil stress. b) equivalent soil 

stress. 

The traditional formula for friction induced tensile capacity is used for the scaling of the 

bucket skirt length. DNV (1992) recommended Eq. C.1 for axially loaded offshore piles. The 

same equation was used for the estimation of bucket tensile capacity in Byrne and Houlsby 
(2002). 

,
2

'
))tan()tan((

2d
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πδδ +−=

 
                                                      (C.1) 

,tanδβ K=
 
                                                         (C.2) 

where Rt is tensile capacity, i and o are indications for the inner and outer skirt 

correspondingly, D diameter, K coefficient of lateral earth pressure, δ interface friction angle, 
γ’ effective soil weight, d skirt length.  

Having the information from the tests with zero overburden pressure, parameter β was 

calculated. Afterwards, the equivalent skirt length was estimated for the tests with overburden 

pressure of 20 kPa and 40 kPa. The equivalent skirt lengths are given in the Table C.3.   

C.3  Results 

Table C.3 presents six static loading tests that were performed in the laboratory: five with 

specimens of embedment ratio d/D=0.5 and one with d/D=1. The monotonic tensile capacity 

was approximately four times higher of d/D=1 than d/D=0.5 at equal overburden pressure 

levels, e.g. tests 130207 and 130210. Regardless of the different geometries, the static pull-out 

capacity tended to increase when larger overburden pressure was applied. Test 130211 with 

the overburden pressure of 20 kPa showed 3.5 times higher pull-out resistance than test 

130207 without any overburden pressure. When the pressure had been increased to 40 kPa, 

the tensile capacity became approximately 4.6 times higher than the capacity of the tests with 
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no overburden pressure, e.g. 130207  and 130209. It should be mentioned that the tests with 

40 kPa have a slightly larger tensile resistance than the bucket with d/D=1 (test 130210). 

Conclusions regarding this result cannot be drawn at the moment, because many more tests 

will be performed in the near future. If the tendency of the loading is the same, it may indicate 

that the method for the scaling of the bucket skirt length should be reconsidered.  

In order to visualize the tensile loading influence on displacement and compare it to the 

previous research of Senders (2009), vertical displacements w were expressed as a percentage 

part of the bucket diameter D. Figures C.11~12 visualize the loads and displacements in linear 

graphs. Results of the tests showed that the peak tensile load was reached at the very 

beginning of the test, within displacement of up to one percent of bucket diameter. This 

tendency was noticed in the small and the large bucket tests.  

 

C.4  Conclusion 

This article presents a novel bucket testing rig. The medium-scale physical model gives the 

ability to examine the influence of axial tensile, compressive as well as cyclic loading on 

bucket foundations subjected to various levels of the overburden stress. The test set-up 

contains a 2.5 meters diameter sand box, a large installation and loading frame equipped with 

two hydraulic cylinders and an automatic load regulation system. Two bucket foundations 

were installed in dense sand and subjected to various axial loads. The specimens had depth 

and diameter ratio d/D of 0.5 and 1. Moreover, several levels of overburden pressure of 0 kPa, 

20 kPa and 40 kPa were applied.  

Results from the first six tensile loading tests were presented in this article. Tests with the 

bucket of d/D=0.5 resulted in smaller ultimate loads, but similar displacements compared to 

the test with bucket of d/D=1. The peak tensile load was mobilized at the displacements of    

0.4-0.9% bucket diameter D. The resultant displacements are a little higher than the 

displacements found in small-scale laboratory tests done by Senders (2009), where the peak 

tensile load was mobilized at displacement of 0.2% diameter. The difference in the mobilized 

displacement can be explained by the scale differences, because the tested buckets were 

approximately 10 times larger than the buckets tested by previous researchers, among others, 

Senders (2009). However, more investigations will be performed with the presented        

testing rig.  

 

Figure C.11 Static tensile loading vs. upward normalized displacement d/D=0.5. 
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Figure C.12 Static tensile loading vs. upward normalized displacement d/D=0.5 and d/D=1. 

The test set-up has good potential for axially loaded bucket testing. The laboratory work and 

the analyses of the results presented here provide improved understanding of soil-structure 

interaction when buckets are subjected to monotonic tensile loading. Using this laboratory 

equipment, a study about the cyclically axially loaded bucket foundations will be soon 

published.  
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Errata Sheet 
 

Table C.3 Laboratory tests with buckets foundations. 

Test 

No. 
d/D d/D* Overburden 

pressure 

[kPa] 

Max. 

tensile 

load [kPa] 

Displ. 

[mm] 

130207 0.5 0.5 0 8.0 5.8 

130208 0.5 0.5 0 6.8 4.6 

130211 0.5 0.70 20 29.7 7.5 

130209 0.5 0.77 40 35.9 5.0 

130212 0.5 0.76 40 34.3 5.2 

130210 1 1 0 35.3 3.9 

* Equivalent skirt length and diameter ratio 

 

 
 

Figure C.9 Pore pressure build-up during loading is less than 1 kPa (Test 130208). 

 

Figure C.11 Static tensile loading vs. upward normalized displacement d/D=0.5. 
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Figure C.12 Static tensile loading vs. upward normalized displacement d/D=0.5 and d/D=1. 
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APPENDIX D
Testing of Axially Loaded

Bucket Foundation with
Applied Overburden

Pressure

Vaitkunaite, E., Ibsen, L. B., and Nielsen, B. N. (2016).Testing of Axially Loaded
Bucket Foundation with Applied Overburden Pressure. Aalborg: Department of Civil
Engineering, Aalborg University. (DCE Technical Reports;No. 209).
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The layout has been revised.
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Wind

Wave

Figure D.1 Loads on the wave energy converter Wavestar in a storm; horizontal wind and wave loads and
the axial and horizontal components on a shallow foundation.

D.1 Introduction

This report analyses laboratory testing data performed with a bucket foundation model
subjected to axial loading. The examinations were conducted at the Geotechnical lab-
oratory of Aalborg University. The report aims at showing and discussing the results
of the static and cyclic axial loading tests on the bucket foundation model. Finally, a
cyclic loading interaction diagram is given that can be applied for a full-scale bucket
foundation design. This report is based on two previously published reports that con-
tain test data and a detailed description of the test procedure:

• Vaitkunaite, E.: “Bucket Foundations under Axial Loading –Test Data Series
13.02.XX, 13.03.XX and 14.02.XX”. DCE Technical Report, No. 199, Depart-
ment of Civil Engineering, Aalborg University. 2015. Aalborg, Denmark.

• Vaitkunaite, E.: “Test Procedure for Axially Loaded BucketFoundations in Sand
(Large Yellow Box)”. DCE Technical Memorandum, No. 51, Department of
Civil Engineering, Aalborg University. 2015. Aalborg, Denmark.

D.1.1 Aim of the report

In a shallow offshore multi-pod foundation combination, the horizontal wind and wave
loads are transferred to the axial loads and sliding. FigureD.1 shows an example of
such load transfer in the wave energy converter Wavestar. These load conditions cor-
respond to those of offshore wind turbine foundations standing on a jacket structure.

Suction bucket foundations are shallow skirted geotechnical structures. For bucket
foundations in sand, the axial tensile load component can becritical and setting the
dimensions. Senders (2009) described the failure mechanisms for bucket foundations
in sand (Figure D.2). Constant or static tensile loading on abucket foundations in sand
results in the drained response and lowest capacity. For offshore conditions, cyclic
wind and wave loads can create long-term tensile mean loads.Such situation should
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Figure D.2 Bucket foundation tensile resistance in cohesionless soil: (left) drained response; (right)
undrained response. After Senders (2009).

be avoided based on the experiences of earlier researches (e.g. Byrne and Houlsby
2006, Kelly et al. 2006a).

If the loading rate is rapid enough, the pore water does not have enough time to drain
resulting in an undrained foundation behaviour. A foundation experiences high inten-
sity loading conditions in a storm, where the structure is subjected to large cyclic wind
and wave loads. The undrained tensile capacity is significantly larger than the drained
capacity because of the suction pore pressure contributionto the resistance. How-
ever, such loading conditions can lead to large displacements and tilting of the overall
structure (Kelly et al., 2006b). Furthermore, constant cyclic tensile loading with mean
tensile load and tensile cyclic amplitude can lead to irreversible upward displacements.

Model testing is an important tool that provides valuable understanding of the real
foundation behaviour under various loading conditions. Tothe knowledge of the au-
thors, no publicly available testing campaign have been performed on bucket foun-
dations subjected to one-way tensile cyclic loading. Thus,the aim of this report is to
show the axial behaviour at different effective stress levels and to set the cyclic loading
interaction diagram that can be used for bucket foundation design. To fulfil the aim, a
new testing facility was employed for bucket foundation testing under axial loading.
In this test set-up, an overburden pressure increased the effective stress in the soil.
Consequently, the skirt friction of a bucket foundation at different soil depths could be
analysed.

The selected cyclic loading program focussed on the axial loading conditions during
a normal serviceability situation of an offshore structure. In such case, the foundation
is subjected to long-term cyclic loading of small intensitycompared to the storm case.
Drained conditions are present. Therefore, the target of the testing program was the
accumulated cyclic displacement and the cyclic degradation effect on the tensile ca-
pacity. The second set of tests started with slow monotonic pull-out tests that provided
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Figure D.3 Test set-up for the axial bucket foundation testing with applied overburden pressure.

reference capacities. The testing program continued with low-rate cyclic loading tests
corresponding to the drained response. Finally, a post-cyclic monotonic tensile load
was applied which was directly comparable to the virgin loading resistance.
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(a) (b)

Figure D.4 (a) Bucket foundation model used in the testing campaign. (b) Positions of points for pore
pressure measurements and labels of pore pressure transducersPP . Distances in mm.

D.2 Test Set-Up

This chapter presents the principle of the overburden pressure application and provides
a short overview of the test set-up facilities. The step-by-step testing procedure can be
found in Vaitkunaite (2015).

D.2.1 Testing rig and foundation model

Figures D.3 and D.4 show the testing rig and the bucket foundation model used in the
testing campaign. The test set-up consisted of a large container of 2.5 m in diameter
and 1.5 m height. The container was filled with 0.3 m of coarse gravel (drainage layer)
and 1.2 m of Aalborg University sand No. 1. A rigid structure of four columns and
beams was built to support the loading equipment which consisted of two hydraulic
cylinders; installation and loading (actuator). Two displacement transducers and two
load measuring cells (measuring range 250 kN) were fixed to the hydraulic cylinders.

The bucket foundation model was made of steel. It had a diameter D of 1 m, skirt
lengthd of 0.5 m and skirt thicknesst of 3 mm. The skirt was allowed to corrode
naturally providing a realistic soil-structure interface. Three inner and three outer nar-
row pipes were fixed to the bucket foundation model. The pipeswere filled with water
before the installation of the foundation model to the sand.The pore pressure trans-
ducersPP were fixed on the lid and connected to the narrow pipes (FigureD.4). They
served for pore pressure measurements at different depths.
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Figure D.5 Aalborg sand No. 1 parameters dependence on the confining stress. (Ibsen et al., 2009)

D.2.2 Soil properties

Aalborg University sand No.1 was used for the testing. Two reports by Hedegaard
and Borup (1993) and Ibsen and Boedker (1994) contain sand classification data and
triaxial testing data correspondingly. The sand properties are as follows:

• min. void ratioemin 0.549,

• max. void ratioemax 0.858,

• specific grain densityds 2.64 g/cm3,

• uniformity coefficientU 1.78.

Ibsen et al. (2009) determined Aalborg University sand No.1parameters for a Mohr-
Coulomb material. They showed that the parameters are dependent on confining pres-
sureσ3 and density indexDR. Results were expressed in the fitted diagrams as given
in Figure D.5. As seen, sand properties change strongly in the first 0-100 kPas con-
fining pressure. This visualizes the typical issues relatedto small-scale testing in low
effective stresses, such as a very high friction angle and dilation. Soil-structure inter-
face properties depend on the normal stress, relative surface roughness, soil particle
shape and density. To inspect the frictional response at different soil depths, the nor-
mal stress on the bucket foundation model had to be increased. Thus, the overburden
pressure was applied changing the stress conditions and providing more test results.

D.2.3 Test preparation

This section gives an overview of the preparation for the tests. The step-by-step testing
procedure can be found in Vaitkunaite (2015).

Sand preparation

Before each test, water was allowed to flow into the sand box with an upward gra-
dient which loosened and redistributed the sand particles.The sand was compacted
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with a rod vibrator to the averageDR=81% (standard deviation 6%) and the effec-
tive unit weightγ′=9.4 kN/m3. Sand density ratio was found from a laboratory cone
penetration test (CPT) specially developed at Aalborg University. Larsen (2008) de-
scribed the equipment and methodology behind the laboratory CPT. Ibsen et al. (2009)
provided the empirical equation for the estimation ofDR based on cone penetration
measurements. The procedure was repeated before every installation.

Installation

After the sand preparation, the narrow pipes used for measuring the pore pressure,
as mentioned in section D.2.1, were filled with water. The bucket model was placed
above the sand surface. Displacement and load transducers were zeroed and the in-
stallation started. The installation hydraulic cylinder pushed the model to the sand
with a velocity of 0.2 mm/s. The two valves on the model were kept open to let the
air flow out during the installation. The installation endedwith about 70 kN loadFP

that consisted of 50 kN required for the installation and a small compressive pre-load
of 20 kN. The elastic pre-load ensured full installation andrepetitiveness of the pro-
cedure. Due to sand dilation around the circumference of themodel, the skirt was
installed to approximately 490 mm depthdinst. The installation was followed by
connection of the transducers and mounting of the actuator.

Application of the overburden pressure

A latex membrane was laid on the surface of the sand containerand the bucket lid.
A water pumping system was available by the sand container. Suction was applied in
four points on the membrane. A filter layer prevented sand grains from being sucked
into the pumping system. Suction application on the membrane evenly pressed the
whole surface and simulated overburden pressurepm. In the atmospheric pressure
conditions, the pump unit could apply up to -100 kPa suction.Surcharge of up to
-70 kPa was aimed in the testing campaign. In a successful test, the established level of
pressure was kept constant with +/-2 kPa variations. The overburden pressure allowed
analysing axial behaviour of the bucket foundation model atdifferent soil depths. Fig-
ure D.6 visualizes the idea of the overburden pressure application. On the left side of
the figure, vertical stress distribution on a bucket foundation skirt is shown as it is in
reality. The right side of the figure shows the bucket model inthe test with and without
membrane pressurepm.

This method of the overburden pressure application required a very tight system and
de-aired water to saturate the sand. At least 1.5 m3 of de-aired water would have been
necessary to saturate the sand which was unavailable at the time of testing. Tap-water
was therefore used for the tests. Although many attempts andspecial care were taken
for the tightening of the system, air was present in the sand.Thus, the suction through
the membrane resulted in a reduced amount of water in the sandvolume that left the
sand moist instead of fully saturated. Furthermore, the sand structure changed - the
pores became larger - due to the suction method as shown in Figure D.7. There could
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Figure D.6 Vertical stress distribution on a bucket foundation.

Figure D.7 Sand after suction application.

be two reasons for this; water cavitation or expansion due tonegative pressure in the
air/vapour. Despite this, the testing program continued because it was still possible
to apply a constant overburden pressure and to investigate the friction response in the
different soil depths. For the result analysis, soil unit weight was measured after sev-
eral tests with the membrane and was found to beγ=17 kN/m3.

After a constant membrane pressure was established, the loading could start. Dur-
ing tests with the overburden pressure, load, displacementand membrane pressure
were measured. During tests without the overburden pressure, pore pressures were
measured too.
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D.3 Testing program

In this report, the upward displacement, tensile load and negative pore pressure are
drawn on the negative axis and marked with a negative sign.

Monotonic pull-out tests were performed with a constant velocity v of 0.002 m/s.
The bucket model was pulled approximately 60 mm which was sufficient to capture
the peak loadFT and the corresponding displacementwT .

Cyclic loading tests were performed with 0.05 or 0.1 Hz frequencyf . A testing se-
quence consisted of 20,000-40,000 harmonic cyclesN that were followed by a post-
cyclic monotonic tensile load. The post-cyclic load was applied with a displacement
rate of 0.002 mm/s until the peak loadFPc and the corresponding displacementwPc

were measured, as shown in Figure D.8. If the accumulated cyclic displacementwcyc

reached 60 mm upward displacement, the loading sequence wasstopped.

Vaitkunaite et al. (2015) documented the tests performed inthe large yellow sand
box. Tables D.1 and D.2 provide an overview of the performed tests. The load cell
and displacement transducers were zeroed before the beginning of the loading step;
thus, the tables provide only the loading response (model self-weight is zero).

Cyclic loading is described using two parameters:ξA andξm (eqs.D.1 and D.2).ξA is
the ratio of cyclic loading amplitudeFcyc and the reference tensile loadFTR. ξm
defines the ratio of the mean cyclic loadFmean andFTR. The parameter is negative
for mean tensile load, and positive for mean compressive load. In the case of perfect
two-way loading,ξm is 0.

ξA = −
Fcyc

FTR

, (D.1)

ξm = −
Fmean

FTR

. (D.2)

Each test has an ID. For example, a monotonic loading test ID is M20.1, where M
stands for monotonic, 20 for the membrane pressure aimed of 20 kPa and .1 marks the
test number. A cyclic load loading test ID is, e.g. C70A0.24m-0.23, where C stands
for cyclic, 70 for the aimed membrane pressure of 70 kPa, A0.24 marks the cyclic
loading amplitude in the testξA=0.24 and m-0.23 marks the mean cyclic load in the
testξm=-0.23.
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Figure D.8 Cyclic loading with post-cyclic monotonic pull-out (test C0A0.7m0.3.2).

Table D.1 Summary of the monotonic loading tests.

Loading Installation
pm Test ID d/D FT wT v FP dinst
[kPa] [kN] [mm] [mm/s] [kN] [mm]
0 M0.1 0.5 -5.7 -6.3 0.001 49.6 483
0 M0.2 0.5 -6.3 -5.8 0.001 50.6 474
0 M0.3 0.5 -5.3 -4.6 0.002 49.5 473
0 M0.5 0.5 -5.9 -5.5 0.002 73.0 491
19 M20.1 0.5 -19.0 -24.3 0.001 45.3 486
21 M20.2 0.5 -15.3 -11.4 0.001 46.1 495
20 M20.3 0.5 -23.3 -7.5 0.002 57.3 487
41 M40.1 0.5 -28.2 -5.0 0.001 68.3 487
40 M40.2 0.5 -26.9 -5.2 0.002 72.8 487
73 M70.1 0.5 -96.3 -72.2 0.002 74.0 490
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Table D.2 Summary of the cyclic loading tests.

Cyclic loading Post-cyclic load
pm Test ID Fmean Fcyc wcyc N FPc wPc

[kPa] [kN] [kN] [mm] [Hz] [kN] [mm]
0 C0A0.2m-0.4 -2.11 1.02 -0.88 39,592 -5.34 -3.83
0 C0A0.3m-0.4.1 -2.05 1.93 -1.35 38,227 -5.95 -7.60
0 C0A0.3m-0.4.2 -2.05 1.93 -6.23 39,753 -4.74 -0.53
0 C0A0.7m-0.4.1 -2.05 3.85 -63.76 8,100 - -
0 C0A0.7m-0.4.2 -2.05 3.85 -65.80 1,285 - -
0 C0A0.7m0.3.1 1.80 3.85 0.15 28,263 - -
0 C0A0.7m0.3.2 1.80 3.85 0 39,980 -4.85 -1.30
0* C0A0.4m0.3 1.91 2.30 0.04 19,629 -5.03 -3.43
0 C0A0.3m-0.1 -0.30 1.66 -0.64 39,729 (-3.49) -8.66
0 C0A0.2m0.0 0 1.00 -0.29 40,020 -4.86 -4.84
43* C40A0.4m0.4 11.76 11.38 0.72 19,900 -31.33 -12.35
41 C40A0.7m-0.5 -13.03 18.37 -67.55 67 - -
41 C40A0.3m-0.7 20.12 9.33 -63.81 202 - -
71* C70A0.3m0.0.1 2.01 29.38 0.74 19,970 - -
70 C70A0.3m0.0.2 1.92 29.30 1.25 40,867 -93.26 -28.29
73 C70A0.2m-0.2 -22.39 23.08 0.10 31,619 -93.90 -26.53
71 C70A0.3m-0.5 -51.67 24.49 -75.01 19,081 - -
71 C70A0.5m-0.5 -50.61 45.78 -81.90 5 - -
*Tests withf=0.05 Hz, other tests are withf=0.01 Hz
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D.4 Results

This chapter provides the results of the monotonic and cyclic loading tests. It includes
the main results of the load, displacement and stiffness responses. Finally, the chapter
presentes a cyclic loading interaction diagram applicableto bucket foundation design
in dense sand.

D.4.1 Monotonic tensile loading tests

Monotonic tensile loading tests were performed at the overburden pressure levels of
0, 20, 40 and 70 kPa (Figure D.9). The average membrane pressure levelpm var-
ied +/-2 kPa as seen in Table D.1. The four tests with overburden pressure of 0 kPa
showed very similar response. Three tests were performed with 20 kPa overburden
pressure and showed a bit scattered peak tensile load results. M40 tests were aborted
after a displacement of only -8 mm both times due to cracks in the membrane and a
sudden pressure loss. However, the peak load was captured and recorded. Only one
monotonic tensile loading with 70 kPa was successful. Otherattempts failed due to
the loss of pressure or other technical issues. As Figure D.9shows, in most of the
casesFT was reached at upward displacement of up to -10 mm (0.01D) except two
tests, M20.1 and M70.1 (correspondingly, 0.02D and 0.07D).

The development of peak tensile resistance compared to the corresponding displace-
ment was visualized by the corresponding peak stiffnesskpeak. It is used as compar-
ison of the resistance development in different tests. Figure D.10 showskpeak values
at different surcharge levels. As the tests with the overburden pressure had different
soil unit weights (see sections D.2.3 and D.2.3), the surcharge was estimated at the
middle of the skirt depthd/2. This quantified better the tests with different overburden
pressures. Sevenkpeak values atpm of 0, 20 and 70 kPa lied around 1 MN/m while
the other three tests showed higher stiffness.

As expected, different levels of unit skirt frictionfs were developed in the mono-
tonic loading tests. The skirt friction corresponds to the measured tensile load divided
by the sum of the inner and outer areas of the skirt in contact to the soil. According to
the testing data, a quadratic fitting resembled best the measured tensile capacities at
the different surcharge levels (Figure D.11) which is worthtaking a little closer look
into. Unit skirt friction fs can be estimated using equation D.3 that depends on the
effective vertical stressσ′

v, lateral earth pressure coefficientK and interface friction
angleδ as follows:

fs = σ′

vKtanδ, (D.3)

Obviously, σ′

v increases linearly with depth for a uniform soil layer. Byrne and
Houlsby (2002) usedKtanδ=0.5 for back-calculations of different scale model tests
and showed that it is a well applicable value for bucket foundations. Knowing this, the
data in Figure D.11 should have had a linear fit. Gaydadzhiew et al. (2015) investi-
gated Aalborg University sand No. 1 properties in the same sand container as used in
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Figure D.9 Monotonic tensile load vs. displacement for tests with 0, 20,40 and 70 kPa overburden
pressure.

this testing program. They used a Marchetti dilatometer (DMT) for the examination
of horizontal stress andK values. The lateral pressure coefficients were rather scat-
tered between approximately 0.4 and 4.5 for vertical effective stress between 3 and
9 kPa. The mean value ofK was approximately 1.6. However, the testing program
was limited to rather few attempts. Boulon and Foray (1986) showed thatK value
decreases to a constant value together with the increasing confining pressure as seen
in Figure D.12. Thus, an attempt was taken to back-calculatethe lateral earth pressure
value using equation D.3 and assuming thatδ is constant and equal to 29◦, see Figure
D.13. The back-calculatedK value has a similar tendency of changing depending on
the stress conditions as seen in Figure D.12. At the surcharge of 6 kPa, lateral earth
pressure coefficient lies approximately at about 1.8 which is close to 1.6 estimated by
Gaydadzhiew et al. (2015).

D.4.2 Cyclic loading tests

Cyclic loading conditions were modelled taking into consideration the monotonic load
results. For each of the overburden pressure levels, the reference monotonic tensile
resistanceFTR was estimated as the average of the peak tensile resistancesFT . The
intention was to test different levels of mean cyclic load and amplitudes and to find the
most critical load case. All of the cyclic tests were exposedto peak tensile loads, but
the mean loads were various; small compressive, zero (perfect two-way loading) and
tensile load. Most of the tests proved to be in a "stable zone". This means that during
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Figure D.10 Peak stiffness at different overburden pressure levels.
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Figure D.11 Peak tensile load developed at different surcharge levels.

the whole cyclic loading sequence of 20,000-40,000 cycles,the vertical displacement
was close to zero (|wcyc|<0.01D). Figure D.14 shows some typical examples of this
behaviour.

However, as seen in Table D.2, five cyclic loading tests were aborted during the cyclic
loading because the upward cyclic displacement developed rapidly and reached the
limit of about 65 mm. Figure D.15 shows four of those tests. Inall cases, critical
tensile loading was applied, where the peak loads reached oreven succeeded the ref-
erence tensile loadsFTR. It was noticed that even under so critical loads, the tests
without the overburden pressure and with saturated sand could hold longer than the
tests withpm>0. The reason for this was the development of pore suction that could
help the bucket model resist the critical loading. For example, Figure D.16 shows
full cyclic loading data for test C0A0.7m-0.4.2. The inner pore pressure transducers
(PP4-PP6) measured a small negative suction that at the lastpart of the cyclic load-
ing reached -8 kPa suction under the bucket model lid. This suction divided by the
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Figure D.12 Lateral earth pressure vs. confining pressure. Reproduced from the figure presented by
Boulon and Foray (1986)
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Figure D.13 Back-calculated lateral earth pressure vs. confining pressure.

inner area of the lid provides a resistance suction force of 10 kN which is larger than
the peak tensile load applied of -5.9 kN. Even though the loading frequency was low
(0.1 Hz), it was sufficient to create partial drainage conditions and generate negative
pore suction in the tests with the critical loading.

Eight cyclic loading tests ended up with a post-cyclic monotonic pull-outFPc. Figures
D.17, D.18 and D.19 show the results from tests with different overburden pressures.
Virgin monotonic peak loadFT is marked at the corresponding displacementwT . FPc

values were up to 15% lower thanFT in the tests with 0 kPa overburden pressure (Fig-
ure D.17). Very few successful tests with the post-cyclic loading were performed in
tests with the overburden pressure of 40 and 70 kPa. From those few tests, it seems
that no obvious cyclic degradation was present after the long-term cyclic loading.

Table D.3 shows stiffness results for cyclic loading tests.The following ratios of
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Figure D.14 Accumulated displacement vs. cycle number for three tests.

load and displacement were considered: cyclic unloading stiffnesskUN where the
trough value was subtracted from the peak value of a cycle, cyclic loading stiffnessk
where the peak value was subtracted from the trough value of acycle and peak stiff-
nesskPc for the post-cyclic monotonic loading part. Three tests developed very small
cyclic displacement and had very scattered and extremely high stiffness values, they
are marked with a star in Table D.3. Overall, cyclic stiffness was always significantly
higher than the virgin loading stiffnesskpeak (see section D.4.1). By its magnitude,
cyclic unloading stiffness was very similar to the loading stiffness except three tests
wherekUN was higher thank. The post-cyclic peak stiffnesskPc was generally higher
thankpeak with the mean value of 2.1 MN/m.

Finally, based on the testing data, a cyclic loading interaction diagram was prepared.
Figure D.20 shows the results of cyclic loading that led to maximum -50 mm (0.05D)
upward displacementwcyc. The normalized cyclic amplitudeξA and mean loadξm
were used as the main input to the diagram. The diagram was divided into two zones;
stable and unstable. The stable zone contains most of the performed tests, because
the displacement developed was close to zero. The response was completely drained
in these tests. In the stable zone, a bucket foundation wouldresist the tensile loading
without an excessive upward displacement. As seen, a small mean tensile load of up
to ξm=-0.5 can be allowed for the design. All the tests in the unstable zone resulted in
a gradual pull-out of the bucket model. In this case, the foundation would need extra
ballast or to be increased in size.
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Figure D.15 Accumulated displacement vs. cycle number for four tests wherethe displacement was
developed in less than 20,000 cycles.

Table D.3 Stiffness results for cyclic loading tests.

pm, Test ID kUN , σ, k, σ, kPc,
[kPa] [MN/m] [MN/m] [MN/m] [MN/m] [MN/m]
0 C0A0.2m-0.4 - - - - 1.4
0 C0A0.3m-0.4.1 - - - - 2.6
0 C0A0.3m-0.4.2* 1781 929.1 1705 892 0.7
0 C0A0.7m-0.4.2 21.34 8.68 19.08 7.938 -
0 C0A0.7m0.3.2 228.9 42.0 228.8 42.4 3.7
0 C0A0.4m0.3* 3190 717.9 3150 677.1 1.5
0 C0A0.2m0.0* 5469 2011 5704 2451 -
43 C40A0.4m0.4 17.1 0.5 17.1 0.5 2.7
41 C40A0.7m-0.5 8.8 3.7 7.3 2.9 -
41 C40A0.3m-0.7 183.6 157.2 39.4 5.4 -
71 C70A0.3m0.0.1 39.7 0.3 39.7 0.3 -
70 C70A0.3m0.0.2 41.2 0.4 41.2 0.4 -
73 C70A0.2m-0.2 39.2 0.5 39.2 0.5 -
71 C70A0.3m-0.5 34.8 1.0 34.8 1.0 -
71 C70A0.5m-0.5 13.0 5.5 5.5 0.9 -
*Rough estimate
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Figure D.16 Full data for the cyclic loading test C0A0.7m-0.4.2.
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Figure D.20 Interaction diagram for the cyclic loading tests with overburden pressure: 0 kPa (empty
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D.5 Conclusion and Recommendations

Conservative assumptions often govern bucket foundation design in sand. Several
researchers have recommended that no tensile loading should be allowed for a safe
design. But there are no publicly available studies that have focussed on the cyclic
behaviour of a bucket foundation subjected to one-way tensile loading. Consequently,
this study took a closer look into the cyclic tensile loadingon a bucket foundation
model. The drained cyclic response was examined by simulating the long-term cyclic
loading conditions for an offshore structure under the normal serviceability perfor-
mance. Cyclic degradation was tested applying post-cyclicpull-out loads on the
bucket foundation model. The physical model analysis led tothe following obser-
vations:

• Unit skin friction increased with the increasing overburden pressure. Interest-
ingly, the measured increase was non-linear which could be explained by a change-
able lateral earth pressure coefficient.

• In terms of stiffness, cyclic loading stiffness was much higher than the virgin
monotonic loading stiffness. Post-cyclic monotonic loading stiffness was ap-
proximately twice as large as the virgin monotonic loading stiffness. However,
cyclic unloading and loading stiffnesses were very similar.

• In most of the performed cyclic loading tests, the sand couldfreely drain and no
pore pressure was built up. It was found that mean tensile loads corresponding
to ξm up to -0.5 can be allowed for long-term loading. For the long-term loading
analysis, the tensile drained capacity should never be exceeded, because it would
lead to pull-out.

• After long-term cyclic loading, cyclic degradation of up to15 % was noticed
in tests with 0 kPa overburden pressure. Only a few tests with40 and 70 kPa
overburden pressure succeeded, and they showed no cyclic degradation. But
more tests are needed to confirm a tendency.

Interface properties were analysed based on the testing data. Variation of the prop-
erties, such as different skirt roughness and other types ofsand, would provide more
information that could be used for a more detailed interfaceparameter analysis. More-
over, better knowledge about the lateral earth pressure would be very useful and clar-
ifying the soil conditions. Dilatometer may be a suitable tool for the horizontal stress
analysis.

The interaction diagram is valid only for a bucket foundation with d/D=0.5. Dif-
ferent shapes of foundation model should be tested to provide more data. Rather few
tests were successful when testing the post-cyclic monotonic loading with the applied
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overburden pressure. More tests would provide a better overview of the results and
reduce the scatter in the data.
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D.6 List of Symbols

Greek Symbols
γ Total soil unit weight

γ′ Effective soil unit weight

δ Soil-structure interface friction angle

ξA Ratio of cyclic loading amplitude and static resistance

ξm Ratio of mean cyclic load and static resistance

σ3 Confining pressure

σv Vertical stress

σ′

v Effective vertical stress

ϕs Secant friction angle

Ψ Dilation angle

Latin Symbols

D Bucket model diameter

DR Relative soil density

E50 Secant Young’s modulus

F Load

Fcyc Cyclic load amplitude

Fmean Mean cyclic load

FP Preload during installation

FPc Peak post-cyclic tensile load

FT Peak tensile load

FTR Reference tensile load (average ofFT )

K Lateral earth pressure coefficient

N Cycle number

PP Pore pressure transducer

U Uniformity coefficient
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d Skirt length

dinst Installed skirt length

ds Specific grain density

emax Maximum void ratio

emin Minimum void ratio

fs Unit skin friction

f Loading frequency

k Cyclic loading stiffness

kPc Post-cyclic monotonic loading stiffness

kpeak Monotonic loading stiffness

kUN Cyclic unloading stiffness

pm Membrane pressure

pt Tank pressure

v Tensile load velocity (Pull-out rate)

t Skirt thickness

wcyc Displacement during cyclic load

wT Displacement at peak tensile load

wPc Displacement at peak post-cyclic tensile load
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         Abstact. Quasi-static offshore loads, such as mean wave loads, induce drained soil 

condition. The present study focusses on the bucket foundation behaviour under long-term 

cyclic loading. The paper analyses model testing results of a bucket foundation model 

exposed to cyclic tensile loading. The model dimensions are 1 m in diameter and 0.5 m in 

skirt length. It is installed in dense water-saturated sand. Slow monotonic loading tests and 

cyclic tensile loading tests are performed (up to 40,000 load cycles) including tests with mean 

cyclic load in tension which is unique in this sense. High quality data is documented for load, 

displacement and pore pressure response. Conclusions are drawn regarding static and cyclic 

loading stiffness, displacement development during the long-term cyclic loading. Four cyclic 

loading tests induced partially drained soil conditions and showed that pore pressure can 

accumulate during the long-term loading. Post-cyclic monotonic tensile loading tests showed 

up to 25% reduction in capacity.    

The research results supply valuable information for the design of an upwind bucket 

foundation under a jacket structure.  

 

         Keywords: bucket foundation, tensile loading, axial loading, cyclic loading, 

long-term loading, 1g testing, dense sand 

 

E.1 Introduction  

Bucket foundations have been used for decades as a suitable support for various offshore 

structures in the oil and gas industry. Tjelta (2015) thoroughly explains the development of 

suction foundation technology including historical overview and main features. Currently, 

interest is growing for building extra-large, but still relatively light and very slender wind 

turbines in deep waters. Compared to an oil platform, a large wind turbine has a small self-

weight. To stand in deep water, a wind turbine can be supported on a multi-foundation 

system. Thus, the large horizontal loading coming from wind and waves would be transferred 

to dominating axial loads on each foundation. An optimal foundation design solution for 

extra-large wind turbines should be found, and it is not a straight forward process for two 

reasons: firstly, the foundations should be cost-effective; and secondly, they should be able to 

resist tensile loading. In some cases, a long-term cyclic tensile loading would be unavoidable 

unless the spacing between each foundation is increased or an additional dead-load is placed.  

 

Until today, a significant number of bucket foundation studies were performed at several 

research institutes and universities, among the best known are Oxford University, Norwegian 

Geotechnical Institute and Aalborg University. At Aalborg University, monopod bucket 

foundations were analysed in detail by Feld et al. (1999 and 2000), Larsen et al. (2013), 

Foglia and Ibsen (2013) and Barari et al. (2015).  

 

An extensive study at Oxford University focussed on axially loaded suction caisson 

foundations. It included tests with caisson foundation models in different soils in a pressure 

chamber (Kelly et al. 2003) as well as a large-scale field testing (Kelly et al. 2006a). Most of 

the times, the performed cyclic loading tests had mean compressive loading and a small part 

of the loading amplitude was tensile; the highest number of cycles was 1000. It was claimed 

that, to have a safe design, the highest tensile loading acting on a bucket foundation should be 

limited to the drained friction resistance (Kelly et al. 2003, 2004, 2006a and 2006b). Thus, the 

tensile capacity would consist of friction on the outer skirt, self-weight of the structure and the 

lower of the soil plug weight and the inner skirt friction. Byrne and Houlsby (2006) stated that 

the tension on the upwind foundation should be generally avoided. However, limited amount 

of model testing data is publicly available focussing on the cyclic tensile loading on bucket 

foundations, especially with high cycle number and various mean tensile loads. 
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A medium-scale bucket foundation model, corresponding to 1:10 prototype size, was used for 

the testing of load, displacement and pore pressure response in a 1g testing rig. Cyclic loading 

program consisted of up to 40,000 constant load amplitude cycles followed by a final 

monotonic pull-out quantifying the cyclic degradation of the frictional resistance. 

Furthermore, dimensional analysis on stiffness and displacement was applied according to 

Kelly et al. (2006a). Through the physical model testing, this paper aims at visualizing the 

bucket foundation behaviour under long-term cyclic loading conditions. The influence of the 

axial tensile load on the displacement and cyclic degradation is studied. 

 

E.2 Equipment and testing 

Quasi-static and permanent loads, such as mean cyclic loads, induce drained conditions in 

soil. Under drained conditions, the tensile capacity of the bucket foundation corresponds to 

the dead load of the structure and the frictional resistance generated in the soil-structure 

interface. Furthermore, it is a lower bound solution for the tensile capacity. This was taken as 

a starting point in the present model testing program which focussed on the drained response 

of the bucket foundation model examined by a specially designed laboratory test set-up. 

The laboratory test facility was launched in 2013 and presented for the first time by 

Vaitkunaite et al. (2014). The test set-up consisted of a large sand container, an installation, a 

loading frame equipped with two hydraulic cylinders and an automatic load regulation 

system. The tests presented in this article were performed with bucket foundation model of    

1 m in diameter D, 0.5 m in skirt length d and 3 mm skirt thickness t, which corresponds to 

prototype foundation with d/D ratio 0.5. The bucket is made of steel and has a self-weight of 

204 kg including the connection flange between the model and the load application point,    

see Figure E.1.  

 

Figure E.1 Test set-up plan (Vaitkunaite 2015). 
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E.2.1 Sand  

The rigid sand container had an inner diameter of 2.5 m. It was filled with 0.3 m of gravel 

used for drainage and 1.2 m of Aalborg University sand No. 1 (Figure E.1). The latter is 

quarts sand which contains a small part of biotite and feldspar. The small sand particles are 

sub-angular while the larger particles are rounded. The main sand properties were as follows: 

specific grain density 2.64 g/cm3, lowest void ratio emin 0.549, highest void ratio emax 0.858, 

50%-quantile 0.14 mm, uniformity coefficient 1.78. Borup and Hedegaard (1993) and Ibsen 

and Boedker (1994) thoroughly reported the sand properties. Figure E.3 shows the sieve 

analysis. The sand was saturated and compacted to a planned density level before every test. 

Aalborg University sand No. 1 has a hydraulic conductivity of 8·10-5 m/s when prepared to 

relative density DR = 80%. Sjelmo (2012) performed a permeability analysis of Aalborg 

University sand No. 1 through a falling head apparatus.  

 

E.2.2 Testing procedure and data sampling 

Vaitkunaite et al. (2014) described testing procedure that was applied for this program. To 

begin with, the sand was loosened with an upward gradient. Afterwards, the sand volume was 

compacted by a rod vibrator. Later on, at least four small-scale laboratory cone penetration 

tests (CPT) were performed to inspect soil conditions. Larsen (2008) described the laboratory 

CPT device and the methodology for the CPT interpretation. Ibsen et al. (2009) estimated DR 

from the laboratory cone resistance. Tests presented in this article were performed in dense 

sand with DR ≈ 80%, see Table E.1.  

 
Table E.1 Testing program. 

Test ID DR 

[%] 

γ’ 

[kN/m3] 

FT / FPc 

[kN] 

Fmean± Fcyc. f 

[kN, Hz] 

LR, 

[kN/s] 

ξm ξA N 

[x103] 

St.1 80 9.3 -5.7 / - - 0.02** - - - 

St.2 80 9.5 -6.3 / - - 0.02** - - - 

St.3 84 9.6 -5.3 / - - 0.02** - - - 

St.4 85 9.6 -5.9 / - - 0.02** - - - 

A0.2m-0.4 78 9.3 - / -5.3 -2.1±1.0, 0.1 0.41 -0.4 0.2 40.0 

A0.3m-0.4:1 77 9.2 - / -5.7 -2.1±1.9, 0.1 0.77 -0.4 0.3 38.2 

A0.7m-0.4:1 79 9.3 pulled -2.1±3.9, 0.1 1.54 -0.4 0.7 8.1 

A0.7m0.3:1* 85 9.6 - 1.8±3.9, 0.1 1.54 0.3 0.7 28.3 

A0.4m0.3 78 9.3 - / -5.0 1.9±2.3, 0.05 0.46 0.3 0.4 19.6 

A0.3m-0.4:2 - 9.1 - / -4.7 -2.1±1.9, 0.1 0.77 -0.4 0.3 39.7 

A0.7m-0.4:2 - 9.1 pulled -2.1±3.9, 0.1 1.54 -0.4 0.7 1.3 

A0.7m0.3:2 81 9.4 - / -4.9 1.8±3.9, 0.1 1.54 0.3 0.7 40.0 

A0.2m0 81 9.4 - / -4.9 0±1.00, 0.1 0.40 0 0.2 40.0 

Where: DR – density ratio, γ’ – soil unit weight, FT/Pc – monotonic tensile peak load, Fmean – mean 

cyclic load, Fcyc – cyclic amplitude, f – load frequency, LR – load rate, N – cycle number. 

*Test stopped after cycle No. 28,263; loading program was repeated in test A0.7m0.3:2. 
**Max. load rate. 

 

Mechanical push installation of bucket foundation models was used by Kelly et al. (2003), 

Kelly et al. (2006a) and Foglia (2015). Kelly et al. 2006a compared installation by suction 

and pushing and documented that the soil disturbance due to suction installation was more 

visible in small-scale model tests, probably, because of local soil disturbances which do not 

increase in proportion to caisson diameter. It is expected that suction installation loosens soil 

in the inner interface zone and reduces the strength properties of soil-structure interface in a 

short-term. However, the properties are probably regained after some time due to small cyclic 

wave loading which is typical in summer weather conditions. Nielsen (2016) performed 
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laboratory tests with bucket foundation models. He showed that a bucket foundation model 

gained 1.6 times larger bearing capacity when pre-loaded with small load cycles. This study 

dealt with the foundation model installed by mechanical pushing, because the focus was 

operational loading discharging the installation impact.  

 
Figure E.2 Bucket model used for the testing: pressure transducer (1), valves (2), displacement 

transducers (3), positions for the pore pressure measurements (PP1-PP7); dimensions in mm. 

 

Figure E.3 Sieve analysis of Aalborg University Sand No. 1. performed in 2012. 

Installation started with positioning the bucket right on the soil surface level, zeroing the 

signal of the load cell and penetrating the bucket skirt down to the soil with 0.2 mm/s 

velocity. Two large valves were kept open during the installation to let the air flow out. The 

installation ended when approximately 70 kN force was reached. Right after that, the model 

was completely unloaded. The installation required about 50 kN force from the hydraulic 

cylinder. An elastic compressive preload of 20 kN ensured that the bucket was fully installed 
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and kept the procedure repetitive (Figure E.4). In most of the cases, during the installation, the 

water table was about 3 cm above sand surface. During installation procedure, it was noticed 

that the load cell reacted to the lid contact with the water table. In a few tests, were the water 

table was at the same level of the sand surface, only one change in the response was noticed 

corresponding to the level of the soil surface. This means that the installation rate was slightly 

higher than would be required for completely drained soil response. However, the installation 

velocity was limited by the equipment and could not be lower than 0.2 mm/s. Thus, bucket 

model was left to rest in the sand at least 2 hours allowing pore pressure dissipation. Load and 

position signals were measured during the installation process with sampling frequency of     

1 Hz.  

 
Figure E.4 Model installation with preload and elastic unload, test A0.7m0.3:1. 

 

The testing program of the monotonic tensile loading and cyclic loading tests is presented in 

details in section 2.3. Load, displacement and pore pressure responses were measured during 

the tests. Load cell had a capacity of 250 kN and was positioned right above the foundation 

model. Position of the hydraulic cylinder piston was measured with a displacement 

transducer. Additionally, two displacement transducers were placed on the lid of the 

foundation model; they could measure displacements of up to 125 mm. To analyse the 

drainage conditions, pore pressure response was measured at different levels on the model 

skirt. Pore pressure transducers were placed above the bucket model and connected to 

measuring positions via narrow water-filled pipes. As the cyclic tests typically took up to five 

days, the atmospheric pressure changes were also measured and separated from the pore 

pressure measurements. Figure E.2 shows all the mentioned transducers. Data sampling rate 

depended on the type of loading, i.e. 1 Hz frequency was chosen for monotonic loading tests 

and 2 Hz frequency for cyclic loading tests.  

 

MOOG modular test controller was used to control and monitor various loading regimes; for 

example, tension, compression and periodic loading with various force or displacement 

amplitudes and frequencies. The system was able to work continuously for several days, 

which was important for the high cycle number loading tests.  

E.2.3 Loading program 

Before describing the loading program, it is worth mentioning that tensile loading, upward 

displacement and suction pore pressure are marked with a negative sign or drawn on the 

negative axis.  
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For the presentation of the load cases, two parameters were used to characterise the cyclic 

axial loading, i.e. ξA and ξm. Ratio ξA (eq. E.1) describes the cyclic loading amplitude Fcyc 

normalized with reference monotonic tensile load FTR. ξA takes a value from 0 to 1, where Fcyc 

equal to FTR results in ξA=1 and the smaller Fcyc results in ξA<1. The second parameter         

(eq. E.2) expresses the ratio between the mean cyclic load Fmean and the reference monotonic 

tensile capacity FTR. ξm takes a value from -1 to 1, where mean tensile cyclic load equal to FTR 

results in ξm=-1 while mean compressive cyclic load equal to |FTR| results in ξm=1. A perfect 

two-way cyclic loading with Fmean=0 results in ξm=0. Figure E.5 visualizes the mentioned 

loading parameters.  

(E.1)   

TR

cyc

A
F

F
−=ξ    

(E.2)   

TR

mean
m

F

F
−=ξ    

In the first set of tests, the monotonic tensile capacity was measured. The tests were position 

controlled with maximum vertical pull-out velocity of 0.002 mm/s which ensured that the soil 

response was drained.  

 

The second set of tests focussed on drained behaviour of bucket foundation subjected to 

cyclic axial loading. Sinusoidal cyclic loading with constant amplitude and mean load was 

applied on the model. Loading frequency f was 0.1 Hz, except in one test presented in this 

paper where the frequency was 0.05 Hz. Each time, the testing program consisted of more 

than 20,000 load controlled cycles followed by a position controlled monotonic pull-out FPc.  

 

 
Figure E.5 The definition of loading parameters. 

 

 

E.3 Test results 

All monotonic tensile loading tests showed very similar behaviour and similar tensile peak 

resistance. Pore pressures did not exceed 1.3 kPa during the loading sequence (Figure E.6), 

which was within the measuring accuracy of the transducers. Two different displacement rates 

were applied in the four monotonic tests: two tests with 0.001 mm/s and two with             

0.002 mm/s. No influence on the pore pressure transducers was seen for the different 

displacement rate tests. The displacement rate was extremely low for water saturated sand and 

it took 1.4-2.8 hours to lift the model only 10 mm. Thus the response was assumed to be 

drained. 

 

It was noticed that the peak tensile load FT was reached within the first 6 mm upward 

displacement (0.006D), which was followed by a continuous decrease in load resistance due 
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to a decrease in the soil-structure interface area and softening behaviour of the soil. The 

reference monotonic tensile resistance FTR was chosen as the average of FT. 

 

This paper presents five cyclic loading tests with mean tensile load, three tests with mean 

compressive load and one with zero mean load. Figure E.7 shows a cyclic loading test 

followed by a post-cyclic monotonic pull-out. The bucket foundation model was allowed to 

move up to -65 mm upwards (0.065D). In Table E.1, two tests are marked as “pulled”; it 

refers to vertical upward displacement of -65 mm.  

 

If no significant displacement rate and pore pressure change were seen, then it was expected 

that there was no cycle that could exceed the drained tensile capacity. However, during four 

cyclic loading tests, i.e. A0.3m-0.4:1, A0.3m-0.4:2, A0.7m-0.4:1 and A0.7m-0.4:2, pore 

pressure build up during the loading sequence was noticed. Loading rate analysis showed that 

the pore pressure build up was present in the tests where the loading rate was higher than    

0.77 kN/s and mean tensile load was applied in the loading sequence (see Table E.1). Pore 

water pressure during cyclic loading is addressed in section 3.3.  

 

Some of the tests are referred as critical loading tests or tests where a critical load is reached. 

The critical load in this loading program is the drained tensile resistance FTR. The drained soil 

response is normally assumed for long-term loading conditions. As the main subject of this 

testing program is drained soil response, the loads reaching FTR are referred as critical.  

 
Figure E.6 Monotonic tensile loading tests and pore pressure development under the bucket model lid 

vs. upward displacement (tests St.1, St.2, St.3 and St.4). 

 

E.3.1 Displacement vs. cycles 

All the tests had a tendency to either keep the bucket in the initial position or develop upward 

displacement. During tests with ξm=0.3 and ξA ≤0.7, the foundation model stayed in the initial 

position (A0.4m0.3, A0.7m0.3:1, A0.7m0.3:2). Very small upward displacements (<0.006D) 

developed in tests with ξm ∈[-0.4, 0] and ξA ≤0.3 (A0.2m0, A0.3m-0.4:1 and A0.3m-0.4:2). 

Figure E.8 clearly shows that when critical loading was applied - the tensile load reached FTR 

- the bucket eventually was pulled out (A0.7m-0.4:1, A0.7m-0.4:2). However, the foundation 

model had to be subjected to more than 1,000 cycles of such critical loading to be lifted up to 

0.05D. 

 

−60−50−40−30−20−100

−7

−6

−5

−4

−3

−2

−1

0

Displacement [mm]

L
o
a
d
 [
k
N

]

St.2
St.4

St.1
St.3

pp6, St.4

pp6, St.2
pp6, St.3



150 

 

 
Figure E.7 Full loading program for test A0.2m0: Load and pore pressure vs. upward displacement. 

 

Tests A0.7m-0.4:1 and A0.7m-0.4:2 had identical loading conditions, but slightly different 

behaviour, the first test required 8 times more cycles to lift the bucket model to -60 mm 

(Figure E.8). Obviously, the displacement rate was changeable in the tests A0.7m-0.4:2 while 

in A0.7m-0.4:1 was rather constant. Furthermore, the inner pore pressure in test A0.7m-0.4:2 

decreased constantly (Figure E.13) whereas in the test A0.7m-0.4:1 it was around 0 kPa 

during the first 5,000 cycles (Figure E.14). This indicated that the accumulation of negative 

pore pressure resulted in higher displacement. As the loading rate was identical, it should be 

expected that slightly lower soil permeability (thus, higher DR) could result in the lower 

negative pore pressure of test A0.7m-0.4:2 compared to test A0.7m-0.4:1. Unfortunately, the 

density ratio was not estimated for the test A0.7m-0.4:2 due to technical issues. 

 

 
Figure E.8 Accumulated displacement vs. number of cycles (tests A0.3m-0.4:1, A0.3m-0.4:2, A0.7m-

0.4:1, and A0.7m-0.4:2). 

 

Kelly et al. (2006b) analysed incremental and cumulative cyclic displacement during one test 

with mean compressive load (referred as Test15) and showed that the incremental 

displacement decreased within the first 200 cycles and, afterwards, kept constant with a small 

positive value pushing the bucket model down to the soil at a constant rate. Positive 
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incremental displacement indicates a safe foundation design range, because the bucket cannot 

be lifted due to the loading conditions.  

 
Table E.2 Displacement analysis. 

Test ID ξm ξA N Comment for displacement 

A0.7m0.3:1 0.3 0.7 160 Developed constant wi.d of 10-6 mm 

A0.7m0.3:2 0.3 0.7 200 Developed constant wi.d of 10-6 mm 

A0.4m0.3 0.3 0.4 1100 Developed constant wi.d of 10-6 mm 

A0.2m0 0 0.2 40 Developed stable wi.d of -10-7 mm 

A0.3m-0.4:2 -0.4 0.3 188 Developed stable wi.d of -10-4 mm 

A0.7m-0.4:1 -0.4 0.7 - Large displ. during all cycles 

A0.7m-0.4:2 -0.4 0.7 - Average wi.d of -5·10-2 mm 

Where: DR – density ratio, wi.d – incremental displ., N – cycle number to reach a constant wi.d. 

 

During the present testing campaign it was seen that in most of the examined cases the 

incremental displacement wi.d became constant within the first 200 loading cycles. Figure E.9 

shows accumulated and incremental cyclic displacement during test A0.7m0.3:2. The 

incremental displacement changed within the first 200 cycles and continued almost constant 

with a very small positive increment of 10-6 mm until the end of the test. Within the first 200 

cycles, the model reached the uppermost position and, afterwards, it was slowly pushed 

downwards to the initial position (0 mm). The accumulated displacement during this long-

term cyclic loading test was very small (<10-3D). Similar behaviour was seen in tests 

A0.7m0.3:1 and A0.4m0.3.  

 

However, all tests with ξm≤0 resulted in negative incremental displacements, where average 

wi.d was in the range from -10-7 mm to -10-2 mm depending on loading conditions (Table E.2). 

Furthermore, under the critical tensile loading, the displacement increment varied during the 

loading sequence, as seen in Figure E.10. Overall, the negative incremental displacements are 

small, but they would eventually lead to an inadmissible accumulated displacement of the 

foundation.  

 
 

Figure E.9 Incremental and accumulated displacement vs. number of cycles, test A0.7m0.3:2. 
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E.3.2 Post-cyclic load 

Cyclic degradation is a very important factor that should be evaluated when designing 

offshore foundations. In this testing program, the cyclic degradation was evaluated comparing 

the virgin loading response and the post-cyclic loading response. The measured monotonic 

load decreased continuously due to a decrease in the soil-structure interface area and softening 

behaviour. Thus, the corresponding shaft friction was calculated dividing the measured load 

by the area of the shaft in contact to soil (Figure E.11). The peak post-cyclic shaft friction was 

very similar to or lower than the virgin shaft friction; in the performed tests, up to 25% 

difference in the peak capacity. The peak resistance was reached within the upward 

displacement of -10 mm, which corresponded to 0.01D.  
 

 
Figure E.10 Incremental and accumulated displacement vs. number of cycles, test A0.7m-0.4:2. 

 

 
Figure E.11 Virgin and post-cyclic monotonic shaft friction vs. upward displacement. 
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E.3.3 Pore pressure vs. cycles 

Shear and dilation occur when dense sands are subjected to external loads. Negative pore 

pressure occurs if water is unable to flow into the pores when the soil dilates. Dilation is 

especially high in low soil stresses (shallow depth). As mentioned earlier, the negative pore 

pressure is limited by the cavitation.  

 

Until now, no tensile high cycle number tests were performed measuring pore pressure 

behaviour at different depths of the bucket model skirt. In this testing campaign, it was 

noticed that pore pressure depends not only on loading rate, but can also change/develop 

during long-term cyclic loading as seen in Figure E.12 (test A0.3m-0.4:2). It should be noted 

that any influence from the atmospheric pressure change during the tests was removed from 

data, so it shows only the pore pressure state in the soil contact to the foundation model, see 

also Figure E.2 for the pore pressure measuring positions.  

 

No pore pressure development (thus, fully drained response) was seen during full loading 

program in tests A0.2m-0.4, A0.7m0.3:1, A0.7m0.3:2, A0.4m0.3and A0.2m0. Small suction 

accumulation during cyclic loading was visible in tests A0.3m-0.4:1 and A0.3m-0.4:2 that 

were subjected to a higher loading rate of 0.77 kN/s and mean tensile load (Table E.1). The 

highest measured pore pressure reached -8.5 kPa in test A0.7m-0.4:2 which was small 

compared to the cavitation limit of -100 kPa (Figure E.12 and Figure E.13). However, the 

generated suction pressure of -8.5 kPa under the bucket lid resulted in 6.7 kN resistance to 

tensile load which was larger than FTR. As seen in Figure E.13, negative pore pressure was 

continuously generated through all the loading sequence. Due to measuring accuracy of the 

pore pressure transducers (+/-2 kPa) it is hard to say the exact time when drained behaviour 

changed to partially drained and the tensile resistance was induced by negative pore pressure 

additionally to the interface friction. Moreover, the pore pressure transducers measured 

different suction in different levels on the bucket skirt, i.e. the inner part of the bucket was 

subjected to more suction than the outer indicating partial drainage conditions, see         

Figures E.2 and E.13. As mentioned in section 3.1, the accumulation of the negative pore 

pressures influenced the displacements. Vaitkunaite et al. (2016) performed experimental 

analysis with a bucket foundation model in a pressure tank. The analysis confirmed that pore 

suction level is closely related to upward displacement rate. More analysis of this matter was 

out of the focus of the present research.  

 
Figure E.12 Pore pressure development during cyclic loading  

(tests A0.2m-0.4, A0.3m-0.4:2 and A0.7m-0.4:2). 
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Figure E.13 Accumulated displacement and pore pressure vs cyclic loading in test A0.7m-0.4:2. 

 
Figure E.14 Accumulated displacement and pore pressure vs cyclic loading in test A0.7m-0.4:1. 
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E.3.4 Stiffness during monotonic and cyclic loading 

Monotonic loading stiffness during the first 10% of load, k10% was about 11 MN/m,              

see Figure E.15 for the definition of stiffness. Peak loading stiffness kpeak, from the beginning 

to the peak of the load, was 1.1 MN/m. Post-cyclic tensile load resulted in rather high 

stiffness. Here k10% was very high, i.e. from 46 MN/m to 3300 MN/m, while the peak loading 

stiffness kpeak was from 1.0 to 7.3 MN/m. 

 

It was noticed that cyclic loading and unloading stiffness were significantly higher than the 

monotonic loading stiffness and it had similar values to post-cyclic pull-out values of k10%. 

Moreover, the stiffness was rather constant during the loading sequence except tests        

A0.3m-0.4:2 and A0.7m-0.4:2, where the stiffness dropped at some point. Figure E.16 shows 

that test A0.7m0.3:2 unloading stiffness kcyc was about 230 MN/m (mean). On the contrary, 

kcyc was quite low (only 24 MN/m) in test A0.7m-0.4:2 where large tensile loading 

dominated. Clear stiffness degradation during cyclic loading was visible only when critical 

tensile cyclic loading was applied and no degradation in other loading cases.  

 

Kelly et al. (2006a) performed cyclic loading tests with mean compressive load and showed 

that unloading cyclic stiffness had no degradation during cyclic loading, i.e. it was constant or 

increasing during the loading sequence. Such tendency is confirmed with the present tests, 

except when critical tensile cyclic loading was applied (tests A0.7m-0.4:1 and A0.7m-0.4:2).  

 
Figure E.15 Cyclic unloading stiffness (a), Monotonic loading stiffness (b). 

 
Figure E.16 Unloading stiffness vs cycles for tests A0.7m-0.4:2 and A0.7m0.3:2. 
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Figure E.17 The normalized cycles of tests A0.7m0.3:2 (black) and A0.7m-0.4:2 (grey). 

 
Figure E.18 Normalized unloading stiffness vs. cycle number during the first 200 cycles. 

 

E.3.5 Dimensional analysis 

Kelly et al. (2006a) provided equations for comparison of laboratory and field tests which 

indicated that the method used for data normalization was very successful. Indeed, the study 

showed good comparability of stiffness in any of the cycles. However, accumulation of 

deformation during the cyclic loading (90 cycles) had smaller similarity when comparing 

laboratory and field test data. Analysis of vertically loaded caissons showed that disturbance 

due to suction installation was less important for field caisson. It is worth mentioning that the 

dimensional analysis was applied to test data with foundation models having 0.15, 0.2 and   

1.5 m diameter while the present study analyses a foundation model with 1 m in diameter. 

Moreover, the loading conditions were quite different compared to the present study, since 

herein more attention is given to the tensile loading. Model testing data provides valuable 

knowledge for the full-scale foundation design. Therefore, the application of the theoretical 

background is of interest. 

 

Figure E.17 shows the first, middle and last cycles of the corresponding loading sequence in 

the normalized space. It is clearly seen that test with mean compressive loading (A0.7m0.3:2) 

presented significantly stiffer behaviour compared to test with mean tensile loading          
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(A0.7m-0.4:2). Softer behaviour of an axially loaded bucket foundation model in tension was 

also noticed by Kelly et al. (2006a). Actual unloading stiffness is plotted in Figure E.18 which 

shows that the unloading stiffness was approximately 6.5 times higher in test A0.7m0.3:2. It 

is impossible to compare directly Kelly et al. (2006a) results to the present data, because the 

load amplitudes herein are much smaller. The softer behaviour of tensile loading tests with 

negative Fmean resulted in progressive uplift of the foundation mode is as seen in Figure E.19.  

 
 

Figure E.19 Normalized accumulative displacements vs. cycle number during the first 200 cycles. 

 

E.4 Conclusions 

The study drew attention to the cyclic tensile loading on a bucket foundation model. The 

paper presented results from four monotonic and nine cyclic loading model tests where 

several tests had a mean tensile load which has not been publically documented until now. 

The medium scale bucket foundation model, corresponding to 1:10 prototype size, was 

subjected to large number of load cycles with various mean loads. Continuous measurements 

of load, displacement and pore pressures visualized the actual tensile loading behaviour. 

Based on the performed laboratory tests, the following findings can be drawn: 

• Displacement during long-term cyclic loading: All the tests had a tendency to either 

keep the bucket in the initial position or develop upward displacement. During tests 

with ξm from -0.4 to 0.3 and ξA≤0.3, the accumulated displacement was smaller than 

0.006D. Tests with ξm=-0.4 and ξA=0.7 resulted in gradual pull-out. However, the 

foundation model had to be subjected to more than 1,000 cycles of such critical 

loading to be lifted up to 0.05D. 

• A constant negative incremental displacement developed in the tests with ξm≤0 

which indicated that the bucket foundation would be eventually moved to an 

inadmissible upward displacement.  

• Pore pressure during long-term cyclic loading: Negative pore pressures developed 

during four tests indicating partially drained behaviour. Consequently, it was 

noticed that pore pressure can continuously accumulate during long-term cyclic. 

• Cyclic loading stiffness during long-term cyclic loading: During tests where the 

mean compressive loading dominated, the cyclic unloading stiffness was higher 

compared to tests where mean tensile loading dominated. Generally, cyclic stiffness 

was much higher than monotonic loading stiffness. Clear stiffness degradation 

during cyclic loading was visible only when critical tensile cyclic loading was 

0 50 100 150 200

−20

−15

−10

−5

0

x 10
−3

Number of cycles

[w
/D

][
(p

a
/ 

γ,  D
)]

1
/2

         A0.7m−0.4:2
         A0.3m−0.4:2
         A0.4m0.3



158 

 

applied and no degradation in other loading cases. Unloading stiffness was slightly 

higher compared to loading stiffness. 

• Cyclic degradation: The peak post-cyclic shaft friction was very similar to or lower 

than the virgin shaft friction; in the performed tests, up to 25% difference in the 

peak capacity. The peak tensile resistance was reached within upward displacement 

of 1% of bucket diameter (0.01D).   

• Dimensional analysis by Kelly et al. 2006a was applied and visualized well the 

different trends in the tests for load, displacement and cyclic stiffness development. 

The dimensional analysis can be validated only performing similar loading program 

on bucket foundation models of different size.   
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        Abstract. The present testing program aims at showing the pore pressure response 

around a bucket foundation skirt as well as the load and displacement change due to ten 

different displacement rates. Research findings are useful for a numerical model calibration 

focussing on the design of the upwind foundation in a multi-bucket foundation system. The 

foundation model is in a scale of approximately 1:20 prototype foundation size. The tests are 

performed in a pressure tank with the foundation model installed in dense sand. Based on the 

data, the conclusion is that bucket foundation design in storm case should allow accounting 

for partial drainage in sand. 
 

        Keywords: Bucket foundation, tension load, axial load, displacement rate, pore 

pressure, model testing, pressure tank. 

 

 
Figure F.1 A wind turbine on a jacket with several bucket foundations with reactions to tensile loading 

(RT) and to compressive loading (RC). 

F.1  Introduction 

If a jacket with several bucket foundations supports a wind turbine, the upwind foundation 

should be able to resist tensile loading in the short or long term. Drained tensile capacity of a 

bucket foundation corresponds to the self-weight of a structure and the frictional resistance on 

the inner and the outer skirt. If the tensile load is applied rapidly enough, undrained 

conditions can arise, resulting in high tensile resistance even in a sandy soil. Drainage 

conditions depend on the size of the foundation, soil permeability and loading intensity. 

Cavitation pressure limits the pore suction induced by the tensile loading; the cavitation 

pressure is approximately -100 kPa in atmospheric pressure conditions and temperatures of 

about 0-350C.  

 

When estimating bucket foundation response during a storm loading, it is important for the 

foundation to resist the large wave loads. In a jacket case, the horizontal wave loads would be 

transferred to the dominating tensile and compressive components on the foundations. A well-

known case with the “monster wave” in Draupner E jacket with four bucket foundations 

proved, that the pore pressure dissipation during the large wave (wave period 11.2 s) was very 

low (Hansteen et al. 2003, Tjelta 2015). Thus, in a storm loading, the loads on a full-scale 

bucket foundation would most probably create partial drainage conditions and the tensile 
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response would be somewhere between the drained and undrained even in sandy soils. Pore 

suction induced due to rapid loading increases the tensile bucket foundation capacity. The 

tendencies of the tensile capacity dependence on the loading rate were also noticed by Bye et 

al. (1995), Feld et al. (2000), Kelly et al. (2006) etc. Clearly, a successful numerical model 

would be preferable for the foundation design. In the best case, a suitable numerical model 

should be calibrated with a large-scale model test. As the latter is very expensive, laboratory 

tests can provide useful information. 

 

Iskander et al. (1993) performed tensile loading tests on a model suction pile which had an 

outer diameter of 0.11 m and a shaft length of 0.19 m. The foundation model was installed in 

water saturated dense sand. The authors investigated suction installation and its influence on 

the frictional resistance. The study included four pull-out tests: each of different type 

according to the installation method and type of tensile loading. An analytical method 

predicting the tensile capacity was proposed according to the test data. Feld et al. (2000 and 

2001) performed laboratory tests on a small-scale bucket foundation and concluded that large 

tensile capacity could be generated by suction. Houlsby et al. (2005) presented an analytical 

method evaluating the tensile resistance of a bucket foundation when suction is present. They 

stated that friction along the skirt reduces vertical stresses and proposed a method to include 

this reduction in the tensile capacity calculation. Houlsby et al. (2005) validated their 

analytical method comparing it to laboratory tests performed in a pressure chamber with a 

suction caisson installed in water saturated dense sand. The bucket dimensions were: diameter 

of 0.28 m and skirt length of 0.18 m. Houlsby et al. (2006) performed a large-scale field 

testing and remarked that large tensile capacity at large displacements could be generated 

during pull-out tests. Kelly et al. (2003, 2004 and 2006) performed laboratory tests and 

concluded that the bucket foundation tensile capacity should be limited to the self-weight of 

the structure, frictional resistance and plug weight (if applicable). Byrne and Houlsby (2006) 

stated that tension of the upwind foundation should be avoided to have a safe structure. To 

follow such recommendations, the spacing between each of the bucket foundations should be 

increased, which would increase the manufacturing costs. 

 

Bye et al. (1995) presented a design methodology for Sleipner T and Europipe 16/11E jackets 

on bucket foundations. The design included model testing and finite element modelling. By 

numerical simulation, Cao et al. (2002) analysed the passive suction and displacement 

development of a suction caisson installed in clay. The model showed close agreement with 

centrifuge test results. Thieken et al. (2014) and Achmus and Thieken (2014) presented a 

finite element model for the design of axially loaded bucket foundations in sand. The model 

was compared to several test results (including Iskander et al., 1993) and gave rather good 

results. Tang et al. (2015) implemented a finite volume model of a poro-elasto-plasticity soil 

model where they simulated a suction caisson under vertical tensile loads applied with several 

displacement rates.  

 

The present testing program aims at showing the pore pressure response all around the 

foundation structure as well as the load and displacement change due to a variety of different 

displacement rates. A pressure tank was used allowing the generation of lower negative pore 

pressures. The bucket foundation model was at least two times larger than the previously 

mentioned laboratory models. It was installed in water saturated dense sand. Finally, the 

results were compared to the analytical methods proposed by Iskander et al. (2002) and 

Houlsby et al. (2005).  
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F.2  Testing Equipment and Program 

Figure F.2 shows the bucket foundation model used for the testing. It had a diameter D of    

0.5 m, skirt length d of 0.25 m and skirt thickness t of 2 mm, which was approximately 1:20 

prototype size. Pore pressure transducers were fixed to the lid of the model and connected to 

measuring positions via narrow water-filled pipes.  

 

The test set-up was previously used by Sørensen and Ibsen (2012) for pile foundation testing. 

The test set-up consisted of a large steel pressure tank, a hydraulic cylinder (actuator) and an 

automatic load regulation system (Figure F.3). The pressure tank had an inner diameter of    

2.1 m and the height of 2.1 m. Figure F.3 shows the plan of the pressure tank and the bucket 

model installed in sand. It is expected that the pressure tank is large enough for the tensile 

loading tests with low pull-out rates. If the reverse end bearing failure aroused, the size of the 

tank might be insufficient resulting in lower measured tensile capacity. However, the authors 

did not perform a detailed assessment of the boundary effects. 

 
Figure F.2 Bucket foundation model with pore pressure transducers PP1-PP11. Dimensions in mm. 

(Vaitkunaite, 2015) 

F.2.1  Properties of sand 

The soil sample consisted of 0.6 m of Aalborg University sand No. 1. Hedegaard and Borup 

(1993), Ibsen and Boedker (1994) provided a detailed study about the sand properties. 

Hydraulic conductivity k was 7.4·10-5 m/s and the effective soil unit weight γ' was 9.6 kN/m3 

when the sand was prepared to relative density DR of 85%. The permeability of Aalborg 

University sand No. 1 was tested in a falling head apparatus by Sjelmo (2012). Figure F.4 

shows the hydraulic conductivity dependence on the void ratio for Aalborg University sand 

No. 1.  

 

The summary of the sand properties:  

• min void ratio emin 0.549,  

• max void ratio emax 0.858,  

• specific grain density ds 2.64 g/cm
3,  
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• uniformity coefficient U 1.78.  
 

 
Figure F.3 In-scale plan of the test set-up for the axially loaded bucket foundation model. After 

Vaitkunaite, 2015. 

 
Figure F.4 Hydraulic conductivity vs. void ratio for Aalborg University sand No. 1. (Sjelmo, 2012) 
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F.2.2  Preparation and testing 

Before proceeding with the testing description and results, it should be noted that tensile 

loading, upward displacement and suction pressure are negative in this paper. The peak tensile 

load is marked as FT and the corresponding displacement at the peak load is wT. Suction 

pressure s shows the differential pressure between the absolute pabs and the atmospheric 

pressure patm as: 

 

s = pabs - patm.                                                                                                                   (F.1) 

 

In the case with the applied pressure pt in the tank, the suction pressure corresponds to: 

 

s = pabs - patm- pt.                                                                                       (F.2) 

 

Sand preparation and laboratory CPT testing 

 

Every test started with soil preparation: loosening the sand with an upward gradient and 

compacting it with a rod vibrator as explained by Vaitkunaite et al. (2014). Afterwards, at 

least four CPT tests were performed with a small-scale and custom-built device to inspect soil 

conditions. Larsen (2008) developed this laboratory CPT testing procedure and provided the 

methodology behind it (Larsen 2008, Appendix A). Ibsen et al. (2009) provided an expression 

for the estimation of the relative soil density DR based on the cone resistance from the 

laboratory CPT device: 

                           

                           (F.3)

  

 

where σ’v0 – vertical effective stress, qc – laboratory cone resistance. 

 

Figure F.5 shows the typical CPT results, i.e. cone resistance and relative density. It should be 

noted, that the first 100 mm are not considered for the interpretation of data. That is due to a 

different failure figure in the very shallow depth, where the laboratory CPT interpretation 

cannot be applied (Larsen, 2008). In the performed tests, the relative soil density DR was on 

the average 85% with the standard deviation of 5%. 

 
         Figure F.5 Cone resistance and relative density measured with the laboratory CPT in test v27.  
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F.2.2.1  Installation 

Installation started with positioning the bucket right on the soil surface level, zeroing the 

signal of the load cell (measuring capacity 100 kN) and mechanically pushing the bucket 

down in the soil with a velocity of 0.05 mm/s. Two displacement transducers were used: one 

on the actuator and another on the bucket lid. A valve on the bucket lid was kept open during 

the installation to let the air flow out. At an installation depth dinst of about 240 mm, the 

installation load response changed, meaning that the bucket lid was in contact with the soil 

surface. During the installation, a compressive force of 32 kN was reached. Immediately after 

it, the bucket model was completely unloaded (Figure F.6). The push installation required 

about 10 kN load to penetrate the skirt 240 mm. The additional 22 kN were used for the 

compressive preloading. This preloading was purely elastic and ensured that the testing 

program was repetitive and the model was completely installed.  

 

During the installation, the sand dilated slightly around the skirt circumference. Thus, the 

foundation model could not be installed to full depth (d=250 mm). In small-scale testing, 

every millimetre of the model dimensions is important. Thus, the installation depth dinst was 

carefully measured and noted after every installation (Table F.1). Furthermore, it was taken 

into account in the data analysis.  

 

 
                   Figure F.6 Installation load vs. installation depth in test v27. (Vaitkunaite, 2015) 

F.2.2.2  Testing program 

After the installation, the pressure tank was tightly closed and pt of 200 kPa (pabs=300 kPa) 

was established allowing the simulation of 20 meters water depth. The pressure in the tank 

provided a possibility of lower negative pore pressure generation during loading. 

Displacement controlled tests with a pull-out velocity v (in mm/s) were conducted on the 

bucket foundation model. The testing program contained ten tests, which were numbered 

according to the displacement rate, e.g. v47 stands for velocity v = 47 mm/s (Table F.1). The 

aim of the testing program was to capture the lowest and the highest tensile capacity. 

Furthermore, the program had to show the change of the tensile behaviour in between those 

two limits, especially the change in pore pressures, development of peak resistance and 

displacements. The needed displacement rates were unknown without actually testing them. 

As a result, ten different pull-out rates were used in this campaign. Table F.1 gives an 

overview of the performed tests.  
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                                         Table F.1 Overview of the performed tests 

pt, 

[kPa] 

Test 

No. 

FT, 

[kN] 

wT , 

[mm] 

v,  

[mm/s] 

dinst, 

[mm] 

DR, 

[%] 

0 v0.01 - - 0.01 241 79 

200 v0.05 -2.7 -0.7 0.05 239 85 

200 v0.1 -4.1 -0.7 0.10 241 86 

200 v1 -8.0 -3.6 1 242 90 

201 v10 -30.8 -16.0 10 242 90 

200 v22 -44.1 -14.7 22 236 83 

200 v27 -48.8 -14.3 27 239 85 

200 v47 -65.4 -48.8 47 236 83 

200 v98 -71.7 -60.5 98 239 82 

200 v152 -75.2 -68.2 152 236 84 

where pt – pressure in the tank, FT – peak tensile load, wT – upward 

displacement at FT, v – pull-out rate, dinst – installed skirt length, DR – 

sand density ratio. 

 

F.2.3  Scaling law 

Small-scale experimental studies can provide useful information about various design issues. 

In the case of this testing program, the main interest is brought to the pore pressure change 

and distribution during tensile loading of a bucket foundation. Dimensional analysis is often 

employed as a good tool to visualize the influence of various parameters on the specific model 

test. Foglia et al. (2013) proposed non-dimensional groups for the analysis of pore pressure 

development around a bucket foundation model. The same test set-up was used as in the 

present campaign, but the bucket foundation models were loaded laterally.  

 

In the proposed method all the relevant parameters are reduced to combinations of force [F], 

length [L] and time [T]. Thus, suction pressure s [FL-2] depends on the unit weight of pore 

fluid γw [FL
-3], drainage length L [L], soil hydraulic conductivity k [LT-1] and displacement 

rate v [LT-1] as follows: 

 

s= f(γw, L, k, v).                                                           (F.4) 

 

The drainage length is presumed to be directly proportional to bucket foundation skirt d and 

diameter D. Consequently, the non-dimensional group is as follows:  

 

                                                          

(F.5) 

 

 

Eq. F.5 contains one unknown function g which can be foundation from the laboratory 

experiments. If the non-dimensional groups are expressed correctly, the non-dimensional pore 

water behaviour should resemble the prototype behaviour. The analysis can be validated 

comparing the non-dimensional patterns of experiments performed with different soil and 
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geometry parameters, various model scales and other types of modelling, such as finite 

element modelling.  

 

Foglia et al. (2013) conducted small-scale experiments with two bucket foundation models 

that differed in skirt lengths. The non-dimensional pore water behaviour had a good match. In 

this model analysis only one bucket foundation is used and it is subjected to tensile loading, 

however, it is expected that the method holds.  

 

F.3  Results 

The following sections are intended for the presentation of the testing results. Load, 

displacement, stiffness and pore pressure responses are considered in this part. It should be 

noted that the self-weight of the bucket model and displacements were zeroed, thus, the 

diagrams with the results show the pure response of the tensile loading.  

 

F.3.1  Load vs. displacement 

Figure F.7 shows loading response when tension was applied with six different displacement 

rates from 1 mm/s to 152 mm/s. Table F.1 shows two tests with displacement rates below 1 

mm/s that resulted in very small tensile capacity. FT increased together with increasing v. The 

peak tensile capacity was 9.4 times higher in the tests with v=152 mm/s compared to          

v=1 mm/s. 

 

                Figure F.7 Load vs. displacement response for tests v1, v10, v27, v47, v98 and v152. 

The higher the peak tensile resistance FT, the higher the displacement wT was developed. It 

was noticed that test v152 developed peak load at -68.2 mm (0.136D) while test v1 developed 

peak load at -0.7 mm (0.0014D). Upward displacement in test v152 clearly indicates problems 
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with serviceability limit state. However, assuming that a bucket foundation in a design case 

can have the maximum upward displacement of only 0.05D, the tensile resistance is still 

considerably higher for the faster pull-out tests than for the slower pull-out tests. Thus, the 

tensile capacity can be up to 7.8 times higher, see Figure F.7. In other words, the pore 

pressure response should be considered when designing the upwind foundation since it can 

have significantly higher tensile capacity compared to the drained tensile capacity.  

 

F.3.2  Stiffness 

Figure F.8 shows the definition of the initial stiffness ki and the peak stiffness kpeak that were 

calculated for each of the performed tests. The stiffness defines how the tensile load 

developed compared to the displacement. The highest measured kpeak was 7.13 MN/m in the 

test v0.1, while the lowest measured kpeak was 1.01 MN/m in test v152. Figure F.9 shows that 

some scatter was noticed in kpeak for displacement rates 0-27 mm/s. However, in this range, 

peak stiffness had higher values compared to the faster pull-out rate tests. The testing data 

showed that the peak load was reached at higher upward displacements for the higher pull-out 

rates. Thus, the decrease of stiffness was expected. As seen in Figure F.9, the fitted expression 

kpeak =3.11198v-0.221 gives a satisfactory resemblance of the measurements.  

 

The initial stiffness ki was rather scattered for all the tests and no clear dependency on the 

pull-out velocity was noticed. Mean value of ki was 8.23 MN/m with the uppermost value of 

20.85 MN/m and the lowermost value of 1.00 MN/m discharged. As seen, the mean initial 

stiffness was higher than any of the peak stiffness values and did not depend on the 

displacement rate.  

 
Figure F.8 Peak stiffness kpeak and initial stiffness ki definition in the load-displacement graph.  
 

F.3.3  Poor pressure development 

The following comments and illustrations refer to the suction pressure s (see Eq. F.2). In all of 

the performed tests, the inner pore pressures (transducers PP7-PP11, see Figure F.2) were 

lower compared to the outer pore pressures (PP1-PP6); Figure F.10 shows an example of such 

response in test v10. Figure F.11 shows the peak pore pressures during four different tests. In 

test v98 the inner transducers measured peak pressure of about -272 kPa. The displacement 

rate was increased to 152 mm/s in test v152, but the pressure development was not more 
significant. The lowest pore pressures generated had peak pressure of about -288 kPa. 
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Figure F.9 Peak and initial stiffness vs. pull-out velocity. 

 

Higher than 152 mm/s pull-out velocity attempts were unsuccessful, because the velocity 

could not be kept constant during several seconds due to the limitations of the actuator. 

However, it was assumed that the measured peak pressure in test v152 reached cavitation. 

Ideally, the cavitation should be reached at s = -300 kPa, but deviations from this value can be 

influenced by  imperfect saturation of the narrow water-filled pipes, air bubbles in the sand 

and measurement accuracy of the pressure transducers. Lower cavitation level was earlier 

noticed in triaxial cell tests (Ibsen, 1995) and centrifuge tests (Senders, 2008).  

 

Figure F.10 Load and pore pressure vs. displacement in test v10.  
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Moreover, as the inner transducers in test v152 showed almost identical measurement, it 

should be understood that the response was fully undrained since no inner water flow was 

present. 

 

Figure F.12 shows the peak suction pressure results expressed in the non-dimensional groups. 

Pore pressure measurements from the skirt tip and under the bucket lid are shown in the 

figure. The pore pressures drop with the increasing pull-out rate following a non-linear path. 

Suction on the skirt tip is slightly higher than the suction developed right under the lid. 

However, when the pull-out rate is fast enough to cause cavitation, the developed suction 

becomes very similar in all the transducers indicating the undrained behaviour.  

 

 

Figure F.11 Peak suction distribution along the bucket model in tests v1, v27, v47 and v152. 

 

Figure F.12 Non-dimensional group results for pore pressure transducers pp3, pp6, pp7 and 

pp9. 
 

F.3.4  General remarks 

Figure F.13 and Table F.1 prove that very small tensile resistance and no significant suction 

pore pressure development were measured during the test with the lowest displacement rate 
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rather smooth, and thus, this behaviour was expected. However, oscillations in load and pore 

pressure responses are seen in Figure F.13. This is due to the noise of the system and 

vibrations in the loading equipment. During the testing, it was noticed that the loading 

equipment experienced some sort of vibrations when very low displacement rates were 

applied (as seen in Figure F.13). Unfortunately, it was impossible to tune these vibrations. 

However, the tuning of higher displacement rates was much easier as seen in the response in 

Figure F.7. Furthermore, Figure F.13 shows slightly drifting pore pressure measurements in 

the range of [0.5; -1.7] kPa. Such drift and measuring error was noticed during calibration of 

the pore pressure transducers and, in this case, should be treated as zero pore pressure 

measurement.  

 
          Figure F.13 Slow pull-out test v0.01. Total load and pore pressure vs. displacement.  

 
Figure F.14 Approximate surface elevations after slow (v0.05) and rapid (v152) pull-out 

tests.  
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The submerged weight of the soil volume inside the bucket was 0.45 kN, corresponding to the 

soil unit weight (γ' = 9.6 kN/m3) multiplied by the inner volume of the bucket model. The soil 

surface was visually inspected after every extraction of the foundation model. It was noted 

that during slow pull-out tests (v0.01-v0.1), the soil surface was rather flat and only marks of 

the skirt were visible. However, after the fast pull-outs (v98, v152), the soil under the bucket 

formed an 80-90 mm hill and was completely disturbed indicating that the soil volume was 
actually lifted up. Figure F.14 shows the changes of the soil surfaces after the tests. 

F.4  Back-Calculation 

Figure F.15 shows total measured tensile load and suction load (pressure under the lid times 

the inner lid area) for four tests. The difference between the FT and peak suction load Fs 

increases together with increasing v. In some cases, such as tests v27 and v47, it was noticed 

that the Fs was larger than FT which is physically impossible. In both tests, this response is 

visible after -100 mm of the upward displacement. One of the reasons for it could be some 

sudden loss of saturation in the water filled pipes connecting the pore pressure transducers 

(Figure F.2). That could results in unexpected and wrong pore pressure measurements. 

Clearly, data where Fs > FT should be discharged from analysis.  

 

The suction force under the lid gives a significant contribution to the total tensile resistance as 

shown in Figure F.15. Two analytical methods were considered for the back-calculation of the 

test results. Both of them include the contribution of pore suction to the tensile capacity.  

 

 

Figure F.15 Load vs displacement: Total measured tensile load (black line) and suction load 

(grey line). 
 

The first method by Iskander et al. (2002) requires the knowledge about the pore suction. 

Thus, the measured pore suction was used for the prediction. In the second method by 

Houlsby et al. (2005), firstly the suction under the bucket lid is predicted and then the tensile 

capacity is estimated. 
 

F.4.1  Method by Iskander et al. (2002) 

Table F.2 gives an overview of the load response in the tests where clear soil disturbance and 

elevation were noticed after the foundation model was pulled out (see also Figure F.14). It 

was assumed that the soil plug was lifted up and contributed to the total tensile capacity, 

which was expressed in Eq. F.6 by Iskander et al. (2002): 

 

FT = FS+Wb+Wplug+Ff,o,                                                                                      (F.6) 
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where FT is the total tensile capacity, FS is the suction force (pore pressure times the internal 

area of the lid), Wb is the self-weight (in these tests zeroed before testing, 0 kN), Wplug is the 

soil plug weight (estimated earlier, 0.45 kN) and Ff,o is the outer friction. 

 

From the test results, Ff,o,test was determined for the peak values by: 

Ff,o,test = FT −FS −Wb −Wplug.                                                          (F.7) 

 

Ff,o,test in Table F.2 increases together with the increasing displacement rate (and suction 

pressure). Iskander et al. (1993 and 2002) explained this by an increase in side shear due to 

the downward vertical gradient i acting outside the skirt: 

 

                                                        (F.8) 

 

where K is the coefficient of lateral earth pressure, δ interface friction angle, γw water unit 

weight, d skirt length penetrated to the soil (equal to dinst), Ao outer area of the skirt. For this 

and the following calculations Ktanδ = 0.5 was taken as typical value according to Byrne and 

Houlsby (2002).  

 

As the pore pressures were actually measured in this testing program, it was possible to 

evaluate the hydraulic gradient and estimate Ff,o,Eq. F.8 using Eq. F.8 (Table F.2). Peak load and 

peak pore pressure under the bucket model lid were used in Table F.2. 

 

Table F.2 Load overview for tests, where the soil plug was displaced.   

Test 

No. 

v, 

[mm/s] 

FT,  

[kN] 

FS,  

[kN] 

Ff,o,test, 

[kN] 
i 

Ff,o,Eq. F.8, 

[kN] 

v10 10 -30.79 -24.64 -5.70 -9.6 -2.39 

v22 22 -44.07 -35.37 -8.25 -14.4 -3.46 

v27 27 -48.84 -37.71 -10.68 -14.7 -3.54 

v47 47 -65.36 -48.87 -16.04 -20.8 -4.93 

v98 98 -71.65 -53.45 -17.75 -24.7 -5.81 

v152 152 -75.17 -56.71 -18.01 -26.3 -6.16 

where FS – suction force, Ff,o,test – measured outer friction, Ff,o,Eq. F.8  – 
estimated according to Eq. F.8 outer friction. 

 

F.4.2  Method by Houlsby et al. (2005) 

Houlsby et al. (2005) proposed an analytical method for calculation of the tensile capacity of 

a bucket foundation under the presence of suction: 

 

                                 

 

                                                        (F.9) 
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Four different loading conditions were analysed: slow rate tensile load, liquefaction without 

cavitation, cavitation without liquefaction and cavitation with liquefaction. It was noted that 

friction contributes to reducing the vertical stress further down the foundation skirt. An 

expression for estimation of suction s was proposed as: 
                                                    

                                                      (F.10) 

 

 

where s – suction pressure, F – dimensionless flow factor, γw – water unit weight, ko – 

hydraulic conductivity, dh/dt – displacement rate.  

 

Eq. F.10 requires knowledge about the hydraulic conductivity ko, which changes depending 

on flow conditions in the soil. Back-calculating the measured suction pressure with the initial 

k=7.4·10-5 m/s, leads to a significant overestimation of suction for tests with v>10 mm/s 

(Figure F.16). Thus, for the tensile load prediction, the measured suction was used and ko was 
back-calculated using Eq. F.10 as shown in Figure F.17. 

 
        Figure F.16 Back-calculated peak suction s using Eq. F.10 and measured peak suction. 

 

 

 
 
                                Figure F.17 Back-calculated permeability ko using Eq. F.10. 
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F.4.3  Comparison  
 
Tensile capacity was estimated using two mentioned methods: Iskander et al. (2002) (Eq. F.8 

introduced to Eq. F.6) and Houlsby et al. (2005) (Eq. F.9). Figure F.18 shows the measured 

peak resistances and predicted tensile resistances taking into consideration the upward 

displacements wT. Obviously, the suction under the lid Fs makes the largest part of the 

measured as well as the predicted loads. Thus, Figure F.19 shows the outer interface strength 

and the plug weight part (FT - Fs) for the methods. 

 

Comparing the measured and predicted tensile response, Houlsby et al. (2005) method gives a 

very good agreement if the suction under the lid is known. The pore suction according to    

Eq. F.10 was highly overestimated for v>10 mm/s compared to the present testing data. 

Therefore, it was back-calculated according to the measured suction. It should be noticed that 

Houlsby et al. (2005) had to use somewhat higher hydraulic conductivity than was measured 

in their testing program to get a fair match. 

 

 
 
       Figure F.18 Predicted and measured tensile resistance with the different pull-out rates.  

 

 
 
Figure F.19 Predicted and measured contribution to the tensile loading FT - Fs with the 

different pull-out rates. 
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F.5  Conclusion 

Traditionally, the tensile capacity of a bucket foundation in sand is designed taking very 

conservative assumptions. This study drew attention to the pore pressure distribution around 

the bucket foundation skirt when it is subjected to tensile loading. The response was tested 

under axial tensile loads applied at various displacement rates. The paper presented results 

from 1g model tests performed in a pressure tank. One bucket foundation model was used in 

this testing campaign. To the knowledge of the authors, the foundation model was at least 

twice larger than previously tested laboratory models. Load, displacement and pore pressures 

visualized the tensile behaviour of the bucket foundation model. Pore pressures were 

measured all around the bucket skirt providing valuable information about the flow in the soil 

due to the tensile loading. Moreover, ten different pull-out rates were applied (displacement 

controlled). This gave a good overview of the tensile behaviour starting with the drained 

tensile capacity and ending with the undrained tensile capacity in sand. Finally, the results 

were compared to the analytical methods proposed by Iskander et al. (2002) and Houlsby et 

al. (2005). After the testing program, it was clarified that pore pressures contribute highly to 

the tensile capacity. Bucket foundation design in storm case should allow accounting for 

partial drainage in sand. Overall, the outcome of the performed tests was as follows: 

• Tensile capacity increased parallel to the increasing displacement rates. The 

increased capacity was reached at higher displacements of the foundation model, 

indicating serviceability problems when utilizing the full capacity. However, even 

if only using part of the capacity, the real tensile capacity was much higher 

including the effect of the pore pressure than estimating only the drained capacity. 

Thus, based on the performed tests, the pore pressure response should be 

considered when designing the upwind foundation since it can have much higher 

tensile capacity compared to the drained capacity. Though, knowledge about the 

soil permeability (which changes according to loading conditions) is essential for 

the correct tensile resistance estimations. 

• Peak loading stiffness was high in slow monotonic pull-out tests, but it dropped 

significantly when the displacement rate increased. On the other hand, initial 

loading stiffness did not show any clear dependency on the displacement rate and 

was generally higher than the peak loading stiffness. 

• The inner transducers in test v152 (152 mm/s) showed almost identical 

measurement. The response was fully undrained since no inner water flow was 

present. The rapid pull-out load generated cavitation.  

• Non-dimensional groups were suggested for the analysis of the pore pressure 

behaviour that can be used for further comparisons with other model tests or finite 

element models.  

• Iskander et al. (2002) and Houlsby et al. (2005) analytical methods were compared 

to the testing data. The second method gave a very good agreement with the 

measured response, but the knowledge about the soil permeability (or possible 

suction) was essential. 

 

In nature, soil conditions are very variable: soil is often layered and have variable 

permeability. It would be favourable to have a numerical model that is capable of calculating 

tensile capacity under various soil drainage conditions. The data provided in this paper 

supplies valuable information for the calibration of numerical models.   
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G.1 List of Symbols

Greek Symbols
γ Total soil unit weight

γ′ Effective soil unit weight

σ Standard deviation

Latin Symbols

D Bucket model diameter

DR Relative soil density

F Load

Fcyc Cyclic load amplitude

Fmean Mean cyclic load

FP Preload during installation

FPc Peak post-cyclic tensile load

FT Peak tensile load

N Cycle number

PP Pore pressure transducer

d Skirt length

dinst Installed skirt length

fs Data sampling frequency

f Loading frequency

pm Membrane pressure

pt Tank pressure

v Tensile load velocity (Pull-out rate)

t Skirt thickness

wcyc Displacement during cyclic load

wT Displacement at peak tensile load

wPc Displacement at peak post-cyclic tensile load
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G.2 Test Series 14.02.XX Overview

Series 14.02.XX present tensile loading tests on a bucket foundation model performed
with different pull-out rates. This chapter provides the data of tests performed in the
pressure tank. Bucket model dimensions were: 0.50 m in diameter D, 0.25 m in
skirt lengthd and 2 mm in skirt thicknesst. Figure G.3 shows the positions of the
laboratory CPT samplings. Sørensen and Ibsen 2012 have shortly described the test
set-up. Hedegaard and Borup 1993, Ibsen and Boedker 1994 have studied the Aalborg
University sand No.1. properties.

Table G.1: Test series 14.02.XX summary.

Loading Installation
pt Test No. FT wT v FP dinst DR γ′

[kPa] [kN] [mm] [mm/s] [kN] [mm] [%] [kN/m3]
163 14.02.01 -3.91 -0.46 0.05 - - 75 9.1
177 14.02.02 -2.03 -0.81 0.10 36.2 244.2 88 9.7
197 14.02.03 -2.74 -2.66 0.25 33.2 240.0 92 9.9
200 14.02.04 -8.02 -3.61 1 37.6 242.0 88 9.7
201 14.02.05 -30.79 -16.01 10 43.7 241.5 90 9.8
199 14.02.06 -36.94 -22.30 17.80 31.9 242.3 88 9.7
200 14.02.07 -44.07 -14.73 21.70 33.0 236.2 83 9.5
200 14.02.08 -48.84 -14.29 27.20 31.5 239.0 85 9.6
200 14.02.09 -65.36 -48.78 46.71 31.5 236.4 83 9.5
200 14.02.10 - - 0.05 32.3 246.6 86 9.6
200 14.02.11 -4.08 -0.65 0.10 31.4 240.7 86 9.6
200 14.02.12 -2.67 -0.70 0.05 32.0 239.2 85 9.6
200 14.02.13 -71.65 -60.48 98.30 31.0 239.3 82 9.5
200 14.02.14 -75.17 -68.18 152.30 37.0 236.0 84 9.5
0 14.02.15 (0) (0) 0.01 31.0 240.5 79 9.3
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Test Series 14.02.XX Overview 189

Figure G.1: Test set-up for testing program 14.02.XX.

Figure G.2: Bucket foundation model for testing program 14.02.XX.
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Figure G.3: CPT positions.
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G.2.1 Test 14.02.01

Soil properties Loading Installation
DR [%] 75.2 fs [Hz] 5 FP [kN] -
σ of DR [%] 2.6 FT [kN] -3.91 dinst [mm] -
γ [kN/m3] 19.1 wT [mm] -0.46 Tank pressure
γ′ [kN/m3] 9.1 v [mm/s] 0.05 pt [kPa] 163
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Figure G.4: CPT testing 14.02.01.

No record.

Figure G.5: Installation 14.02.01.
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Figure G.6: Pull-out velocity 14.02.01.
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Figure G.7: Loading 14.02.01.
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Comments:
The first test with very disturbed sand from previous testing. Load cell was
not zeroed before the installation. Tank pressure was unstable due to pressure
leakage from the tank. The test is discharged from any analysis. Pressure
transducers PP3, PP6, PP11 did not function. Improvements to the test set-up
followed: tightening of the pressure tank, tightening and calibrating pressure
transducers.
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G.2.2 Test 14.02.02

Soil properties Loading Installation
DR [%] 87.6 fs [Hz] 5 FP [kN] 36.2
σ of DR [%] 5.7 FT [kN] -2.03 dinst [mm] 244.2
γ [kN/m3] 19.7 wT [mm] -0.81 Tank pressure
γ′ [kN/m3] 9.7 v [mm/s] 0.10 pt [kPa] 177
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Figure G.8: CPT testing 14.02.02.
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Figure G.9: Installation 14.02.02.
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Figure G.10: Pull-out velocity 14.02.02.

Comments:
Tank pressure did not reach the wanted value (200 kPa). Pressure transducer
PP3 did not function.
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Figure G.11: Loading 14.02.02.
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G.2.3 Test 14.02.03

Soil properties Loading Installation
DR [%] 91.6 fs [Hz] 5 FP [kN] 33.2
σ of DR [%] 3.1 FT [kN] -2.74 dinst [mm] 240.0
γ [kN/m3] 19.9 wT [mm] -2.66 Tank pressure
γ′ [kN/m3] 9.9 v [mm/s] 0.25 pt [kPa] 197
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Figure G.12: CPT testing 14.02.03.
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Figure G.13: Installation 14.02.03.
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Figure G.14: Pull-out velocity 14.02.03.

Comments:
Secondary peak in load and pore pressure response probably due to a small
sudden deviation in loading velocity (possibly, higher than recorded).
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Figure G.15: Loading 14.02.03.
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G.2.4 Test 14.02.04

Soil properties Loading Installation
DR [%] 88.0 fs [Hz] 5 FP [kN] 37.6
σ of DR [%] 3.3 FT [kN] -8.02 dinst [mm] 242
γ [kN/m3] 19.7 wT [mm] -3.61 Tank pressure
γ′ [kN/m3] 9.7 v [mm/s] 1 pt [kPa] 200
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Figure G.16: CPT testing 14.02.04.
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Figure G.17: Installation 14.02.04.
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Figure G.18: Pull-out velocity 14.02.04.

Comments:
Pressure transducer PP2 did not function.
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Figure G.19: Loading 14.02.04.
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G.2.5 Test 14.02.05

Soil properties Loading Installation
DR [%] 90.0 fs [Hz] 5 FP [kN] 43.7
σ of DR [%] 4.9 FT [kN] -30.79 dinst [mm] 241.5
γ [kN/m3] 19.8 wT [mm] -16.01 Tank pressure
γ′ [kN/m3] 9.8 v [mm/s] 10 pt [kPa] 200.9
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Figure G.20: CPT testing 14.02.05.
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Figure G.21: Installation 14.02.05.
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Figure G.22: Pull-out velocity 14.02.05.

Comments:
Pore pressure response is delayed. Peak pore pressure measurement was
recorded approximately 0.5 s after the peak load measurement.
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Figure G.23: Loading 14.02.05.
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G.2.6 Test 14.02.06

Soil properties Loading Installation
DR [%] 87.8 fs [Hz] 5 FP [kN] 31.9
σ of DR [%] 3.0 FT [kN] -36.94 dinst [mm] 242.3
γ [kN/m3] 19.7 wT [mm] -22.30
γ′ [kN/m3] 9.7 v [mm/s] 17.80 ptank [kPa] 199.0
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Figure G.24: CPT testing 14.02.06.
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Figure G.25: Installation 14.02.06.
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Figure G.26: Pull-out velocity 14.02.06.

Comments:
Sampling rate was rather low for this pull-out velocity.
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Figure G.27: Loading 14.02.06.
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G.2.7 Test 14.02.07

Soil properties Loading Installation
DR [%] 83.0 fs [Hz] 50 FP [kN] 33
σ of DR [%] 4.9 FT [kN] -44.07 dinst [mm] 236.2
γ [kN/m3] 19.5 wT [mm] -14.73 Tank pressure
γ′ [kN/m3] 9.5 v [mm/s] 21.70 pt [kPa] 200
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Figure G.28: CPT testing 14.02.07.
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Figure G.29: Installation 14.02.07.
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Figure G.30: Pull-out velocity 14.02.07.

Comments:
Saturation problems in transducers: PP2, PP3, PP7, PP8, PP9, PP10. Peak
pore pressure measurement was recorded approximately 0.5 safter the peak
load measurement.
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Figure G.31: Loading 14.02.07.
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G.2.8 Test 14.02.08

Soil properties Loading Installation
DR [%] 85.0 fs [Hz] 100 FP [kN] 31.5
σ of DR [%] 3.7 FT [kN] -48.84 dinst [mm] 239
γ [kN/m3] 19.6 wT [mm] -14.29 Tank pressure
γ′ [kN/m3] 9.6 v [mm/s] 27.2 pt [kPa] 200
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Figure G.32: CPT testing 14.02.08.
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Figure G.33: Installation 14.02.08.
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Figure G.34: Pull-out velocity 14.02.08.

Comments:
Saturation problems in transducers: PP4, PP7, PP8, PP9, PP10. Peak pore
pressure measurement was recorded approximately 0.5 s after the peak load
measurement.
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Figure G.35: Loading 14.02.08.
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G.2.9 Test 14.02.09

Soil properties Loading Installation
DR [%] 83.0 fs [Hz] 100 FP [kN] 31.5
σ of DR [%] 5.4 FT [kN] -65.36 dinst [mm] 236.4
γ [kN/m3] 19.5 wT [mm] -48.78 Tank pressure
γ′ [kN/m3] 9.5 v [mm/s] 46.71 pt [kPa] 200.4
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Figure G.36: CPT testing 14.02.09.
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Figure G.37: Installation 14.02.09.
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Figure G.38: Pull-out velocity 14.02.09.

Comments:
Saturation problems in transducers: PP2, PP7, PP8, PP9, PP10. Peak pore
pressure measurement was recorded approximately 0.5 s after the peak load
measurement.
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Figure G.39: Loading 14.02.09.
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G.2.10 Test 14.02.10

Soil properties Loading Installation
DR [%] 85.8 fs [Hz] 5 FP [kN] 32.3
σ of DR [%] 5.2 FT [kN] - dinst [mm] 246.6
γ [kN/m3] 19.6 wT [mm] - Tank pressure
γ′ [kN/m3] 9.6 v [mm/s] 0.05 pt [kPa] 200
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Figure G.40: CPT testing 14.02.10.
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Figure G.41: Installation 14.02.10.
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Figure G.42: Pull-out velocity 14.02.10.

Comments:
First centimetres were not recorded. Secondary peak in loadand pore pressure
response probably due to a small sudden deviation in loadingvelocity (possi-
bly, not recorded).
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Figure G.43: Loading 14.02.10.
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G.2.11 Test 14.02.11

Soil properties Loading Installation
DR [%] 86.0 fs [Hz] 5 FP [kN] 31.4
σ of DR [%] 4.9 FT [kN] -4.08 dinst [mm] 240.7
γ [kN/m3] 19.6 wT [mm] -0.65 Tank pressure
γ′ [kN/m3] 9.6 v [mm/s] 0.1 pt [kPa] 199.7
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Figure G.44: CPT testing 14.02.11.
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Figure G.45: Installation 14.02.11.
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Figure G.46: Pull-out velocity 14.02.11.
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Figure G.47: Loading 14.02.11.
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G.2.12 Test 14.02.12

Soil properties Loading Installation
DR [%] 85.0 fs [Hz] 2 FP [kN] 32
σ of DR [%] 6.4 FT [kN] -2.67 dinst [mm] 239.2
γ [kN/m3] 19.6 wT [mm] -0.70 Tank pressure
γ′ [kN/m3] 9.6 v [mm/s] 0.05 pt [kPa] 199.6
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Figure G.48: CPT testing 14.02.12.
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Figure G.49: Installation 14.02.12.

−250−200−150−100−500
−0.05

0

0.05

0.1

0.15

v 
[m

m
/s

]

Displacement [mm]

Figure G.50: Pull-out velocity 14.02.12.
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Figure G.51: Loading 14.02.12.
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Comments:
CPT tool was accidentally broken after the first two samplings. Visible change
in frequency in load and pore pressure response, while the loading velocity was
stable. Possibly, the vibrations were due to external worksin the laboratory that
affected the whole system. Pressure transducer PP1 did not function.
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G.2.13 Test 14.02.13

Soil properties Loading Installation
DR [%] 82.0 fs [Hz] 200 FP [kN] 31
σ of DR [%] 6.8 FT [kN] -71.65 dinst [mm] 239.3
γ [kN/m3] 19.5 wT [mm] -60.48 Tank pressure
γ′ [kN/m3] 9.5 v [mm/s] 98.3 pt [kPa] 200.4
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Figure G.52: CPT testing 14.02.13.

No record.

Figure G.53: Installation 14.02.13.
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Figure G.54: Pull-out velocity 14.02.13.

Comments:
Saturation problems in transducers: PP2, PP7, PP8, PP9, PP10. Peak pore
pressure measurement was recorded approximately 0.5 s after the peak load
measurement.
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Figure G.55: Loading 14.02.13.
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G.2.14 Test 14.02.14

Soil properties Loading Installation
DR [%] 83.5 fs [Hz] 500 FP [kN] 37
σ of DR [%] 3.4 FT [kN] -75.17 dinst [mm] 236
γ [kN/m3] 19.5 wT [mm] -68.18 Tank pressure
γ′ [kN/m3] 9.5 v [mm/s] 152.3 pt [kPa] 199.7
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Figure G.56: CPT testing 14.02.14.

No record.

Figure G.57: Installation 14.02.14.
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Figure G.58: Pull-out velocity 14.02.14.

Comments:
Saturation problems in transducers: PP2, PP3, PP7, PP8, PP9, PP10. Peak
pore pressure measurement was recorded approximately 0.5 safter the peak
load measurement.
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Figure G.59: Loading 14.02.14.
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G.2.15 Test 14.02.15

Soil properties Loading Installation
DR [%] 78.6 fs [Hz] 1 FP [kN] 31
σ of DR [%] 6.0 FT [kN] (0) dinst [mm] 240.5
γ [kN/m3] 19.3 wT [mm] (0) Tank pressure
γ′ [kN/m3] 9.3 v [mm/s] 0.01 pt [kPa] 0
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Figure G.60: CPT testing 14.02.15.
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Figure G.61: Installation 14.02.15.

No record.

Figure G.62: Pull-out velocity 14.02.15.
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Figure G.63: Loading 14.02.15
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Comments:
No significant tensile resistance was recorded. Visible change in frequency in
load and pore pressure response, while the loading velocitywas stable. Pos-
sibly, the vibrations were due to external works in the laboratory that affected
the whole system.
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G.3 Test Series 13.02.XX Overview

Series 13.02.XX present slow monotonic tensile loading tests on a bucket foundation
model. This chapter provides the data of tests performed in the large yellow sand box
(Figure G.64). Two bucket models were used with the dimensions as follows: (1) 1.0
m in diameterD, 0.5 mm in skirt lengthd and (2) 1.0 m in diameterD, 1.0 mm in
skirt lengthd. Both models had skirt thicknesst = 3 mm. Figure G.65 shows the
positions of the laboratory CPT samplings. Figures G.66 andG.67 show the bucket
foundation models. Vaitkunaite 2015 described the testingprocedure. Hedegaard and
Borup 1993, Ibsen and Boedker 1994 have studied the Aalborg University sand No.1
properties.

Table G.2: Test series 13.02.XX summary.

Loading Installation
pm Test No. d/D FT wT v FP dinst DR γ′

[kPa] [kN] [mm] [mm/s] [kN] [mm] [%] [kN/m3]
12 13.02.01 0.5 -26.4 -11.7 0.021 47.5 490 82.4 9.5
65 13.02.02 0.5 -53.6 -20.0 0.039 42.0 490 82.7 9.5
18 13.02.03 0.5 - - 0.002 55.2 492 74.8 9.1
19 13.02.04 0.5 -19.0 -24.3 0.001 45.3 486 79.0 9.3
21 13.02.05 0.5 -15.3 -11.4 0.001 46.1 495 82.3 9.5
0 13.02.06 0.5 -5.7 -6.3 0.001 49.6 483 79.9 9.3
0 13.02.07 0.5 -6.3 -5.8 0.001 50.6 474 83.1 9.5
0 13.02.08 0.5 -5.3 -4.6 0.002 49.5 473 84.3 9.6
41 13.02.09 0.5 -28.2 -5.0 0.001 68.3 487 81.3 9.4
0 13.02.10 1.0 -27.7 -3.9 0.001 203.0 980 85.5 9.6
20 13.02.11 0.5 -23.3 -7.5 0.002 57.3 487 79.3 9.3
40 13.02.12 0.5 -26.9 -5.2 0.002 72.8 487 79.3 9.3
68 13.02.13 0.5 -43.2 -10.7 0.002 70.1 493 82.9 9.5
0 13.02.14 1.0 -29.8 -4.5 0.001 220.0 990 83.0 9.5
0 13.02.15 0.5 -5.9 -5.5 0.002 73.0 491 85.0 9.6
0 13.02.16 0.5 -14.9 -4.8 0.002 70.5 493 77.2 9.2
73 13.02.17 0.5 -96.3 -72.2 0.002 74.0 490 83.4 9.5
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Figure G.64: Test set-up.Vaitkunaite (2015)

Figure G.65: CPT positions.
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Figure G.66: Bucket foundation modeld/D = 0.5: (1) pressure transducers, (2)
valves, (3) displacement transducers. Vaitkunaite (2015)

Figure G.67: Bucket foundation modeld/D = 1.0: (1) pressure transducers, (2)
valves, (3) displacement transducers. Vaitkunaite (2015)
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G.3.1 Test 13.02.01

Soil properties Loading Installation
DR [%] 82.4 FT [kN] -26.4 FP [kN] 47.5
σ of DR [%] 3.3 wT [mm] -11.68 dinst [mm] 490.0
γ [kN/m3] 19.5 v [mm/s] 0.021 Membrane pressure
γ′ [kN/m3] 9.5 pm [kPa] 12
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Figure G.68: CPT testing 13.02.01.
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Figure G.69: Installation 13.02.01.
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Figure G.70: Loading 13.02.01.
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G.3.2 Test 13.02.02

Soil properties Loading Installation
DR [%] 82.7 FT [kN] -53.6 FP [kN] 42.0
σ of DR [%] 3.8 wT [mm] -20.0 dinst [mm] 490.0
γ [kN/m3] 19.5 v [mm/s] 0.039 Membrane pressure
γ′ [kN/m3] 9.5 pm [kPa] 65
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Figure G.71: CPT testing 13.02.02.
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Figure G.72: Installation 13.02.02.
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Figure G.73: Loading 13.02.02.
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G.3.3 Test 13.02.03

Soil properties Loading Installation
DR [%] 74.8 FT [kN] - FP [kN] 55.2
σ of DR [%] 3.4 wT [mm] - dinst [mm] 491.8
γ [kN/m3] 19.1 v [mm/s] 0.002 Membrane pressure
γ′ [kN/m3] 9.1 pm [kPa] 18
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Figure G.74: CPT testing 13.02.03.

0 100 200 300 400 500

0

10

20

30

40

50

60

In
st

al
la

tio
n 

lo
ad

 [k
N

]

Displacement [mm]

Figure G.75: Installation 13.02.03.

Comments:
Loading was attempted to times.
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Figure G.76: Loading 13.02.03.
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G.3.4 Test 13.02.04

Soil properties Loading Installation
DR [%] 79.0 FT [kN] -19.0 FP [kN] 45.3
σ of DR [%] 4.4 wT [mm] -24.3 dinst [mm] 486.0
γ [kN/m3] 19.3 v [mm/s] 0.001 Membrane pressure
γ′ [kN/m3] 9.3 pm [kPa] 19
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Figure G.77: CPT testing 13.02.04.
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Figure G.78: Installation 13.02.04.
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Figure G.79: Loading 13.02.04.
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G.3.5 Test 13.02.05

Soil properties Loading Installation
DR [%] 82.3 FT [kN] -15.3 FP [kN] 46.1
σ of DR [%] 4.2 wT [mm] -11.4 dinst [mm] 495.0
γ [kN/m3] 19.5 v [mm/s] 0.005 Membrane pressure
γ′ [kN/m3] 9.5 pm [kPa] 21
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Figure G.80: CPT testing 13.02.05.
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Figure G.81: Installation 13.02.05.
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Figure G.82: Loading 13.02.05.
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G.3.6 Test 13.02.06

Soil properties Loading Installation
DR [%] 79.9 FT [kN] -5.7 FP [kN] 49.6
σ of DR [%] 4.3 wT [mm] -6.3 dinst [mm] 483.0
γ [kN/m3] 19.3 v [mm/s] 0.001 Membrane pressure
γ′ [kN/m3] 9.3 pm [kPa] 0
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Figure G.83: CPT testing 13.02.06.
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Figure G.84: Installation 13.02.06.

Comments:
Pore pressure transducer PP1 did not function.
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Figure G.85: Loading 13.02.06.
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G.3.7 Test 13.02.07

Soil properties Loading Installation
DR [%] 83.1 FT [kN] -6.3 FP [kN] 50.6
σ of DR [%] 4.4 wT [mm] -5.8 dinst [mm] 474.0
γ [kN/m3] 19.5 v [mm/s] 0.001 Membrane pressure
γ′ [kN/m3] 9.5 pm [kPa] 0
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Figure G.86: CPT testing 13.02.07.
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Figure G.87: Installation 13.02.07.
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Figure G.88: Loading 13.02.07.
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G.3.8 Test 13.02.08

Soil properties Loading Installation
DR [%] 84.3 FT [kN] -5.3 FP [kN] 49.5
σ of DR [%] 4.0 wT [mm] -4.6 dinst [mm] 473.0
γ [kN/m3] 19.6 v [mm/s] 0.002 Membrane pressure
γ′ [kN/m3] 9.6 pm [kPa] 0
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Figure G.89: CPT testing 13.02.08.
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Figure G.90: Installation 13.02.08.

Comments:
Pore pressure transducer PP1 did not function.
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Figure G.91: Loading 13.02.08.
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G.3.9 Test 13.02.09

Soil properties Loading Installation
DR [%] 81.3 FT [kN] -28.2 FP [kN] 68.3
σ of DR [%] 3.2 wT [mm] -5.0 dinst [mm] 487.0
γ [kN/m3] 19.4 v [mm/s] 0.001 Membrane pressure
γ′ [kN/m3] 9.4 pm [kPa] 41
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Figure G.92: CPT testing 13.02.09.
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Figure G.93: Installation 13.02.09.
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Figure G.94: Loading 13.02.09.
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G.3.10 Test 13.02.10

Soil properties Loading Installation
DR [%] 85.5 FT [kN] -27.7 FP [kN] 203
σ of DR [%] 4.8 wT [mm] -3.9 dinst [mm] 980.0
γ [kN/m3] 19.6 v [mm/s] 0.001 Membrane pressure
γ′ [kN/m3] 9.6 pm [kPa] 0

0 10 20

0

200

400

600

800

1000

Cone Resistance [MPa]

D
ep

th
 [m

m
]

 

 
CPT1
CPT2
CPT3
CPT4

60 80 100

0

200

400

600

800

1000

Relative Density [%]

D
ep

th
 [m

m
]

Figure G.95: CPT testing 13.02.10.
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Figure G.96: Installation 13.02.10.

Comments:
Bucketd/D = 1. Installation performed in two steps due to insufficient piston
length.
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Figure G.97: Loading 13.02.10.
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G.3.11 Test 13.02.11

Soil properties Loading Installation
DR [%] 79.3 FT [kN] -23.3 FP [kN] 57.3
σ of DR [%] 3.0 wT [mm] -7.5 dinst [mm] 487.0
γ [kN/m3] 19.3 v [mm/s] 0.002 Membrane pressure
γ′ [kN/m3] 9.3 pm [kPa] 20
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Figure G.98: CPT testing 13.02.11.
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Figure G.99: Installation 13.02.11.
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Figure G.100: Loading 13.02.11.
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G.3.12 Test 13.02.12

Soil properties Loading Installation
DR [%] 79.3 FT [kN] -26.9 FP [kN] 72.8
σ of DR [%] 4.0 wT [mm] -5.2 dinst [mm] 487.0
γ [kN/m3] 19.3 v [mm/s] 0.002 Membrane pressure
γ′ [kN/m3] 9.3 pm [kPa] 40
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Figure G.101: CPT testing 13.02.12.
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Figure G.102: Installation 13.02.12.
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Figure G.103: Loading 13.02.12.
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G.3.13 Test 13.02.13

Soil properties Loading Installation
DR [%] 82.9 FT [kN] -43.2 FP [kN] 70.1
σ of DR [%] 6.7 wT [mm] -10.7 dinst [mm] 493.0
γ [kN/m3] 19.5 v [mm/s] 0.002 Membrane pressure
γ′ [kN/m3] 9.5 pm [kPa] 68
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Figure G.104: CPT testing 13.02.13.
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Figure G.105: Installation 13.02.13.
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Figure G.106: Loading 13.02.13.
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G.3.14 Test 13.02.14

Soil properties Loading Installation
DR [%] 83.0 FT [kN] -29.8 FP [kN] 220.0
σ of DR [%] 3.9 wT [mm] -4.5 dinst [mm] 990.0
γ [kN/m3] 19.5 v [mm/s] 0.001 Membrane pressure
γ′ [kN/m3] 9.5 pm [kPa] 0
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Figure G.107: CPT testing 13.02.14.

No record.

Figure G.108: Installation 13.02.14.

Comments:
Bucketd/D = 1. Installation was not recorded, butFP anddinst were visually
observed in the computer screen.
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Figure G.109: Loading 13.02.14.

254



Test Series 13.02.XX Overview 255

G.3.15 Test 13.02.15

Soil properties Loading Installation
DR [%] 85.0 FT [kN] -5.9 FP [kN] 73
σ of DR [%] 3.8 wT [mm] -5.5 dinst [mm] 491.0
γ [kN/m3] 19.6 v [mm/s] 0.002 Membrane pressure
γ′ [kN/m3] 9.6 pm [kPa] 0
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Figure G.110: CPT testing 13.02.15.
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Figure G.111: Installation 13.02.15.
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Figure G.112: Loading 13.02.15.
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G.3.16 Test 13.02.16

Soil properties Loading Installation
DR [%] 77.2 FT [kN] -14.9 FP [kN] 70.5
σ of DR [%] 12.2 wT [mm] -4.8 dinst [mm] 493.0
γ [kN/m3] 19.2 v [mm/s] 0.002 Membrane pressure
γ′ [kN/m3] 9.2 pm [kPa] 0
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Figure G.113: CPT testing 13.02.16.
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Figure G.114: Installation 13.02.16.
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Figure G.115: Loading 13.02.16.
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G.3.17 Test 13.02.17

Soil properties Loading Installation
DR [%] 83.4 FT [kN] -96.3 FP [kN] 74.0
σ of DR [%] 3.3 wT [mm] -72.2 dinst [mm] 490.0
γ [kN/m3] 19.5 v [mm/s] 0.002 Membrane pressure
γ′ [kN/m3] 9.5 pm [kPa] 73
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Figure G.116: CPT testing 13.02.17.
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Figure G.117: Installation 13.02.17.
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Figure G.118: Loading 13.02.17.
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G.4 Test Series 13.03.XX Overview

Series 13.03.XX present cyclic loading tests on a bucket foundation model. This chap-
ter provides the data of tests performed in the large yellow sand box. Bucket model
dimensions were: 1.0 m in diameterD, 0.5 mm in skirt lengthd and 3 mm in skirt
thicknesst. Figure G.64 shows the test set-up. Figure G.66 shows the bucket foun-
dation model. Figure G.65 shows the positions of the laboratory CPT samplings.
Vaitkunaite 2015 described the testing procedure.

Table G.3: Test series 13.03.XX summary.

Cyclic loading Post-cyclic load
pm Test No. Fmean Fcyc wcyc f FPc wPc DR γ′

[kPa] [kN] [kN] [mm] [Hz] [kN] [mm] [%] [kN/m3]
0 13.03.01 -2.11 1.02 -0.88 0.10 -5.34 -3.83 78 9.3
0 13.03.02 -2.05 1.93 -1.35 0.10 -5.95 -7.60 77 9.2
0 13.03.03 -2.05 3.85 -63.76 0.10 - - 79 9.3
0 13.03.05 1.80 3.85 0.15 0.10 - - 85 9.6
43 13.03.06 11.76 11.38 0.72 0.05 -31.33 -12.35 80 9.3
0 13.03.08 1.91 2.30 0.04 0.05 -5.03 -3.43 77 9.3
41 13.03.09 -13.03 18.37 -67.55 0.10 - - (75) (9.1)
0 13.03.10 -2.05 1.93 -6.23 0.10 -4.74 -0.53 (75) (9.1)
41 13.03.11 20.12 9.33 -63.81 0.10 - - 82 9.4
0 13.03.12 -2.05 3.85 -65.80 0.10 - - (79) (9.3)
71 13.03.13 2.01 29.38 0.74 0.05 - - 82 9.5
70 13.03.14 1.92 29.30 1.25 0.10 -93.26 -28.29 82 9.4
73 13.03.15 -22.39 23.08 0.10 0.10 -93.90 -26.53 87 9.7
71 13.03.16 -51.67 24.49 -75.01 0.10 - - 79 9.3
71 13.03.17 -50.61 45.78 -81.90 0.10 - - 81 9.4
0 13.03.19 -0.30 1.66 -0.64 0.10 (-3.49) -8.66 79 9.3
0 13.03.20 1.80 3.85 0 0.10 -4.85 -1.30 81 9.4
0 13.03.21 0 1.00 -0.29 0.10 -4.86 -4.84 81 9.4
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G.4.1 Test 13.03.01

Soil properties Loading
DR [%] 77.8 Fmean [kN] -2.11
σ of DR [%] 5.5 Fcyc [kN] 1.02
γ [kN/m3] 19.3 wcyc [mm] -0.88
γ′ [kN/m3] 9.3 f [Hz] 0.10

Installation fs [Hz] 0.04-1
FP [kN] 52.4 N [-] 39,592
dinst [mm] 486 FPc [kN] -5.34

Membrane pressure wPc [mm] -3.83
pm [kPa] 0 v [mm/s] 0.002

0 5 10 15

0

100

200

300

400

500

600

Cone Resistance [MPa]

D
ep

th
 [m

m
]

 

 
CPT1
CPT2
CPT3
CPT4

60 80 100

0

100

200

300

400

500

600

Relative Density [%]

D
ep

th
 [m

m
]

Figure G.119: CPT testing 13.03.01.
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Figure G.120: Installation 13.03.01.
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Figure G.121: Cyclic loading part 13.03.01.
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Figure G.122: Full loading vs. displacement 13.03.01.

Comments:
Problems in data sampling caused by an error in the data acquisition system.
After cyclic loading the equipment stopped (unloading). Some hours later, the
post-cyclic loading started.
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G.4.2 Test 13.03.02

Soil properties Loading
DR [%] 76.9 Fmean [kN] -2.05
σ of DR [%] 5.3 Fcyc [kN] 1.93
γ [kN/m3] 19.2 wcyc [mm] -1.35
γ′ [kN/m3] 9.2 f [Hz] 0.10

Installation fs [Hz] 0.05-1
FP [kN] 71 N [-] 38,227
dinst [mm] - FPc [kN] -5.95

Membrane pressure wPc [mm] -7.60
pm [kPa] 0 v [mm/s] 0.002
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Figure G.123: CPT testing 13.03.02.
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Figure G.124: Installation 13.03.02.
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Figure G.125: Cyclic loading part 13.03.02.
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Figure G.126: Full loading vs. displacement 13.03.02.

Comments:
Installation response is not full, the final pre-load was observed in the computer
screen. During the first 950 cycles, the cyclic mean load was +2.05 kN (com-
pressive). Problems in data sampling caused by an error in the data acquisition
system.
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G.4.3 Test 13.03.03

Soil properties Loading
DR [%] 78.7 Fmean [kN] -2.05
σ of DR [%] 4.8 Fcyc [kN] 3.85
γ [kN/m3] 19.3 wcyc [mm] -63.76
γ′ [kN/m3] 9.3 f [Hz] 0.10

Installation fs [Hz] 0.1-1
FP [kN] 71 N [-] 8,100
dinst [mm] 492 FPc [kN] -

Membrane pressure wPc [mm] -
pm [kPa] 0 v [mm/s] -
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Figure G.127: CPT testing 13.03.03.

0 200 400

0

20

40

60In
st

al
la

tio
n 

lo
ad

 [k
N

]

Displacement [mm]

Figure G.128: Installation 13.03.03.
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Figure G.129: Cyclic loading part 13.03.03.
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Figure G.130: Full loading vs. displacement 13.03.03.

Comments:
Problems in data sampling caused by an error in the data acquisition system.
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G.4.4 Test 13.03.05

Soil properties Loading
DR [%] 85.3 Fmean [kN] 1.80
σ of DR [%] 3.8 Fcyc [kN] 3.85
γ [kN/m3] 19.6 wcyc [mm] 0.15
γ′ [kN/m3] 9.6 f [Hz] 0.1

Installation fs [Hz] 2
FP [kN] 72 N [-] 28,263
dinst [mm] 482 FPc [kN] -

Membrane pressure wPc [mm] -
pm [kPa] 0 v [mm/s] 0.002
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Figure G.131: CPT testing 13.03.05.
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Figure G.132: Installation 13.03.05.
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Figure G.133: Cyclic behaviour 13.03.05.
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Figure G.134: Cyclic loading part 13.03.05.
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Figure G.135: Full loading vs. displacement 13.03.05.

Comments:
A sudden pull-out after 28,263 cycles, must be some technical mistake.
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G.4.5 Test 13.03.06

Soil properties Loading
DR [%] 79.9 Fmean [kN] 11.76
σ of DR [%] 4.3 Fcyc [kN] 11.38
γ [kN/m3] 19.3 wcyc [mm] 0.72
γ′ [kN/m3] 9.3 f [Hz] 0.05

Installation fs [Hz] 2
FP [kN] 70.9 N [-] 19,900
dinst [mm] 493 FPc [kN] -31.33

Membrane pressure wPc [mm] -12.35
pm [kPa] 43 v [mm/s] 0.002
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Figure G.136: CPT testing 13.03.06.
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Figure G.137: Installation 13.03.06.
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Figure G.138: Cyclic behaviour 13.03.06.
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Figure G.139: Cyclic loading part 13.03.06.
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Figure G.140: Full loading vs. displacement 13.03.06.
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G.4.6 Test 13.03.08

Soil properties Loading
DR [%] 76.9 Fmean [kN] 1.91
σ of DR [%] 8.1 Fcyc [kN] 2.30
γ [kN/m3] 19.3 wcyc [mm] 0.04
γ′ [kN/m3] 9.3 f [Hz] 0.05

Installation fs [Hz] 2
FP [kN] 70.4 N [-] 19,629
dinst [mm] 493 FPc [kN] -5.03

Membrane pressure wPc [mm] -3.43
pm [kPa] 0 v [mm/s] 0.002
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Figure G.141: CPT testing 13.03.08.

0 200 400

0

20

40

60

80

In
st

al
la

tio
n 

lo
ad

 [k
N

]

Displacement [mm]

Figure G.142: Installation 13.03.08.
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Figure G.143: Cyclic behaviour 13.03.08.
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Figure G.144: Cyclic loading part 13.03.08.
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Figure G.145: Full loading vs. displacement 13.03.08.

Comments:
Problems in data sampling caused by an error in the data acquisition system:
load and displacement signals were not taken at the very samemoment. Thus,
cyclic behaviour cannot be assessed precisely.
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G.4.7 Test 13.03.09

Soil properties Loading
DR [%] (75) Fmean [kN] -13.03
σ of DR [%] - Fcyc [kN] 18.37
γ [kN/m3] (19.1) wcyc [mm] -67.55
γ′ [kN/m3] (9.1) f [Hz] 0.1

Installation fs [Hz] 2
FP [kN] 70.6 N [-] 67
dinst [mm] 488 FPc [kN] -

Membrane pressure wPc [mm] -
pm [kPa] 41 v [mm/s] -
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Figure G.146: Installation 13.03.09.
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Figure G.147: Cyclic behaviour 13.03.09.

Comments:
CPT was not performed due to technical problems, approximate properties are
estimated from the installation response.
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Figure G.148: Cyclic loading part 13.03.09.
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Figure G.149: Full loading vs. displacement 13.03.09.
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G.4.8 Test 13.03.10

Soil properties Loading
DR [%] (75) Fmean [kN] -2.05
σ of DR [%] - Fcyc [kN] 1.93
γ [kN/m3] (19.1) wcyc [mm] -6.23
γ′ [kN/m3] (9.1) f [Hz] 0.10

Installation fs [Hz] 2
FP [kN] 70.5 N [-] 39,753
dinst [mm] 495 FPc [kN] -4.74

Membrane pressure wPc [mm] -0.53
pm [kPa] 0 v [mm/s] 0.002
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Figure G.150: Installation 13.03.10.
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Figure G.151: Cyclic behaviour 13.03.10.

Comments:
CPT was not performed due to technical problems. Problems indata sampling
caused by an error in the data acquisition system: load and displacement sig-
nals were not taken at the very same moment. Thus, cyclic behaviour cannot
be assessed precisely.
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Figure G.152: Cyclic loading part 13.03.10.
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Figure G.153: Full loading vs. displacement 13.03.10.
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G.4.9 Test 13.03.11

Soil properties Loading
DR [%] 81.9 Fmean [kN] 20.12
σ of DR [%] 8.2 Fcyc [kN] 9.33
γ [kN/m3] 19.4 wcyc [mm] -63.81
γ′ [kN/m3] 9.4 f [Hz] 0.1

Installation fs [Hz] 2
FP [kN] 71.2 N [-] 202
dinst [mm] 492 FPc [kN] -

Membrane pressure wPc [mm] -
pm [kPa] 41 v [mm/s] -
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Figure G.154: CPT testing 13.03.11.
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Figure G.155: Installation 13.03.11.
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Figure G.156: Cyclic behaviour 13.03.11.
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Figure G.157: Cyclic loading part 13.03.11.
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Figure G.158: Full loading vs. displacement 13.03.11.
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G.4.10 Test 13.03.12

Soil properties Loading
DR [%] (79) Fmean [kN] -2.05
σ of DR [%] - Fcyc [kN] 3.85
γ [kN/m3] (19.3) wcyc [mm] -65.80
γ′ [kN/m3] (9.3) f [Hz] 0.10

Installation fs [Hz] 2
FP [kN] 71.2 N [-] 1,285
dinst [mm] 499 FPc [kN] -

Membrane pressure wPc [mm] -
pm [kPa] 0 v [mm/s] -
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Figure G.159: Installation 13.03.12.
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Figure G.160: Cyclic behaviour 13.03.12.

Comments:
Pore pressure transducer PP2 did not function.
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Figure G.161: Cyclic loading part 13.03.12.
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Figure G.162: Full loading vs. displacement 13.03.12.
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G.4.11 Test 13.03.13

Soil properties Loading
DR [%] 82.4 Fmean [kN] 2.01
σ of DR [%] 11.2 Fcyc [kN] 29.38
γ [kN/m3] 19.5 wcyc [mm] 0.74
γ′ [kN/m3] 9.5 f [Hz] 0.05

Installation fs [Hz] 2
FP [kN] 74.6 N [-] 19,970
dinst [mm] 484 FPc [kN] -

Membrane pressure wPc [mm] -
pm [kPa] 71.4 v [mm/s] -
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Figure G.163: CPT testing 13.03.13.
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Figure G.164: Installation 13.03.13.
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Figure G.165: Cyclic behaviour 13.03.13.
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Figure G.166: Cyclic loading part 13.03.13.
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Figure G.167: Cyclic behaviour 13.03.13.

Comments:
Sand in the first 0.3-0.4 m was less dense than in the deeper layer. Probably, the
soil was strongly disturbed due to another testing program in the same sand box
and due to membrane pressure applications that create the upward gradient.
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G.4.12 Test 13.03.14

Soil properties Loading
DR [%] 81.5 Fmean [kN] 1.92
σ of DR [%] 9.8 Fcyc [kN] 29.30
γ [kN/m3] 19.4 wcyc [mm] 1.25
γ′ [kN/m3] 9.4 f [Hz] 0.10

Installation fs [Hz] 2
FP [kN] 73.3 N [-] 40,867
dinst [mm] 491 FPc [kN] -93.26

Membrane pressure wPc [mm] -28.29
pm [kPa] 70 v [mm/s] 0.002
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Figure G.168: CPT testing 13.03.14.
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Figure G.169: Installation 13.03.14.

−2 −1 0

−30

−20

−10

0

10

20

30

Displacement [mm]

Lo
ad

 [k
N

]

 

 

N=1
N=2.0e4
N=4.0e4

Figure G.170: Cyclic behaviour 13.03.14.
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Figure G.171: Cyclic loading part 13.03.14.
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Figure G.172: Full loading vs. displacement 13.03.14.

Comments:
Sand in the first 0.3-0.4 m was less dense than in the deeper layer. Probably, the
soil was strongly disturbed due to another testing program in the same sand box
and due to membrane pressure applications that create the upward gradient.
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G.4.13 Test 13.03.15

Soil properties Loading
DR [%] 87.1 Fmean [kN] -22.39
σ of DR [%] 6.8 Fcyc [kN] 23.08
γ [kN/m3] 19.7 wcyc [mm] 0.10
γ′ [kN/m3] 9.7 f [Hz] 0.10

Installation fs [Hz] 2
FP [kN] 83.1 N [-] 31,619
dinst [mm] 492 FPc [kN] -93.90

Membrane pressure wPc [mm] -26.53
pm [kPa] 73 v [mm/s] 0.002
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Figure G.173: CPT testing 13.03.15.
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Figure G.174: Installation 13.03.15.
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Figure G.175: Cyclic behaviour 13.03.15.
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Figure G.176: Cyclic loading part 13.03.15.
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Figure G.177: Full loading vs. displacement 13.03.15.
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G.4.14 Test 13.03.16

Soil properties Loading
DR [%] 79.3 Fmean [kN] -51.67
σ of DR [%] 10.1 Fcyc [kN] 24.49
γ [kN/m3] 19.3 wcyc [mm] -75.01
γ′ [kN/m3] 9.3 f [Hz] 0.10

Installation fs [Hz] 2
FP [kN] 75.7 N [-] 19,081
dinst [mm] 489 FPc [kN] -

Membrane pressure wPc [mm] -
pm [kPa] 71 v [mm/s] -
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Figure G.178: CPT testing 13.03.16.
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Figure G.179: Installation 13.03.16.

−4 −2 0

−80

−70

−60

−50

−40

−30

−20

Displacement [mm]

Lo
ad

 [k
N

]

 

 

N=1
N=1.0e4
N=1.9e4

Figure G.180: Cyclic behaviour 13.03.16.
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Figure G.181: Cyclic loading part 13.03.16.
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Figure G.182: Full loading vs. displacement 13.03.16.

Comments:
Sand in the first 0.3-0.4 m was less dense than in the deeper layer. Probably, the
soil was strongly disturbed due to another testing program in the same sand box
and due to membrane pressure applications that create the upward gradient.
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G.4.15 Test 13.03.17

Soil properties Loading
DR [%] 81.2 Fmean [kN] -50.61
σ of DR [%] 7.8 Fcyc [kN] 45.78
γ [kN/m3] 19.4 wcyc [mm] -81.90
γ′ [kN/m3] 9.4 f [Hz] 0.10

Installation fs [Hz] 2
FP [kN] 74 N [-] 5
dinst [mm] 489 FPc [kN] -

Membrane pressure wPc [mm] -
pm [kPa] 71 v [mm/s] -
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Figure G.183: CPT testing 13.03.17.
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Figure G.184: Installation 13.03.17.

−30 −20 −10 0 10

−100

−80

−60

−40

−20

0

Displacement [mm]

Lo
ad

 [k
N

]

 

 

N=2
N=3
N=4

Figure G.185: Cyclic behaviour 13.03.17.
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Figure G.186: Cyclic loading part 13.03.17.
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Figure G.187: Full loading vs. displacement 13.03.17.

Comments:
Sand in the first 0.3-0.4 m was less dense than in the deeper layer. Probably, the
soil was strongly disturbed due to another testing program in the same sand box
and due to membrane pressure applications that create the upward gradient.

297



298 Contents

G.4.16 Test 13.03.19

Soil properties Loading
DR [%] 79.0 Fmean [kN] -0.30
σ of DR [%] 8.8 Fcyc [kN] 1.66
γ [kN/m3] 19.3 wcyc [mm] -0.64
γ′ [kN/m3] 9.3 f [Hz] 0.10

Installation fs [Hz] 2
FP [kN] (72.5) N [-] 39,729
dinst [mm] (488) FPc [kN] (-3.49)

Membrane pressure wPc [mm] -8.66
pm [kPa] 0 v [mm/s] 0.002
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Figure G.188: CPT testing 13.03.19.
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Figure G.189: Installation 13.03.19.
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Figure G.190: Cyclic behaviour 13.03.19.

298



Test Series 13.03.XX Overview 299

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
4

−2

−1

0

1

2

Cycle no.

Lo
ad

 [k
N

] 

 

 

F

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
4

−2

−1.5

−1

−0.5

0

0.5

Cycle no.

D
is

pl
.[m

m
]

 

 

w
cyc

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
4

−3

−2

−1

0

1

Cycle no.

P
or

e 
pr

es
.[k

P
a]

(Outer pore pressures)

 

 

PP1
PP3

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
4

−5

0

5

Cycle no.

P
or

e 
pr

es
.[k

P
a]

(Inner pore pressures)

 

 

PP4
PP5
PP6

Figure G.191: Cyclic loading part 13.03.19.

299



300 Contents

−40−35−30−25−20−15−10−505

−4

−3

−2

−1

0

1

2

Lo
ad

 [k
N

]

Displacement [mm]

Figure G.192: Full loading vs. displacement 13.03.19.

Comments:
Only the last part of installation was recorded. Problems indata sampling
caused by an error in the data acquisition system: load and displacement sig-
nals were not taken at the very same moment. Thus, cyclic behaviour cannot
be assessed precisely. Sand in the first 0.3-0.4 m was less dense than in the
deeper layer. Probably, the soil was strongly disturbed dueto another testing
program in the same sand box and due to membrane pressure applications that
create the upward gradient. Post-cyclic pull-out should beignored, because it
was interrupted at the very beginning. Possible problems with pore pressure
transducer calibration (settings in the computer program).
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G.4.17 Test 13.03.20

Soil properties Loading
DR [%] 81.3 Fmean [kN] 1.80
σ of DR [%] 11.7 Fcyc [kN] 3.85
γ [kN/m3] 19.4 wcyc [mm] 0
γ′ [kN/m3] 9.4 f [Hz] 0.10

Installation fs [Hz] 2
FP [kN] 69.2 N [-] 39,980
dinst [mm] 490 FPc [kN] -4.85

Membrane pressure wPc [mm] -1.30
pm [kPa] 0 v [mm/s] 0.002
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Figure G.193: CPT testing 13.03.20.
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Figure G.194: Installation 13.03.20.
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Figure G.195: Cyclic behaviour 13.03.20.
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Figure G.196: Cyclic loading part 13.03.20.
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Figure G.197: Full loading vs. displacement 13.03.20.

Comments:
Sand in the first 0.3-0.4 m was less dense than in the deeper layer. Probably, the
soil was strongly disturbed due to another testing program in the same sand box
and due to membrane pressure applications that create the upward gradient.
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G.4.18 Test 13.03.21

Soil properties Loading
DR [%] 80.5 Fmean [kN] 0
σ of DR [%] 11.1 Fcyc [kN] 1.00
γ [kN/m3] 19.4 wcyc [mm] -0.29
γ′ [kN/m3] 9.4 f [Hz] 0.10

Installation fs [Hz] 2
FP [kN] (70) N [-] 40,020
dinst [mm] (490) FPc [kN] -4.86

Membrane pressure wPc [mm] -4.84
pm [kPa] 0 v [mm/s] 0.002
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Figure G.198: CPT testing 13.03.21.
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Figure G.199: Cyclic behaviour 13.03.21.
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Figure G.200: Cyclic loading part 13.03.21.
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Figure G.201: Full loading vs. displacement 13.03.21.

Comments:
Sand in the first 0.3-0.4 m was less dense than in the deeper layer. Probably, the
soil was strongly disturbed due to another testing program in the same sand box
and due to membrane pressure applications that create the upward gradient.
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Compared to oil and gas structures, marine renewable energy devices are 
usually much lighter, operate in shallower waters and are subjected to se-
vere cyclic loading and dynamic excitations. These factors result in differ-
ent structural behaviours. Bucket foundations are a potentially cost-effective 
solution for various offshore structures, and not least marine renewables. 

The present thesis focuses on several critical design problems related to the 
behaviour of bucket foundations exposed to tensile loading. Among those 
are the soil-structure interface parameters, tensile loading under various dis-
placement rates and tensile cyclic loading.

A new laboratory testing facility is constructed allowing large scale founda-
tion model testing under long-term cyclic loadings. Another test set-up - a 
pressure tank – is employed for the displacement rate analysis. The extensive 
testing campaign provides valuable data about the effects of tensile loading. 


