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Abstract

In industry, performance requirements regarding machinery, applications etc., are constantly in-

creasing, and with the development of reliable proportional flow control components to reasonable

prices, the market is increasingly turning its attention toward controllable fluid power solutions.

For series produced systems such as presses etc., dedicated controls are often developed. However,

the great majority of the hydraulic systems developed, are produced in limited numbers for special-

ized applications, and here stand alone economically feasible digital controllers with ease-of-use
interfaces are widely used. Such controllers typically provide the possibility to employ traditional

linear controls such as PID schemes, and variants of this, with parameters tunable via graphical

user interfaces. However, due to the intrinsic nonlinearities of hydraulic systems as well as the

often limited knowledge of system parameters and control theory, hydraulic control systems are

often implemented with poor results and with no indications on stability margins, robustness to-

ward parameter perturbations, disturbances etc. Hence commissioning of such control systems is

often an iterative and hence expensive process, making it difficult to comply with tight budgets and

delivery deadlines.

The objective of this project is to overcome these issues, and develop controls aiming at robustness,

consistent performance, simple parameter design and applicability under industrial conditions, i.e.

with only pressure- piston- and spool position sensors, standard proportional valves- and control

electronic hardware. The project is limited to consider only position control systems. To achieve

the project objective, the possibility of online tracking of system parameters has been investigated,

targeting compensations of nonlinearities and online controller adjustment. In regard to this, meth-

ods for compensation of the system gain have been developed - one based on the recursive least

squares approach, and a model based type using a generalized system gain model and sensors.

In order to achieve consistent position control performance, simple parameter design and robust-

ness in the presence of uncertain parameters- and disturbances, the field of sliding mode control

has been investigated. Especially high order sliding mode control methods have been studied,

due the intriguing possibility of maintaining the main properties of sliding mode control but with

continuous control inputs. The applicability of second order modes has been investigated, and

modifications of such controls have been developed based on homogeneity principles in order to

provide more suitable controllers for hydraulic systems, than conventional second order sliding

mode types. Also, an extension of the second order sliding algorithm known as the twisting al-

gorithm has been developed, with compensation of local equilibria, and even an arbitrary order

sliding mode design has been considered in a future perspective.

Experimental results reveal that the model based gain compensator may significantly improve per-

formance of even control systems with linear controllers. The results of compensator-plus-control

designs demonstrate improved tracking performance compared to common linear control methods

based on best industrial practice. In particular homogeneous extensions / modifications of first-

and second order sliding controls show to be especially suitable for hydraulic cylinder drives oper-

ating under industrial conditions. These controllers demonstrate superior performance compared

with conventional methods, and may be commissioned with limited tuning effort. Combined with

the proposed gain compensator, the resulting control structures are considered the main results in

regard to the overall objective of the project.
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Resumé

I industrien er kravene til maskiners og applikationers ydeevne konstant stigende, og med ud-

viklingen af proportionale flow-styringskomponenter til rimelige priser, har markedet i stigende

grad fokus på styrede hydrauliske løsninger. Til serieproducerede systemer såsom presser osv. ud-

vikles der ofte dedikerede regulatorer og styringer, men det store flertal af de hydrauliske systemer

der udvikles, produceres i begrænset antal og til specielle applikationer, og her anvendes ofte stand
alone regulatorer. Sådanne regulatorstrukturer giver typisk mulighed for at anvende traditionelle

lineære regulatorer såsom PID regulatorer og varianter af disse, hvor parametre kan justeres via

grafiske brugerflader. På grund af ulineariteterne i hydrauliske systemer samt den ofte begrænsede

viden om systemparametre og reguleringsteori, idriftsættes hydrauliske reguleringssystemer ofte

med dårlige resultater til følge, og uden indikatorer på stabilitetsmarginer, robusthed mod param-

etervariationer, forstyrrelser osv. Idriftsættelse af denne type systemer er derfor ofte en iterativ og

dermed kostbar proces, hvilket gør det vanskeligt at overholde stramme budgetter og leverings-

deadlines.

Formålet med dette projekt er at overvinde disse problemer, og at udvikle regulatorer med fokus på

robusthed, ensartet ydeevne, enkle parameterdesigns og anvendelighed under industrielle betingel-

ser, dvs. med kun tryk-, stempel- og gliderpositionssensorer, standard- proportionalventiler og

elektronisk regulerings-hardware. Projektet er begrænset til positionsregulering. For at opfylde

projektets mål, er muligheden for at monitorere systemets parametre online blevet undersøgt med

det formål at kompensere for ulineariteter samt online regulatortuning. I denne forbindelse er

metoder til kompensering af systemets forstærking blevet udviklet - en metode baseret på rekur-

sive mindste kvadraters metode, og en modelbaseret type ved brug af sensorer.

For at opnå en konsistent regulatorydeevne, et simpelt parameter design og robusthed på trods af

usikre parametre og forstyrrelser, er sliding mode reguleringsmetoder blevet undersøgt. Særligt

er højere ordens sliding mode reguleringsmetoder blevet undersøgt, hvilket skyldes muligheden

for at opretholde de vigtigste egenskaber ved sliding mode regulering, men med kontinuerte ind-

gangssignaler. Anvendeligheden af anden ordens sliding mode regulatorer er blevet undersøgt,

og videreudviklet baseret på homogenitetsprincipper, med henblik på mere egnede regulatorer til

hydrauliske systemer, end konventionelle anden orderns sliding mode regulatorer. Desuden er en

udvidelse af anden ordens sliding algoritmen kendt som twisting algoritmen blevet udviklet, med

kompensering for lokale ligevægtspunkter, og selv en vilkårlig ordens sliding mode regulator er

blevet undersøgt i et fremtidigt perspektiv.

Eksperimentelle resultater viser at den modelbaserede systemforstærkningskompensator forbedrer

ydeevnen, selv i reguleringssystemer med lineære regulatorer. Resultaterne af de forskellige reg-

uleringsdesigns demonstrerer forbedret evne til at følge tidsvariende referencesignaler sammen-

lignet med konventionelle lineære reguleringsmetoder baseret på den bedste industrielle praksis.

Særligt videreudviklingerne af anden ordens sliding mode regulatorerne baseret på homogenitets-

principper findes specielt egnede til hydrauliske cylinderdrev, der opererer under industrielle beting-

elser. Disse regulatorer demonstrerer en overlegen ydeevne sammenlignet med konventionelle

metoder, og kan idriftsættes med en begrænset tuningsindsats. Kombineret med den nævnte sys-

temforstærkningskompensator, anses de resulterende reguleringsstrukturer for at være de vigtigste

resultater i forhold til det overordnede mål for projektet.
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εAir0 Volumetric constant for undissolved air at atmospheric pressure [-]

εcs Boundary layer coefficient [-]

εht Boundary layer coefficient [-]

ζps Damping ratio of swivel mechanism [-]

ζs System damping ratio [-]
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ζv Valve damping ratio [-]

θ Angle [rad]

λcct Constant forgetting factor [-]

λvff Variable forgetting factor [-]

λ̄ Parameter related to Filippov solution [-]

ξ Homogeneity degree [-]

ρ Chamber volume ratio [-]

σ Static flow gain ratio [-]

τc Controller time constant [s]

τd Time delay [s]

τs1 Oscillation time constant [s]

τvd Valve time delay [s]

ϕ01 Angle related to manipulator kinematics [rad]

ϕ03 Angle related to manipulator kinematics [rad]

ϕ33 Angle related to manipulator kinematics [rad]

ϕb Boundary layer width / thickness [-]

ϕH1 Angle related to manipulator kinematics [rad]

ψs Swivel / swash plate angle [-]

ψsR Swivel angle reference [-]

ω1v Frequency related to valve dynamics [rad/s]

ω2v Frequency related to valve dynamics [rad/s]

ωm Motor speed (supply) [rad/s]

ωn System natural frequency [rad/s]

ωs Natural frequency of swivel mechanism [rad/s]

ωv Valve band width [rad/s]

asr Oscillation amplitude [1]

AA Piston area on A-side [m2]

AB Piston area on B-side [m2]

Bh Hydraulic viscous friction coefficient [Ns/m]

Bm Viscous friction coefficient for joint [Ns/rad]

BV Combined viscous friction coefficient [Ns/m]

Bv Total (equivalent) viscous friction coefficient [Ns/m]

C Parameter bound [-]/[m/s]

C̄ Parameter bound [-]/[m/s2]

Cad Adiabatic constant [-]

CL Leakage coefficient [m3/s/Pa]

CLp Pump leakage coefficient [m3/s/Pa]

CLAex External leakage coefficient [m3/s/Pa]

CLBex External leakage coefficient [m3/s/Pa]

CLl Leakage coefficient [m3/s/Pa]

Cf1 Stribeck velocity [m/s]

Cf2 Inclination for continuous approximation of sign function [-]

DP Pump displacement coefficient [m3/rad]

dτ Torque-force relation (torque arm) [m]

dκ Dilation [-]
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Fext External disturbance force [N]

FC Forces resulting from coriolis- and centripetal impacts [N]

Ff Total forces due to friction [N]

FfC Coulomb friction force [Nm]

FfS Friction force resulting from Stribeck effects [Nm]

Fg Force due to gravity [N]

Fext External forces [N]

GM Parameter bound [-]

GMh Parameter bound [-]

Hmax Parameter bound [-]

Izz1 Moment of inertia related to Link 1 [kgm2]

Iyy2 Moment of inertia related to Link 2 [kgm2]

Izz3 Moment of inertia related to Link 3 [kgm2]

Izz4 Moment of inertia related to Link 4 [kgm2]

KM Parameter bound [-]/[m/s]

K̄M Parameter bound [-]/[m/s2]

Km Parameter bound [-]/[m/s]

K̄m Parameter bound [-]/[m/s2]

KvA Valve flow gain of flow port A [m3/(s
√

PaV)]

KvB Valve flow gain of flow port B [m3/(s
√

PaV))]

Ks Linear system gain [m/V]

Ki Gain for liner integral term [V/m]

Kisw Logic limit for activation of controller integral term [-]

Kf+ System gain for positive motion [-]

Kf- System gain for negative motion [-]

Kp Proportional gain [V/m]

LABmin Length [m]

LAO0 Length [m]

LBO0 Length [m]

LBC Length [m]

LCDmin Length [m]

LCM1x Length [m]

LCM1y Length [m]

LCM2x Length [m]

LCM2z Length [m]

LCM3x Length [m]

LCM3y Length [m]

LCO0 Length [m]

LCO1 Length [m]

LDO1 Length [m]

LEFmin Length [m]

LEG Length [m]

LEH Length [m]

LFH Length [m]

LFI Length [m]

LGH Length [m]
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LHO3 Length [m]

LIO3 Length [m]

LIO4 Length [m]

LO3O4 Length [m]

LO0O1 Length [m]

LO2O3min Length [m]

m1 Mass of manipulator Link 1 [kg]

m2 Mass of manipulator Link 2 [kg]

m3 Mass of manipulator Link 3 [kg]

m4 Mass of manipulator Link 4 [kg]

Meq Equivalent inertia load [kg]

PAtm Atmospheric pressure [Pa]

PA Pressure in A-chamber [Pa]

PB Pressure in B-chamber [Pa]

PL Load pressure (virtual) [Pa]

PS Supply pressure [Pa]

PT Tank pressure [Pa]

QA Flow through flow port A [m3/s]

QB Flow through flow port B [m3/s]

QV Total valve flow (consumption from supply) [m3/s]

QS Supply pump flow [m3/s]

sat() Saturation function [-]

sgn() Sign function [-]

uv Valve control input [V]

V0A Initial volume of A-chamber [m3]

V0B Initial volume of B-chamber [m3]

VA Total volume of A-chamber [m3]

VB Total volume of B-chamber [m3]

VA0 Volume of A-chamber at operating point [m3]

VB0 Volume of B-chamber at operating point [m3]

VS Volume of supply line [m3]

xP Piston position [m]

xP1 Piston position of cylinder 1 [m]

xP2 Piston position of cylinder 2 [m]

xP3 Piston position of cylinder 3 [m]

xP4 Piston position of cylinder 4 [m]

xR Piston position reference [m]

xv Valve spool position [m]

|ẋv|max Valve slew rate [m/s]
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α In control design chapters, denotes a tuning parameter [-]

γ Forgetting factor / controller parameter [-]

δ Maximum covariance trace / controller parameter [-]

λ Forgetting factor / controller parameter [-]

μ Piston area ratio / Lebesgue measure [-]

ϕ Angle / controller parameter [-]

B Boundary layer function / Region related to Filippov solution [-]

R Rotation matrix / Information matrix
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1 | Introduction

In the following, the motivation for the initiation of this research project is presented. Furthermore,

specific aims of the research are introduced in terms of a research hypothesis and the primary

activities of the project. Finally, the main contribution of the project as well as a dissertation

outline is presented.

1.1 Motivation for the Research Project

With the development of reliable proportional flow control components with medium transient per-

formance characteristics to acceptable prices, the market has turned its attention to controllable

fluid power solutions. As a result, trends and demands are increasingly to develop and deliver high

performance turn-key solutions, meaning complete electro-hydraulic systems with integrated con-

trol systems, motion control of individual hydraulic axes and so forth, installed and commissioned.

The key parameters of competition in this market may be outlined as; Performance, Reliability,

Price, and Delivery time.

This has provided basis for the development of commercially available stand alone hydraulic axis

controllers. For series produced systems such as presses etc., dedicated axis control systems are

often developed. However, the great majority of the hydraulic systems developed are one off a kind
systems, or systems produced in limited numbers for specialized applications, where budgets are

too limited to design professionally engineered model based control systems. In these cases, stand
alone economically feasible digital controllers dedicated to control electro-hydraulic components

with ease-of-use configuration interfaces, are widely used. These controllers typically provide the

possibility to employ closed loop control in terms of traditional linear control schemes such as the

widely known PID controller approach, and variants of this, tunable via graphical user interfaces.

The reason for this control approach is that parameters are somewhat comprehensible by many op-

erators in the fluid power industry, and that parameters may be designed from tests on the physical

system and the use of well-known tuning rules. In general the limited engineering effort in the

field of hydraulic control systems (servo systems) is a problem of both educational and technical

nature, and has not evolved on a level with classical disciplines in electrical engineering. The field

of modern control theory traditionally concerns model based control and analysis of linear sys-

tems, however as hydraulic systems are inherently nonlinear, this makes the applicability of linear

control theory somewhat limited / restricted. This together with limited budgets for model based

control design, and the limited knowledge on control theory, often cause engineers to employ PID

controllers which are experimentally tuned on site, often with poor results in terms tracking effort,

response time etc. and with no indications on stability margins, robustness toward perturbations in

1
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system parameters due to viscosity-temperature relations, friction factors, air content and so forth.

Due to this, commissioning of fluid power control systems are often an iterative and hence expen-

sive process making it difficult to comply with tight delivery deadlines.

These facts and the considerations above outline the issues that are the motivation for this research

project.

1.2 Aims of Research

The difficulties described in the motivation call for new controller types that adapt to / are robust to-

ward the intrinsic nonlinearities of hydraulic drives, such that consistent performance is guaranteed

even under varying operating conditions. Furthermore, such controls should be easily implemented

and commissioned from simple guide lines and without knowledge of advanced control theory. In

order for such control methods to be appealing to the industry, these must not require additional

economic efforts compared to those of a conventional system design. This means that, in order to

work properly, the developed controllers must not require advanced- and / or specialized hydraulic

components, sensors, electronic control hardware etc.

1.2.1 Research Hypothesis
Typical states to be controlled in hydraulic systems are the position, velocity or force output of

hydraulic cylinders- or motors, flow outputs of flow components or the pressure of hydraulic trans-

mission lines, chambers etc. In order to focus research efforts, the control methods under consid-

eration in this project are restricted to position control methods, as such controllers are found to be

most profound in industry 1.

The research hypothesis for the project is given by:

It is possible to develop control methods / structures for a class of hydraulic cylinder drives with
simple commissioning routines, that adapt to / are robust toward varying operating conditions
and the inherent nonlinearities of hydraulic cylinder drives, and provide for improved tracking
performance compared to conventional linear methods, without any or limited predefined system
information.

This hypothesis will be answered through the following sub-hypotheses:

• It is possible to adapt / track key system parameters online based on commonly available
sensors, in a reliable way, such that these can be applied for online controller adjustment-
and / or compensation of nonlinearities.

• It is possible to develop advanced control schemes that provide global stability, improved
tracking performance and disturbance rejection compared to conventional methods, despite
nonlinearities and varying operating conditions.

The work carried out in order to answer this research hypothesis, is divided into several project

activities, which are presented in the following.

1Bosch Rexroth A/S, Denmark
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1.2.2 Project Activities
From the above, the objective is to develop adaptive / robust controllers that utilize only commonly

available sensors (piston- and spool position- and pressure sensors), that are commissioned with

few- and easily tuned parameters, and provides for improved and consistent performance, com-

pared to conventional linear methods that can be considered best industrial practice. The project

activities are chosen as described below.

Activity 1 - Classification of Applications, Test Bench & Modeling Common application types

are classified in terms of their hydraulic systems- and load structures. Based on this, a

test bench is established, modeled and verified, and a control design model framework is

established.

Activity 2 - Online parameter estimation Online parameter estimation using the Recursive Least

Squares (RLS) method is investigated. This method is chosen due to its proven mathemat-

ical properties, and the applicability of state-of-the-art will be investigated and modified in

order to suit the purpose of this project. Furthermore the possibility for online parameter

estimation using a model based approach is considered. The target is to utilize estimated

parameters for compensation of system nonlinearities- and / or for online controller adjust-

ment.

Activity 3 - Design of Control Structures Based on the findings of Activity 2, a suitable control

strategy is chosen, investigated, and based on this new control structures are developed to

suit the purpose of the project.

Activity 4 - Implementation, Validation & Testing The results are implemented in the test bench

and compared with best industrial practice linear control methods commonly applied in in-

dustry.

1.3 Main Contribution of the Research Project

This dissertation presents the study and implementation of different methods for online tracking of

system parameters, both adaptive- and model based methods, considering valve driven hydraulic

cylinder drives. The applicability of first- and second order sliding mode methods- as well as ho-

mogeneous methods is investigated in regard to output feedback control for position tracking of

hydraulic cylinders. Furthermore, third and arbitrary order sliding algorithms are considered in a

future perspective.

The main contribution of the research presented, is the Active Gain Compensator (AGC) that allows

to compensate the system gain of arbitrary valve driven cylinder drives, combined with the modi-
fied twisting algorithm (M-TA) or the modified super twisting algorithm (M-STA) that are homo-

geneous finite-time continuous output feedback controllers. The combined compensator-controller

structures utilize pressure-, piston- and spool position measurements and are highly versatile, al-

lowing for application in a broad range of applications. Furthermore, these structures allow for

accurate and robust position tracking control of hydraulic cylinder drives, with little and simple

tuning efforts. This contribution provides for significant improvement of performance compared

to controllers that can be considered best industrial practice.
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Furthermore, another relevant contribution is the third order twisting-like algorithm (3TA), being

a contribution of a more theoretical nature. The extension of the simple twisting algorithm to the

third order is investigated and thoroughly elaborated through geometrical considerations, and local

equilibria are compensated by simple efforts. In systems with high performance components, this

controller will expectedly provide for accurate tracking performance combined with the proposed

compensator, with the most simple tuning effort.

1.4 Dissertation Outline

In Chapter 2 the framework for the project regarding test facilities, models, experimental condi-

tions and evaluation criteria is established. Furthermore, benchmark controllers are established

based on best industrial practice. In Chapter 3 the possibility for online tracking of system param-

eters is investigated, focusing on the recursive least squares method, and a model based approach.

Furthermore, compensated drive models for use in position control designs are established, and a

control strategy to be investigated, is outlined. In Chapter 4 the fundamentals and most important

features in regard to first order sliding mode controls (1SMC) and sliding mode controls of higher

orders (HOSMC), are discussed in their ideal cases. Furthermore, chattering issues are addressed

in regard to their application in especially hydraulic systems, and state-of-the-art for application of

sliding controls to hydraulic systems is outlined. In Chapter 5 different conventional sliding mode

controllers are designed for hydraulic cylinder drives and evaluated experimentally. In Chapter

6, different controllers utilizing second order sliding algorithms are proposed, mainly focused on

output feedback control for hydraulic drives, and results are experimentally verified and the results

discussed. In Chapter 7, several homogeneous extensions / modifications of first- and second order

sliding controllers are proposed, based on the findings of Chapter 6. In Chapter 8 an extension

of the twisting algorithm to the third order is proposed, and furthermore a partial framework for a

controller based on a homogeneous surface design is established. In Chapter 9 the results for the

controllers considered in the project are compared quantitatively, and a final control structure is

proposed. Finally, in Chapter 10, the project work and results are discussed and summarized.



2 | Drive Classification, Modeling & Bench-
mark Controllers

This chapter outlines the framework for the project in regard to test facilities and models used

throughout the project. Based on a classification of application types that can be expected in the

industry, a test bench is chosen representing the main load characteristics. Nonlinear models are

developed and experimentally verified. Based on this, a generalized compact model description

is established in order to facilitate control design, and linear models and transfer functions are

derived. Finally, experimental conditions and evaluation criteria are defined, and benchmark con-

trollers are established based on best industrial practice.

2.1 Classification of Applications

In the industry hydraulic systems are usually applied in systems where large forces / torques-, high

power-weight ratios etc. are necessary. Furthermore, applications where hydraulics are applied

varies strongly, and often differ significantly in regard to dominating characteristics. In the follow-

ing, different load systems recently delivered by Bosch Rexroth A/S, are considered in order to

classify expected loads, hence the characteristics of the systems target for the work of the project.

In all, six different applications are chosen, which also emphasizes the diversity of applications

where hydraulic drives are applied. The chosen application types are depicted in figure 2.1.

Application # 1 In this application a horizontally mounted differential cylinder is actuating a

mass, with the mass guided by a slide. The load is dominated by inertia forces resulting

from a constant mass, and friction primarily arising between the slider components. The

pump supplying the valve is attached to multiple consumers and supply lines are long, re-

sulting in a fluctuating supply pressure. Furthermore, the valve is pilot operated, and the

valve flow gains are asymmetric and are not matched with the cylinder asymmetry.

Application # 2 In this application a rotary symmetric actuator / cylinder is driven by a symmetric

proportional valve, with the static flow characteristic being progressive. The motion of the

load is characterized by strong accelerations, resulting in large inertia forces. Furthermore,

the load is characterized by gravitation forces.

Application # 3 Here several differential cylinders are parallel coupled to the valve, driving a

sledge which accumulates bulk material, i.e. the mass is changing. Furthermore, the load

exhibits strong impact from friction phenomena, where nonlinear elements are significant.

Also, the valve is pilot operated, and the static flow gain is nonlinear.

5
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Application # 4 The load of this application is somewhat similar to that of Application # 3, how-

ever the actuation system is different. Here the load is actuated by multiple differential

cylinders coupled in opposite parallel, forming an equivalent double rod / symmetric cylin-

der. The cylinders are driven by a unidirectional pump, operating in closed circuit, and as

such the system resembles a hydrostatic transmission.

Application # 5 In this application a vertically mounted cylinder is applied to push / force a hub

into an impeller for a (central) heating pump. Hence, the cylinder is operated in a way similar

to a conventional press, and meets an abrupt contact load, that subsequently changes due to

deformation of the hub. The static flow gains are nonlinear.

Application # 6 This application differs significantly from the remaining applications in the sense

that several (four) cylinders control the position of a large axle bearing. Hence, the cylinders

exhibit coupled loads. Furthermore, gravitational forces are present. The flow gains of the

valves applied, are in all cases nonlinear.
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Figure 2.1: Chosen applications depicting load characterizations and actuation systems.
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The applications under consideration differ significantly from each other in regard to load char-

acteristics, output power range, and flow components. In general for these applications, the most

undesirable characteristics in regard to control are:

• Varying inertia load (influences system natural frequency and damping)

• Nonlinear friction phenomena (causes strong load variations at low velocities and may cause

limit cycles when the system is in closed loop control)

• Nonlinear static flow gains (asserts an additional nonlinearity to the system gain)

• Valve- and cylinder asymmetries (causes the system gain to change abruptly at valve spool

zero crossing)

• Load variations resulting from gravitational impact, abrupt contact loads and disturbances

(Causes variation in the load pressure, hence the system gain etc.)

• Supply pressure variations (causes system gain variations and an unsteady power inlet)

Hence, in order for a successful outcome of the project, the developed control methods / structures

should provide a consistent and accurate performance, despite such undesirable system properties.

2.2 Laboratory Test Bench

Based on the classification of dominant system characteristics which can be expected in hydraulic

drive applications, the load system chosen for the project is the rear crane of a backhoe loader. This

produces most of the dominant load characteristics discussed in Section 2.1, in terms of friction

phenomena, gravitational forces as well as varying inertia. Note; This load application is therefore

chosen in its capacity of producing the desired load characteristics, and NOT in its capacity of

being a mobile crane. Throughout this dissertation, the crane is referred manipulator.

A sketch of the manipulator is depicted in figure 2.2, with the notation used in the following sec-

tions. In general a hydraulic cylinder plus load (the manipulator link it actuates) is referred as a

hydraulic axis. The hydraulic system applied for actuation of the manipulator is designed based

on common industrial standards in order to meet the purpose of the project, and component types

are chosen based on the applications considered in the previous section. This means that all com-

ponents, from valves, supply pump etc. to electronic control hardware are common industrial

standard components. A list of main components utilized in the system can be found in the Ap-

pendix.

The cylinders are controlled by proportional flow control valves commonly seen in industry. Speci-

fically, Link 1 is actuated by a 4WRKE 10 E1-100L two-stage overlapped valve [Rexroth, 2004],

Link 2 by a 4WRTE 10 V1-100L two-stage zero lapped valve [Rexroth, 2006] and links 3 and

4 by 4WREE 10 V50 and 4WREE 6 V32 valves [Rexroth, 2005], respectively (both single stage

and zero lapped). The control electronics applied is an industrial grade PLC, more specifically the

Bosch Rexroth MLC L65 [Rexroth, 2008], with a control cycle time (scan time, sample time) of 1

[ms]. In the following sections the system is modeled in detail.
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Figure 2.2: Sketch depicting the manipulator used as load system in the test bench.

2.3 Nonlinear Load Model

The nonlinear manipulator model is developed using conventional systematic methods to the ex-

tend this is possible. The forward kinematics is derived using the Denavit-Hartenberg (D-H) con-

vention, and the dynamic model is derived using the iterative Newton-Euler dynamic formulation

([Craig, 2005], [Andersen, 1993], [Spong et al., 2004], among others). These methods provide a

model expressed in the manipulator joint space. The relation between joint- and actuator (cylinder)

space in terms of relations between joint- and actuator variables and torque-force relations are de-

rived using standard trigonometric approaches. The following derivations are based on figure 2.3,

depicting the local reference frame related to each link following the D-H convention, as well as

the joint variables. In the following, e.g. LAB denotes the length between points A and B, and so

fourth. All dimensions, masses etc. used in the following can be found in the Appendix.

2.3.1 Joint Kinematics
Based on figure 2.4, depicting the manipulator in zero state configuration, the D-H parameters are

as given in table 2.1.

Link θi di ai αi

1 θ1 0 LO0O1 0

2 θ2 0 0 π/2

3 0 LO2O3min +d3 0 −π/2

4 θ3 0 −LO3O4 0

Table 2.1: DH-parameters for the manipulator.
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Figure 2.3: Sketch of manipulator with reference frame assigned according to the D-H
convention, and joint variables.

Figure 2.4: Sketch of manipulator in zero state configuration.
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The position and orientation of each coordinate frame may be described by a transformation matrix

(2.1), where the subscript i denotes the ith reference frame. The upper left 3×3 submatrix of (2.1)

is the rotation matrix expressing the orientation of the ith reference frame with respect to the i−1

reference frame, i.e. with respect to its base coordinate frame, and the upper right 3× 1 vector

expresses the distance from the origin of the i−1 reference frame to the ith reference frame.

i
i−1T =

⎡
⎢⎢⎣

cos(θi) −sin(θi)cos(αi) sin(θi)sin(αi) ai cos(θi)
sin(θi) cos(θi)cos(αi) −cos(θi)sin(αi) ai sin(θi)

0 sin(αi) cos(αi) di
0 0 0 1

⎤
⎥⎥⎦ (2.1)

Based on (2.1), the rotation matrices for the manipulator links are given by (2.4), (2.3).

1
0R =

⎡
⎣ cos(θ1) −sin(θ1) 0

sin(θ1) cos(θ1) 0

0 0 1

⎤
⎦ , 2

1R =

⎡
⎣ cos(θ2) 0 sin(θ2)

sin(θ2) 0 −cos(θ2)
0 1 0

⎤
⎦ (2.2)

3
2R =

⎡
⎣ 1 0 0

0 0 1

0 −1 0

⎤
⎦ , 4

3R =

⎡
⎣ cos(θ4) −sin(θ4) 0

sin(θ4) cos(θ4) 0

0 0 1

⎤
⎦ (2.3)

Having established the rotation matrices, the remaining relevant quantities that are to be used in the

dynamic model formulation, are the vectors ipi,
isi for each link. The vector ipi describes the origin

of the ith reference frame from the i− 1 reference frame, however expressed in the ith reference

frame, and may be found from ipi =
[

ai di sin(αi) di cos(αi)
]ᵀ

. Hence, from parameters of

table 2.1, these vectors are obtained as (2.4).

1p1 =
[

LO0O1 0 0
]
, 2p2 =

[
0 0 0

]
(2.4)

, 3p3 =
[

0 |LO2O3|min +d3 0
]
, 4p4 =

[ −LO3O4 0 0
]

Similarly, the vector isi expresses the position of the center of mass (CM) for the ith link, with

respect to the ith reference frame. Hence, from the assignment of reference frames in figure 2.3,

these vectors are given by (2.5).

1s1 =
[

LCM1x LCM1y 0
]
, 2s2 =

[
LCM2x 0 LCM2z

]
(2.5)

3s3 =
[

LCM3x LCM3y 0
]
, 4s4 =

[
LCM4x LCM4y 0

]
Here, e.g. LCMix expresses the xi-component of the position vector for the ith center of mass, with

respect to the ith reference frame. It should be noted that due to the limited mass of Link 4 (the

dipper), the masses of adjacent elements are taken into account, and a center of mass is equated by

polynomial functions based on CAD model information.

2.3.2 Joint-Actuator Kinematics
In the following the joint kinematics are related to the actuators via their internal kinematic rela-

tions. Furthermore, the relations between joint torques and actuator forces are derived. Figure 2.5

outlines necessary quantities in order to derive these relations.
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Figure 2.5: Sketch depicting manipulator with relevant quantities used for derivation of
joint-actuator kinematic- and force-torque relations.

Link 1
The piston position for cylinder 1 expressed in terms of joint angle 1, is given by (2.6), noting that

LAB = xP1 +LABmin.

θ1 = π − (ϕ01 +ϕ02 +ϕ03) = π −
(

ϕ01 +ϕ03 + arccos

(
L2

AO0 +L2
BO0 −L2

AB

2LAO0LBO0

))
⇒

xP1 =
√

L2
AO0 +L2

BO0 +2cos(θ1 +ϕ01 +ϕ03)LAO0LBO0 −LABmin (2.6)

The piston velocity ẋP1 and torque-force relation are given by (2.7), (2.8), respectively.

ẋP1 =− sin(θ1 +ϕ01 +ϕ03)LAO0LBO0θ̇1√
L2

AO0 +L2
BO0 +2cos(θ1 +ϕ01 +ϕ03)LAO0LBO0

(2.7)

dτ1 =−LBO0 sin(ϕB) =−LBO0 sin

(
arccos

(
L2

AB +L2
BO0 −L2

AO0

2LABLBO0

))
(2.8)

Link 2
Similarly to Link 1, obtain xP2 noting LCD = xP2 +LCDmin as (2.9).

θ2 =
π
2
−ϕ1 = π − arccos

(
L2

CO1 +L2
DO1 −L2

CD

2LCO1LDO1

)
⇒

xP1 =
√

L2
CO1 +L2

DO1 −2sin(θ2)LCO1LDO1 −LCDmin (2.9)
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Then ẋP2 is given by (2.10), and the torque-force relation dτ2 as (2.11).

ẋP2 =− cos(θ2)LCO1LDO1θ̇2√
L2

CO1 +L2
DO1 −2sin(θ2)LCO1LDO1

(2.10)

dτ2 =−LDO1 sin(ϕD) =−LDO1 sin

(
arccos

(
L2

CD +L2
CO1 −L2

DO1

2LCDLCO1

))
(2.11)

Link 3
Due to the translational joint variable of Link 3, the relations are straightforward given by (2.12).

xP3 = d3 , ẋP3 = ḋ3 , dτ3 = 1 (2.12)

Link 4
Regarding Link 4, the joint angle θ4 is obtained as (2.13).

θ4 =
3π
2

− (ϕ31 +ϕ32 +ϕ33)

=
3π
2

−ϕ33 − arccos

(
L2

FO3 +L2
HO3 −L2

FH

2LFO3LHO3

)
− arccos

(
L2

FO3 +L2
IO3 −L2

FI

2LFO3LIO3

)
(2.13)

The length LFO3 is variable and given by (2.14).

LFO3 =
√

L2
FH +L2

HO3 −2cos(π +ϕH1 +ϕH2)LFHLHO3

=

√
L2

FH +L2
HO3 −2cos

(
π +ϕH1 + arccos

(
L2

EH +L2
FH −L2

EF

2LEHLFH

))
LFHLHO3 (2.14)

Hence to torque-force relation for Link 4 is derived by virtue of LEF = xP4 + LEFmin. The time

derivative of θ̇4 is omitted here, due to its comprehensive expression. Note; In the simulation

model also the mapping θ4 → xP4 is utilized in the joint space implementation. Using the above

relations for this purpose leads to rather extensive terms, and has instead been derived opposite to

the above but in a similar way, using LHI instead of LFO3. The torque equilibrium around point H

leads to (2.15).

LFH sin(ϕF2 +ϕF3)FFI −LFH sin(ϕF1)FEF = 0 ⇒ FFI =
sin(ϕF1)

sin(ϕF2 +ϕF3)
FEF (2.15)

In a similar way, obtain τ4 around point O3 as (2.16).

τ4 =−LIO3 sin(ϕI1)FFI =−LIO3
sin(ϕI1)sin(ϕF1)

sin(ϕF2 +ϕF3)
FEF (2.16)

Hence, the torque-force relation for Link 4 is given by (2.17), (2.18).

dτ4 =−LIO3
sin(ϕI1)sin(ϕF1)

sin(ϕF2 +ϕF3)
, ϕF1 = arccos

(
L2

EF +L2
FH −L2

EH

2LEFLFH

)
(2.17)

ϕF2 = arccos

(
L2

FO3 +L2
FH −L2

HO3

2LFO3LFH

)
, ϕF3 = arccos

(
L2

FO3 +L2
FI −L2

IO3

2LFO3LFI

)
(2.18)
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2.3.3 Iterative Newton-Euler Dynamic Manipulator Formulation
The iterative Newton-Euler method for dynamic formulation of n-linked manipulators may be

outlined as the following (similar to e.g. [Craig, 2005], [Andersen, 1993]).

Let i ∈ [1, ...,n] where n is the number of links, and let initial conditions be given by (2.19).

0ω0 =
[

0 0 0
]ᵀ

, 0ω̇0 =
[

0 0 0
]ᵀ

, 0v̇0 =
[

gx gy gz

]ᵀ
(2.19)

The forward iteration determines the translational- and rotational acceleration as well as the rota-

tional velocity of the center of mass for every link, approaching the nth link starting with Link 1.

The rotational velocity- and acceleration, acceleration of the reference frame and the acceleration

of the center of mass are given by (2.20) through (2.21), respectively.

iωi =

{
i
i−1R(i−1ωi−1 + z0θ̇i) Rotational
i
i−1Ri−1ωi−1 Translational

(2.20)

iω̇i =

{
i
i−1R(i−1ω̇i−1 + z0θ̈i +

i−1ωi−1 × z0θ̇i) Rotational
i
i−1Ri−1ω̇i−1 Translational

iv̇i =

{
iω̇i × ipi +

iωi × (iωi × ipi)+
i
i−1Ri−1v̇i−1 Rot.

i
i−1R(z0d̈i +

i−1v̇i−1)+
iω̇i × ipi +2iωi × (i

i−1Rz0ḋi)+
iωi × (iωi × ipi) Trans.

iai =
iω̇i × isi +

iωi × (iωi × isi)+
iv̇i (2.21)

The backward iteration is completed by approaching Link 1, starting with the nth link, i.e. for i =
[n, ...,1]. This iteration establishes the forces and torques applied to each link of the manipulator,

and through these the joint torques. The forces and torques are given by (2.22), (2.23) and the joint

torque of the ith Link by (2.24), respectively.

ifi =
i
i+1Ri+1fi+1 +mi

iai (2.22)

ini =
i
i+1Ri+1ni+1 +

ipi × (i
i+1Ri+1fi+1)+(ipi +

isi)×mi
iai +

iIi
iω̇i +

iωi × iIi
iωi (2.23)

τi =

{
inᵀ

i (
i
i−1Rz0) Rotational

ifᵀi (
i
i−1Rz0) Translational

(2.24)

Forward Iteration for Manipulator
Following the approach described above, obtain the rotational velocity- and acceleration, acceler-

ation of the reference frame- and the center of mass for Link 1 as (2.25) through (2.28).

1ω1 =z0θ̇1 (2.25)

1ω̇1 =z0θ̈1 (2.26)

1v̇1 =
1ω̇1 × 1p1 +

1ω1 × (1ω1 × 1p1)+
1
0R0v̇0 (2.27)

1a1 =
1ω̇1 × 1s1 +

1ω1 × (1ω1 × 1s1)+
1v̇1 (2.28)

For Link 2 as (2.29) trough (2.32).

2ω2 =
2
1R(1ω1 + z0θ̇2) (2.29)

2ω̇2 =
2
1R(1ω̇1 + z0θ̈2 +

1ω1 × z0θ̇2) (2.30)

2v̇2 =
2ω̇2 × 2p2 +

2ω2 × (2ω2 × 2p2)+
2
1R1v̇1 (2.31)

2a2 =
2ω̇2 × 2s2 +

2ω2 × (2ω2 × 2s2)+
2v̇2 (2.32)
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For Link 3 as (2.33) trough (2.36).

3ω3 =
3
2R2ω2 (2.33)

3ω̇3 =
3
2R2ω̇2 (2.34)

3v̇3 =
3
2R(z0d̈3 +

2v̇2)+
3ω̇3 × 3p3 +23ω3 × (3

2Rz0ḋ3)+
3ω3 × (3ω3 × 3p3) (2.35)

3a3 =
3ω̇3 × 3s3 +

3ω3 × (3ω3 × 3s3)+
3v̇3 (2.36)

And for Link 4 as (2.37) trough (2.40).

4ω4 =
4
3R(3ω3 + z0θ̇4) (2.37)

4ω̇4 =
4
3R(3ω̇3 + z0θ̈4 +

3ω3 × z0θ̇4) (2.38)

4v̇4 =
4ω̇4 × 4p4 +

4ω4 × (4ω4 × 4p4)+
4
3R3v̇3 (2.39)

4a4 =
4ω̇4 × 4s4 +

4ω4 × (4ω4 × 4s4)+
4v̇4 (2.40)

Backward Iteration for Manipulator
From the forward iteration above, the manipulator joint torques are obtained through the back-

ward iteration process (2.22), (2.23), (2.24), resulting in four joint torques, similar to the forward

iteration. Due to the extensive expressions describing the joint torques, these are omitted here.

The complete manipulator dynamics may be formulated in joint space coordinates as (2.41) with

generalized torque- and joint variable vectors given by (2.42).

τ = Dq(q)q̈+Cq(q, q̇)+Gq(q) (2.41)

τ =
[

τ1 τ2 τ3 τ4

]ᵀ
, q =

[
θ1 θ2 d3 θ4

]ᵀ
(2.42)

2.3.4 Actuator Space Dynamic Formulation
Define the actuator (cylinder) space variable vector, and its relation the to the joint variables as

(2.43), with JS being the Jacobian matrix.

xP =
[

xP1 xP2 xP3 xP4

]ᵀ
, ẋP = JSq̇ (2.43)

From (2.43), obtain (2.44).

ẍP = JSq̈+ J̇Sq̇ ⇒ q̈ = J−1
S (ẍP − J̇Sq̇) = J−1

S ẍP −J−1
S J̇SJ−1

S ẋP (2.44)

The relation between the generalized torque vector (2.41) and the actuator force vector FL is given

by (2.45), with the diagonal Drive Jacobian matrix JD = diag(dτ1,dτ2,dτ3,dτ4).

τ = JDFL ⇒ FL = J−1
D τ (2.45)

By substitution of (2.41), (2.44) into (2.45), obtain (2.48).

FL = J−1
D (Dq(q)q̈+Cq(q, q̇)+Gq(q)) (2.46)

= J−1
D (Dq(q)(J−1

S ẍP −J−1
S J̇SJ−1

S ẋP)+Cq(q, q̇)+Gq(q)) (2.47)

= J−1
D Dq(q)J−1

S ẍP −J−1
D Dq(q)J−1

S J̇SJ−1
S ẋP +J−1

D Cq(q, q̇)+J−1
D Gq(q) (2.48)
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From (2.48), the manipulator dynamics may be expressed in actuator space as (2.49), noting that

q = q(xP).

FL = Mx(xP)ẍP +Hx(xP, ẋP)+Gx(xP) (2.49)

Here Mx,Hx,Gx are given by (2.50), (2.51), (2.52), respectively.

Mx(xP) = J−1
D Dq(q(xP))J−1

S (2.50)

Hx(xP, ẋP) = J−1
D Cq(q(xP), q̇(xP, ẋP))−J−1

D Dq(q(xP))J−1
S J̇SJ−1

S ẋP (2.51)

Gx(xP) = J−1
D Gq(q(xP)) (2.52)

The diagonal elements of the mass matrix Mx(xP) are depicted in figure 2.6 for different manipu-

lator configurations (noting that Mx33 is constant due the translational joint).
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Figure 2.6: Elements (diagonal) of matrix Mx(xP). (A) Mx11 for different xP2, and xP3 =
xP4 = 100 [mm]. (B) Mx11 for different xP2, and xP3 = 800 [mm], xP4 = 100 [mm]. (C) Mx22
for different xP3, and xP1 = xP4 = 100 [mm]. (D) Mx44 for xP4, with xP1 = xP2 = xP3 =
100 [mm]. Note; Mx33 = m3 +m4 is constant.
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Figure 2.7: Elements of Hx(xP, ẋP), Gx(xP). (A) Hx1. xP2 = xP3 = xP4 = 100 [mm]. (B) Hx1.
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As the project is not concerned with multi axis control, controllers are designed and evaluated in

regard to individual axes, while remaining axes are stationary. Hence, Cq(q(xP)) = 0 (ideally).

However, the remaining term of Hx(xP, ẋP) may provide some impact due to the relative motion

between the manipulator links and the cylinders (except for Link 3 due to the translational joint).

The resulting forces Hx(xP, ẋP), for different piston velocities and position-wise manipulator con-

figurations are depicted in figure 2.7 (A), (B), (C), (D) and (E). Furthermore, the impact from

gravity (vector Gx(xP)) is depicted in figure 2.7 (F), (G), (H), for the individual axes. As expected,

these figures imply strong variations in the loads acting on the cylinder pistons.

2.4 Hydraulic Drive Models

As discussed previously, all hydraulic axes of the test bench consist of valve controlled differential

cylinders, which here is abbreviated hydraulic valve-cylinder drive, hydraulic cylinder drive or

hydraulic drive. In general, all hydraulic cylinder drives of the test bench may be represented as

the sketch in figure 2.8.
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Figure 2.8: General schematics of hydraulic valve-cylinder drives in test bench.

In the following, modeling of the cylinder drives are based on figure 2.8.

2.4.1 Cylinder & Hose / Pipe Assembly
The motion equation generally applicable for the cylinder drives of the test bench may be described

by (2.53), from Newton’s second law.

PAAA −PBAB = MeqẍP +Ff(ẋP)+FC(xP, ẋP)ẋP +Fg(xP)+Fext (2.53)
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In (2.53), Meq is the equivalent mass acting on the piston and FC(xP, ẋP)ẋP, Fg(xP), the forces

resulting from possible centripetal- and centrifugal terms and from gravitational impact, respec-

tively. These terms are those of the actuator space load model developed in the previous section

(assuming the piston mass negligible). The term Ff(ẋP) represents the combined friction related to

the cylinder as well as manipulator joints and contact surfaces, and is described by (2.54), where

parameters may be dependent on the motion direction.

Ff(ẋP) = BVẋP +d−1
τ

(
FfC +FfS exp

(
−|q̇(xP, ẋP)|

Cf1

))
sgn(q̇(xP, ẋP)) (2.54)

BV = Bh +d−1
τ Bm(q(xP)) (2.55)

Here BV is the combined viscous friction coefficient for the hydraulic system and manipulator

joints / contact surfaces, primarily resulting from the shear stress appearing between fluid layers.

FfC is the Coulomb friction appearing between manipulator elements with relative motion, and

FfS is Stribeck effects, also known as stick-slip effects. These effects are related to fluid films

between elements with relative motion - it is assumed here that Coulomb friction and Stribeck

effects in the cylinders are negligible compared to those of the manipulator joints. Furthermore,

Cf1 denotes the velocity whereafter Stribeck effects do not influence the friction force acting on

the cylinder, and the present friction is solely Coulomb- and viscous friction. In order to avoid

numerical problems in the simulation model, the function sgn(q̇(xP, ẋP)) is approximated by the

function tanh(q̇(xP, ẋP)/Cf2), where Cf2 is some large constant.

The pressure dynamics are described by flow continuity equations for the individual cylinder cham-

bers and related pipe / hose assemblies. The flow continuities for the A- and B-chambers are

described by (2.56), (2.57), where VA(xP) =V0A +AAxP, VB(xP) =V0B −ABxP.

QA −CL(PA −PB)−CLAexPA =
dVA(xP)

dt
+

VA(xP)

βAe

dPA

dt
= AAẋP +

VA(xP)

βAe
ṖA (2.56)

CL(PA −PB)−QB −CLBexPB =−dVB(xP)

dt
+

VB(xP)

βBe

dPB

dt
=−ABẋP +

VB(xP)

βBe
ṖB (2.57)

Here CL is the cross-port leakage coefficient, CLAex,CLBex external leakage coefficients and V0A,V0B

initial volumes constituted by dead (or passive) volumes in the cylinder chambers, and volumes of

the pipe / hose assemblies. The effective bulk modula βAe,βBe are essentially the effective modula

of elasticity related to the hydraulic fluid (a function of temperature), air content of the fluid and

the (mechanical) compliance of the pipe / hose assembly. The latter normally may be considered

negligible compared to impact from undissolved air in the hydraulic fluid. Taking into account the

air content of the hydraulic fluid, the effective bulk modulus βe (for any of the A- and B-chambers,

βe ∼ βAe,βBe) is described by (2.58) [Andersen and Hansen, 2003] (for constant temperature).

βe =
1

1
βF

+ εAir

βAir

, βF =CadP , εAir � 1

1−εAir0

εAir0

(
Patm

P

)− 1
Cad +1

(2.58)

Here εAir0 is the volumetric ratio of undissolved air at atmospheric pressure in the hydraulic fluid,

βF is the stiffness of the hydraulic fluid, Cad the adiabatic constant for air and Patm the atmospheric

pressure. An example depicting the change in effective bulk modulus as a function of the air

content is shown in figure 2.9.
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Figure 2.9: Change in effective bulk modulus, for different εAir0. Remaining parameters are
Cad = 1.4, Patm = 1 [bar] and βF = 1e4 [bar].

2.4.2 Proportional Flow Control Valves
The proportional flow control valves applied in the test bench are direct operated- (single stage)

or pilot operated (two stage) valve types, commonly applied in industry. More specifically Axis

1 is controlled by a 4WRKE 10 E1-100L valve, Axis 2 is controlled by a 4WRTE 10 V1-100L

valve, Axis 3 is controlled by a 4WREE 10 V50 valve and Axis 4 is controlled by a 4WREE 6 V32

valve. All valves are configured with integrated amplifier electronic circuits (so-called On Board

Electronics (OBE)). The housing etc. of the 4WRKE type valve is similar to that of the 4WRTE

type, and the 4WRTE- (pilot operated) and 4WREE (direct operated) type valves are depicted in

figure 2.11. The flow characteristics of the valves are modeled by their state dependent flows and

dynamic characteristics according to [Merritt, 1967], and the valve port flows are described by

(2.59), (2.60).

QA = KvA(xv)xv

{√|PS −PA|sgn(PS −PA) for xv > 0√|PA −PT|sgn(PA −PT) for xv < 0
(2.59)

QB = KvB(xv)xv

{√|PB −PT|sgn(PB −PT) for xv > 0√|PS −PB|sgn(PS −PB) for xv < 0
(2.60)

The valve port flow gains KvA(xv),KvB(xv) for the different valves differ significantly from each

other, as apparent from the data sheets [Rexroth, 2005], [Rexroth, 2006], [Rexroth, 2004]. The

flow gains of the 4WRTE 10 V1-100L and 4WRKE 10 E1-100L valves are constant but asymmet-

ric by the relation 2 : 1, whereas the flow gains of the 4WREE 10 V50- and 4WREE 6 V32 valves

are symmetric. The resulting flow of the 4WREE 10 V50 valve for different pressure drops over

the control land(s) are depicted in figure 2.10 (the 4WREE 6 V32 valve feature similar characteris-

tics). Furthermore, the 4WRKE 10 E1-100L valve features a 15 % deadband of the nominal range,

whereas the remaining valves are zero lapped.

The dynamic relation between the valve control input and the spool position of a valve is in general

highly complex. It is dominated by saturation phenomena in the valve amplification stage imposing

slew rate limitations and time delays, resulting from current rise time, flux diffusion in solenoids,

mechanical friction between the spool and valve housing etc. Finally, also the nominal input-output

(input-spool) dynamic relation has significant impact on performance.
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Figure 2.10: Resulting port flows for the 4WREE 10 V50, for different control land pressure
drops (inspired by [Rexroth, 2006]).

Figure 2.11: Bosch Rexroth valves, types 4WREE and 4WRTE (inspired by [Rexroth, 2005],
[Rexroth, 2006]). (1) Position transducer, (2) Solenoids, (3) Integrated control electronics
(amplifier stage), (4) Control spool, (5) Compression springs, (6) Valve housing, (7) Center-
ing spring, (8) Pilot spool, (9) Pilot control valve, (10) Main spool, (11) Control chambers,
(12) Pilot oil supply, (13) Pilot oil drain.
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Commonly the nominal input-output dynamics are approximated by a second order dynamic model

[Mohieddine Jelali, 2004]. In order to achieve a more accurate representation of the nominal valve

dynamics, here, this is represented by third order dynamics (2.61) (standard first- and second order

structures).

τ2
v1τv2x(3)v +(2τv1τv2ζv + τ2

v1)ẍv +(2τv1ζv + τv2)ẋv + xv = uv (2.61)

The nominal input-output dynamics, slew rate limitations and time delays may be estimated from

the frequency response and transient time function of data sheets [Rexroth, 2005], [Rexroth, 2006],

[Rexroth, 2004].

2.4.3 Hydraulic Power Unit
The hydraulic power unit (HPU) is modeled as depicted in figure 2.8, with the flow continuity of

the volume connecting the pump outlet to the valves, given by (2.62).

QS −QV −CLpPS =
VS

βPS

dPS

dt
=

VS

βPS
ṖS (2.62)

Here QS is the pump outlet flow (supply flow), QV is the valve flow consumption, CLp is the pump

leakage coefficient and PS is the pressure in the control volume VS, i.e. the valve supply pressure.

The static pump outlet flow (supply flow) QS may be described as (2.63).

QS = DPωmψs (2.63)

Here DP is the pump displacement coefficient, ωm is the pump shaft rotational speed and ψs the

swivel angle (swash plate angle) of the pump. In the test bench, the pump is driven at constant

rotational speed with (ideally) constant pressure output. The pump is configured with power limit

control, however as tests should not give reason to power saturation, this is not taken into account

in the model. The dynamic properties the pump are modeled by second order dynamics, relating

the reference swivel angle ψsR to the actual swivel angle ψs. The pump dynamics applied in the

model are given by (2.64) [Cetinkunt, 2006].

τ2
s ψ̈s +2ζpsτpsψ̇s +ψs = ψsR (2.64)

2.5 Verification of Nonlinear Model

The objective of the model verification is to verify that the dynamic and steady state properties

of the individual cylinder axes resembles those of the test bench. As will be discussed in Section

2.8, the hydraulic axes are considered individually in regard to the control development. Hence,

the cross coupled dynamics between different axes are of minor interest here, and not verified

explicitly. The inputs chosen for the model verification resembles in all cases that of figure 2.12,

and are applied for three different initial positions for all cylinders. Such step inputs may be used to

evaluate static forces in terms of gravity forces, to some extend the viscous- and Coulomb friction

and the equivalent inertia load. The step inputs may also be utilized to verify the static valve flow

gains of axes 1 and 2, as these valves have linear flow characteristics. However the static valve

gains of axes 3 and 4 are progressive, and several step inputs are necessary in order to verify these.

Such procedures have been carried out and the flow gains have been approximated by polynomial

functions.
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Figure 2.12: Sketch of step input sequence used for evaluation of the nonlinear model.

The developed model only takes into account the manipulator and the hydraulic system actuating

the four cylinder axes, and assumes that the base component is completely stationary. In reality

however, the vehicle on which the manipulator is mounted cannot be considered stationary, pri-

marily due to the tire flexibility. Especially inputs to axes 1 and 2 may result in vehicle oscillations

which may be considered disturbances to the hydraulic axes. The verification results are briefly

summarized in the following.

Axis 1 The step inputs applied to Axis 1 is 25 % of the nominal signal range, however due to

the valve overlap the input is effectively only 10 %. The results for the three test scenarios

are depicted in figure 2.13. From this is found that the model captures the main dynamic

features of the system in terms of natural frequency, damping, force- and chamber pressure

levels and the static flow gain of the valve.

Axis 2 For Axis 2 the magnitude of the step inputs are 20 % of the nominal range. From figure

2.14 depicting the model- and test bench response, it is found that for all three scenarios

the dynamic and static properties are captured by the model - however, it is also found that

a superposed oscillation with a frequency slightly above 2 [Hz] is present in the measured

pressure data. This is assumed to be the result of excitation of resonant modes of Axis 1, as

the frequency is coincident.

Axis 3 The verification of Axis 3 is carried out when this is in a horizontal position, and the inputs

applied have a magnitude of 60 % of its nominal range, and results are depicted in figure

2.15. As for Axis 2 also a superposed oscillation just above 2 [Hz] is present, which is

assumed to be due to the same reasons. The model captures the main transients- as well

as the static valve flow gain (for 60 % input) of the test bench. However, the static force-

and pressure levels do not match on the level with axes 1 and 2. As no gravity impact is

present due to the horizontal positioning of the axis, this is solely ascribed inaccuracies in

the friction model, which is rather difficult to model due to the large contact surface of this

extender joint, and that friction is most likely position dependent. However, the model is

assumed sufficiently accurate for the purpose of the work presented here.

Axis 4 Axis 4 is subjected to step inputs with a magnitude of 75 % of the nominal valve input

range. Results are depicted in figure 2.16. It is found that also this axis model captures the

main dynamic features of the test bench, however with some deviations in especially force

and pressure levels. This is assumed to be due to inaccurate estimation of the variation of

the center of mass for the link. However, the results are considered sufficiently accurate for

the purpose of the project.

It should be noted that external valve leakage has not been taken into account in order to limit the

number of model parameters. Furthermore, in order to achieve matching behavior of the modeled

chamber pressures, leakage flows of the model are smaller than those of the test bench. Based on

the above results, the model is found to be sufficiently accurate to suit the purpose of this project.
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Figure 2.13: Comparison of measurements and model data for Axis 1, with a step input
signal being 25 % of the nominal input range. Cylinder force FL, cylinder position xP,
chamber pressure PA and chamber pressure PB for data set 1, 2 and 3 are depicted in figures
(A), (E), (I) and (B), (F), (J) and (C), (G), (K) and in figures (D), (H), (L), respectively.
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Figure 2.14: Comparison of measurements and model data for Axis 2, with a step input
signal being 20 % of the nominal input range. Cylinder force FL, cylinder position xP,
chamber pressure PA and chamber pressure PB for data set 1, 2 and 3 are depicted in figures
(A), (E), (I) and (B), (F), (J) and (C), (G), (K) and in figures (D), (H), (L), respectively.
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Figure 2.15: Comparison of measurements and model data for Axis 3, with a step input
signal being 60 % of the nominal input range. Cylinder force FL, cylinder position xP,
chamber pressure PA and chamber pressure PB for data set 1, 2 and 3 are depicted in figures
(A), (E), (I) and (B), (F), (J) and (C), (G), (K) and in figures (D), (H), (L), respectively.
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Figure 2.16: Comparison of measurements and model data for Axis 4, with a step input
signal being 75 % of the nominal input range. Cylinder force FL, cylinder position xP,
chamber pressure PA and chamber pressure PB for data set 1, 2 and 3 are depicted in figures
(A), (E), (I) and (B), (F), (J) and (C), (G), (K) and in figures (D), (H), (L), respectively.
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2.6 Generalized Model Framework for Control Design

In the following a generalized- and more compact model framework is established. This model

framework serves the purpose of reducing the number of describing state equations, in order to

facilitate control design processes in following chapters.

2.6.1 Generalized Model Structure
From the modeling sections above, a hydraulic valve-cylinder may be described by (2.67), when

assuming τv1 >> τv2, τ−1
v1 = ωv, defining the state vector x = (xP, ẋP,PA,PB,xv, ẋv) and functions

(2.65), (2.66) (recall the valve flows (2.59), (2.60) and that VA(xP) =V0A +AAxP, VB(xP) =V0B −
ABxP).

Fad = Fad(x) = Fg(xP)+Fext +Ff −BVẋP (2.65)

Bv = Bv(x) = FC(xP, ẋP)+BV (2.66)

⎡
⎢⎢⎢⎢⎢⎢⎣

ẋP

ẍP

ṖA

ṖB

ẋv

ẍv

⎤
⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ẋP
1

Meq
(PAAA −PBAB −BvẋP −Fad)

βAe

VA(xP)
(QA −CL(PA −PB)−AAẋP)

βBe

VB(xP)
(ABẋP +CL(PA −PB)−QB)

ẋv

ω2
v uv −2ωvζvẋv −ω2

v xv

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2.67)

The model (2.67) covers all possible valve-cylinder drive configurations, taking into account arbi-

trary unmatched asymmetries of cylinder areas AA,AB and flow port gains KvA,KvB. For control

design purposes it is desirable to establish a simplified model description, that captures the domi-

nant dynamic features of the hydraulic drives under consideration, while taking into account asym-

metries. For this purpose, relations and a virtual load pressure are defined as (2.68) [Merritt, 1967],

[Mohieddine Jelali, 2004].

σ =
KvB

KvA
, μ =

AB

AA
, PL = PA −μPB (2.68)

In the case of positive flow, i.e. xv > 0, the flows QA, QB of valve ports A and B may be written as

(2.69).

QA = KvAxv

√
PS −PA, QB = σKvAxv

√
PB −PT (2.69)

Consider the flows (2.59), (2.60) when fluid compression and leakage is absent, satisfying the

relation (2.70).

μQA = QB (2.70)

Substituting (2.59), (2.60) into (2.70), and solving for PA and PB, respectively, yield (2.71).

PA =
PSμ2 −σ2PB +σ2PT

μ2
, PB =

PTσ2 +μ2PS −μ2PA

σ2
(2.71)
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Inserting PB of (2.71) into (2.68) and solving for PA and inserting PA of (2.71) into (2.68) and

solving for PB, respectively, yield (2.72).

PA =
μ3PS +σ2PL +μσ2PT

σ2 +μ3
, PB =

μ2PS −μ2PL +σ2PT

σ2 +μ3
(2.72)

Inserting PA of (2.72) into QA (2.69), and PB (2.72) into QB of (2.69), the valve port flow equations

expressed in terms of PL are obtained as (2.73).

QA = σKvAxv

√
PS −PL −μPT

σ2 +μ3
, QB = μσKvAxv

√
PS −PL −PTμ

σ2 +μ3
(2.73)

In the case of negative flow, i.e. xv < 0, the valve port flows are given by (2.74).

QA = KvAxv

√
PA −PT , QB = σKvAxv

√
PS −PB (2.74)

Carrying out similar calculations as for xv > 0, the valve port flow equations expressed in terms of

PL are obtained as (2.75).

QA = σKvAxv

√
μPS +PL −PT

σ2 +μ3
, QB = μσKvAxv

√
μPS +PL −PT

σ2 +μ3
(2.75)

From (2.73), (2.75), general valve port flow equations may be established as (2.77).

QA = μ−1QB = xv
σKvA√
σ2 +μ3

{ √
PS −PL −μPT for xv > 0√
μPS +PL −PT for xv < 0

(2.76)

= xv
σKvA√
σ2 +μ3

{ √
PS − sgn(xv)PL −μPT for xv > 0√
μPS − sgn(xv)PL −PT for xv < 0

(2.77)

The chamber pressure gradients of the model (2.67), may be expressed in terms of the gradient of

the virtual load pressure (2.68), as (2.78).

ṖL =
βe

VA

ρ +μ2

ρ
(QA −AAẋP −CL(PA −PB)), ρ =

VB

VA
(2.78)

The leakage flow does not appear as a function of the virtual load pressure, but as a function of the

pressure difference ΔPAB = PA −PB. Utilizing the relations above, and substituting (2.72) into QL

assuming PT negligible compared to PS,PL, obtain the leakage flow for positive motion as (2.80).

QL|xv>0 =CL(PA −PB) =CL

(
μ3PS +σ2PL

σ2 +μ3
− μ2PS −μ2PL

σ2 +μ3

)
(2.79)

=CL

(
σ2 +μ2

σ2 +μ3
PL +

μ3 −μ2

σ2 +μ3
PS

)
(2.80)

In a similar way, obtain the leakage flow for negative motion as (2.81).

QL|xv<0 =CL

(
σ2 +μ2

σ2 +μ3
PL +

μσ2 −σ2

σ2 +μ3
PS

)
(2.81)
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Based on (2.80), (2.81), the leakage flow may be described by (2.82).

QL =CLPL
σ2 +μ2

σ2 +μ3
+CLPS

⎧⎪⎪⎨
⎪⎪⎩

μ3 −μ2

σ2 +μ3
for xv > 0

μ3 −μ2

σ2 +μ3

σ2

μ2
for xv < 0

(2.82)

Utilizing (2.84), then (2.78) may be reformulated as (2.83).

ṖL =
βe

VA

ρ +μ2

ρ
(QA −AAẋP −CLlPL −CLsPS) (2.83)

Here coefficients CLl,CLs are given by (2.84).

CLl =CL
σ2 +μ2

σ2 +μ3

ρ +μ
ρ +μ2

, CLs =CL

⎧⎪⎪⎨
⎪⎪⎩

μ3 −μ2

σ2 +μ3

ρ +μ
ρ +μ2

for xv > 0

μ3 −μ2

σ2 +μ3

ρ +μ
ρ +μ2

σ2

μ2
for xv < 0

(2.84)

Hence, defining a new state vector x = (xP, ẋP,PL), a compact generalized state space model that

may represent valve-cylinder drives with arbitrary unmatched asymmetries, may be established as

(2.85).

⎡
⎣ ẋP

ẍP

ṖL

⎤
⎦=

⎡
⎢⎢⎢⎢⎣

ẋP
1

Meq
(PAAA −PBAB −BvẋP −Fad)

βe

VA

ρ +μ2

ρ
(QA −AAẋP −CLlPL −CLsPS)

⎤
⎥⎥⎥⎥⎦ (2.85)

This finalizes the derivation of the compact nonlinear generalized drive model.

2.7 Generalized Linear Drive Model & Transfer functions

In the following a linear model is derived based on the generalized nonlinear drive model devel-

oped in the previous section. The linearization is established around an operating point, and is

concerned with the dynamics in a small vicinity of this operating point, hence concerned with

change variables. By Taylor expansion the valve model (2.77) may be established as (2.86) with

linearization coefficients (2.87), (2.88) where xv0, PL0 are related to the linearization point.

qA = μ−1qB = Kqxv −Kqp pL (2.86)

Kq =
∂QA

∂xv

∣∣∣∣
xv0,PL0

=
σKvA√
σ2 +μ3

{√
PS −PL0 −μPT for xv > 0√
μPS +PL0 −PT for xv < 0

(2.87)

Kqp =
∂QA

∂PL

∣∣∣∣
xv0,PL0

=
σKvAxv0√

σ2 +μ3

⎧⎪⎨
⎪⎩

1

2
√

PS −PL0 −μPT
for xv > 0

−1

2
√

μPS +PL0 −PT
for xv < 0

(2.88)
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In regard to the linearization, the operating point is established for a certain piston velocity, hence

Stribeck effects (dependent on the piston velocity at the operating point) and Coulomb friction are

not included. Furthermore, if the change in piston position is small in a vicinity of the operating

point, the gravitational forces can also be left out of the linear model. Bearing in mind (2.65),

(2.66), and considering external forces Fext as disturbances, the motion equation of the linear model

is given by (2.89).

ẍP = M−1
eq (pLAA −Bv(xP0, ẋP0)ẋP) (2.89)

Assuming PS constant, then in a small vicinity of the operating point, the cross-port leakage flow

can be described as qL = CLl pL with CLl = CL(μ2 +σ2)/(μ3 +σ2). Hence, the load pressure

dynamics at the linearization point is described by (2.91), with VA0, VB0 being linearized volumes.

ṗL = Λ(qA −CLl pL −AAẋP) (2.90)

= Λ(Kqxv −Kqp pL −CLl pL −AAẋP), Λ =
βe

VA0

ρ +μ2

ρ
(2.91)

The model (2.86), (2.89), (2.91) may be expressed in state space form as (2.92), defining the system

state vector as x = (xP, ẋP, pL) and assuming the valve dynamics negligible.

ẋ = Ax+Bxv , A =

⎡
⎣ 0 1 0

0 −M−1
eq Bv M−1

eq AA

0 −ΛAA −Λ(Kqp +CLl)

⎤
⎦ , B =

⎡
⎣ 0

0

ΛKq

⎤
⎦ (2.92)

From (2.92), transfer functions for all states are readily obtained as (2.93), with C being the identity

matrix, D = 0 and s the Laplace operator.

H(s) =
X(s)
Xv(s)

=

⎡
⎣ H1(s)

H2(s)
H3(s)

⎤
⎦= C(sI−A)−1B+D (2.93)

=

⎡
⎢⎢⎢⎢⎢⎢⎣

1

s
ΛAAKq

Meqs2 +(ΛMeq(Kqp +CLl)+Bv)s+Λ(A2
A +Bv(Kqp +CLl))

ΛAAKq

Meqs2 +(ΛMeq(Kqp +CLl)+Bv)s+Λ(A2
A +Bv(Kqp +CLl))

ΛKq(Meqs+Bv)

Meqs2 +(ΛMeq(Kqp +CLl)+Bv)s+Λ(A2
A +Bv(Kqp +CLl))

⎤
⎥⎥⎥⎥⎥⎥⎦

As the project is concerned with position control systems, H1(s) is the transfer function of interest.

Considering a standard transfer function form, H1(s) may be written as (2.94).

XP(s)
Xv(s)

=
Ks

τ2
n s2 +2ζsτns+1

1

s
, τn =

1

ωn
(2.94)

In (2.94), the system natural frequency ωn, damping ratio ζs and system gain Ks may be found as

(2.95), (2.96).

ωn =

√
Λ(A2

A +Bv(Kqp +CLl))

Meq
, ζs =

1

2

ΛMeq(Kqp +CLl)+Bv√
ΛMeq(A2

A +Bv(Kqp +CLl))
, (2.95)

Ks =
AAKq

A2
A +Bv(Kqp +CLl)

(2.96)
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Characteristics of Linearized Models
As will be discussed in the following section, only Axis 1 and 2 will be used in the following

chapters, hence these are considered here. Utilizing ωn of (2.95), VA = V0A +AAxP, VB = V0B −
ABxP and relevant diagonal terms of the mass matrix Mx in (2.49), critical operating points at the

lowest possible natural frequencies for Axis 2 and 3, are found as xP2,0 ≈ 500 [mm], xP3,0 ≈ 565

[mm], respectively. The least possible damping occur at small spool openings, hence operating

points are chosen according to this. Furthermore, due to the asymmetric piston areas, the dynamic

characteristics and especially the system gain change with the direction of motion. The resulting

linear models are verified by comparison to their nonlinear counter parts, and results are shown

in figure (2.17) (in all cases (and especially for axis 2), slight adjustments of gains (±5 %) have

been necessary to obtain the most adequate response, indicating relatively large gain changes in

the vicinity of the operating point).
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Figure 2.17: Step responses (±1 % of nominal input range) from nonlinear- and linear
models. (A) Cylinder Axis 2 - positive step. (B) Cylinder Axis 2 - negative step. (C) Cylinder
Axis 3 - positive step. (D) Cylinder Axis 3 - negative step.

The dynamic characteristics at the operating points of Axis 2 and Axis 3, dependent on the direc-

tion of motion, are depicted in the frequency responses of figure 2.18. Furthermore, the specific

dynamic properties in terms of natural frequency ωn, damping ratio ζs and system gain Ks at the

operating points are outlined in table 2.2.
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Figure 2.18: Frequency response for linear models for positive and negative direction of
motion. (A) Cylinder axis 2. (B) Cylinder axis 3.

Dynamic Characteristics at Operating Points Axis 2 Axis 3

Natural frequency ωn - positive motion 43.86 [rad/s] 121.01 [rad/s]

Natural frequency ωn - negative motion 41.91 [rad/s] 125.60 [rad/s]

Damping ratio ζs - positive motion 0.12 [-] 0.12 [-]

Damping ratio ζs - negative motion 0.13 [-] 0.11 [-]

System gain Ks - positive motion 0.45 [m/%] 0.34 [m/%]

System gain Ks - negative motion 0.29 [m/%] 0.27 [m/%]

Table 2.2: Dynamic characteristics at operating points for Axis 2 and Axis 3, dependent on
the direction of motion.

2.7.1 Reduced Order Model Considerations
Due to the restrictions in terms of limited sensors and system knowledge (in general), for control

design purposes, at may be desirable to reduce the model (2.85) even further. Considering the

linear model representation (2.94), then assuming leakage flow is minimal and that the stiffness of

the system is sufficiently large, i.e. the stiffness of the load structure and the oil are sufficiently

large, then (2.97) hold true.

XP(s)
Xv(s)

=
Ks

τ2
n s2 +2ζsτns+1

1

s
≈ Ks

s
(2.97)

The nonlinear representation of (2.97), is given by (2.98).

ẋP ≈ xv
σKvA

AA

√
σ2 +μ3

{ √
PS − sgn(xv)PL −μPT for xv > 0√
μPS − sgn(xv)PL −PT for xv < 0

(2.98)
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Hence, under assumptions on stiffness and leakage, it is found reasonable to consider the system

as an integrator with a state dependent gain. This reasoning is used to define two levels of reduced

order models for a hydraulic valve-cylinder drive.

First Order Model Representation
Covering the entire frequency range, a first order scalar model representation may be established

as (2.99).

ẋP ≈ F(x)+G(x)xv (2.99)

In (2.99), G(x) is given by ẋP/xv of (2.98) and is essentially the velocity component resulting from

the valve flow. The component F(x) is the velocity component resulting from fluid compression

and leakage flow, and generally this term may be considered small compared to the valve flow,

and it is found reasonable to assume that |F(x)|max << |G(x)xv|max. Furthermore, generally for a

proper design of the drive then G(x)> 0.

Limited Frequency Range Model Representation
From the above considerations, it is found that for the system being stable, and if leakage flow can

be considered negligible, then F(x)→ 0 for t → ∞. Hence, within some frequency range below the

system natural frequency, the model representation (2.98) is a reasonable model approximation,

and this model is referred as a limited frequency range model.

2.8 Experimental Setup & Evaluation Conditions

In order to evaluate the developed controllers, some evaluation criteria are set up. From an in-
dustry point of view, desirable features of a given control structure are general applicability, few

tuning parameters, simple tuning process, robustness toward disturbances and varying operating

conditions and ability to track a given reference trajectory as closely- and consistently as possible.

Hence the proposed controls should have the following main properties:

Controller Versatility & Tuning The control structure should contain few tuning parameters, and

should be easily tuned. Furthermore, it is desirable that the control structure is versatile in

the sense, that it should be applicable to a broad range of systems with very different load

structures.

Tracking Robustness The controller should provide robustness toward disturbances and uncer-

tainties, meaning the maximum error of the control should be minimized to the extend it is

possible. Hence, the reference trajectories as well as the hydraulic axes used for evaluation

should provide for significant parametric variations.

Overall Tracking Performance The controller should be able to track a given reference trajectory

as closely and consistently as possible throughout the operating range, hence the average

error should be as small as possible.

From these desirable properties, Axis 2 and 3 of the test bench are chosen as evaluation targets,

with Axis 3 placed in a horizontal position. This produces very different dynamical properties of

the load structures. The load of Axis 2 is dominated by inertia- and gravity forces with strong

variations, and the load of Axis 3 is dominated by friction, and only exhibits small inertia forces in

comparison to Axis 2, and ideally no gravity force impact.
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Figure 2.19: Reference trajectories for test cases TC1, TC2, TC3. The dotted lines indicate
the ranges of TC1, TC3, whereas the range of TC2 matches the plot range. (A) Reference
position trajectories. (B) Reference velocity trajectories. (C) Reference acceleration trajec-
tories.

Furthermore, two different reference trajectories are chosen for Axis 2; one reference trajectory

requiring large velocities and accelerations, that calls for utilization of nearly the entire input range

(henceforward denoted Test Case 1 (TC1)), and another trajectory with smaller velocities but nearly

always accelerating when in motion (denoted Test Case 2 (TC2)). The reference trajectory for Axis

3 is chosen such that large velocities, accelerations and utilization of (nearly) the entire input range

is required (denoted Test Case 3 (TC3)). These reference trajectories allow to evaluate the high

velocity properties of controls together with progressive- or asymmetric valve flow characteristics,

and the ability to handle strong friction impact. Furthermore, reference trajectories are in all cases

chosen to be symmetrical, meaning that the desired velocity and acceleration over positive- and

negative stroke equal each other. This provides an idea of how the proposed control structure

handle the system asymmetries, present in both axes.

The reference trajectories are in all cases designed as quintic polynomials similar to the approach

presented in e.g. [Craig, 2005]. This guarantees that the desired jerk is finite, hence the desired

pressure gradients are finite. The reference position-, velocity- and acceleration trajectories are

depicted in figure 2.19.
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2.9 Benchmark Controllers - Best Industrial Practice

In order to evaluate the developed controllers proposed in later chapters, a comparison is drawn

to controllers commonly applied in industry, here abbreviated best industrial practice controllers.

Such controllers are defined as conventional PI controllers with velocity feed forward, taking into

account the direction dependent system gain. Furthermore, such a controller is commonly con-

figured with a so-called switching integrator with restricted activity, i.e with integral action confined

within some boundary δisw of the control target. The benchmark control structure is given by

(2.100).

uv =
1

Kf
(ẋR −Kpe−KiKisw

∫
t
ede) , (2.100)

Kf =

{
Kf+ for xv > 0

Kf- for xv < 0
, Kisw =

{
1 for |e| ≤ δisw

0 for |e|> δisw

(2.101)

The benchmark controllers are applied to the three Test Cases discussed in the previous section,

and the controllers are designed based on the linear models to have gain margins GM = 8−9 [dB]
and phase margins PM = 75− 85 [degrees], in order to limit overshoot. Note that for Test Case

3, the valve gain is progressive, hence Kf+, Kf- are designed according to highest flow gain of the

valve.

The results are depicted in figure 2.20, and it is found that especially for Test Case 3, the tracking

ability is somewhat limited compared to the remaining two test cases. This is due to the con-

servative choice of Kf+, Kf-, and might be compensated by just increasing the proportional gain.

However, in such a case stability cannot be guaranteed, and local instability modes may occur

during operation.

2.10 Summary

A classification of hydraulic (control) applications was carried out in order to outline critical prop-

erties commonly seen in industry. Based on this classification, a test bench load system was chosen,

and a hydraulic HPU and control valves were applied in order to simulate such applications. A non-

linear model was established, with the load model based on the Iterative Newton-Euler formulation,

and the complete model was formulated in actuator space, linked to the hydraulic system model,

and verified against experimental measurements from the test bench. Also, reference trajectories

to be used for controller evaluation was established.

Hereafter, a generalized model framework was established that may describe any valve-cylinder

configuration, regardless of matched / unmatched asymmetries of valve flow gains and piston areas.

Linear models, system transfer functions as well as reduced order models were established. Finally,

benchmark controllers were designed based on best industrial practice, i.e. PI controllers with

switching integral terms combined with velocity feed forward controls with static gains. These

controllers were furthermore evaluated experimentally, and serve as references for performance

evaluation of the controllers developed in the following chapters.
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Figure 2.20: Results with the benchmark control structure 2.100 applied. (A) Error re-
sponse for Test Case 1. (B) Control input for Test Case 1. (C) Error response for Test Case
2. (D) Control input for Test Case 2. (E) Error response for Test Case 3. (F) Control input
for Test Case 3. (G) RMS- and maximum error values for sub figure (A), (C) and (E). (H)
Zoom of figure (G).



3 | Preliminary Studies

In order to achieve the best possible control performance in the presence of the intrinsic nonlin-

earities and varying parameters of hydraulic drives, the possibility for online estimation / tracking

of system parameters is considered. If the system parameters can be estimated fully- or partially,

in a reliable way, these may be applied for possible controller tuning and / or compensation of

nonlinearities / variations. Focus is placed on an adaptive method in terms of the recursive least

squares method, and a model based approach. Based on the findings, compensated drive models

for use in further control designs are established, and finally control strategies to be investigated,

are outlined.

3.1 Parameter Adaption Based On Recursive Least Squares Approach

The possibility for online tracking of parameters using the Recursive Least Squares (RLS) approach

is investigated, due to its proven mathematical properties and generally few tuning parameters.

The RLS algorithm is a recursive version of the least squares (LS) estimation method, and its

derivation is briefly summarized below. Consider in the general case a linear system expressed in

regression form as (3.1), with yk being the system output at the kth sample instant, and θk, ϕk the

parameter vector (the vector of system parameters) and the regression vector (the vector of states),

respectively.

yk = θᵀk ϕk (3.1)

The elements of the parameter vector may be estimated off-line using the Least Squares (LS)

method [Ljung, 1987], [Ljung and Söderström, 1983], [Astrom and Wittenmark, 1989] which may

be represented by (3.2) with θ̂k being the estimate of θk.

θ̂k = R−1
k fk , Rk =

[
1

N

N

∑
k=1

ϕkϕ
ᵀ
k

]
, fk =

[
1

N

N

∑
k=1

ϕkyk

]
(3.2)

In recursive form the terms Rk and fk are given by (3.3), with Rk being the information matrix.

Rk = Rk−1 +ϕkϕ
ᵀ
k , fk = fk−1 +ϕkyk (3.3)

Inserting fk into (3.2), yield (3.4).

θ̂k = R−1
k (fk−1 +ϕkyk) (3.4)

37
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Using that θ̂k−1 = R−1
k−1fk−1, i.e. fk−1 = Rk−1θ̂k−1, and substituting into (3.4), leads to (3.5).

θ̂k = R−1
k (Rk−1θ̂k−1 +ϕkyk) (3.5)

Noting that Rk = Rk−1 +ϕkϕ
ᵀ
k ⇒ Rk−1 = Rk −ϕkϕ

ᵀ
k , obtain (3.9).

θ̂k = R−1
k ((Rk −ϕkϕ

ᵀ
k )θ̂k−1 +ϕkyk) (3.6)

= R−1
k (Rkθ̂k−1 −ϕkϕ

ᵀ
k θ̂k−1 +ϕkyk) (3.7)

= θ̂k−1 +R−1
k (ϕkyk −ϕkϕ

ᵀ
k θ̂k−1) (3.8)

= θ̂k−1 +R−1
k ϕk(yk −ϕᵀ

k θ̂k−1) (3.9)

In order to obtain Rk, the matrix inversion Lemma (3.10) is utilized.

[A−BCD]−1 = A−1 −A−1B[DA−1B+C−1]−1DA−1 (3.10)

It is found that the l.h.s of (3.10) equals Rk of (3.3) with A = Rk−1, B = ϕk, C = I and D = ϕᵀ
k ,

leading to (3.11).

R−1
k = R−1

k−1 −R−1
k−1ϕk[ϕ

ᵀ
k R−1

k−1ϕk +1]−1ϕᵀ
k R−1

k−1 = R−1
k−1 −

R−1
k−1ϕkϕ

ᵀ
k R−1

k−1

1+ϕᵀ
k R−1

k−1ϕk
(3.11)

Defining Pk = R−1
k the RLS algorithm can be summarized as (3.12), with yk −ϕᵀ

k θ̂k−1 denoted

the residual (model estimation error) and Pkϕk constituting the adaption gain.

θ̂k = θ̂k−1 +Pkϕk(yk −ϕᵀ
k θ̂k−1) , Pk = Pk−1 −

Pk−1ϕkϕ
ᵀ
k Pk−1

1+ϕᵀ
k Pk−1ϕk

(3.12)

The diagonal elements of Pk express the variance of the regressor elements (or the covariance with

the regressor elements themselves), and the off-diagonal elements express the covariance of the

regressor elements. The sum of the diagonal elements of Pk (or trace(Pk)) equals the total variance

of the data set contained in the regression vector.

3.1.1 Stability of the RLS Algorithm
Indeed, the parameter estimate θ̂k should tend to the true parameter vector θk, i.e θ̃k = θk − θ̂k
should tend to zero. This property may be evaluated by the Lyapunov candidate function (3.13)

[Goodwin and Sin, 2009].

Vk(θ̃k,Pk−1) = θ̃ᵀk Pk−1θ̃k (3.13)

3.1.2 Properties of the RLS Algorithm
In the following some important properties of the RLS algorithm are considered in the context of

online parameter tracking. A discrete time version of e.g. the transfer function H1 of (2.93) may

be applied as the regression model used in the identification process. This is given by (3.14) using

the Forward Euler transformation.

ẋP,k = θᵀk ϕk (3.14)

ϕk =
[

xv,k−2 xP,k−1 xP,k−2

]ᵀ
(3.15)

θk =

[
KsTrls

2

τn2
2

Trlsζs − τn

τn

−2Trlsζsτn +Trls
2 + τn

2

τn2

]ᵀ
(3.16)
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However, parameters contained in the parameter vector are varying due to the nonlinearities of the

system. Hence, some considerations on the ability of the algorithm to track parameter variations

over time are relevant. Consider again the information matrix (3.17).

Rk = Rk−1 +ϕkϕ
ᵀ
k (3.17)

The diagonal elements will contain the squared elements of the regression vector and their his-
tory. Hence, as the number of samples evolves, and the elements of ϕk being different from zero,

trace(Rk) will increase, meaning that trace(R−1
k ) = trace(Pk) will decrease. Hence, R−1

k ϕk (gain

of the residual) will tend to zero, causing the parameter update to eventually stop. This suggests a

contradiction in regard to online parameter tracking; The repression vector ϕk must be persistently
excited in order for parameter tracking to take place. On the other hand, the same condition causes

the adaption gain to tend to zero as the number of samples evolves.

Persistence of Excitation & Parameter Tracking Ability
In order to estimate system parameters online in a reliable way, the mathematical solution of the

model must be unique. Otherwise parameters may diverge from their true values, as parameter sets

may provide for an output identical to the measured output. Hence, signals must be persistently ex-
citing, i.e. must be rich enough, such that the output of the regression model only matches the mea-

sured output for a unique set of parameters. A condition for persistence of excitation of signals in

the regression vector is stated multiple places in literature (see e.g. [Ljung and Söderström, 1983],

[Landau, 1980], [Slotine and Li, 1991], among others). According to the latter, a signal vector ϕk
is said to be persistently exciting, if (3.18) is satisfied, with λmin denoting the minimum eigenvalue.

λmin

{
∞

∑
k=1

ϕkϕ
ᵀ
k

}
→ ∞ (3.18)

This merely states that the gradient of the lowest eigenvalue of the information matrix should be

positive, in order for the signals to be persistently excited. In its recursive form, this is equivalent

to (3.19) (noting that Rk = Rk−1 +ϕkϕ
ᵀ
k ).

λmin {Rk}→ ∞ for k → ∞ (3.19)

A different, and probably more appropriate definition is given in [Astrom and Wittenmark, 1989],

from which it follow that signals are persistently exciting leading to a unique estimate, if the in-

formation update term ϕ(k)ϕᵀ(k) has full rank. These considerations also lead to the fact that,

increasing the order of the regression model, also provides increasing requirements to the richness

of signals in order to be persistently exciting. Hence, the repression model should be designed with

the least possible number of parameters.

Introduction of Forgetting Factor
A widely known approach to prevent the adaption gain from tending to zero, is the implementation

of a so-called exponential forgetting factor (see e.g. [Ljung, 1987], [Ljung and Söderström, 1983],

[Astrom and Wittenmark, 1989]). The basic RLS algorithm provides equal weight to all measure-

ments from the initial sample instant. Employing exponential forgetting alters the algorithm to give

old measurements less weight.
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Implementing the forgetting factor proposed in e.g. [Krus and Gunnarsson, 1993], [Ljung, 1987],

[Parkum, 1992], the RLS algorithm (3.12) is modified to (3.20).

θ̂k = θ̂k−1 +Pkϕk(yk − θ̂T
k−1ϕk) with Pk =

1

λk

[
Pk−1 −

Pk−1ϕkϕ
T
k Pk−1

λk +ϕT
k Pk−1ϕk

]
(3.20)

Here λk is the forgetting factor at the kth sample instant. It is clear that the forgetting factor imposes

a gain on Pk. If λk < 1, the adaption gain is increased, increasing the ability to track parameter

variations, but makes the update highly sensitive to noise, which may result in inaccurate parameter

estimates. Hence, for λk = 1 the algorithm is equal to the basic RLS algorithm, and for λk < 1 then

Pk will not tend to zero. However, consider the situation where ϕk attains zero value, i.e. when the

system is non-persistently excited, given by (3.21).

Pk|ϕk=0 =
1

λk
Pk−1 (3.21)

Here it is found that Pk will increase exponentially with the number of samples. This phenomenon

is known as covariance wind-up (or covariance blow-up), which corresponds to the information

matrix becoming singular. This phenomenon is further discussed in e.g. [Parkum, 1992] and

[Astrom and Wittenmark, 1989].

In general, the presence of limited noise and sufficient excitation in all of the parameter space,

the forgetting factor approach appears to be an appropriate solution to positively influence the

tracking properties of the RLS algorithm. The main drawback however, is that the covariance

matrix may become unbounded if signals are not persistently excited. In regard to hydraulic drives,

situations with persistent excitation of states are undesirable. However, during transients, excitation

of signals may be sufficient for online tracking of parameter variations. Hence, a cardinal point in

the applicability of the RLS algorithm for the purpose of this project, is the possibility to control

the forgetting factor in an appropriate way.

3.1.3 State-of-the-Art for Application to Hydraulic Drives
A state of the art analysis in regard to application of RLS algorithms applied in relation to iden-

tification and control of hydraulic systems, has been conducted. Here, special focus has been on

methods for control of the update gain, the ability for parameter tracking and the boundedness of

the complete algorithm. The complete analysis is found in a working paper, which can be found in

the Appendix. The main results are outlined in the following. The results of the analysis reveal that

approaches reported in literature appear rather fragmented, and it is found that two approaches may

be applied in regard to online parameter tracking. These approaches are discussed in the following.

Variable Forgetting Factor
The variable forgetting factor approach (VFF) proposed in [Krus and Gunnarsson, 1993] provides

the possibility to avoid the update gain from tending to zero, and at the same time maintain this

bounded. Furthermore, the algorithm is robust toward periods when signals are non-persistently

exciting. The proposed algorithm is given by (3.22), (3.23).

θ̂k = θ̂k−1 +αvffPkϕk(yk −ϕT
k θ̂k−1) (3.22)

Pk =
1

λvff

[
Pk−1 −αvff

Pk−1ϕkϕT
k Pk−1

λvff +ϕT
k Pk−1ϕk

]
(3.23)
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Here λvff,αvff are given by (3.24), where δ = | trace(P)|max.

λvff = 1− (1−λvff0)

[
1− trace(Pk−1)

δ

]
, αv f f = 1− trace(Pk−1)

δ
λvff0 (3.24)

Here, it should be noted that λvff somewhat resembles the bounded gain forgetting factor ap-

proach in [Slotine and Li, 1991] (here in the discrete time case). From (3.24), it is found that for

trace(Pk−1)→ δ , λvff → 1, hence tending towards the basic RLS algorithm given by (3.12), having

the property of trace(Pk−1) tending to zero. Hence the algorithm will stay bounded as the trace of

the covariance matrix is not allowed to exceed the predefined maximum level δ .

The variable αvff controls the covariance- and parameter updates. It is found that a large trace(Pk−1)
will cause a small αvff, and these are in that sense (linearly) inversely proportional to each other.

It is furthermore emphasized in [Krus and Gunnarsson, 1993] that δ should be chosen sufficiently

small in order to be able to suppress signals of low amplitude, such that λvff is increased as soon

as the signals tend to diminish.

To improve the identification procedure, it is proposed that in- and output signals are filtered with

identical filters [Krus and Gunnarsson, 1993]. When considering the system parameters, these will

remain unchanged as the filters cancel each other out (when being identical). Furthermore, depen-

dent of the order of the filter, the input / output derivatives may be obtained, and hence choosing

a filter, one order higher than the system order, these can be calculated without numerical problems.

Covariance Trace Control
A different suitable method is based on so-called controlled trace modification (denoted CCT). The

algorithm for this purpose proposed in [Plummer and Vaughan, 1996] is given by (3.25).

θ̂k = θ̂k−1 +αcctPkϕk(yk −ϕT
k θ̂k−1) (3.25)

Pk =
1

λcct

[
Pk−1 −αcct

Pk−1ϕkϕT
k Pk−1

λcct +ϕT
k Pk−1ϕk

]
(3.26)

With the CCT modification given by (3.27).

Pk =
δ

trace(Pk−1)
Pk−1, αcct =

{
1 for trace(Pk)≥ δ
0 for trace(Pk)< δ (3.27)

It is found that for trace(Pk−1) > δ , Pk is reduced, rendering the parameter update gain upper

bounded. Furthermore, as trace(Pk−1) ≥ δ the parameter- and covariance updates are turned

of, making the parameter estimates fixed in periods of non-persistently excited signals. Also as

λcct < 1 (fixed valued), the ability of increasing parameter tracking is present. Hence, the CCT

approach provides an upper bound on the covariance trace, and the ability to turn off the parameter

adaption if the upper covariance trace bound is reached.

Results for Online Tracking of Multiple Parameters
The RLS with the VFF- and CCT update gain control approaches have been applied in Test Case

1, with Axis 2 in closed loop control with 2.100. The model applied for parameter estimation is the

discrete time transfer function given by (3.14), with filtered signals. All applied signals are filtered

with identical fourth order low pass filters, with a filter frequency of 40 [Hz]. Furthermore, the
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(filtered) velocity is used as model output, reducing the model parameters to three. The velocity

is calculated from the filtered position signal. Also, due the identical filters, the results are not

distorted by phase shift, but slightly delayed in time.
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Figure 3.1: Performance of the RLS algorithm with the VFF- and CCT modifications. (A)
Parameter θ1. (B) Parameter θ2. (C) Parameter θ3. (D) Estimated- and actual model
outputs. (E) Trace of covariance matrices (in % for comparison).

The resulting performance for the two methods are depicted in figure 3.1. It is found that the up-

date gains (expressed in the covariance traces) are bounded functions as expected. Furthermore,

parameters θ2,θ3 are found to be fairly good matches in both cases, whereas both algorithms have

difficulties in tracking θ1 - however, the output of the estimated models depicted in figure (3.1)

(D) appears to be accurately estimating the model output. From this it is found that signals are not

persistently exciting, meaning that the parametric solution is not unique and causes inaccurate esti-

mates of θ1. It should be noted that the parameter tracking performance has been sought improved

by different scaling of the states, however this did not provide satisfactory results.

Evidently, the estimation results are unreliable, and are found to be too inaccurate for the objective



3.1. PARAMETER ADAPTION BASED ON RECURSIVE LEAST SQUARES APPROACH 43

of this project. Furthermore, issues such as different rates of change in parameters also causes

the results to be erroneous, and this issue might be addressed via the so-called matrix forgetting
factor approach [Parkum, 1992], where a forgetting factor is assigned to the individual parameters.

This enables to tune the ability to track parameters taking into account different rates of change

in parameters. This approach does however, introduce additional tuning parameters, and as the

tuning of the VFF- and CCT gain control methods were found to be somewhat cumbersome, such

an approach is found to be unfeasible.

In general, the smooth operation of the system, causes signals to be non-persistently exciting, which

in turn causes a loss of ability to track parameters accurately online. However, in the event that

model parameters can be reduced, this might be a possibility for reasonable parameter tracking.

3.1.4 Online Tracking of System Gain
Based on the results and considerations in the previous section, it is intriguing to consider the

possibility of tracking the system gain which strongly influences the performance of a controlled

system. Consider the reduced order model representation of Section 2.7.1, given by (3.28).

ẋP = F(x)+G(x)xv (3.28)

Here the input gain G(x) may be described by (3.29).

G(x) =
σKvA

AA

√
σ2 +μ3

{ √
PS − sgn(xv)PL −μPT for xv > 0√
μPS − sgn(xv)PL −PT for xv < 0

(3.29)

It is evident from (3.29), that if the load pressure PL varies due to varying loads, the supply pressure

PS varies due to e.g. multiple flow consumers attached to the pump, or the valve flow gain KvA

is nonlinear, then the system gain varies. However, for a proper system design, G(x) > 0 can

be assumed. Clearly system gain variations give rise to inconsistent control performance, and

compensation of this would expectedly enhance consistency of the control performance. Opposite

to the above, in the following, a continuous version of the RLS algorithm is considered for analysis

purposes. Consider now an algorithm that compensates the system gain, given by (3.30).

uv =
1

Ĝ(x)
ūv (3.30)

When applied to the reduced order model (3.28), the compensated system is obtained as (3.31).

ẋP = F(x)+
G(x)
Ĝ(x)

ūv (3.31)

From (3.31) it is found that maintaining G(x)Ĝ(x)−1 at some stationary value, or even better, equal

to one, would greatly facilitate both control design procedures, but also consistency of control

performance. Recalling from Section 2.7.1, that if leakage flow may be considered negligible, then

F(x) is a function of the fluid compression i.e. a function of the load dynamics. Furthermore, in

general, the flow due to fluid compression may be considered small compared to the valve flow.

Hence, by introducing low pass filters of sufficiently high orders to the piston- and spool position

signals, then F(x) may be attenuated sufficiently such that (3.32) is a reasonable assumption (here

the subscript f denotes a filtered signal). Here ẋPf may be calculated from the filtered position

signal, for a filter order above one.

ẋPf ≈ G(x)uvf (3.32)
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If the low pass filters are chosen to be identical, then G(x) is not affected, as the filters cancels

each other out. In order to estimate G(x), a single parameter version of the RLS algorithm may

be applied. An obvious advantage of estimating G(x) based on (3.32) is, that persistent excitation

of signals is not a concern, as G(x) is uniquely determined for all ẋPf,xvf �= 0. Consider now

the continuous RLS algorithm with forgetting factor given by (3.33) [Slotine and Li, 1991], using

G(x) = G.

˙̂G = Px2
vf(ẋPf − Ĝxvf) ,

d

dt

[
P−1

]
=−γP−1 + x2

vf (3.33)

In (3.33), P > 0 and expresses the variance of xvf, and γ is the forgetting factor. In the case γ = 0,

xvf �= 0, then P−1 → ∞, hence P → 0, meaning that parameter adaption is lost and Ĝ is stationary.

Also, for γ > 0, xvf = 0, then P−1 → 0, i.e. P → ∞, meaning that the adaption gain is unbounded.

Using the bounded gain forgetting factor [Slotine and Li, 1991] (3.34), the algorithm is bounded.

γ = γ0

(
1− |P|

δ

)
(3.34)

Consider the Laplace transform of (3.33), given by (3.35), (3.36).

sĜ = Px2
vf(ẋPf − Ĝxvf) (3.35)

sP−1 =−γP−1 + x2
vf ⇒ Px2

vf = s+ γ (3.36)

Combining (3.35), (3.36) and using (3.32), obtain (3.37).

sĜ = (s+ γ)(ẋPf − Ĝxvf) = (s+ γ)(Gxvf − Ĝxvf) ⇒ G
Ĝ

=
2s+ γ
s+ γ

(3.37)

Choosing δ > Pmax, then γ > 0 from (3.34). Hence, the gain G(x)Ĝ(x)−1 of the compensated

system (3.31) is bounded as (3.38), in the ideal case.

1 ≤ 2s+ γ
s+ γ

≤ 2 (3.38)

Results for Online Tracking of System Gain
For evaluation, the algorithm is applied to Test Case 1, with control (2.100), similar to the previ-

ous section (the estimate is not applied in the control loop). The input-, and output filters are also

here fourth order filters, but with a filter frequency of 1 [Hz] in order to sufficiently attenuate the

term F(x). Results are depicted in figure 3.2, denoting the proposed single gain RLS algorithm,

SG-RLS.

It is found that the proposed algorithm tracks the system gain G fairly good, but with some delay as

signal information is delayed due to heavy filtering. Also the estimated model output resembles the

filtered piston velocity (calculated), and the covariance term P is maintained bounded and positive.

Hence, using this approach provides a simple method for tracking of the system gain. However,

even though easily tuned, the algorithm is found to be somewhat sensitive to even small changes

in δ ,γ0 (from the tuning process).
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Figure 3.2: Performance of the single parameter RLS estimation algorithm with bounded
gain forgetting factor. (A) System gain G. (B) Estimated- and actual model outputs. (C)
Covariance term related to the update gain.

3.2 Model Based Approach For Online Tracking of System Gain

Having studied the possibilities for online tracking of multiple model parameters, and especially

tracking of the system gain via RLS approaches, a completely different approach is considered in

this section. Consider again the system gain (3.29) of the reduced order model (3.28), noting that

this may be considered a general description of the system gain for arbitrary valve driven cylinder

drives, in regard to a first order model representation. In general, the piston areas may be calculated

from standard data sheet information. Then in the event that KvA can be estimated fairly accurately,

then (3.29) may be estimated by (3.39) using pressure- and spool position sensors, assuming that

PT << |PL|+μPS.

Ĝ(x) =
σ K̂vA

AA

√
σ2 +μ3

{ √
PS − sgn(xv)PL for xv > 0√
μPS − sgn(xv)PL for xv < 0

(3.39)

Note that the approach of using (3.39) in the compensator (3.30) is particular intriguing, as this

ideally causes the input gain of the compensated system to be completely stationary and close to

one. Furthermore, a valve manufacturer is able to implement accurate estimates K̂vA in standard

controller boards as simple look-up tables.

This ideal compensation however, also introduces a problem which may be deduced from the linear

transfer functions of the previous chapter. Note that in the ideal case, i.e. G(x)Ĝ(x)−1 ≡ 1, then

Kq = 1, Kqp = 0. In this case the compensated system is characterized by the natural frequency,
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damping ratio and system gain given by (3.40).

ωn =

√
Λ(A2

A +BvCLl)

Meq
, ζs =

1

2

ΛMeqCLl +Bv√
ΛMeq(A2

A +BvCLl)
, Ks =

A2
A

A2
A +BvCLl

(3.40)

In the event that Kqp ∼ CLl in the uncompensate system, the compensator (3.40) causes a serious

reduction in, most critically, the damping ratio of the system where poor damping already is inher-

ent. However, in case of a certain level of leakage flow, only minor influence can be expected. As

an example, this is also found from the frequency response for Axis 2 depicted in figure 3.3.
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Figure 3.3: Frequency response for Axis 2, with and without the compensator (3.30), (3.39).

In figure 3.3, it is worth noting that the system gain for the compensated system is Ks = 0.997

[m/%], ωn = 43.67 [rad/s], ζs = 0.087 [-] as opposed to Ks = 0.446 [m/%], ωn = 43.79 [rad/s],

ζs = 0.116 [-] for the uncompensated system. A compensated reduced order drive model can

then be established as (3.41), for a proper estimate K̂vA and pressure- and spool position sensors

available.

ẋP = F(x)+ρ(x)x̄v , ρ(x) = G(x)Ĝ(x)−1 ≈ 1 (3.41)

The model based approach considered in this section is found to be superior over the RLS based

approaches in regard to reliability, ease-of-implementation and tuning parameters.

Results for Online Estimation of System Gain
The proposed compensator is based on the model equations, and may as such best be evaluated

when implemented with the compensator (3.30) and applied in the test bench. The compensator is

implemented with the controller (3.42), with parameters Kp,Ki,δisw identical to those of (2.100).

This will ideally provide the same stability margins at the operating point. However, the compen-

sator will cause the gain to be nearly constant throughout the entire operating range.

ūv = ẋR −Kpe−KiKisw

∫
t
ede , Kisw =

{
1 for |e| ≤ δisw

0 for |e|> δisw

(3.42)
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The resulting performance is depicted in figure 3.4. It is found that performance for the proposed

controller is maintained for TC2 when compared to the benchmark controller, which is due to the

relative small accelerations and velocities. Hence the load (and thereby the load pressure) does not

change with a large rate.
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Figure 3.4: Results with the benchmark control structure (3.42) applied. (A) Error response
for Test Case 1. (B) Control input for Test Case 1. (C) Error response for Test Case 2. (D)
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the benchmark controller (2.100).
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For TC1 the system gain exhibits larger rates of change, and the proposed compensator effectively

compensates these changes, resulting in a more robust performance. In regard to TC3, the com-

pensator eliminates the problem with static valve gain variations, and the tracking performance

is significantly improved compared to the corresponding benchmark controller. Furthermore, the

errors appear somewhat symmetric around the ideal state e = 0, meaning that the compensator ef-

fectively compensates system asymmetries.

From these results it is found that the proposed gain estimator improves the performance in a

satisfactory way when applied for gain compensation. Furthermore, this is achieved with little

implementation effort, and in that sense the compensator is highly applicable for the purpose of

this project. Hence this is applied throughout the remaining work presented in this dissertation.

3.3 Outline of Control Strategy for Compensated System

Having completed the studies on parameter estimations, and to what extend such methods can be

reliably applied for control- and / or compensator structures for hydraulic valve-cylinder drives,

a strategy for closed loop control methods to be studied, can be outlined. From the results of

the previous sections it is found that the model based gain estimator (3.39) combined with the

compensator (3.30) provides for efficient and reliable active gain compensation (AGC) of such a

system, and closed loop control should then be applied in combination with this compensator.

By application of the AGC, then a velocity feed forward signal directly applied to the compen-

sated system would provide for a nearly ideal steady state flow reference. Hence, the closed loop

controller applied should compensate only for dynamic effects, i.e. primarily the flow due to fluid

compression and leakage. Knowing that the dynamics are nonlinear, it is natural to consider non-

linear control structures able to compensate this. In general, such a control structure should either

be able to adapt to- or be robust toward the nonlinear dynamics, and the method should target the

following properties:

• Provide for excellent tracking performance

• Contain a minimum of tuning parameters

• Require only position measurements

• Require limited and simple tuning efforts

In regard to the sensor limitation, various types of promising state observers has been considered

in literature. This introduces additional algorithms, and thereby additional parameters, and is as

such not considered a feasible approach bearing in mind the properties listed above and the general

objective of the project. However, in systems implemented with high end position sensors, the

piston velocity can in some cases be calculated reliably online.

Adaptive control methods for hydraulic control systems have been studied extensively in literature,

often with a significant number of parameters in resulting control structures (see [Liu and Yao, 2003],

[Bu and Yao, 1999], among others). Some promising methods for adaptive control were proposed

in [Hansen, 1997], [Andersen, 1996] and evaluated in [Schmidt and Nielsen, 2008], where several

adaptive control algorithms were proposed for hydraulic cylinder drives, using only position feed-

back and few parameters. Even though promising, the most accurate methods proposed rely on five

tuning parameters, and when the AGC discussed above is applied, these methods are considered
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infeasible for the problem at hand. Furthermore, as for the RLS algorithms, there is always a risk

for the parameter adaption to be inaccurate, possibly resulting in erroneous performance or even

instability.

Turning attention to robust controls, methods such as backstepping fail to meet the requirements

listed above, especially in regard to tuning parameters, and a method such as H∞ control is found

to be too inadequate in regard to tracking performance. A different approach for robust control is

sliding mode control. Sliding mode control algorithms generally have few tuning parameters, are

easily tuned, have simple structures and provide for excellent tracking of a desired output. The

main drawback of such approaches arises with the possible requirement for full state feedback, and

the possible discontinuous control input. However, the general properties of sliding mode control

appear intriguing for the objective of this project, provided that focus is placed on output feedback

control approaches, in order to maintain the number of tuning parameters at a minimum.

Based on these considerations, the control designs in the following chapters take their offset in

sliding mode control methods. Furthermore, the work presented in the following chapters primarily

aims at controllers using only position feedback, however due to the possibility for extracting the

velocity in some cases, some of the work considered also takes into account velocity feedback.

3.4 Summary

Different approaches to online parameter estimation / tracking were considered. For adaptive pa-

rameter tracking the recursive least squares method was considered due to its potential simple

parameter design and its proven mathematical features. Based on a study of the algorithm, and

state-of-the-art for application in hydraulic systems, the main problem of controlling the algorithm

update gain was considered. From simulations, the algorithm was not found to be applicable for

online tracking of multiple parameters, primarily due to the lack of excitation of signals in the

desired operation of hydraulic drives.

The system gain may be considered the main nonlinearity of the system, and may exhibit strong

variations due to e.g. varying loads, hence leading to inconsistent control performance. Motivated

by these facts and the possibility for compensation of this, an approach for tracking of the system

gain was proposed, using the recursive least squares method and a certain filter technique. The

proposed method avoids the strong requirements on signal excitation due to the single parameter

estimation algorithm, but the tuning process reveals that the parameter tracking is somewhat sen-

sitive toward even small variations in parameters. Based on this, the algorithm is not found to be

feasible for the purpose of this project.

Also a model based parameter tracking approach was proposed, taking its offset in the generalized

model developed in the previous chapter. Based on basic data sheet information, pressure- and

valve spool position measurements, the system gain may be tracked in a reliable way, without any

additional parameters. When implemented for gain compensation, together with benchmark con-

trollers of the previous chapter, the compensator was found to improve closed loop performance

significantly compared to the benchmark controllers, which is due to the nearly stationary gain of

the compensated system. Based on these results, the compensator was found to be applicable for

the purpose of this project.
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Based on these results and considerations on different control strategies, sliding mode control

methodology was found to be the more appealing approach for closed loop (position) control de-

sign with focus on output feedback control, taking into account the objective of the project.

In the following chapters, the model based gain compensator combined with the PI controller that

was considered in Section 3.2 is denoted PI-AGC.



4 | Fundamentals of Sliding Mode Control
& The Context of Hydraulic Drives

In this chapter the fundamentals and most important features of sliding mode control are discussed.

Both conventional so-called first order sliding mode controls (1SMC) and sliding mode controls of

higher orders (HOSMC) are discussed in their ideal cases, and chattering issues are addressed in

regard to their application in physical applications, with a special attention to hydraulic systems.

Here the dynamic properties of valves, and specially the nonlinear dynamics, are considered in

relation to the switching terms of sliding controls. Finally, state-of-the-art for application of sliding

controls to hydraulic systems is outlined.

4.1 Theoretical Background

Sliding mode control is essentially discontinuous, and causes any closed loop system utilizing such

a control approach, to be a discontinuous system, with some dependence on the closed loop system

states, and continuous elsewhere, and are as such piece-wise continuous systems. Fundamental

mathematical tools for the analysis of discontinuous systems have been presented in literature,

however the most frequently applied in regard to sliding mode controlled systems may be consid-

ered that of A.F. Filippov, which is considered in the sequel. Furthermore, hydraulic drives are

considered autonomous, hence the sequel is restricted to such systems.

4.1.1 Filippov Solution
Consider the ordinary autonomous differential equation (4.1), where x ∈�n and f (x(t)) is piece-

wise continuous in some domain D and N is a set of zero measure consisting of points of disconti-

nuity of the function f (x(t)).

ẋ = f (x(t)) (4.1)

In systems where the solution approaches a surface of discontinuity S from one side, and travels

away on the other side, satisfy the differential equation (4.1) in the usual sense except for the in-

tersection S = 0. Here, the change in the state trajectory is abrupt, and the solution does not have a

derivative [Filippov, 1988].

However, if the solution approaches the surface S from both sides, it is necessary to define how the

trajectory will continue when S = 0 is reached. One way to handle this situation is by considering

the solution as set-valued, leading to the introduction of a differential inclusion (the definition

51
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by A.F. Filippov [Filippov, 1988]). Consider the differential inclusion for an autonomous system

(4.2), where F(x(t)) is defined as (4.3).

ẋ ∈ F(x(t)) (4.2)

F(x(t)) =
⋂

δ>0

⋂
μ(N)=0

conv f (B(x(t),δ )−N) (4.3)

In (4.3), conv denotes the closed convex hull, B(x(t),δ ) a ball of radius δ centered at x(t) and μ
the Lebesgue measure, which is not given further attention, due to the context of a physical control

system. The solution of F(x(t)) is an absolutely continuous function satisfying (4.1) almost ev-

erywhere. Such a solution is characterized by being differentiable everywhere, except on x(t) = 0,

being of bounded variation and recoverable from integration of its derivative [al Shammari, 2006].

Note furthermore, that at continuity points F(x(t)) = f (x(t)).

4.1.2 Geometric Interpretation
Geometrically the Filippov solution may be interpreted in the following way [Filippov, 1988]. Con-

sider the function (4.1) with f = f (x(t)) being discontinuous on a smooth surface S = S(x), that

divides its neighborhood in the x-space into domains D− and D+ as depicted in figure 4.1.

Figure 4.1: Sketch representing the geometric interpretation of the Filippov solution (in-
spired by [Filippov, 1988]).

On the surface S the function f is extended to the set F that is such that the limit points of the

domains defined by (4.4), satisfies f− ∈ f , f+ ∈ f , where x∗ is a continuity point contained in

either D− or D+.

lim
x∗∈D+,x∗→x

f (x∗(t)) = f+(x(t)) , lim
x∗∈D−,x∗→x

f (x∗(t)) = f−(x(t)) (4.4)

The smallest set satisfying these properties is the segment joining the endpoints f− and f+ given

by the inclusion (4.5).

ẋ ∈ F = λ̄ f++(1− λ̄ ) f−, λ̄ ∈ [0,1] (4.5)

If the segment F intersects the tangent plane P, the intersection point is the endpoint of the vector

f0 ∈ P, that represents the velocity of motion along the surface S. Hence a function x(t) satisfy-

ing ẋ = f0 is a solution to the differential inclusion (4.2), and is assumed to be a solution to the

differential equation (4.1) [Filippov, 1988].
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From the above considerations, the differential inclusion (4.3) may be defined in a somewhat more

intuitive form (4.6) with λ̄ ∈ [0,1].

ẋ ∈ F(x(t)) =

⎧⎨
⎩

f (x(t)) for x ∈ D+

λ̄ f++(1− λ̄ ) f− for x ∈ S
f (x(t)) for x ∈ D−

(4.6)

4.1.3 Existence of Sliding Modes
Having considered the basics of discontinuous differential equations and their solutions, it is appro-

priate to introduce the sliding mode concept. From the above, if f0 �= f+, f0 �= f− and the segment

F intersects the tangent plane P, then f0 determines the motion velocity, i.e. ẋ = f0, along the sur-

face S. The solution x(t) satisfying ẋ = f0, is assumed to be a solution of ẋ = f (x(t)). A solution

satisfying these conditions is called a sliding motion. The abbreviation sliding mode is to be under-

stood as a limit of motions on the sliding constraint (Filippov sense trajectories), when switching

imperfections vanish and the switching frequency tends to infinity [Filippov, 1960], [Levant, 1993].

The control of physical applications is the main topic of this project, and ideal and infinite switch-

ing frequencies are inherently impossible to realize. Hence, in the sequel, real sliding denotes the

situation when switching imperfections are present and the switching frequency is finite.

4.2 First Order Sliding Modes

Consider for the general case the scalar system (4.7) with x(t) = x,u ∈� and the output function

e ∈�.

ẋ = a(x)+b(x)u, e = e(x) (4.7)

In (4.7), a(x),b(x),e are considered smooth unknown functions. The output function e is of order

one relative to the system, as stated in (4.8).

ė(x) =
de(x)

dt
=

∂e(x)
∂x

dx
dt

=
∂e(x)

∂x
ẋ (4.8)

Substituting the system (4.7) into (4.8), obtain (4.9).

ė(x) =
∂e(x)

∂x
(a(x)+b(x)u) (4.9)

Define functions (4.10).

h(x) = ė(x)|u=0 =
∂e(x)

∂x
a(x) , g(x) =

∂e(x)
∂u

=
∂e(x)

∂x
b(x) (4.10)

Using (4.10), the output function e satisfies (4.11).

ė(x) = h(x)+g(x)u (4.11)

As mentioned above, a(x),b(x),e are smooth functions with a(x),b(x) also considered unknown.

From (4.10), then also h(x),g(x) are smooth unknown functions, but assumed bounded as (4.12).

0 < Km < g(x)< KM , |h(x)| ≤C (4.12)

With the bounds (4.12), the system (4.9) satisfies the differential inclusion (4.13).

ė(x) ∈ [−C,C]+ [Km,KM]u (4.13)

The system representation and restrictions presented above are necessary conditions in the follow-

ing.
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4.2.1 Systems With Relative Degree One
The control objective is to achieve and maintain the constraint e = 0. In order for this to take place,

then e = 0 must be attractive, i.e. (4.14) must be satisfied, corresponding to eė < 0.

lim
e→0+

ė < 0 , lim
e→0−

ė > 0 (4.14)

For this, consider the system (4.13) with the simple relay control (4.15).

u =−α sgn(e), α >C/Km (4.15)

Noting the condition for e to be attractive, obtain (4.16).

eė = e(h(x)+g(x)u) = eh(x)−αg(x)S sgn(e) = eh(x)−αg(x)|e| (4.16)

From (4.16), (4.12) it is found that the statement (4.17) hold true.

αKm >C ⇒ eė ≤ 0 (4.17)

Furthermore, eė < 0 by virtue of infinite switching frequency of (4.15). Hence for e(0) = 0 a

sliding mode (first order) takes place on e = 0 from this initial time instant, and for e(0) �= 0 a

sliding mode will take place after some convergence period. Furthermore this convergence period

will be finite, which is clear from the following consideration. Consider again the control system

(4.11), (4.15) with (4.12), in the conservative situation h(x) = C, g(x) = Km, and some initial

condition e(0) = e0 > 0. Choose α = (δ +C)/Km with δ > 0 which satisfies (4.17), and obtain

(4.18).

ė(x) =
de
dt

=C+Kmu =C−Kmα =−δ ⇒ dt =− 1

δ
de (4.18)

By integration, obtain (4.19) with t1 being the time of convergence.

∫ t1

t0
dt =− 1

δ

∫ 0

e0

de ⇒ t1 = t0 +
e0

δ
< ∞ (4.19)

From (4.19), the convergence period is a bounded function of the control parameter α and initial

condition e0.

On Invariance Properties of Sliding Modes
One of the most profound features of sliding mode control is the so-called invariance property

[Utkin et al., 2009]. In the ideal case, i.e. when switching imperfections vanish and the switch-

ing frequency tends to infinity, a sliding mode allow for exactly maintaining e.g. the constraint

e(x) = 0 (in the above example), despite presence of uncertain parameter variations and bounded

disturbances, for the switching gain α large enough. Hence the control system is invariant with

respect uncertainties and disturbances as the control exhibits (ideally) an infinite gain by virtue of

(ideally) infinite control bandwidth.
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4.2.2 Systems With Higher Relative Degree
If the system under consideration is not a scalar system, but of higher order, the approach of

applying a single sgn-function becomes a bit more elaborate. Consider again the system (4.7) with

u ∈� but with e(x) = e = (e1,e2) ∈�2.

Here it is reasonable to construct a surface S(e), as proposed in e.g. [Slotine and Li, 1991], by a

linear combination of the states of e. Consider the derivative of S(e), given by (4.20).

Ṡ(e) =
dS(e)

dt
=

∂S(e)
∂e1∂e2

de1

dt
+

∂ 2S(e)
∂ 2e1∂ 2e2

de2

dt
=

∂S(e)
∂e1∂e2

ė1 +
∂ 2S(e)

∂ 2e1∂ 2e2
ė2 (4.20)

Substituting the system (4.7) (in this case assuming x ∈�2), obtain (4.21).

Ṡ(e) =
∂S(e)

∂e1∂e2
ė1 +

∂ 2S(e)
∂ 2e1∂ 2e2

(h(x)+g(x)u) (4.21)

Similar to the previous section, a first order sliding mode on S = 0 is achieved by the relay control

(and sliding criterion for the control gain) given by (4.22).

u =−α sgn(S(e)), α >

∣∣∣∣∣∣∣∣
∂S(e)

∂e1∂e2
ė1 +

∂ 2S(e)
∂ 2e1∂ 2e2

h(x)

∂ 2S(e)
∂ 2e1∂ 2e2

g(x)

∣∣∣∣∣∣∣∣
max

(4.22)

Following the idea of [Slotine and Li, 1991], construct a surface defined as (4.23), with λ being

some positive constant.

S = S(e) = e2 +λe1 (4.23)

Using the particular surface (4.23), then after some possible convergence period, a sliding mode is

enforced on S(e) = 0. Indeed, if λ > 0, then S(e) = 0 provides for stable linear e-dynamics, where

λ essentially expresses the time constant of the desired e-dynamics. Hence, after convergence to a

sliding mode on S(e) = 0, the states e1, e2 will converge to (e1,e2) = (0,0) for t → ∞.
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Figure 4.2: Phase portrait for the states of S(e). The dotted blue graphs depicts state
trajectories, and the solid black graph (line) depicts the switching function e2 + e1 = 0, i.e.
for (4.23) with S = 0 and λ = 1.
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With S = 0, the resulting phase portrait of the trajectory (e1,e2) appears as depicted in figure 4.2.

From this it is found that the state trajectory is convergent to the switching function e2 +λe1 = 0,

and after intersection with this function, the trajectory slides on this function toward the origin. It

is furthermore notable, that the time constant λ of the desired e-dynamics defines the gradient of

the switching line.

4.3 High Order Sliding Modes

With the introduction of the sliding order concept [Levant, 1993], [Levant, 1996], referring to the

first total output derivative in which a discontinuity is present, sliding mode control is taken to

another level. Based on the sliding order concept, higher order sliding modes have been intro-

duced in order to produce sliding modes on output derivatives in systems with relative degrees

above one, or to (possibly) reduce chattering without the introduction of a boundary layer. The

first known high order sliding algorithms realizing second order sliding modes were presented in

[Levantovsky, 1985], [Emelyanov et al., 1986a, Emelyanov et al., 1986b], [Emelyanov et al., 1990],

where the so-called second order sliding algorithm with prescribed convergence as well as the

twisting- and super twisting algorithms were presented, with the latter utilizing only the output

and not its time derivative, and the first two utilizing the output first derivative, and the sign of

the output derivative, respectively. These algorithms were presented for the first time in English

in [Levant, 1993]. Arbitrary order sliding controllers with finite time convergence were introduced

in [Levant, 1998a], [Levant, 2001a], [Levant, 2001b] among others, and the proofs of these con-

trollers in [Levant, 2003]. These controllers may be realized by usage of full state feedback, or

by output differentiation. For differentiation so-called real-time exact robust differentiation tech-

niques may be applied [Levant, 1998b] (first order differentiator), [Levant, 1998a], [Levant, 2003]

(arbitrary order differentiators).

High order sliding modes may somewhat resemble the basic ideas presented in the previous section,

but with some significant difference. In the example in the previous section with e ∈�, a sliding

mode on e = 0 is guaranteed in finite time for α large enough. However, in the example with

e ∈�2 and the surface (4.23) (or in case of systems with n > 2), a sliding mode on S is achieved

in finite time, however convergence of the states to (e1,e2) = (0,0) is not. This leads to the main

difference between first- and high order sliding modes, i.e. that a high order sliding controller

guarantees convergence of all states e1,e2, ...,en to zero in finite time. For constraint functions

and autonomous systems, an rth order sliding mode is here defined by Definition 1 (inspired by

[Levant, 2003]), where r denotes the order of the output function e, relative to the system order n.

Definition 1 Consider a smooth dynamic system ẋ= f (x(t),u), x(t)= x∈�n with a smooth output
function e= e(x(t))∈�, closed by some discontinuous control u. Then provided that e, ė, ...,e(r−1)

are continuous functions of the closed system state variables, and the rth order sliding point set
e, ė, ...,e(r−1) = 0 is non-empty and consists locally of Filippov sense trajectories, then the motion
on e, ė, ...,e(r−1) = 0 is called an rth order sliding mode.

Essentially, Definition 1 states that, for e.g. a second order sliding mode to take place (i.e. the

system has order two relative to the constraint e), then motion on e, ė = 0 must consist (locally)

of limits of motions on both e = 0 and ė = 0. Note that this can only take place if convergence to

e, ė = 0 occur in finite time.
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Consider now the relation between Definition 1 and the examples of the previous section. For

the example of Section 4.2.1 (i.e. for x ∈ �, the scalar system is of order r = 1 relative to e,

and a sliding mode is achieved on e = 0, and a first order sliding mode takes place, satisfying

Definition 1. However, for the example of Section 4.2.2 (i.e. for S(e), e ∈�2, Definition 1 is not

satisfied. Here e1,e2 → 0 for t → ∞, i.e. convergence of the states to zero is not guaranteed in

finite time, hence limits of motions locally on both e1 = 0 and e2 = 0 cannot take place. In order

for this to take place then e1,e2 → 0 for t → ts < ∞. Consider now an example somewhat similar

to the example of Section 4.2.2, however, with the surface (4.24) (corresponding to the so-called

prescribed convergence algorithm [Levant, 1993]).

S = S(e) = e2 +λ |e1|γ sgn(e1), 0.5 ≤ γ < 1 (4.24)

As in the example of Section 4.2.2, then for α sufficiently large, a sliding mode on S = 0 will take

place in finite time, and motion on S = 0 will consist of Filippov sense trajectories. Using S = 0,

then by separation of variables obtain (4.25).

e2 =
de1

dt
=−λ |e1|γ sgn(e1) ⇒ dt =− 1

|e1|γ sgn(e1)
de1 (4.25)

By integration, obtain (4.26), for the initial time instant t0 = 0, and initial condition e1|t=0 = e1(0).∫ ts

0
dt =−

∫ 0

e1(0)

1

λ |e1|γ sgn(e1)
de1 ⇒ ts =

1

λ (1− γ)
e1(0)

1−γ (4.26)

From (4.26), then for any 1 > γ and λ > 0, a bounded convergence time ts < ∞ is obtained. Hence,

e1,e2 converges to zero in finite time, by virtue of the (first order) sliding mode on the constraint

S = 0. Hence, past the time instant ts, motion on (e1,e2) = (0,0) will consist locally of Filippov

sense trajectories, and a second order sliding mode takes place. The phase portrait for (4.24) is

depicted in figure 4.3.
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Figure 4.3: Phase portrait for the states of S(e). The dotted blue graphs depicts state
trajectories, and the solid black graph depicts the switching function e2 + |e1| 1

2 sgn(e1) = 0.

Besides the prescribed convergence algorithm considered in this section, there are several other

known second order sliding controllers that are of interest in regard to this project. These are

considered in detail in the following chapters.
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4.4 Chattering Issues In Physical Applications with Hydraulic Drives

Until this point sliding mode controls have been considered in an ideal context, i.e. when the

switching frequency is infinite, switching imperfections are absent and the actuator is able to realize

the (possibly) discontinues control input ideally. However, turning focus to the applicability in

physical applications, a serious obstacle occur in this regard. Due to several dynamic features

present in physical actuators, the discontinuous control input cannot be realized, giving rise to

control (signal) chattering, which may excite un-modeled high order dynamics, resonant modes of

load structures etc. This may in turn lead to increased wear of components or even damage the

system. Naturally, the possibility of control chattering in sliding mode controlled systems is well

known, as will be clear from the state-of-the-art analysis following this section. In the particular

case of a hydraulic drive, the actuator is the proportional flow control valve. Such valves suffer

from several dynamic effects that will distort the realization of discontinuous control signals, with

the most profound being un-saturated (nominal) dynamics, time delays and slew rate limitations

due to saturation phenomena in the electro-mechanical amplification stage, with the latter being

(generally) most considerable in pilot operated valves.

4.4.1 Analysis of Hydraulic Valves in Perspective of Discontinuous Control
For analysis of applicability of sliding mode controls, the valves installed on the test axes are

considered in more detail, i.e. the pilot operated 4WRTE valve and a direct operated 4WREE valve,

both with an integrated electrical amplification stage and the valve spool in closed loop control. The

dynamic responses of the valves when subjected to step-like inputs are readily evaluated from the

data used in the model verification section, and are depicted in figures 4.4, 4.5, for the 4WRTE-

and 4WREE valves, respectively. Besides the dynamic response of the 4WRTE valve in figure

4.4, also the supply pressure is shown as the pilot stage is internally supplied, i.e. the pilot supply

pressure is the valve supply pressure.
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Figure 4.4: Dynamic response of Bosch Rexroth 4WRTE 10 V1 100L two stage (pilot op-
erated) proportional valve. (A) Input signal uv (Input), measured spool position xv (Actual)
and simulated spool position xv (Simulated). (B) Measured supply pressure PS and nominal
pilot pressure used in data sheet information for the valve.
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Figure 4.5: Dynamic response of Bosch Rexroth 4WREE 10 V 50 direct operated propor-
tional valve. Input signal uv (Input), measured spool position xv (Actual) and simulated
spool position xv (Simulated).

From figures 4.4, 4.5 it is found that valve model responses closely resemble the measured re-

sponses, only minor inaccuracies in the 4WRTE valve model response is present, which is assumed

to result from the contemporary variations in the valve supply-, hence the pilot supply pressure,

not taken into account in the valve model. The verified valve models provide approximate dynamic

characteristics of the valves under consideration, and in both cases the dynamic responses exhibit

significant impact from slew rate limitations and time delays, resulting from saturation phenomena

in the electro-mechanical amplification stages. The slew rate |ẋv|max and time delay τvd of the

valve models are outlined in (4.27), (4.28).

4WRTE: |ẋv|max = 1500 [%/s] , τvd = 0.021 [s] (4.27)

4WREE: |ẋv|max = 2400 [%/s] , τvd = 0.021 [s] (4.28)

Direct application of discontinuous control signals will ideally cause the valve amplification stages

to be constantly saturated, switching between their ±saturation limits. This, as well as time de-

lay and nominal xv/uv−dynamics, will prevent the realization of the discontinuous control, and

therefore result in chattering of the control input, and following the spool position through the

natural filter effects of the valve. Such chattering effects may be extremely harmful to the valve,

and cause increased wear and reduce life time. Furthermore, the chattering- or oscillating valve

spool causes and oscillatory power inlet to the system, possibly exciting high order dynamics and

resonant modes of pipe assemblies and load structures, even though the cylinder assembly and

the attached load mechanically filters the high frequency oscillations further, dependent on the hy-

draulic capacitance, mechanical damping and inertia.

Impact of Slew Rate Limitations
The impact of slew rate and time delay in sliding mode control systems is illustrated with a simple

example, considering the scalar control system (4.13), (4.15) with h(x) = 0, g(x) = g = 1, zero

set point and initial condition e(0) = 0.1 [−]. After some convergence period, the relay controller

enforces a sliding mode on e = 0.

The slew rate prevents ideal switching of the control, and the switching period τsl and oscillation

(limit cycle-like oscillations on e = 0) amplitude asr resulting from this is obtained as (4.29) (for
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this simple example).

τsl =
αg

|ẋv|max
, asr =

1

2

∫ τsl

0
αgdt = αgτsl =

1

2

g2α2

|ẋv|max
(4.29)

The effects of the slew rate when the relay controller is directly applied are depicted in figure

4.6 for control gains α = 1, α = 2, respectively, and a slew rate of |ẋv|max = 100 [−/s]. The

switching period and oscillation amplitudes for this example are found as τsl|α=1 = 1e− 2 [s],
asr|α=1 = 5e−3 [−] and τsl|α=2 = 5e−1 [s], asr|α=2 = 2e−2 [−].

0 0.2 0.4 0.6 0.8 1

−2

−1

0

1

2

(A)     Time [s]

C
on

tro
l I

np
ut

 [−
]

0 0.2 0.4 0.6 0.8 1
−0.02

0

0.02

0.04

0.06

0.08

0.1

(B)     Time [s]

C
on

tro
l E

rr
or

 [−
]

SR = 100 [−/s], α = 1 [−]
SR = 100 [−/s], α = 2 [−]
"Ideal" switching

Figure 4.6: (A) Input of control under slew rate impact, with α = 1, α = 2, respectively.
Here, the ideal control is not depicted, as this is constituted by switching between ±1 with
a frequency of 100 [kHz]. (B) Control errors of the ideal (no slew rate) system, and system
under slew rate impact, with α = 1, α = 2, respectively. The dashed- and dotted lines
indicates the expected oscillation amplitude asr under slew rate impact for α = 1, α = 2,
respectively.

Note also that the switching time denotes the time it takes to realize one change of the discontinu-

ous control, hence one oscillation period of the control input and / or of the control error will last

at least three times longer than the switching period when a sliding mode is present.

Impact of Time Delays
An even more urgent obstacle is the presence of time delays involved in the amplification proce-

dure. Such a time delay can be interpreted in a way similar to the sample frequency of discrete

time systems, hence reducing the switching frequency. The performance of the ideal control sys-

tem (as the one used above), is depicted in figure 4.7 when compared to the same control system

with a time delay on the control input of τd = 0.01 [s] (the simulation time step is 1e− 5 [s]). As

depicted in figure 4.7, the convergence with e = 0 occur at time t = 0.01 [s], for the ideal relay

control, as expected from (4.19) for g = α = 1. The delayed relay control intersects e = 0 with

the delay τd = 0.01 [s]. Hereafter, the ideal relay controller provides for an ideal sliding mode on

e = 0. However, τd of the delayed relay controller increases the switching amplitude and switching

period compared to the ideal controller.
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Figure 4.7: (A) Input of delayed relay control. Here, the ideal control is not depicted, as
this is constituted by switching between ±1 with a frequency of 100 [kHz]. (B) Control error
of the system with and without delayed relay control. The dotted lines indicates the expected
oscillation amplitude ads, resulting from the time delay τd.

For this simple control system, the reduced switching frequency is given by ωds = τ−1
d , and the

amplitude asw is obtained from integration as (4.30).

ads =
∫ τd

0
αgdt = αgτd (4.30)

Perspectives of Hydraulic Drives

In general a hydraulic drive may not be represented by an ideal integrator as in the above analysis.

In reality the system gain is state dependent, and possibly exhibits significant variations depen-

dent on the load pressure, valve flow gain characteristics, supply pressure variations etc. Hence,

from the above, the amplitude of the limit cycle-like oscillations on e = 0 as well as the switch-

ing frequency will change dependent on the system states, making estimation procedures for these

quantities somewhat elaborate. However, the above considerations may be used to estimate mini-

mum quantities of control switching period and frequency- and amplitude of oscillations on e= 0 if

the valve time delay τd and the bound Km can be estimated fairly accurately, and nonlinear friction

phenomena are negligible compared to the remaining load components.

In the above an oscillation period on e= 0 may be restricted to last at least three times the switching

time, however, in a hydraulic drive the pressure dynamics is not infinitely fast (analogue to the

system above), and the response from the system to the switching action may last several switching

periods dependent on the control gain, system gain etc. Furthermore, if friction phenomena are

dominant the switching period and amplitude may be further increased.

The undesired dynamic features of hydraulic valves considered above, call for methods to reduce-

or attenuate control chattering in order to achieve a successful application of sliding mode control.

In the following subsections different approaches to achieve this is considered.

4.4.2 Chattering Attenuation by Continuous Approximations of Discontinuities

A popular and widely applied approach (see the following section for references) to reduce control

chattering is by use of the so-called saturation function [Slotine and Li, 1991], given by (4.31).
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This may be substituted with the sgn-function in e.g. the controller (4.15) (for e ∈�).

B = sat(e) =

⎧⎪⎨
⎪⎩

sgn

(
e

ϕb

)
for |e|> ϕb

e
ϕb

for |e| ≤ ϕb

(4.31)

Outside the boundary layer ϕb the control (4.15) with (4.31) is invariant with respect to uncertain

parameters and bounded disturbances for α sufficiently large, and the surface S is attractive for

|e| > ϕb. Inside the boundary layer ϕb, the control is essentially a high gain control proportional

to e with the gain ϕ−1
b , and robustness in terms of invariance is lost.
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Figure 4.8: Saturation function (4.31). The blue graph shows the output of the sat-function,
and the black dotted lines indicates the boundary layer ϕb (width).

Figure 4.8 illustrates the resulting control from the saturation function (4.31). The implementation

of the saturation function implies that precision of the states in e(x) is confined to the boundary

layer thickness (or width) ϕb. Furthermore, if ϕb is chosen small, the gain ϕ−1
b is large and may

compromise stability within the boundary layer. Hence, performance within the boundary may be

unstable, and stable outside the boundary layer, and therefore lead to limit cycles. Other popular

approaches used for continuous approximations of the discontinuity are given by (4.32).

Bht = tanh

(
e

εht

)
, Bcs =

e
|e|+ εcs

(4.32)

The functions (4.32) are bounded by −1 < Bth < 1, −1 < Bcs < 1. However, choosing εht, εcs

according to (4.33), then ϕht, ϕcs approximates boundary layers resembling that of the saturation

function (4.31).

εht =
ϕht

π
, εcs =

ϕcs

100
(4.33)

Figure 4.9 illustrates the resulting controls from the discontinuity approximations (4.32).
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Figure 4.9: (A) Continuous approximation of the sgn−function Bht of (4.32). (B) Contin-
uous approximation of the sgn−function Bcs of (4.32). The blue graphs shows the control
inputs Bht, Bcs, and the black dotted lines indicates the boundary layers ϕht, ϕcs.

In the context of the analysis of Section 4.4.1, it is crucial that e.g. the boundary layer ϕb is chosen

sufficiently large and the control gain sufficiently small, such that the discontinuous control does

not compromise the valve slew rate. Hence, in order to avoid deteriorating the control performance

by saturation, a proper choice of ϕb is dependent of the control gain. Furthermore, one should take

into account also possible continuous controller terms, that may require increasing the boundary

layer further.

4.4.3 Chattering Attenuation Using High Order Sliding Algorithms
Another and more intriguing approach to avoid control chattering may be the application of high

order sliding mode controls. Indeed, choosing a sliding mode controller of order r = n+1 (with n
being the system order) allows the control input to be continuous, without the introduction of the

boundary layer discussed in the previous subsection, i.e. the main features of sliding mode control

are preserved with a continuous control input. Consider the second time derivative of the output

function e given by (4.34), and the time derivative of the first order scalar system (4.7), given by

(4.35).

ë(x) =
d2e(x)

dt2
=

∂ 2e(x)
∂x2

(
dx
dt

)2

+
∂e(x)

∂x
d2x
dt2

=
∂ 2e(x)

∂x2
ẋ2 +

∂e(x)
∂x

ẍ (4.34)

ẍ =
∂a(x)

∂x
dx
dt

+
∂b(x)

∂x
dx
dt

u+b(x)
du
dt

=
∂a(x)

∂x
ẋ+

∂b(x)
∂x

ẋu+b(x)u̇ (4.35)

From (4.7), (4.35), the system (4.36) is obtained with (4.37).

ë(x) = h̄(x)+ ḡ(x)u̇ (4.36)

h̄(x) =
∂ 2e(x)

∂x2
ẋ2 +

∂e(x)
∂x

∂a(x)
∂x

ẋ+
∂e(x)

∂x
∂b(x)

∂x
ẋu , ḡ(x) =

∂e(x)
∂x

b(x) (4.37)

Provided that the bounds (4.38) exist, then some second order sliding mode controller u̇ = u̇(e, ė),
may be applied, with this controller providing for a second order sliding mode on |e| = |ė| = 0 in

finite time, for some bounded initial conditions.

0 < K̄m < ḡ(x)< K̄M , |h̄(x)| ≤ C̄ (4.38)
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This means that the actual control will be continuous in time. To outline the features, consider the

simple closed loop system (4.39), with α = 1. This system is finite-time globally convergent to a

second order sliding mode on |e|= |ė|= 0.

ė = u , u̇ =−α sgn(ė+ |e| 1
2 sgn(e)) (4.39)

Under ideal conditions, and if both states e, ė are available from measurements, chattering in the

control input u will be completely absent, however if the switching frequency is finite, some level

of control chattering will be present.
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Figure 4.10: (A) Control input for the discrete time version of (4.39) with different control
time constants. (B) Zoom of the boxed area in (A). τc is the controller sampling time.
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Figure 4.11: (A) Control error for the discrete time version of (4.39) with different control
time constants. (B) Zoom of the boxed area in (A). τc is the controller sampling time.

Figures 4.10, 4.11 depict the control input and control error of the system (4.39) with the output

function given by x− xd, with xd being the desired trajectory of x. The desired trajectory is given

by xd = 0.1sin(π/2) [−], the ideal (infinite switching frequency) controller sample time is approx-

imated by τc = 1e−5 [s], and the non-ideal (bounded switching frequency) controller sample time

is chosen τc = 1e− 3 [s]. Past convergence to e = 0 at t ≈ 0.4 [s], the increased sample time in-

fluences the performance in terms of control chattering and increased magnitude of oscillations on
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e = 0. However, for τc sufficiently small, then the chatter frequency and amplitude may resemble

impact from sensor noise and / or the dither function used to minimize nonlinear friction effects

related to the spool / housing contact surface(s). In such cases control chattering does not neces-

sarily pose a significant problem. It is notable that using high order sliding mode controllers for

this purpose on hydraulic drives with a proper valve choice, allow for sliding mode control without
loss of robustness as opposed to boundary layer solutions.

Considering the analysis of Section 4.4.1, noting that |u̇|e1,e2 �=0 = α , then the gain α of (4.39)

should at least be restricted by α < |ẋv|max. Furthermore, impact from time delays influences

performance in a way similar to the bounded switching time.

4.4.4 Combining Saturation Functions & High Order Sliding Algorithms
The possible feature of achieving continuous control input without loss of robustness, makes high

order sliding modes an attractive solution in control of hydraulic drives. However, in the event

that time delays are significant, also this strategy will provide for oscillations of the output on

e = 0, even with a high switching frequency. Also a possibility is that, in order to guarantee

robustness, the control gain need to be of a size that causes slew rate saturation, which will also

cause oscillations of the output near e = 0. Hence it may be feasible to combine e.g. the boundary

layer approach with the usage of high order sliding modes, with the possibility of using a boundary

layer significantly smaller than the conventional boundary layer approach. Such a controller may

be realized as (4.40), (4.31).

ė = u , u̇ =−α sat(ė+ |e| 1
2 sgn(e)) (4.40)
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Figure 4.12: (A) Control input for the system (4.39) implemented with sgn−function and
sat−function, both with switching / control time constant τc = 1e− 3 [s]. (B) Zoom of the
boxed area in (A).

The resulting performance of the control system (4.40), (4.31) with ϕb = 0.01 [−] in terms of

control input and control error are depicted in figures 4.12, 4.13 and the surface S = ė+ |e| 1
2 sgn(e)

in figure 4.14.
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Figure 4.13: (A) Output error e for the system (4.39) implemented with sgn−function and
sat−function, both with switching / control time constant τc = 1e− 3 [s]. (B) Zoom of the
boxed area in (A).
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Figure 4.14: Switching surface / function S = ė+ |e| 1
2 sgn(e) for the system (4.39) with the

sgn−function replaced by a sat−function, with ϕb = 1e−2 [-], and with switching / control
time constant τc = 1e−3 [s]. The dashed lines indicate the boundary layer limit / width ϕb.

It is found from figures 4.12, 4.13 that both control chattering as well as oscillations of the output

near e = 0 are significantly reduced with the sat-function compared to the sgn-function. Also from

figure 4.14 it is found that, in this example, the output function surface S is confined within this

boundary layer.

4.5 State-of-the-Art for Application to Hydraulic Drives

This section outlines state-of-the-art for application of sliding mode control to hydraulic systems.

Due to the general purpose objective of this project, focus is placed on the actual sliding control

algorithms, and only limited attention is given to specific applications. Furthermore, limited at-

tention is given to algorithms combining sliding mode controls with controllers such as adaptive

controls etc. Investigating the literature, it turns out that most literature focus on conventional first

order sliding control using different linear surface designs and different continuous approximations
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of discontinuous control terms as those considered in Section 4.4.2. Furthermore, some attention

has been given to the improvement of the (possibly poor) convergence speed resulting from dis-

continuous controller terms. Applications in which sliding mode controls have been applied are

many and diverse, and ranges from active suspension systems, pitch systems for wind turbines

to more conventional valve driven cylinders and motors actuating a variety of different types of

loads. Hence state-of-the-art is highly related to different applications, which also emphasizes the

applicability of sliding mode control in hydraulic systems.

4.5.1 Compensation of Discontinuities
As already discussed in previous sections of this chapter, the most profound obstacle for the ap-

plication of sliding modes in hydraulic systems / drives is the possibility for control chattering.

Hence, as expected, a study of the research literature also reveals that methods for smoothing of

discontinuities are normally applied.

The, by far, most common method for this task, is the application of the saturation function

(4.31) proposed in [Slotine and Li, 1991]. Position controls based on sliding modes (first order)

with saturation function and linear surfaces representing some desired error dynamics similar to

the method discussed in Section 4.2.2 was considered in [Hisseine, 2005], [Pi and Wang, 2011],

[Yoon and Manurung, 2010], [Guo et al., 2008], [Wang and Su, 2007], [Komsta et al., 2010b],

[Chiang, 2011], [Batur and Zhang, 2003], [Liu and Handroos, 1999], [Hwang and Lan, 1994],

[Chen et al., 2005], [Habibi, 1995] and [Fung et al., 1997], in all cases based on continuous time

designs. Also a discrete time sliding control design based on linear surface design, utilizing the

sat-function (4.31), was proposed in [Wang et al., 2011].

As discussed in Section 4.4.2, continuous approximations of the sgn-term may also be successfully

realized utilizing a hyperbolic tangent function Bht of (4.32) or the function Bcs of (4.32).

The approach using the function Bht was applied for position control based on linear surfaces in

[Ghazali et al., 2010], [Hansen et al., 2005], [Bonchis et al., 2001] and for force control in

[Nguyen et al., 2000] with the sliding constraint being the force error itself, and not a surface,

similar to the approach considered in the relative degree one case of Section 4.2.1. It should be

noted that in [Bonchis et al., 2001], the controller considered was proposed in combination with a

friction observer based on a sliding algorithm somewhat resembling the super twisting algorithm,

which will be discussed in Chapter 6. The approach using the function Bcs of (4.32) was applied

in [Chern and c. wu, 1991] for velocity control and in [Ghazy, 2001] and in [Sam et al., 2004] for

position control.

4.5.2 Improvement of Convergence Speed
In general, most of the approaches considered above utilize a constant gain on the switching term

of the controllers. However, dependent on the size of this gain (and possible continuous controller

terms), the speed of convergence may be rather slow, even though convergent to a sliding mode in

finite time. Several methods for improving the convergence speed have been proposed in literature

concerning hydraulic applications, and are considered in the following.

Constant Plus Proportional Reaching Law
One method that may be applied in order to improve the speed of convergence, is the so-called

constant plus proportional reaching law, that was proposed in [Fung and Yang, 1998],

[Jerouane et al., 2004b], [Jerouane et al., 2004a], [Zulfatman et al., 2011]. Such a reaching law
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may be implemented, such that the switching controller term is given by (4.41).

usmc =−(δ |e|+α)sgn(e), α,δ > 0 (4.41)

Evidently, this reaching law includes a proportional term, which improves the speed of conver-

gence, as a function of the constraint e while maintaining sliding mode features.

Power Rate Reaching Law
A rather similar way of improving the speed of convergence is by use of the power rate reaching

law. This was considered in [Jerouane et al., 2004a], [Chin-Wen Chuang, 2005], and with this

implemented the switching term may be expressed as (4.42).

usmc =−(δ |e|γ +α)sgn(e), 1 > γ > 0, α,δ > 0 (4.42)

This reaching law introduces an exponent to the proportional term. It may be found that the con-

dition 1 > γ > 0 causes the continuous term to reach e = 0 in finite time under certain conditions,

but does not provide robustness as the sgn-term. The discussion of the finite time convergence

conditions of a similar term is presented in detail in Chapter 7.

4.5.3 Hybrid Controllers Utilizing Sliding Modes
Having considered the characteristics of sliding controls discussed in literature, it is worth noting

that there exist a number of contributions combining sliding control with other control strategies.

Such approaches were proposed in [Loukianov et al., 2009] when combined with H∞ controls and

in [Angue-Mintsa et al., 2011], [Guan and Pan, 2008] when combined with adaptive control strate-

gies. In [Komsta et al., 2010a] an integral sliding mode disturbance compensator was combined

with input-output linearization methods. However, in many of such approaches, the combination

of several control methods results in significant numbers of parameters. Hence such methods do in

general not comply with the objectives of this project, and are not considered further.

Literature concerning high order sliding modes in hydraulic control systems appear limited, and

only a few methods have been proposed. However, application of the so-called twisting algorithm
was proposed in [Lizalde et al., 2005], [Loukianov et al., 2008], when combined with neural iden-

tification methods for force tracking control. The twisting algorithm is considered in detail in

Chapter 6.

4.6 Summary

The fundamentals of sliding mode controls were considered and their features discussed. Conven-

tional first order sliding mode controls were considered in regard systems of relative degree one

and systems of higher relative degrees, and the concept and existence of high order sliding modes

was outlined. Furthermore chattering issues in regard to implementation in physical- and particular

hydraulic systems were considered. Analyzes emphasized that slew rate limitations as well as time

delays in actuator amplification stages pose significant obstacles in the application of such controls.

A discussion of chattering attenuation methods using continuous approximations of sgn-terms and

high order sliding modes reveals that chattering may be effectively reduced, and their differences

and possible combinations were presented.
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Finally, state-of-the-art for application of sliding controls in hydraulic systems was outlined. It

was found that sliding mode control applied in relation to control of hydraulic systems has become

increasingly popular over the years. However, sliding controller terms applied are mainly restricted

to conventional first order approaches, thoroughly elaborated in literature, and limited attention

have been given to intriguing methods evolving in the field of high order sliding mode control.





5 | First Order Sliding Mode Control

Having elaborated the fundamental theoretical framework of sliding mode control and considered

the main features, drawbacks and possible compensation methods in regard to control of hydraulic

drives, such controls can be designed. In this chapter different conventional sliding mode con-

trollers (of the first order) are designed and evaluated.

5.1 Conventional First Order Sliding Mode Controls

Conventional first order sliding mode controllers are considered controllers taking their offset in

the design framework presented in [Slotine and Li, 1991], and two such designs are considered in

the following.

5.1.1 First Order Sliding Output Feedback Controller
This controller may be considered the most simple sliding controller possible, i.e. a relay controller

providing for a sliding mode on the position control error e = xP −xR = 0. Consider the first order

scalar model representation of a gain compensated hydraulic drive (3.41) with the output function

e = xP − xR, assuming the open loop system stable with parameters bounded as (5.1).

0 < Km ≤ ρ(x)≤ KM , |F(x)| ≤C (5.1)

If this system is closed by the relay controller with velocity feed forward ūv = ẋR −α sgn(e), then

a first order sliding mode on e = 0 is achieved in finite time. This conclusion may be verified by the

radially unbounded Lyapunov candidate function V (e) = e2/2 > 0 ∀e �= 0, with the time derivative

(5.2).

V̇ (e) = eė = e(F(x)− ẋR +ρ(x)ūv)

= e(F(x)− ẋR +ρ(x)(ẋR −α sgn(e)))

= eF(x)+ e(ρ(x)−1)ẋR −αρ(x)|e| (5.2)

If the compensator (3.30), (3.39) is properly designed, then ρ(x)� 1, leading to (5.3).

V̇ (e) = eF(x)−α|e| (5.3)

From (5.3) it is found that V̇ (e)< 0 ∀e �= 0 provided that α ≥C is satisfied. If furthermore α >C,

then V̇ (e) < 0 ∀e, and the closed loop system is globally convergent to a first order sliding mode

e = 0 in finite time. To avoid control chattering, the sgn-function is substituted by the saturation

function (4.31), confining |e| to the boundary layer ϕb in finite time. If the discontinuity gain

is chosen such that robustness is guaranteed outside the boundary layer ϕb, and such that slew

71
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rate saturation does not occur, then the convergence time may be somewhat significant (but finite).

This may be effectively compensated by altering the discontinuity gain according to the power rate
reaching law discussed in Section 4.5, altering the simple relay controller to (5.4).

ūv = ẋR − (δ |e|γ +α)sgn(e) = ẋR −δ |e|γ sgn(e)−α sgn(e), 1 > γ > 0, δ > 0 (5.4)

The finite time convergence properties may, as before, be evaluated by the Lyapunov candidate

function V (e) = e2/2, leading to the derivative (5.5).

V̇ (e) = eF(x)−δ |e|γ −α|e| (5.5)

From (5.5), parameters δ , γ can be adjusted to achieve the desired convergence speed, without

compromising the invariance property.

Note; When |e| ≤ ϕb, the discontinuous controller term is analogue to a proportional controller,

hence a steady state error must be expected.

5.1.2 First Order Sliding Surface Controller
In order to reduce the steady state error possibly occurring using the control (5.4) with the satura-

tion function (4.31) introducing a boundary layer on e = 0, an integral term may be included in the

sliding constraint. Consider again the system (3.41), with the output function
∫

t(xP−xR)dt =
∫

t edt.
In this case, the system (3.41) has degree r = 2, relative to the output function, and the simple relay

controller does not guarantee asymptotic stability of the closed loop system states. Hence, consider

instead the surface constituted by a linear combination of the error states (following the approach

in [Slotine and Li, 1991]), given by (5.6).

S(e) = S = e+λ
∫

t
edt, λ > 0 (5.6)

Relating to the geometric considerations of the Filippov solution in Section 4.1.2, the vector ẋ = f0
represents the average of the limit of motions on S = 0. Hence, the dynamics of the surface S
when a sliding mode takes place (on S = 0) is ideally Ṡ = 0. These considerations may be utilized

to establish the dynamics of the closed loop system, that is equivalent to the motion on S(e) = 0.

Hence, solving Ṡ = 0, obtain an equivalent control similar to the approach [Slotine and Li, 1991]

as (5.7).

ˆ̄uv = ρ̂(x)−1(ẋR −F(x)−λe) (5.7)

Utilizing the equivalent control (5.7), a controller may be synthesized, being robust toward pa-

rameter uncertainties of the model (3.41) for Kmα > C, as (5.8) (with ρ̂(x) being the estimate of

ρ(x)).

ūv = ˆ̄uv − ρ̂(x)−1α sgn(S) = ρ̂(x)−1(ẋR −λe−α sgn(S)) (5.8)

The robustness of (5.8) is verified by the Lyapunov candidate function V (S) = S2/2. The derivative

of V (S) is given by (5.9), with the notion ē =
∫

t edt.

V̇ (S) = V̇ (ē,e) = SṠ = S(ė+λe)

= S(ẋP − ẋR +λe)

= S(F(x)+ρ(x)ūv − ẋR +λe)

= S(F(x)+ρ(x)(ρ̂(x)−1(ẋR −λe−α sgn(S)))− ẋR +λe)

= SF(x)− ρ̂(x)−1α|S|+S(ρ(x)ρ̂(x)−1 −1)(ẋR −λe) (5.9)
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As in the above, assuming a proper compensator design, then (5.9) is reduced to (5.10), with

ρ̂(x) = 1.

V̇ (S) = V̇ (ē,e) = SF(x)−α|S| (5.10)

It is found that V̇ (S)< 0 ∀S provided that α >C, i.e. a first order sliding mode on S = 0 is achieved

in finite time. Hence the states
∫

t edt,e → 0 for t → ∞, and the error dynamics are ideally confined

to e =−λ
∫

t edt in finite time by virtue of the sliding constraint S = 0.

As for the relay controller, control chattering is avoided by implementation of a saturation function

similar to (4.31), meaning that sliding precision of S is guaranteed outside a boundary layer width

ϕb. For |S|< ϕb, the control input is linearly proportional to S.

5.2 Chattering Attenuation Without Boundary Layer Using First Order
Sliding Modes

In both the above controllers, the saturation function is considered in order to avoid chattering.

However, bearing in mind the possible problems with slew rate limitation, then the size of the

required boundary layer may compromise the minimum precision requirement. A possible solution

to such a problem may be inspired by the chattering attenuation approach using high order sliding

modes. This involves constructing a surface of the same order as the system under control, but

with the highest state being one order lower than that of the system. Assume that the piston

velocity measurement ẋP is available from measurements or some state reconstruction method,

and furthermore that F(x)+ρ(x)ūv ∈ C2, ρ(x)� 1, ρ̇(x)� 0, such that the system derivative is

given by (5.11), with the bound |Ḟ(x)| ≤ C̄.

ẍP = Ḟ(x)+ ˙̄uv (5.11)

Now construct the surface S from the closed loop state variables as (5.12).

S = ė+2λe+λ 2
∫

t
edt, λ > 0 (5.12)

Following the procedure of the previous subsection, however targeting the control derivative of

(5.11), obtain a control design given by (5.13).

˙̄uv =
˙̄̂uv −α sgn(S), ˙̄̂uv = ẍR −2λ ė−λ 2e (5.13)

Consider again the Lyapunov candidate function V (S) = S2/2, and its derivative (5.14) (recall the

notation ē =
∫

t edt).

V̇ (S) = V̇ (ē,e, ė) = SṠ = S(ẍP − ẍR +2λ ė+λ 2 + e)

= S(Ḟ(x)+ ˙̄uv − ẍR +2λ ė+λ 2e)

= SḞ(x)−α|S| (5.14)

Again V̇ (S) < 0 ∀S if α > C̄, and a sliding mode on S = 0 is guaranteed in finite time, and hence∫
t edt,e, ė → 0 for t → ∞. Dependent on controller sample time, valve slew rate and time delays the

control (5.13) may be applied in combination with e.g. the saturation function (4.31) as discussed

in Section 4.3.
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5.3 Experimental Results

In the following, performance results for implementation of the relay- and sliding surface con-

trollers as well as the sliding surface controller with boundary layer elimination are presented. A

complete list of the control parameters used can be found in the Appendix.

5.3.1 Relay Controller (1SMC-e)
The relay controller with velocity feedforward ūv = ẋR −α sgn(e), e = xP − xR (and the compen-

sator (3.39), (3.30)) is applied with boundary layers ϕb = 9 [mm], ϕb = 4 [mm] and ϕb = 10 [mm]
to the three test cases TC1, TC2, TC3, respectively, and results are depicted in figure 5.1. From
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Figure 5.1: Performance of first order sliding controllers. (A) Control error for TC1. (B)
Control input for TC1. (C) Control error for TC2. (D) Control input for TC2. (E) Control
error for TC3. (F) Control input for TC3.

the results it is found that for all test cases, the control error is maintained within the boundary

layers, and are essentially all operating in a proportional control mode. From this fact, the natural

idea is to reduce the boundary layer further - however, experience during implementation revealed

that further reduction of the boundary layer in all cases led to instability within the boundary layer,

causing violent oscillations with the error passing through the boundary layer region, and essen-

tially shifting between the convergence regions surrounding this. In all cases it is found that the

control excites the resonant modes of the vehicle structure. Also it is found that steady state er-

rors are present which is to be expected. The difference between measured- and simulation results
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(steady state) is primarily due to inaccurate modeling of the leakage flow as discussed in Chapter

2. Note furthermore that for TC3, the settling properties are influenced by the profound friction

phenomena of this axis.

5.3.2 Sliding Surface Controller (1SMC-S)
The implementation of the sliding surface controller (5.8) is for test cases TC1, TC2, TC3 carried

out with boundary layers similar to those of the relay controller implementation, i.e. with ϕb =
9 [mm], ϕb = 4 [mm] and ϕb = 10 [mm], respectively, and also with the power rate reaching law as

for the relay controller.
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Figure 5.2: Performance of first order sliding surface controllers. (A) Control error for
TC1. (B) Control input for TC1. (C) Control error for TC2. (D) Control input for TC2. (E)
Control error for TC3. (F) Control input for TC3.

The performance results are depicted in figure 5.2. As for the relay controller, in all test cases it

is found that the control operates within the boundary layer, hence operating in a PI control mode.

However, opposite to the relay controller, the sliding surface controller reduces the error to zero

which is to be expected from the integral term. Also in this case it is found that the vehicle resonant

mode is excited. Experiences with boundary layer tuning are similar to those of the relay controller.

However the additional parameter λ complicates the tuning process, as this parameter influences

the allowable boundary layer limits for a satisfactory performance. Furthermore it is notable, that

in TC3, the control error is prone to limit cycles, which is due to the presence of dominant friction
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phenomena combined with the integral term of the switching surface.

5.3.3 First Order Sliding Controller Without Boundary Layer (1SMC-D)
The sliding control design targeting elimination of the boundary layer (5.13), is evaluated by sim-

ulation due to the lack of a velocity measurement, and considered in regard to Test Case 1. The

control tracking error as well as the control input is depicted in figure 5.3, compared with the same

controller with a boundary layer implemented.
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Figure 5.3: Performance of first order sliding controller (5.13). (A) Control error for TC1.
(B) Control input for TC1.

From figure 5.3 it is found that limit cycle-like behavior is present when using the controller without

boundary layer. This is mainly caused by the nonlinear dynamic features of the valve discussed

in Chapter 4. However, in the event that these features can be reduced by usage of more high

performance valves, then this approach may be applied with satisfactory performance as a result.

5.4 Summary

Different approaches for output feedback control using first order sliding modes have been pro-

posed, applying such methods as simple relay controls, or by subjecting a surface composed as

some desired error dynamics, to a first order sliding constraint. In both cases, with direct appli-

cation of the controls, chattering is inherent, and boundary layers were implemented, introducing

an additional tuning parameter. An initiative to avoid the boundary layer was proposed, increasing

the relative order of the error dynamics contained in the switching surface. Results showed that

chattering was successfully reduced, however limit cycle-like behavior of the error dynamics was

propound, and caused by the nonlinear dynamic valve characteristics.

During the implementation it was found that the closed loop systems were highly sensitive to the

boundary layer thickness. This is due to the fact that the equivalent linear control performance

within the boundary layer may become unstable, as the inverse of the boundary layer thickness

gains the control error / surface. In such cases results were violent oscillations of the control error.

The experimental results are summarized in figure 5.4, and it is found that the sliding surface

controller exhibits superior performance compared to the relay type controller in all test cases

except regarding the maximum control error for Test Case 3. For Test Case 3, the sliding surface

controller is prone to limit cycles due to the integral term included in the surface combined with the

strong friction phenomena. Compared to the PI-AGC, in TC1 and TC2, performance is improved

with the proposed controllers, and especially the sliding surface controller proved to be superior.
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In TC3, performance of the proposed controllers are on a level with the PI-AGC in regard to RMS-

and maximum errors. However, these improvements are achieved on the cost of increasing the

number of tuning parameters compared to the PI-AGC.
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Figure 5.4: Performance with application of the relay controller (1SMC-e) and the sliding
surface controller (1SMC-S). (A) Control tracking errors for TC1. (B) RMS- and MAX
control tracking errors for TC1. (C) Control tracking errors for TC2. (D) RMS- and MAX
control tracking errors for TC2. (E) Control tracking errors for TC3. (F) RMS- and MAX
control tracking errors for TC3.
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In the following, different controllers utilizing second order sliding algorithms are proposed, focus-

ing on some of the most well known types, i.e. the prescribed convergence algorithm, the twisting

algorithm and the super twisting algorithm. With the target of the presented work being simple

and robust controls with limited parameter design, the second order sliding mode (SOSM) controls

considered in the following are mainly focused on output feedback control for hydraulic drives.

6.1 Controller with Prescribed Convergence

The SOSM controller with prescribed convergence (PCA) considered in Section 4.3, is briefly

summarized here in the context of the design model with relative degree r = 1 (i.e. in application

for chattering attenuation) and for relative degree r = 2.

6.1.1 Application for Chattering Attenuation
Consider again the first order design model representation (3.41) with the output function being

the position control error e = xP − xR, with assumptions similar to those of Section 5.2, i.e. that

ẋP ∈ C2, ρ(x) � 1, ρ̇(x) � 0 and |Ḟ(x)| ≤ C̄. The prescribed convergence controller of Section

5.2 contain only the discontinuous control, possibly causing poor convergence speed. Hence, to

improve this, a control design similar to that of Section 5.2 may be applied. However, instead of

the surface constituted by linear error dynamics, the surface (6.1) is utilized.

S = ė+λ |e|γ sgn(e), 0.5 ≤ γ < 1, λ > 0 (6.1)

The equivalent control is constructed as (6.2) for Ṡ = 0 with Ḟ(x) = 0, from the model derivative

(5.11). The combined control algorithm is given by (6.2).

˙̄uv =
˙̄̂uv −α sgn(S), ˙̄̂uv = ẍR − γλ |e|γ−1ė (6.2)

The stability and robustness of the controller is verified via V (S) = S2/2 and its derivative is given

by (6.3). Hence, e, ė → 0 for t → t1 < ∞ following the reasoning of Section 4.3, providing for a

second order sliding mode in finite time.

V̇ (S) = V̇ (e, ė) = SṠ = SḞ(x)−α|S| ⇒ V̇ (S)< 0 ∀S if α > C̄ (6.3)

The actual control input is given by (6.4).

ūv = ẋR −λ |e|γ sgn(e)−α
∫

t
sgn(S)dt (6.4)

79
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6.1.2 Application in Relative Degree Two Design Model
The prescribed convergence controller may also be applied in a more conventional way. Consider

the system (3.41) with the output function ē =
∫

t edt with degree r = 2 relative to the system, and

choose the sliding surface as (6.5).

S = e+λ |ē|γ sgn(ē), 0.5 ≤ γ < 1, λ > 0 (6.5)

In this situation, the equivalent control approach is not found to feasible, as the control will be

unbounded in this case, which is clear from (6.6) for 1 > γ .

Ṡ = ė+ γλ |ē|γ−1e (6.6)

As discussed in Section 5.1.1, a strictly discontinuous control may cause low convergence speed,

but may be improved similarly by usage of the power rate reaching law, leading to the controller

(6.7) (including a velocity feed forward term).

ūv = ẋR − (δ |S|γ +α)sgn(S), 1 > γ, α,δ > 0 (6.7)

The stability of the resulting closed loop system may be analyzed similarly to the analysis of the

controller example in Section 4.3.

6.2 Twisting Controller

The controls considered until this point are somewhat similar in the sense that the control error-

or a surface function representing some desired error dynamics have been subjected to first order

sliding constraints. Another and very different approach to second order sliding control is the usage

of the so-called twisting algorithm (TA), which was the first SOSM controller ever introduced

[Fridman et al., 2012].

6.2.1 Application for Chattering Attenuation
Again, let system (3.41) have output function e = xP − xR and assume that ẋP ∈ C2, ρ(x) � 1,

ρ̇(x) � 0, |Ḟ(x)| ≤ C̄ are satisfied. Assume that the piston velocity is available, and consider the

controller based on the TA with feedforward given by (6.8).

˙̄uv = ẍR −α1 sgn(e)−α2 sgn(ė) (6.8)

The closed loop system is then given by (6.9), satisfying the inclusion (6.10).

ë = Ḟ(x)+ ˙̄uv − ẍR (6.9)

= Ḟ(x)−α1 sgn(e)−α2 sgn(ė) ⇒
ë ∈ [−C̄,C̄]−α1 sgn(e)−α2 sgn(ė) (6.10)

From inclusion (6.10) the closed loop system is found to be invariant with respect to Ḟ(x) if

|α1 −α2| > C̄ and α1,α2 > C̄. This condition allows to carry out the stability analysis assuming

that Ḟ(x) = 0, i.e. assuming that the system is represented by the simple system (6.11).

ë =−α1 sgn(e)−α2 sgn(ė) (6.11)
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From (6.11) it is found that ±|α1 −α2| for eė < 0, and ±|α1 +α2| for eė > 0. The convergence

conditions are established via analysis of the phase portrait. The gradient of the phase portrait is

obtained using the identity ë = (dėde)/(dedt) = (dė)/(de)ė, and is given by (6.12).

dė
de

=
−α1 sgn(e)−α2 sgn(ė)

ė
(6.12)

Assuming initial conditions (e(0), ė(0)) = (0, ėp0) (see figure 6.1) the state trajectory sets off into

the first quadrant defined by e, ė > 0 with ė → 0. Using (6.12), then by separation of variables,

obtain the intersection point (ep1,0) (figure 6.1), given by (6.13).

∫ ep1

0
de =−

∫ 0

ėp0

ė
α2 +α1

dė ⇒ ep1 =
1

2

ė2
p0

α2 +α1
(6.13)

0

0de
/d

t [
m

/s
]

e [m]

p0

p1

p2

p3

Figure 6.1: Phase portrait for the system (6.11).

Past the intersection (ep1,0), the state trajectory proceeds into the fourth quadrant defined by e >
0, ė < 0, e → 0, if and only if α1 > α2. Otherwise, the trajectory will return into the first quadrant.

Assuming α1 > α2, obtain the intersection ė = ėp2 similar to (6.13), as (6.14).

∫ 0

ep1

de =
∫ ėp2

0

ė
α2 −α1

dė ⇒ −ep1 =
1

2

ė2
p2

α2 −α1
(6.14)

From figure 6.1, if |ėp0| > |ėp2|, then ė tends to zero. This criterion is realized combining (6.13),

(6.14), yielding (6.15).

0 >

∣∣∣∣ ėp2

ėp0

∣∣∣∣=
√∣∣∣∣α1 −α2

α2 +α1

∣∣∣∣ (6.15)

From (6.13), (6.14), (6.15) and the reasoning above it is found that e, ė → 0 for α1 > α2. Further-

more, if ±|α1 −α2| ∀eė < 0, and ±|α1 +α2| ∀eė > 0, finite time convergence may be found from

integral analysis using (6.10) for arbitrary initial conditions.
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Output Feedback Version
Under certain conditions the TA controller may be applied as an output feedback controller in a dis-

crete time implementation. In such an implementation, measurements may be obtained (sampled)

at times t1, t2, t3, ..., tn, and the time interval between measurements as τc = tk − tk−1. Assum-

ing furthermore that t ∈ [tk, tk+1] and defining Δek = Δe(tk) = e(tk)− e(tk−1) = ek − ek−1, then a

discrete time output feedback controller is obtained as (6.16).

˙̄uv,k = ẍv,k −α1 sgn(ek)−α2 sgn(Δek) (6.16)

For τc → 0, the controller (6.16) constitutes a second order real sliding algorithm [Levant, 1993].

Yet interesting, the controller (6.16) asserts significant requirements to the choice of position sensor

in order to work properly. For a pure analogue sensor measurement, a change in Δek can be

detected regardless of the sample interval τc. However, in the situation when the measurement is

discrete in state, i.e. the sensor resolution in finite with a minimum detectable change |xP|min, then

ΔxP,k takes on values only if the change of xP,k exceeds |xP|min within a sample step.

ΔxP,k =

⎧⎪⎨
⎪⎩
�= 0 for |ẋP| ≥ |xP|min

τc

0 for |ẋP|< |xP|min

τc

(6.17)

From (6.17) it is found that, in order for (6.16) to work properly, the sensor resolution must be

chosen sufficiently high, such that a small τc will not deteriorate performance. In turn, with τc too

small, the sliding performance will result in limit cycle behavior on the target e, ė = 0.

6.2.2 Direct Application
The direct application of the TA controller poses a problem similar to that of e.g. the relay con-

troller. Consider now such a controller given by (6.18).

ūv = ẋR −α1 sgn

(∫
t
edt

)
−α2 sgn(e) (6.18)

In the event that the system (3.41) is closed by (6.18), chattering of the control is inherent, and

boundary layers are necessary in order to achieve satisfactory performance. Application of e.g. the

boundary layer approach (4.31), will expand the zero set to some vicinity of the second order slid-

ing constraint
∫

t edt,e = 0, defined by |α1 sat(
∫

t edt)−α2 sat(e)|. Within this vicinity, the control

(6.18) is essentially a PI controller, and the parameters that guarantee convergence of
∫

t edt,e to

this vicinity do not necessarily guarantee convergence to
∫

t edt,e = 0 within this vicinity. Hence,

an instability mode may occur near the origin. However, for a boundary layer sufficiently large, a

globally stable closed loop system may be achieved. The convergence properties may be improved

similar to the relay controller (5.4) with the power rate reaching law, resulting in the control (6.19).

ūv = ẋR − (δ |e|γ +α2)

(
α1α−1

2 sat

(∫
t
edt

)
+ sat(e)

)
, 1 > γ > 0, δ > 0 (6.19)

6.3 Super Twisting Controller

Another approach to second order sliding mode control may be realized by utilization of the super

twisting algorithm (STA) [Emelyanov et al., 1990], [Levant, 1993]. This controller is rather differ-

ent from the controllers based on the prescribed convergence- and twisting algorithms in the sense,
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that it provides for a second order sliding mode on some control constraint and its derivative, us-

ing only the constraint itself as feedback. Hence, the application of the STA for output feedback

control is of significant interest in regard to the objective of this project.

6.3.1 Application for Output Feedback Control
Consider again the system (3.41) with output function e = xP − xR, assume the same conditions

satisfied as in Section 6.2, and consider furthermore a controller based on the STA given by (6.20).

ūv = ẋR −λ
√

|e|sgn(e)−α
∫

t
sgn(e)dt (6.20)

The closed loop system is analyzed combining the derivative of the closed loop system (3.41),

e = xP − xR, (6.20) at some intersection e �= 0, given by (6.21).

ë = Ḟ(x)+ ˙̄uv − ẍR = Ḟ(x)− λ
2

ė√|e| −α sgn(e) ⇒ (6.21)

ë ∈ [−C̄,C̄]− λ
2

ė√|e| −α sgn(e) (6.22)

In order to verify convergence of the states e, ė, consider now a conservative analysis of the closed

loop system, based on figure (6.2) (similar to the majorant curve approach [Davila et al., 2005]).

0

0

de
/d

t [
m

/s
]

e [m]

p1

p2

.. p0
e < 0

..
e > 0

Figure 6.2: Phase portrait for closed loop system (6.21). The red graph indicates the de-
flection tangent ë = 0, the black line a stable trajectory and the blue solid line the trajectory
resulting from only the term α sgn(e) for initial conditions at point p1.

Consider the situation with initial conditions (e(0), ė(0)) = (0, ėp0), similar to the analysis of the

TA type controller above. Note from (6.21), that the deflection tangent ë = 0 separates the state

space into two parts as depicted in figure 6.2. Hence, if α > C̄, then from the initial condition, the

state trajectory will set off into the first quadrant, in the direction of the fourth quadrant, regardless

of the magnitude of (λ ė)/(2
√|e|). However, as both terms of the right hand side of (6.21) are

negative, then the state trajectory is indeed confined within the trajectory resulting from α sgn(e)
as depicted in figure 6.2. Noting this, denoting Γ =α−C̄ and assuming that αḞ(x)< 0, |Ḟ(x)|= C̄
is always satisfied, obtain a conservative estimate of the first intersection with the e-axis, from the

trajectory resulting from ë = Ḟ(x)−α sgn(e), by separation of variables, again using the identity
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ë = (dėde)/(dedt) = (dė)/(de)ė as (6.23).

∫ ep1

0
Γ de =−

∫ 0

ėp0

ėdė ⇒ ep1 =
1

2

ė2
p0

Γ
(6.23)

Using this and the deflection tangent, obtain the worst case intersection ėp2 as (6.24) (notion the

assumption αḞ(x)< 0).

ėp2 =− 2

λ

√
|ep1|Γ =− 2

λ

√√√√∣∣∣∣∣1

2

ė2
p0

Γ

∣∣∣∣∣Γ =−
√

2Γ
λ

ėp0 (6.24)

Using again the criterion for convergence of ė by intersection of axes, given by |ėp0|> |ėp2|, obtain

the convergence criterion (6.25).

|ėp2|
|ėp0|

=

√
2Γ
λ

< 1 ⇒ λ >
√

2Γ (6.25)

In [Fridman et al., 2012] an appropriate choice of parameters was proposed as (6.26), which satis-

fies (6.25).

λ = 1.5
√

C̄, α = 1.1C̄ (6.26)

Hence, the controller (6.20) with parameters (6.26) provides for a second order sliding mode output

feedback controller for the system (3.41), e = xP − xR with only a single tuning parameter.

6.3.2 Extension with Boundary Layer
Even though the controller (6.20), (6.26) appears highly attractive in the context of the objective

of this work, the dynamic characteristics of the valve may deteriorate controller performance as

discussed in Section 4.4.1. Hence, the obvious modification is the extension with the boundary

layer approach (4.31), replacing the sgn-function with a sat-function. As discussed previously, this

causes a partial loss of robustness and restricts guaranteed convergence to a vicinity of the origin

(e, ė) = (0,0), but may improve the overall performance. This introduces an additional parameter

in terms of the boundary layer thickness, but this may be easily tuned based on the desired control

precision.

6.4 Experimental Results

In the following, results of implementation of the controllers are presented. A complete list of

controller parameters applied can be found in the Appendix.

6.4.1 Prescribed Convergence Controller (Direct Application) (PCA)
The prescribed convergence type controller (6.7) has been implemented experimentally using the

same controller parameters as the linear surface type controller (5.8) (also the boundary layer),

with the parameter γ = 0.875. The results are shown in figure 6.3, and from figures 6.3 (A)-(F) it

is found that this controller closely tracks the trajectory, similar to e.g. the controller (5.8), and that

chattering is absent.
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Figure 6.3: Performance with application of the control (6.7), and comparison with (5.8).
(A) Control tracking error for TC1. (B) Control input for application to TC1. (C) Control
tracking error for TC2. (D) Control input for application to TC2. (E) Control tracking error
for TC3. (F) Control input for application to TC3. (G) Control tracking error for TC1. (H)
Control tracking error for TC2. (I) Control tracking error for TC3.
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However, from figures 6.3 (G)-(I), performance is somewhat similar to the linear surface type

controller (5.8), and it is found that introduction of the surface (6.5) not significantly alters perfor-

mance.

An initiative to improve performance by reducing γ , caused the closed loop system to be prone to

oscillations. Hence, it is found that introduction of the surface (6.5) does not provide any relevant

improvement of performance compared to the linear surface counterpart, but merely complicates

the parameter design.

6.4.2 Twisting Controller (Direct Application) (TA)
The controller based on the twisting controller (6.19) has been implemented with identical bound-

ary layers, in order to maintain tuning parameters at a minimum. The boundary layers applied are

ϕb = 4 [mm] for test cases TC1, TC3 and ϕb = 3 [mm] for TC2. The results are shown in figure

6.4.
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Figure 6.4: Performance with application of the control (6.19). (A) Control tracking error
for TC1. (B) Control input for application to TC1. (C) Control tracking error for TC2. (D)
Control input for application to TC2. (E) Control tracking error for TC3. (F) Control input
for application to TC3.
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From figure 6.4 it is found that a stable system is achieved for all test cases, and that convergence

to the origin is achieved similar to a PI controller as expected. Furthermore, as for the controllers

considered until this point, resonant modes of the vehicle / Axis 1 are excited. In all cases parame-

ters α1 = 2.1, α2 = 1, γ = 0.875 were chosen, and only tuning of δ ,α was carried out individually.

The results do not differ significantly from those of the prescribed convergence controller, but this

controller has a more simple mathematical structure, and may be more appropriate bearing in mind

the objective of the project.

6.4.3 Super Twisting Controller (Direct Application) (STA)
The performance results of the direct implementation of the super twisting controller, with pa-

rameters tuned according to the rules (6.26), are depicted in figure 6.5. It is found that a sliding
mode takes place on e, but appear as limit cycle-like behavior as discussed in Chapter 4, which is

naturally undesirable.
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Figure 6.5: Performance with application of the control (6.20). (A) Control tracking error
for TC1. (B) Control input for application to TC1. (C) Control tracking error for TC2. (D)
Control input for application to TC2. (E) Control tracking error for TC3. (F) Control input
for application to TC3.
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Figure 6.6: Measured input, measured spool position, valve model output with measured
input for TC1.
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Figure 6.7: Performance with application of the control (6.20) with a boundary layer of
ϕb = 0.5 [mm]. (A) Control tracking error for TC1. (B) Control input for application to
TC1. (C) Control tracking error for TC2. (D) Control input for application to TC2. (E)
Control tracking error for TC3. (F) Control input for application to TC3.

Also it is found that the oscillation frequency when implemented in the test bench is smaller than
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that of the model, leading to the idea that the valve model may not represent the actual dynamics

sufficiently in regard to this type of controls. However, comparing the valve model output with

the measured input signal fed to the model, does not reveal significant differences between the

modeled spool position and the measured spool position, which should lead to the observed differ-

ence in oscillation frequencies (see in figure 6.6). The main reason for the difference in oscillation

frequencies is assumed to be inaccuracies in the modeled time delays and dynamics of sensors,

inaccurate friction models- and static gains of the valves, hence the gain compensator.

6.4.4 Super Twisting Controller with Boundary Layer (STA-B)
Replacing the sgn-term of the STA controller would expectedly reduce oscillations of the output

as discussed previously, with some loss of robustness. Application of a boundary layer of 0.5
[mm] to the algorithm leads to the results of figure 6.7 (with the same parameters as in the results

of figure 6.5). It is worth noting that the boundary layer width is significantly smaller that those

applied in controllers considered previously, and robustness is preserved to a higher extend than

for these controllers. It is found that the implementation of this boundary layer significantly alters

performance compared to the conventional STA controller, with maximum errors being on the level

with the STA controller. Hence, with a boundary layer, the super twisting algorithm (STA-B) can

be successfully applied for output feedback control.

6.5 Summary

Three of the most popular second order sliding algorithms were considered for application in con-

trol structures together with the gain compensator and velocity feed forward control. The con-

trollers considered were the prescribed convergence algorithm (PCA), the twisting algorithm (TA)

and the super twisting algorithm (STA).

These second order sliding mode controllers were considered in relation to application for chatter-

ing reduction, as well as their direct application in hydraulic control structures. In regard to the

controllers based on the direct application of the prescribed convergence algorithm and the twist-

ing algorithm, boundary layers were utilized in order to avoid control chattering. Furthermore, in

order to improve convergence speed the power rate reaching law discussed previously was applied,

similar to e.g. the relay controller in Chapter 5. With boundary layers implemented, the PCA

and TA type controllers demonstrate satisfactory performance, however, with the usage of several

parameters.

The controller based on the STA appears in general more intriguing due to the single tuning param-

eter (when using the proposed tuning guide line), however the presence of undesirable nonlinear

characteristics of the valve dynamics, causes a limit cycle-like behavior of the control. These ef-

fects were effectively reduced by implementation of a (rather small) boundary layer, having the

effect that a satisfactory performance can be achieved.

The performance of the considered controllers in terms of RMS- and maximum errors have been

compared with the PI-AGC controller in figure 6.8. The main conclusion is that the second order

controllers considered in this section, in general provide for improved tracking accuracy, in par-

ticular when low speed motion is required as in TC2. However, in high velocity applications and

applications with strong friction phenomena no significant improvement of performance is evident.

At least not when applied for output feedback control as considered here, and the additional tuning
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effort required by the PCA- and TA type controllers (compared to the PI-AGC) does not yield a

feasible usage of these controllers. However, the simple structures seem intriguing, and some of

the elements may be applied in the development of controllers more applicable for the objective of

this project.
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Figure 6.8: Performance with application of controllers PCA, TA, STA-B, compared with
the PI-AGC controller. (A) Control tracking errors for TC1. (B) RMS- and MAX control
tracking errors for TC1. (C) Control tracking errors for TC2. (D) RMS- and MAX control
tracking errors for TC2. (E) Control tracking errors for TC3. (F) RMS- and MAX control
tracking errors for TC3.



7 | Finite-Time Continuous Approximations
of Sliding Controls

Having studied selected second order sliding controllers, their main features and drawbacks in

regard to application in hydraulic drives, some modifications are proposed in this chapter. In the

following, homogeneous extensions of these second order sliding controllers are proposed allowing

for absolutely continuous control inputs, which may prove more appropriate than the controls

considered until this point.

7.1 Weighted Homogeneity & Finite-Time Convergence Properties

A system f (e) is a homogenous function of degree ξ , if it satisfies (7.1).

f (κe) = κξ f (e) , ∀e = (e1,e2, ...,en) ∈�n, 0 < ∀κ ∈� (7.1)

A system f (e) satisfying (7.1) is considered scale invariant, i.e. it holds the property that it does

not change if variables within the system are multiplied by the same e.g. constant, and is as such

a structure preserving property. From a geometrical point of view this means that the shape of the

system in the state space is preserved if the system states are uniformly scaled. The more formal

notion of this is, that a system satisfying (7.1) is said to be homogenous of degree ξ with respect

to the dilation (7.2).

dκ : e �→ κξ e (7.2)

The concept of weighted homogeneity is an extension of the homogeneity property above, and

turns out to have an intriguing relevance in relation to control systems, as will be clear in the

following. For this situation, the common factor κ is assigned different weights for the different

states, and the dilation (transformation) is extended to (7.3).

dr
κ : (e1,e2, ...,en) �→ (κr1 e1,κr2 e2, ...,κrn en), ∀κ,ri > 0, i = 1,2, ...,n (7.3)

Then a system f (e) : �n → �
n is said to be dr-homogeneous of degree ξ with respect to the

dilation (7.3), if each component fi is dr-homogeneous of degree ξ + ri, meaning that it satisfies

(7.4) [Bacciotti and Rosier, 2005].

fi(κr1 e1,κr2 e2, ...,κrn en) = κξ+ri fi(e1,e2, ...,en), 0 < ∀κ ∈�, i = 1,2, ...,n (7.4)

This leads to the main property of interest, that if the system f (e) :�n →�
n satisfies (7.4), then a

stable origin (e1,e2, ...,en) = (0,0, ...,0) is stable in finite time, based on Theorem 1.

91
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Theorem 1 [Bhat and Bernstein, 1997]
The origin (e1,e2, ...,en) = (0,0, ...,0) is a finite-time stable equilibrium of f (e), e = (e1,e2, ...,en)
if and only if the origin is an asymptotically stable equilibrium of f (e) and ξ < 0.

The finite-time stability property implies faster convergence, and some kind of robustness prop-

erty, even though it may not be invariant with respect to parameter uncertainties and bounded

disturbances as sliding controls. However, in light of the dynamical features of hydraulic valves

discussed in Section 4.4.1 and the possible limit cycle oscillations resulting from this, finite-time

convergent continuous controls may offer a more reasonable compromise between robustness and

performance compared to sliding mode controls.

In the sequel finite-time convergent continuous controls are developed, taking their offset in some

of the sliding algorithms considered in previous chapters. The controllers developed in this chap-

ter are based on the simple representation (2.98) (with gain compensation), representable for a

hydraulic drive in some limited frequency range below its natural frequency.

7.2 Modified Relay Control

Consider the scalar system with the parameter bound assumption (7.5), and the output function

e = xP − xR.

ẋP = ρ(x)ūv, 0 < Km ≤ ρ(x)≤ KM (7.5)

Extend the simply relay controller with velocity feedforward (5.4) to (7.6).

ūv = ẋR −α|e|γ sgn(e) , 1 > γ > 0, α > 0 (7.6)

The resulting closed loop system is then given by (7.7).

ė =−α|e|γ sgn(e) (7.7)

From (7.7), e = 0 is asymptotically stable as eė < 0, ∀e �= 0. The convergence time ts is found

by separation of variables similar to the process in Section 4.3 as (7.9), with initial conditions e(0)
and t0 = 0.

ė =
de
dt

=−α|e|γ sgn(e) ⇒ dt =− 1

|e|γ sgn(e)
de ⇒ (7.8)

∫ ts

0
dt =−

∫ 0

e(0)

1

α|e|γ sgn(e)
de ⇒ ts =

1

α(1− γ)
|e(0)|1−γ (7.9)

Evidently, from (7.9), the convergence time ts < 0 by virtue of γ < 1, and may be considered a

finite-time proportional controller. Considering the entire frequency range, i.e. taking into account

that F(x) �= 0 and bounded by |F(x)| ≤ C̄, then from the above analysis, precision can only be

guaranteed to a vicinity of the origin bounded by |e|= (C̄/α)γ−1
.

7.3 Modified Twisting Controller

Consider again the controller (6.8) based on the twisting algorithm with velocity feedforward, and

the system (7.5) with output function
∫

t edt. Modifying the control (6.8) similarly to the relay
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control in the previous section, obtain the continuous controller (7.10), denoting the closed loop

state vector e = (
∫

t edt,e) = (e1,e2).

ūv = ẋR −α1|e1|γ1 sgn(e1)−α2|e2|γ2 sgn(e2) , 1 > γ1,γ2 > 0, α1,α2 > 0 (7.10)

By examination of the limits for the exponents γ1,γ2, obtain (7.11), being coincident either with

the second order sliding mode controller (6.8), or a conventional linear PI controller with velocity

feed forward.

lim
γ1,γ2→0

ūv = ẋR −α1 sgn(e1)−α2 sgn(e2) , lim
γ1,γ2→1

ūv = ẋR −α1e1 −α2e2 (7.11)

The closed loop system under consideration may be represented by the state space representation

(7.12), assuming that ρ(x)≈ 1.[
f1(e)
f2(e)

]
=

[
ė1

ė2

]
=

[
e2

−α1|e1|γ1 sgn(e1)−α2|e2|γ2 sgn(e2)

]
(7.12)

Consider a radially unbounded positive definite Lyapunov-like function and its derivative, given by

(7.13).

V (e1,e2) =
1

2
e2

2 +
α1

1+ γ1
|e1|γ1+1 , V̇ (e1,e2) = e2ė2 +α1|e1|γ1 e2 sgn(e1) (7.13)

Substituting ė2 of (7.12) into V̇ , obtain (7.14).

V̇ (e1,e2) =−α2|e2|γ2+1 (7.14)

From (7.14) V̇ is only negative semi-definite, however the system is stable in the sense of Lyapunov,

and the states are bounded. Consider the time derivative of V̇2(e1,e2) given by (7.17).

V̈ (e1,e2) =−α2(γ2 +1)|e2|γ2 sgn(e2)ė2 (7.15)

= α2(γ2 +1)|e2|γ2 sgn(e2)(α1|e1|γ1 sgn(e1)+α2|e2|γ2 sgn(e2)) (7.16)

∼±α1α2(γ2 +1)|e2|γ2 |e1|γ1 +α2
2 (γ2 +1)|e2|2γ2 (7.17)

From (7.17) it is found that V̈ is bounded, hence uniformly continuous, and Barbalat’ Lemma

[Slotine and Li, 1991] implies that e2 → 0, i.e. that e → 0, for t → ∞. However, it cannot be

concluded that the origin (e1,e2) = (0,0) is asymptotically stable. However, assume for now that

this is the case.

7.3.1 Finite-Time Convergence Conditions
In order to establish finite-time convergence conditions for the closed loop system (7.12), the ho-

mogeneity considerations discussed in Section 7.1 are utilized. It turns out that the closed loop

system (7.12) is homogeneous of degree ξ =−1 ∀ δ > 1,κ > 0 provided that weights are chosen

as r1 = δ +1,r2 = δ , and controller exponents as (7.18).

γ1 =
δ −1

δ +1
, γ2 =

δ −1

δ
(7.18)

This statement becomes evident from the following considerations. Consider ė1 of (7.12), and

obtain the degree (7.20).

f1(dr
κ e) = f1(κδ+1e1,κδ e2) = κδ e2 = κδ f1(e) ⇒ (7.19)

ξ + r1 = ξ +δ +1 = δ ⇒ ξ =−1 (7.20)
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Regarding the second component ė2 of (7.12), obtain (7.21).

f2(dr
κ e) =−α1|κδ+1e1|γ1 sgn(κδ+1e1)α2|κδ e2|γ2 sgn(κδ e2)

=−α1κ(δ+1)γ1 |e1|γ1 sgn(e1)−α2κδγ2 |e2|γ2 sgn(e2) (7.21)

Substituting (7.18) into (7.21), obtain (7.22).

f2(dr
κ e) =−α1κ

(δ+1)(δ−1)
δ+1 |e1|γ1 sgn(e1)−α2κ

δ (δ−1)
δ |e2|γ2 sgn(e2)

=−α1κδ−1|e1|γ1 sgn(e1)−α2κδ−1|e2|γ2 sgn(e2)

=−κδ−1(α1|e1|γ1 sgn(e1)+α2|e2|γ2 sgn(e2))

=κδ−1 f2(e) (7.22)

Using (7.22), obtain the homogeneity degree (7.23).

ξ + r2 = ξ +δ = δ −1 ⇒ ξ =−1 (7.23)

From (7.20), (7.23) it is found that the closed loop system (7.12) is dr-homogeneous of degree

ξ = −1 for r1 = δ + 1,r2 = δ ,δ > 0, and (7.18) satisfied. Hence, according to Theorem 1, the

origin (e1,e2) = (0,0) of the system (7.12) is finite-time asymptotically stable, if the origin is an

asymptotically stable equilibrium. With (7.18) satisfied, the tuning parameters have been reduced

by one, which is useful in further considerations on the stability of the origin, and this problem is

reduced to an investigation of how parameters γ1, γ2 influences stability. This leads to the possible

scenarios (7.24).

2α2 > α1 > α2 , 2α1 > α2 > α1 , α1 > 2α2 , α2 > 2α1 , α1 = α2 (7.24)

Utilizing the state space representation (7.12), the phase portrait for each possible scenario (7.24)

may be established as depicted in figure 7.1, indicating that the origin (e1,e2) = (0,0) is globally

asymptotically stable for all five parameter scenarios. Besides providing information on stability,

the phase portraits of figure 7.1 also provide some relevant information on the convergence prop-

erties. Figure 7.1 (D) and (E) suggest that for α1 > α2, the state trajectory continuously encircles

the origin, implying an oscillatory (yet stable) trajectory. On the other hand figure 7.1 (A), (B)

and (C) implies that for α1 = α2 and α1 < α2 oscillation during transient stages may be limited.

These observations are further supported by the responses of figure 7.2, when implemented in a

pure integral system (ideal system). However, from figure 7.2 it is also observed that convergence

time is increased for parameters α1 = α2 and α1 < α2 compared to parameters α1 > α2.
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Figure 7.1: Phase portraits of the closed loop system (6.8), (7.10), ρ(x) = 1. In all cases
δ = 3. (A) Parameters: α1 = 5, α2 = 5. (B) Parameters: α1 = 3, α2 = 5. (C) Parameters:
α1 = 2, α2 = 5. (D) Parameters: α1 = 5, α2 = 3. (E) Parameters: α1 = 5, α2 = 2.
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Figure 7.2: State trajectories for the closed loop system (6.8), (7.10), ρ(x) = 1 and simu-
lation time step Tsim = 1e− 4 [s]. In all cases δ = 3. (A) Trajectory for α1 = α2 = 5. (B)
Trajectory for α1 = 3, α2 = 5. (C) Trajectory for α1 = 5, α2 = 3.

The finite time convergence properties imply that, after convergence to (e1,e2) = (0,0), motion

of the states e1, e2 should consist of Filippov sense trajectories. This reasoning is confirmed by

considering e.g. the states of figure 7.2 (C), after convergence which are depicted in figure 7.3.

Here the amplitude of the oscillations on e1 = 0, e2 = 0 would vanish for Tsim → 0.
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Figure 7.3: Zoom of figure 7.2. (A) The state e1. (B) The state e2.

Note furthermore from the limits (7.25), that the homogeneous controller (7.10), (7.18) is coin-

cident with the second order sliding controller (6.8) or a linear controller. Hence the controller

(7.10), (7.18) proves to be a rather versatile control structure, and the parameter δ may be regarded

as a robustness parameter.

lim
δ→1

ūv = ẋR −α1 sgn(e1)−α2 sgn(e2) , lim
δ→∞

ūv = ẋR −α1e1 −α2e2 (7.25)
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7.4 Modified Super Twisting Controller

Based on ideas somewhat similar to those of the previous section, a finite-time convergent con-

troller based on the super twisting algorithm (STA) is now developed. The development is again

based on the model (7.5), but with output function e = xP − xR. Taking its offset in the controller

(6.20), consider now a modified version of this, given by (7.26).

ūv = ẋR −λ |e|γ1 sgn(e)−α
∫

t
|e|γ2 sgn(e)dt, 1 > γ1,γ2 > 0, λ ,α > 0 (7.26)

To analyze the properties of this controller, consider the time derivative of the closed system (7.5),

(7.26) assuming ρ(x)≈ 1, given by (7.27).

ë = ẍP − ẍR = ūv − ẍR =−λγ1ė|e|γ1−1 −α|e|γ2 sgn(e) (7.27)

The analysis of the closed loop system (7.27) is initiated by homogeneity reasoning, as this proves

useful in the stability analysis.

7.4.1 Homogeneity Considerations
This subsection is devoted solely to homogeneity considerations in regard to the closed loop sys-

tem (7.27). Denote the closed loop state vector e = (e, ė) = (e1,e2), and consider the state space

representation of the closed loop system (7.28).[
f1(e)
f2(e)

]
=

[
ė1

ė2

]
=

[
e2

−λγ1ė|e|γ1−1 −α|e|γ2 sgn(e)

]
(7.28)

As it will be shown in the following, the closed loop system (7.28) is homogeneous of degree

ξ =−1 ∀ δ > 1 provided that weights are chosen as r1 = δ +1,r2 = δ , and controller exponents

as (7.29).

γ1 =
δ

δ +1
, γ2 =

δ −1

δ +1
(7.29)

Consider first f1 of (7.28), and obtain the homogeneity degree (7.31).

f1(dr
κ e) = κδ e2 = κδ f1(e) ⇒ (7.30)

ξ + r1 = ξ +δ +1 = δ ⇒ ξ =−1 (7.31)

Turning the attention to the second component f2 of (7.28), then using (7.29), obtain (7.32).

f2(dκ e) =−γ1λκδ e2|κδ+1e1|γ1−1 −α|κδ+1e1|γ2 sgn(κδ+1e1)

=−γ1λκδ κ(δ+1)(γ1−1)e2|e1|γ1−1 −ακ(δ+1)γ2 |e1|γ2 sgn(κδ+1e1)

=−γ1λκδ+(δ+1)(γ1−1)e2|e1|γ1−1 −ακ(δ+1)γ2 |e1|γ2 sgn(κδ+1e1)

=−γ1λκ(δ+1)γ1−1e2|e1|γ1−1 −ακ(δ+1)γ2 |e1|γ2 sgn(κδ+1e1)

=−γ1λκδ−1e2|e1|γ1−1 −ακδ−1|e1|γ2 sgn(κδ+1e1)

= κδ−1(−γ1λe2|e1|γ1−1 −α|e1|γ2 sgn(e1))

= κδ−1 f2(e) (7.32)

From (7.32), obtain the homogeneity degree (7.33).

ξ + r2 = ξ +δ = δ −1 ⇒ ξ =−1 (7.33)

From these considerations it is concluded that the system (7.28) is dr-homogeneous of degree

ξ =−1 for (7.29) satisfied, and r1 = δ +1,r2 = δ ,δ > 0.
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Asymptotic Stability
The stability of (e, ė) = (0,0) is shown via phase plane considerations, similarly to the STA

controller in Section 6.3. The gradient of the phase trajectory is obtained using the identity

ë = (dėde)/(dedt) = (dė)/(de)ė, and the closed loop system (7.28), (7.29) as (7.34).

dė
de

=−λ
δ

δ +1
|e| δ

δ+1
−1 −α

|e| δ−1
δ+1

ė
sgn(e) (7.34)

Now, consider the phase trajectory for (7.28), (7.29) for properly chosen parameters λ ,α in figure

7.4.

0

0

de
/d

t [
m

/s
]

e [m]

p1

p2

.. p0
e < 0

..
e > 0

Figure 7.4: Phase portrait for closed loop system (7.28). The red graph indicates the de-
flection tangent ë = 0, the black line a stable trajectory, the green solid line the trajectory
resulting from the first term of the r.h.s. of f2 in (7.28) and the blue solid line the trajectory
resulting from the second term of the r.h.s. of f2 in (7.28).

For simplicity consider the first quadrant of the phase plane, with initial conditions (e(0), ė(0)) =
(0, ėp0). For this situation, the trajectory sets off into the first quadrant, in the direction of the fourth

quadrant, and furthermore trajectories are confined within the regions produced by its individual

components as depicted in figure 7.4. Inspired by the majorant curve approach [Davila et al., 2005]

(as in Section 6.3), a conservative estimate of the first intersection with the e-axis (ep1,0) (at point

p1 in figure 7.4) is established from the second term of the r.h.s. of (7.34), neglecting the first term.

Hence, (7.34) is reduced to (7.35) (for the first quadrant).

dė
de

=−α
e

δ−1
δ+1

ė
(7.35)

By separation of variables of obtain (7.36).

∫ 0

ėp0

ėdė =−
∫ ep1

0
αe

δ−1
δ+1 de ⇒ −1

2
ė2

p0 =−1

2

α(δ +1)

δ
e

2δ
δ+1

p1 (7.36)

From (7.36), the intersection with the e−axis at point (ep1,0) is obtained as (7.37).

ep1 =

(
δ

α(δ +1)
ė2

p0

) δ+1
2δ

(7.37)
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Indeed, ė will attain its maximum value on the deflection tangent, i.e. on (7.27), (7.29) for ë = 0,

given by (7.38).

ė =−α(δ +1)

λδ
|e| δ

δ+1 sgn(e) (7.38)

Substituting (7.37) into (7.38) a worst case intersection with the ė−axis at (0, ėp2) is obtained as

(7.40) (see figure 7.4).

ėp2 =−α(δ +1)

λδ
e

δ
δ+1

p1 =−α(δ +1)

λδ

((
δ

α(δ +1)
ė2

p0

) δ+1
2δ

) δ
δ+1

(7.39)

=−
√

α(δ +1)

λ
√

δ
ėp0 (7.40)

Convergence of e, ė → 0 may, as for the analysis of the STA controller, be established by the

condition |ėp2|< |ėp0|, as intersection with axes is dependent only on past axis-intersection points

and tuning parameters. Then from (7.40), with (7.41) satisfied, the origin is asymptotically stable,

and furthermore finite-time asymptotically stable noting the homogeneity reasoning above.

λ
√

δ >
√

α(δ +1) (7.41)

It is notable, that for the limits of δ , the controller (7.26) is identical with the STA controller (6.20),

with the exact same convergence criterion, or a conventional linear PI type controller. Hence, the

versatility of the controller structure is similar to that of the previous section.

lim
δ→1

ūv = ẋR −λ |e| 1
2 sgn(e)−α

∫
t
sgn(e)dt , lim

δ→∞
ūv = ẋR −λe−α

∫
t
edt (7.42)

As for the controller proposed in the previous section, the finite-time convergence properties imply

that motion on |e| = |ė| = 0, should consist of Filippov sense trajectories. This is confirmed by

figure 7.5, also indicating the time response, using tuning rules inspired by (6.25) with δ = 3,λ =
1.5

√
γ̄,α = 1.1γ̄, γ̄ = 1 (and applied to an ideal double integrator).

7.5 Modified Prescribed Convergence Controller

The controller with prescribed convergence discussed in Section 6.1 may be modified in a way

similar to the remaining controllers considered in this chapter. Based on the controller (6.4), a

continuous homogeneous version of this controller may be composed as (7.43).

ūv = ẋR −λ |e|γ1 sgn(e)−α
∫

t
|e|γ2 sgn(ė+λ |e|γ1 sgn(e))dt, 0.5 ≤ γ < 1, λ > 0 (7.43)

Choosing parameters γ1,γ2 according to (7.44), and weights as r1 = δ + 1,r2 = δ , then from

similar considerations as in the above, it may be shown that the closed loop system (7.5), (7.43) is

dr-homogeneous with homogeneity degree ξ =−1.

γ1 =
δ

δ +1
, γ2 =

δ −1

δ +1
(7.44)

Furthermore the origin may be found to be asymptotically stable via Lyapunov arguments. Then

from Theorem 1, the origin is finite-time asymptotically stable. The homogeneity- and stability

properties are considered in detail in [Schmidt et al., 2013]. The obvious drawback of this con-

troller compared to the remaining controls proposed in this chapter, is the fact that a velocity

measurement is necessary.
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Figure 7.5: State trajectories. In all cases δ = 3,λ = 1.5
√

γ̄,α = 1.1γ̄, γ̄ = 1. (A) Conver-
gence of e, ė. (B) e after convergence to e = 0. (C) ė after convergence to ė = 0.

7.6 Experimental Results

In the following the modified relay controller, modified twisting- and super twisting controllers

are evaluated experimentally, and are furthermore denoted M-P controller, M-TA controller and

M-STA controller, respectively. A complete list of control parameters applied can be found in the

Appendix.

7.6.1 Modified Relay Controller (M-P)
The performance results in terms of tracking control error and control input are depicted in figure

7.6 for the three test cases. The gain α is designed based on a standard linear proportional con-

trol design approach, targeting a gain margin GM ≈ 8 [dB]. The remaining tuning effort for the

controller is rather straight forward, and the exponent γ is simply reduced (from an initial value

γ = 1) until a satisfactory performance is achieved. From figure 7.6 (A)-(F) it is found that the

control error is stable and exhibits a steady state error, as would be expected. The steady state

error settles at the corresponding leakage flow level. Also it is found that the controller excites the

(un-modeled) vehicle / Axis 1 resonant modes. Figure 7.6 (H)-(I) depicts the control errors when

compared to those of the PI-AGC controller of Section 3.2. Here it is found that the modified relay

control exhibits significantly improved tracking performance compared to the PI-AGC controller,

in terms if the maximum error. This fact may be interpreted in the intuitive way for this simple

controller - the exponent 1 > γ > 0 causes a larger controller response to a certain error value, than

e.g. the proportional term of the PI type controller, causing the proposed controller to be more

pro-active in compensating the error.

7.6.2 Modified Twisting Controller (M-TA)
The parameters α1, α2 for the M-TA controller are chosen identically to those of the PI-AGC

controllers of Section 3.2, in order to explicitly evaluate the consequences of the homogeneous

modification. Also similarly to the relay controller, satisfactory performance is achieved simply
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by reducing the parameter δ from some large value (e.g. from δ = 100). Results are depicted

in figure 7.7 (A)-(F). Here it is found that fast convergence to e = 0 is achieved after transients,

and from figure 7.7 (H)-(I), the M-TA exhibits significantly smaller maximum errors and faster

convergence to e = 0 after transients, compared to the PI-AGC. However, results for TC3 suggest

that the M-STA controller is more prone to limit cycles in the presence of significant friction

phenomena than the PI-AGC, hence in such cases the parameter δ should be chosen large enough.

In general it is found that the homogeneity properties improve control performance in terms of

tracking performance, while maintaining satisfactory control inputs.

7.6.3 Modified Super Twisting Controller (M-STA)
The basic parameter design for the M-STA was chosen according to (6.26) which satisfies the con-

vergence criterion (7.41). From the tuning process it was found that for this choice of parameter

relations the controller was prone to oscillations. Instead the parameter relation (7.45) (also satis-

fying the convergence criterion (7.41)) was found to be appropriate for all test cases. It should be

noted that with (7.45), only two parameters need to be tuned for this controller.

λ = 3.5
√

γ̄, α = 1.1γ̄ (7.45)

The results are depicted in figure 7.8 (A)-(F), and demonstrate performance similar to the M-TA

controller, with satisfactory tracking error, fast convergence to e = 0 after transients and a satis-

factory control input. Figure 7.8 (G)-(I) illustrates, as for the M-TA, that the M-STA produces

significantly improved tracking performance compared to the PI-AGC controller in terms of max-

imum control error and faster convergence to e = 0 after transients.
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Figure 7.6: Performance with application of the control (7.6). (A) Control tracking error
for TC1. (B) Control input for application to TC1. (C) Control tracking error for TC2. (D)
Control input for application to TC2. (E) Control tracking error for TC3. (F) Control input
for application to TC3. (G) Comparison of (7.6) to (3.42) for TC1. (H) Comparison of (7.6)

to (3.42) for TC2. (I) Comparison of (7.6) to (3.42) for TC3.
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Figure 7.7: Performance with application of the control (7.6). (A) Control tracking error
for TC1. (B) Control input for application to TC1. (C) Control tracking error for TC2. (D)
Control input for application to TC2. (E) Control tracking error for TC3. (F) Control input
for application to TC3. (G) Comparison of (7.6) to (3.42) for TC1. (H) Comparison of (7.6)

to (3.42) for TC2. (I) Comparison of (7.6) to (3.42) for TC3.
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Figure 7.8: Performance with application of the control (7.6). (A) Control tracking error
for TC1. (B) Control input for application to TC1. (C) Control tracking error for TC2. (D)
Control input for application to TC2. (E) Control tracking error for TC3. (F) Control input
for application to TC3. (G) Comparison of (7.6) to (3.42) for TC1. (H) Comparison of (7.6)

to (3.42) for TC2. (I) Comparison of (7.6) to (3.42) for TC3.
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7.7 Summary

In this chapter several homogeneous continuous controllers were proposed, with the designs being

founded on some of the sliding mode control structures discussed in previous chapters. The ho-

mogeneous controls include an additional tuning parameter compared to their linear counterparts,

which is found to be easily tuned. The structures of these controls turn out to be highly versatile,

and in the limit cases they may resemble either their sliding counterparts, or conventional linear P

/ PI controls. Results demonstrate improved tracking robustness compared to the (linear) PI-AGC

controller. Also, the controller gain tuning used suggests that the controllers may be tuned using

parameters appropriate for conventional linear methods (at least for the test cases considered here).

In the specific case of the homogeneous extension of the super twisting algorithm, a modified ver-

sion of a known tuning approach was proposed. Hence, this controller may be tuned using only

two parameters in total.

It should furthermore be noted that in the general case, the feedback should be normalized to one

in order for the homogeneous controllers to work as expected and as demonstrated here.
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Figure 7.9: Performance with application of controllers M-P, M-TA and M-STA controllers,
compared with then PI-AGC controller. (A) Control tracking errors for TC1. (B) RMS- and
MAX errors for TC1. (C) Control tracking errors for TC2. (D) RMS- and MAX errors for
TC2. (E) Control tracking errors for TC3. (F) RMS- and MAX errors for TC3.

The performance results for the proposed homogeneous controls are outlined in figure 7.9, and it is
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found that performance of the different controllers resemble each other, with the M-TA and M-STA

controllers producing the more precise overall tracking performance for TC1 and TC2. The M-P

appears to be a more appropriate choice in the case of TC3, due to the lack of an integral term,

hence avoiding possible limit cycles.



8 | Third- & Higher Order Sliding Control

From the control designs discussed in the previous chapters, second order sliding controllers are

attractive in the sense that chattering may be attenuated if the nominal open loop system is uni-

formly continuous, disturbances are bounded, the slew rate limitation of the valve is sufficiently

large and time delays are minimal. Another interesting feature is that e.g. the twisting algorithm

may be designed to steer the output function and its derivative to zero using boundary layers with-

out detailed knowledge of the system dynamics as opposed to conventional surface-based sliding

controls. As discussed in Section 4.3 there exist several high order sliding mode control structures,

even applicable to arbitrary order systems. However, also many of these approaches involve sev-

eral sensors, and tuning of a number of parameters which should be avoided to the extend possible

in this project. Instead, in the following an extension of the twisting algorithm to the third order is

proposed, with the result not strictly a relay controller as the TA controller, but similar to. Further-

more, a partial framework for a controller based on a homogeneous surface design is established,

which may be considered a homogeneous extension of the PCA controller discussed previously.

8.1 Third Order Extension of the Twisting Controller

The simple structure of the TA controller, and the simple parameter tuning, is interesting from sev-

eral reasons as discussed in Section 6.2, and the expansion of the TA structure would be desirable,

allowing for both chattering attenuation while including several derivatives of the output function,

using multiple state measurements and (possibly) as an output feedback controller. In the sequel of

this section, an extension of the TA controller to the third order is considered. Let the system (3.41)

satisfy conditions as in Section 6.2.1, and have the output function
∫

t edt. Defining the closed loop

state vector as e = (
∫

t edt,e, ė) = (e1,e2,e3), then the closed loop system may be represented as

(8.1) (assuming ρ̇(x)≈ 0).⎡
⎣ ė1

ė2

ė3

⎤
⎦=

⎡
⎣ e2

e3

Ḟ(x)− ẍR +ρ(x) ˙̄uv

⎤
⎦ , 0 < K̄m < ρ(x)< K̄M , |Ḟ(x)| ≤ C̄ (8.1)

Let the state space be defined as Σ = {(e1,e2,e3) ∈�3}. Taking into account signs of the states,

the complete state space is constituted by eight octants, given by (8.5) through (8.9).

Σ
+++

= {(e1,e2,e3) ∈�3|e1 > 0,e2 > 0,e3 > 0} (8.2)

Σ
++−

= {(e1,e2,e3) ∈�3|e1 > 0,e2 > 0,e3 < 0} (8.3)

Σ
+−−

= {(e1,e2,e3) ∈�3|e1 > 0,e2 < 0,e3 < 0} (8.4)

107
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Σ
−−−

= {(e1,e2,e3) ∈�3|e1 < 0,e2 < 0,e3 < 0} (8.5)

Σ
−++

= {(e1,e2,e3) ∈�3|e1 < 0,e2 > 0,e3 > 0} (8.6)

Σ
−−+

= {(e1,e2,e3) ∈�3|e1 < 0,e2 < 0,e3 > 0} (8.7)

Σ
+−+

= {(e1,e2,e3) ∈�3|e1 > 0,e2 < 0,e3 > 0} (8.8)

Σ
−+−

= {(e1,e2,e3) ∈�3|e1 > 0,e2 > 0,e3 > 0} (8.9)

Noting the definition (4.4), in the sequel, limit points are denoted ei±, i = 1,2,3. Inspired by the

TA controller (6.8), consider the extended version (8.10) with α1,α2,α3 > 0.

˙̄uv = ẍR −α1 sgn(e1)−α2 sgn(e2)−α3 sgn(e3), sgn(ei)�
{

1, ei ≥ 0

− 1, ei < 0
(8.10)

In order to reduce complexity of the analysis, defining coefficients α =α2, λ =α1/α2, γ =α3/α2,

the identity (8.11) holds true.

−α1 sgn(e1)−α2 sgn(e2)−α3 sgn(e3)≡−α(λ sgn(e1)+ sgn(e2)+ γ sgn(e3)) (8.11)

Closing the system (8.1) by the control (8.10) utilizing the identity (8.11), satisfies the system

(8.12).⎡
⎣ ė1

ė2

ė3

⎤
⎦=

⎡
⎣ e2

e3

Ḟ(x)−αρ(x)(λ sgn(e1)+ sgn(e2)+ γ sgn(e3))

⎤
⎦ (8.12)

Choosing the control gain α according to (8.13) noting the bounds (8.1), then sgn(ė3) is uniquely

determined by the control (8.10) (rewritten with the identity (8.11)).

α >
C̄

K̄m

1

inf(|λ sgn(e1)+ sgn(e2)+ γ sgn(e3)|)
(8.13)

The closed system (8.12), (8.13) is invariant with respect to uncertain bounded parameters and

disturbances from [Utkin et al., 2009]. This invariance property allows to conduct the convergence

analysis considering the controlled system as a triple integrator closed by (8.10) with α = α2,

λ = α1/α2, γ = α3/α2, by virtue of (8.13). From these considerations, the analysis will be based

on the inclusion (8.14).

ė =

⎡
⎣ ė1

ė2

ė3

⎤
⎦ ∈

⎡
⎣ e2

e3

−α(λ sgn(e1)+ sgn(e2)+ γ sgn(e3))

⎤
⎦ (8.14)

From (8.14), in each of the octants defined above, ė3 is constant. Consider the inequalities (8.15),

(8.16), (8.17). If one of these inequalities is satisfied, then the corresponding state determines

sgn(ė3), not implying a stable origin.

λ > 1+ γ ⇒ sgn(e1) = sgn(ė3) (8.15)

1 > γ +λ ⇒ sgn(e2) = sgn(ė3) (8.16)

γ > 1+λ ⇒ sgn(e3) = sgn(ė3) (8.17)



8.1. THIRD ORDER EXTENSION OF THE TWISTING CONTROLLER 109

Hence in order to achieve influence from all states, the restrictions (8.18) are imposed.

λ < 1+ γ, 1 < γ +λ , γ < 1+λ (8.18)

An unfortunate property of the closed loop system (8.14) may be observed from these considera-

tions. In the event that e2 = 0,e3 = 0, then e1 is ideally constant due to λ < 1+ γ , and the existing

sliding mode on |e2| = |e3| = 0. Hence, for initial conditions e(0) = (e1(0),0,0), the solution is

e(t) = (e1(0),0,0), ∀t > 0, i.e. e = (e1(0),0,0) is an equilibrium point. This fact was proved in

[Anosov, 1959] as far back as 1959 [Bartolini et al., 2007], [Kryachkov et al., 2010]. A particu-

lar interesting alternative to the controller (8.10) was presented in [Bartolini et al., 2007] where a

simple relay controller denoted Anosov Unstable was combined with the twisting algorithm, i.e.

combining the two relay controls (8.19). The activation of signals u1,u2 is controlled by a logic

scheme to achieve a stable origin.

u1 =−α1 sgn(e1) , u2 =−α2 sgn(e2)−α3 sgn(e3) (8.19)

However, the invariance property of the controller (8.10), (8.13) does in fact allow convergence to

the origin ∀ e(0) �= (e1(0),0,0), making the analysis of this controller still relevant for such initial

conditions. Furthermore, in the following a solution that effectively compensates for the above

mentioned problem, is proposed.

8.1.1 Convergence Analysis

Consider ė3 of (8.14) given by (8.20).

ė3 ∈ −α(λ sgn(e1)+ sgn(e2)+ γ sgn(e3)) (8.20)

By inspection of (8.20) it is found that e is diagonally equivalent with respect to the octants, i.e.

e ∈ Σ+++ ∼ e ∈ Σ−−−
, e ∈ Σ++− ∼ e ∈ Σ−−+

and so fourth. This allows to consider only half of

the state space in the analysis. As ė3 is constant in each octant, simple integral analysis allows for

determining the direction of e, i.e. to which octant this is directed. Noting the restrictions (8.18),

this leads to the statements (8.21), (8.22), (8.23), (8.24) .

ė3 =−λ −1− γ < 0, e3 > 0, e2 > 0, e1 > 0 for e,∈ Σ
+++

(8.21)

ė3 =−λ −1+ γ < 0, e3 < 0, e2 > 0, e1 > 0 for e,∈ Σ
++−

(8.22)

ė3 =−λ +1+ γ > 0, e3 < 0, e2 < 0, e1 > 0 for e,∈ Σ
+−−

(8.23)

ė3 =−λ +1−λ < 0, e3 > 0, e2 < 0, e1 > 0 for e,∈ Σ
+−+

(8.24)

From (8.21) it is found that e ∈ Σ+++ → Σ++−
(respectively e ∈ Σ−−− → Σ−−+

), from (8.22) that

e ∈ Σ++− → Σ+−−
(respectively e ∈ Σ−−+ → Σ−++

), from (8.23) that e ∈ Σ+−− → Σ+−+
,Σ−−−

(re-

spectively e ∈ Σ−++ → Σ−+−
,Σ+++

) and from (8.24) that e ∈ Σ+−+ → Σ+++
,Σ+−−

,Σ−−+
(respec-

tively e ∈ Σ−+− → Σ−−−
,Σ−++

,Σ++−
). Hence for e ∈ Σ+−−

and e ∈ Σ+−+
, the direction of e is not

unique which is visualized in the phase planes of the state space in figure 8.1.
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Figure 8.1: (A) Illustration of possible directions of e in the (e3,e2)−plane. (B) Illustration
of possible directions of e in the (e2,e1)−plane. The arrows symbolize the direction of e.

Uniqueness of State Trajectory

The convergence analysis in the following is based on geometrical considerations in regard to the

state trajectory. Furthermore, the analysis is carried out sequentially with respect to transitions

of the state trajectory between octants. Consider the situation e ⊆ Σ++− ∩Σ+−−
and recall (8.23).

Whether e tends to Σ−−−
or Σ+−+

depends on |e1|, |e3| at the instant e ∈ Σ++− ∩Σ+−−
and λ ,γ ,

i.e. whether e exits Σ+−−
via e3 = 0 or via e1 = 0. Provided that e sets off into Σ++−

with initial

conditions e0 = [e1+ e02 e3-], |e02| > 0 (i.e. when |e0| = |e02|), then e enters Σ+−−
with least

possible |e1|, |e3|.
Consider the time instants relative to the states at e ∈ Σ++− ∩Σ+−−

and e ∈ Σ+−− ∩Σ−−− ∩Σ+−+

defined by (8.25). The situation at time t2 when e exits Σ+−−
via the boundary Σ−−− ∩Σ+−+

, i.e.

when |e1(t2)|= |e3(t2)|= 0, is considered a critical situation.

t0 = 0 , t1 = t|e2=0 , t2 = t||e1|,|e3|=0 (8.25)

Indeed, when e ∈ Σ++−
the state trajectory tends to Σ+−−

via |e2| = 0, yielding (8.26) with e0 =
(e1+,e02,e3-), e02 > 0.

e2(t1) =
∫ t1

t0

(∫ t

t0
(γ −λ −1)dt + e3(t0)

)
dt + e2(t0) (8.26)

=
∫ t1

0

(∫ t

0
(γ −λ −1)dt

)
dt + e2(t0) = 0 ⇒ t1 =

√
2e2(t0)

λ +1− γ
⇒ (8.27)

e3(t1) =−
√

2(λ +1− γ)e2(t0) , e1(t1) =
2

3

√
2

λ +1− γ
e2(t0)3/2 (8.28)

The time instant t2 and corresponding states are found by straightforward integration as (8.29),
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(8.30), respectively.

e3(t2) =
∫ t2

0
(1+ γ −λ )dt + e3(t1) = (1+ γ −λ )t2 −

√
2(λ +1− γ)e2(t0) = 0 ⇒ (8.29)

t2 =

√
2(λ +1− γ)e2(t0)

1+ γ −λ
⇒

e1(t2) =
∫ t1

0

(∫ t

0

(∫ t

0
(1+ γ −λ )dt + e3(t1)

)
dt + e2(t1))

)
dt + e1(t1)

=
∫ t1

0

(∫ t

0

(∫ t

0
(1+ γ −λ )dt + e3(t1)

)
dt)

)
dt + e1(t1)

=
1

6
(1+ γ −λ )t3

2 −
1

2

√
2(λ +1− γ)e2(t0)t2

2 +
2

3

√
2

λ +1− γ
e2(t0)3/2 (8.30)

= 0 ⇒
λ = γ (8.31)

Reducing (8.30) leads to the criterion (8.31), hence critical for the direction of e when e ⊆ Σ+−−
.

By inspection of (8.29), (8.30) it is found that e ⊆ Σ+−−
tends to Σ−−−

for λ > γ and e ⊆ Σ+−−

tends to Σ+−+
for λ < γ , which is also illustrated in figure 8.2.

0

Time [s]

e
1
 for λ < γ

e
1
 for λ > γ

e
3
 for λ < γ

e
3
 for λ > γ

Figure 8.2: Illustration of the impact of λ ≶ γ .

Consider now the fact (8.32) following from (8.20), (8.18) with λ < γ .

ė3 = 1+ γ −λ > 0 ∀ e ⊆ Σ
+−−

, ė3 = 1− γ −λ < 0 ∀ e ⊆ Σ
+−+

(8.32)

From (8.32), when e ⊆ Σ+−−
then e tends to Σ+−+

(at the intersection e3 = e3+), ė3 changes sign

and e is instantaneously driven back towards Σ+−−
(the intersection e3 = e3-), enforcing a sliding

mode locally on e3 = 0. Hence, ideally |e3|= 0 leading to e2 =constant< 0, and due to e1e2 < 0,

e1 → 0.

At the instant e1 intersects the limit e1-, then e ⊆ Σ+−+
and tends to Σ−−+

or Σ−−−
dependent

on whether e3 = e3+ or e3 = e3-. However, as |e3| = 0, then instantaneously e ⊆ Σ−−−
tends to

Σ−−+
by virtue of infinite switching frequency. As e ⊆ Σ−−+ ∼ e ⊆ Σ++−

, then e will resemble the

description above.
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The considerations above imply that for initial conditions e0 ∈ Σ++−
= (e1+,e02,e3-), |e02| > 0,

λ < γ and (8.18) satisfied, then the direction of the trajectory e is unique / predictable. However

for arbitrary initial conditions e0 ∈ Σ+−−
or e0 ∈ Σ+−+

additional considerations must be made. For

arbitrary e0 ∈ Σ+−−
or e0 ∈ Σ+−+

either of (8.33)−(8.38) may occur, from which it is found that

in any case, e will eventually enter a region where the state trajectory resembles the one described

above.

For e0 ∈ Σ
+−−

, e tends to Σ
−−−

(8.33)

For e0 ∈ Σ
+−−

, e tends to Σ
+−+

(8.34)

For e0 ∈ Σ
+−+

, e tends to Σ
+−−

, then to Σ
+−+

(SM on e3 = 0) (8.35)

For e0 ∈ Σ
+−+

, e tends to Σ
−−+

, then to Σ
−++

, then to Σ
−+−

(SM on e3 = 0) (8.36)

For e0 ∈ Σ
+−+

, e tends to Σ
+−−

, then to Σ
−−−

(8.37)

For e0 ∈ Σ
+−+

, e tends to Σ
−−+

, then to Σ
−++

, then to Σ
+++

(8.38)

Hence, for λ < γ and (8.18) satisfied, the direction of e is predictable in the entire state space,

and furthermore encircles the origin. The phase planes of the state space with λ < γ and (8.18)

satisfied, are shown in figure 8.3.

+-+

+-- ++-

--+

-+-

-++

--+

-++

+-+

-+-

+--

++-

12

3 2

Figure 8.3: (A) Illustration of resulting directions of e in the (e2,e3)−plane, with λ < γ and
(8.18) satisfied. (b) Illustration of resulting directions of e in the (e1,e2)−plane, with λ < γ
and (8.18) satisfied. The arrows symbolize the direction of e, and SM indicates a sliding
mode locally on e3.

Having determined the criterion for trajectory uniqueness for e, and that this encircles the origin

for λ < γ and (8.18) satisfied, it is necessary to show that |e| → 0 in finite time.
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8.1.2 Finite-Time Stability of the Origin
Using t2 of (8.29) to derive e2(t2), (8.40) is obtained. e2 converges towards zero if |e2(t2)| <
|e2(t0)|, which is satisfied provided that λ < γ and (8.18) hold true.

e2(t2) =
1

2
(1+ γ −λ )t2

2 −
√

2(1+λ − γ)e1(t0)t2 (8.39)

=
1

2
(1+ γ −λ )

(√
2(1+λ − γ)e2(t0)

1+ γ −λ

)2

−
√

2(1+λ − γ)ė0

(√
2(1+λ − γ)σ̇0

1+ γ −λ

)

=−1+λ − γ
1+ γ −λ

e2(t0) (8.40)

From Section 8.1.1 it is found that past time t = t2, a sliding mode will occur on e3 = 0 with λ < γ
and (8.18) satisfied, which is maintained until the intersection e1 = e1-. Past this intersection e
sets off into Σ−−+

with initial conditions e0 = (e1-,e02,e3+), hence e ⊆ Σ−−+
resembles the critical

situation described in Section 8.1.1.

As e ⊆ Σ−−+ ∼ e ⊆ Σ++−
it is found that for e ⊆ Σ−−+

, then e will tend to Σ−++
. Denote the relative

time instant and initial condition for e2 when e ∈ Σ−−+ ∩Σ−++
as (8.41).

t = t3, e2(t3) = 0 (8.41)

|ė2| is identical for e ∈ Σ++−
and e ∈ Σ−−+

, hence e1(t3),e3(t3) resembles e1(t1),e3(t1), and are

given by (8.42), (8.43), respectively.

e3(t3) =
√

2(λ +1− γ)e2(t2) (8.42)

e1(t3) =−2

3

√
2

λ +1− γ
e2(t2)3/2 (8.43)

Hence convergence criteria may be established as (8.44).

|e3(t3)|< |e3(t1)|, |e1(t3)|< |e1(t1)| for |e2(t2)|< |e2(t0)| (8.44)

The convergence criteria (8.44) are satisfied by virtue of (8.40), provided that λ < γ and (8.18)

hold true. The finite-time convergence properties, i.e. that |e| → 0 for t → T < ∞, are established

from the following reasoning. As |ė3| is identical for e ⊆ Σ++−
and e ⊆ Σ−−+

, the time instant

t3 is obtained similar to the time instant t1 of (8.26). From (8.40) then t1, t3 < ∞ with λ < γ ,

(8.18) satisfied and bounded initial conditions - this implies that e1,e2,e3 converge to the origin

in finite time. The dependence of t1, t3 on initial conditions, further implies that t3 < t1 < ∞, i.e.

that convergence speed increases as |e| → 0, at least for the control gain α large enough. The

characteristic trajectory of e viewed in the individual phase planes of the state space are depicted

in figure 8.4, and in the state space itself in figure 8.5.
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Figure 8.4: Characteristic (e1,e2)- and (e2,e3)−trajectories of the algorithm (8.13), (8.10)

with λ < γ .
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Figure 8.5: Characteristic state trajectory e of the control algorithm (8.13), (8.10) with
λ < γ .

8.1.3 Parameter Reduction & Adjustment of Transient Performance
Bearing in the mind the objective of this work, tuning parameters should be reduced to the extend it

is possible, in order to limit commissioning efforts. By inspection of (8.18) and the criterion λ < γ
from the analysis above, then choosing γ = 1, 0 < λ < 1 yield the final control and convergence

criteria (8.45).

ūv =−α(λ sgn(e1)+ sgn(e2)+ sgn(e3)), α >
C

Kmλ
, 0 < λ < 1 (8.45)

With this choice of γ , the controller utilizes only two parameters. This allows for limited ability

to influence the transients, but also allow for obtaining distinct guidelines on how to tune the

controller. From the analysis above and (8.45), then e1,e2,e3 → 0 for t → T < ∞, for α sufficiently

large, whereas λ shapes the transients. Figure 8.6 illustrates the transient performance for initial

conditions e(0) = (0,e02,e03), e02,e03 �= 0 for different values of λ and α sufficiently large. If λ is

chosen near zero, the overshoot and the convergence time are increased compared to λ = 0.5, and

the number of periods are reduced. Choosing λ near one causes the opposite behavior, increasing

the number of periods and decreasing the overshoot and convergence time.
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Figure 8.6: Transient performance of e1,e2,e3 for different values of λ .

8.1.4 Compensation for Multiple Equilibria
As discussed previously, a serious drawback of this controller is the equilibrium points (e1,e2,e3)=
(e01,0,0) for some e01 �= 0, which only causes a problem if e(0) = (e01,0,0), provided that α is

chosen properly. However, in the context of commissioning of industrial hydraulic drive applica-

tions, such initial conditions are most likely to be present, and some type of compensation need to

be implemented. The problem is depicted in figure 8.7 (B), from which it is found that the closed

loop system is stationary. To compensate for this problem, a simple filter and activation logic is

proposed, resulting in the controller (8.46), with α,λ as in (8.45).

˙̄uv =−α(λ sgn(e1)+δf(sgn(e2)+ sgn(e3))), δ̇fτf +δf = δ , δ =

{
0, e2,e3 = 0

1, e2,e3 �= 0
(8.46)

When e2,e3 = 0, i.e. δf = 0, the third order system is controlled by the single relay dependent on

e1, and the origin of the closed loop system is essentially unstable, and e2,e3 will tend away from

the origin. However, when e2,e3 �= 0, δf → 1 with a rate dependent on the filter time constant τf.

Then e2,e3 tends away from the origin, and after a certain delay dependent on τf, the parameters

of the relay scheme are such that it stabilizes the origin, leading to convergence of e1,e2,e3 → 0.

The response from the controller (8.46) when implemented for stabilization of a triple integrator

ė1 = e2, ė2 = e3, ė3 = ˙̄uv is depicted in figure 8.7 (A), and the filter response in 8.7 (C). From these

figures it is found the filter effectively compensates the undesired equilibria.
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Figure 8.7: (A) Response from the controller (8.46) with initial conditions e(0) = (0.1,0,0),
proper α,λ and τf = 1 [s]. (B) Response from the controller (8.45) with initial conditions
e(0) = (0.1,0,0), i.e. without the filter compensation and proper α,λ . (C) Filter output δf,
for the response of figure (A).

8.2 Arbitrary Order Sliding Surface Design − A Partial Framework

With sensor technology evolving, allowing for measurement / calculation of multiple derivatives,

another intriguing idea is to generalize the switching surface of the prescribed convergence con-

troller (4.24) [Levant, 1993], such that the controller may be applied for chattering attenuation for

arbitrary relative order systems. Furthermore, systematization of the surface design regardless of

relative order and least possible tuning parameters are highly relevant properties. A partial frame-

work for such a surface / controller design is proposed in the following, and has, to the knowledge

of the author, not previously been presented in literature.

Consider an rth-order closed loop system given by (8.47), with the sliding mode controller (8.48).

f(e) =

⎡
⎢⎢⎢⎣

f1(e)
f2(e)

...

fr(e)

⎤
⎥⎥⎥⎦=

⎡
⎢⎢⎢⎣

ė1

ė2

...

ėr

⎤
⎥⎥⎥⎦=

⎡
⎢⎢⎢⎣

e2

e3

...

er+1

⎤
⎥⎥⎥⎦=

⎡
⎢⎢⎢⎣

e2

e3

...

H(x)+G(x)u̇

⎤
⎥⎥⎥⎦ (8.47)

u̇ =−α sgn(S), S = λ1|e1|γ1 sgn(e1)+ ...+λr-1|er−1|γr-1 sgn(er−1)+ er (8.48)

Furthermore, assume that the open loop system is C2 and the bounds (8.49) exist.

0 < Gm < G(x)< GM , |H(x)| ≤ Hmax (8.49)
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Choosing the control gain α such that it satisfies Gmα > Hmax, then ideally SṠ < 0 and a (first

order) sliding mode on S = 0 is achieved in finite time for any initial condition S(0), as discussed

in Section 5.1.2. After a sliding mode has been enforced on S = 0, the ideal closed loop system is

given by (8.50).

f(e) =

⎡
⎢⎢⎢⎣

f1(e)
f2(e)

...

fr-1(e)

⎤
⎥⎥⎥⎦=

⎡
⎢⎢⎢⎣

ė1

ė1

...

ėr-1

⎤
⎥⎥⎥⎦=

⎡
⎢⎢⎢⎣

e2

e3

...

er

⎤
⎥⎥⎥⎦ (8.50)

=

⎡
⎢⎢⎢⎣

e2

e3

...

−λ1|e1|γ1 sgn(e1)−λ2|e2|γ2 sgn(e2)− ...−λr-1|er−1|γr-1 sgn(er−1)

⎤
⎥⎥⎥⎦

Noting the discussion of Section 7.1, then weights may be assigned based on homogeneity con-

siderations. Choosing weights and exponents of the surface S according to (8.51), then the ideal

closed loop system (8.50) is homogeneous of degree ξ =−1.

ri = δ + r−1− i , γi =
δ −1

δ + r−1− i
, i = 1,2, ...,r−1 (8.51)

Hence, with parameters (8.51) satisfied, the origin of the state space (e1,e2, ...,er) = (0,0, ...,0) is

finite-time asymptotically stable, if it is asymptotically stable. In the event that this is in fact the

case, then the controller (8.48), (8.51) is an rth-order sliding sliding controller according to Defi-

nition 1. The homogeneous controller version (8.48), (8.51) may be written in the more compact

form (8.52).

u̇ =−α sgn(S), S = er +
r−1

∑
i=1

λi|ei|
δ−1

δ+r−1−i sgn(ei) (8.52)

The remaining problem is regarding stability of the closed loop system variables after a sliding

mode is enforced on S = 0, i.e. for which parameters λ1,λ2, ...,λr-1, will state trajectories ∈ S = 0

converge to the origin! If it is possible to design a method that relates λ1,λ2, ...,λr-1 to each other

through a single parameter e.g. as possible for surfaces representing linear closed loop dynamics

[Slotine and Li, 1991], then the controller will be tunable via three parameters, however, this issue

is still open.

In the event that the parameter design issue is solved, then the simple systematic design procedure

for the control structure, and the possibility to commission the controller via only three param-

eters, would make this controller extremely attractive in many physical systems, and especially

in hydraulic systems, in the event that slew rate limitations and time delays do not pose serious

restrictions.

8.2.1 Examples of Control Structure Designs
In regard to a hydraulic drive, assuming a first order model description sufficiently accurate, then

the order of the system derivative relative to the position e = xP − xR is r = 2, and the resulting

switching surface S appear as (8.53). Note, that in this case the switching surface is coincident with
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that of the prescribed convergence controller for δ ≥ 2 discussed in Section 6.1, when applied for

chattering attenuation.

S = e2 +
1

∑
i=1

λi|ei|
δ−1

δ+r−1−i sgn(ei) = e2 +λ1|e1|
δ−1

δ sgn(e1) (8.53)

In the event that the output function is
∫

t edt =
∫

t(xP − xR)dt (i.e. e1), then r = 3, leading to the

switching surface (8.54).

S = e3 +
2

∑
i=1

λi|ei|
δ−1

δ+r−1−i sgn(ei) = e3 +λ2|e2|
δ−1

δ sgn(e2)+λ1|e1|
δ−1
δ+1 sgn(e1) (8.54)

Considering the third order drive model representation (2.85), still assuming the output function∫
t edt = e1, then the relative order between the output function and the system derivative is r = 5,

resulting in the switching surface (8.55).

S = e5 +
4

∑
i=1

λi|ei|
δ−1

δ+r−1−i sgn(ei) (8.55)

= e5 +λ4|e4|
δ−1

δ sgn(e4)+λ3|e3|
δ−1
δ+1 sgn(e3)+λ2|e2|

δ−1
δ+2 sgn(e2)+λ1|e1|

δ−1
δ+3 sgn(e1)

8.3 Simulation Results

Consider a controller based on the algorithm (8.46) with the target of reducing control chattering,

given by (8.56) (here with δf = 1), with identical boundary layers, velocity feed forward and power

rate reaching law based on the actual control error e.

ūv = ẋR −
∫

t

(
(δ |e|γ +α)

(
λ sat

(∫
t
edt

)
+ sat(e)+ sat(ė)

))
dt, 1 > γ > 0, δ > 0

(8.56)

The controller (8.56) (denoted 3TA) is verified by simulation for TC2 and compared with its TA

counterpart (6.19), both with boundary layer widths of ϕb = 4 [mm]. The results are depicted in

figure 8.8. From figures 8.8 (A) and (B) it is found that performance of the 3TA controller some-

what resembles that of the TA controller in regard to tracking error and control input. However,

from figures 8.8 (C) and (D) it is found that chattering of the sliding control signal for the 3TA is

somewhat reduced compared to that of the TA controller. This is naturally due to the integral action

on the sliding control part in the 3TA controller. It is notable that the number of tuning parameters

remain the same for the TA and 3TA controllers, and as such similar tuning efforts are required.

However, the usage of the piston velocity in the 3TA controller is naturally a drawback compared

to the TA controller. However, as discussed in Chapter 6, if the position sensor satisfies certain

requirements, a discrete implementation ėk may be substituted with Δek = ek − ek−1, causing this

controller to be somewhat attractive compared to the TA controller.
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Figure 8.8: Control performance for the 3TA and TA controllers ((8.56), (6.19), respec-
tively) when implemented with Test Case 2. (A) Position tracking error. (B) Total input
signals. (C) Output from sliding control part of the TA controller. (D) Output from sliding
control part of the 3TA controller.

8.4 Summary

An extension of the twisting algorithm to the third order was proposed, and theoretically elabo-

rated. It was found that such an extension can be realized without increasing the number of tuning

parameters compared to the twisting algorithm. Such an extension has the unfortunate property

that the lowest order state axis is constituted by (ideally) an infinite number of equilibrium points.

This undesirable feature was proposed solved by incorporation of a simple first order filter, and

results demonstrate a satisfactory performance with this modification. When used in combination

with boundary layers (identical for all states), velocity feed forward and the power rate reaching

law, implemented with the purpose of chattering reduction, the controller proves to perform on the

level with the controller based on the twisting algorithm. However, with significant reduction in

control chattering. The proposed controller is found to be industrially applicable, if the position

sensor satisfies certain requirements.

Targeting high performance systems, also a partial framework for a systematic arbitrary order

sliding controller design was proposed, taking its offset in the prescribed convergence algorithm

and homogeneity reasoning. The main idea is founded on the ability to reduce control chattering,

while providing a systematic approach to guarantee finite-time convergence of the states included

in a switching surface. The main problem with the completion of the framework arises with diffi-

culties in establishing the necessary stability criteria for the switching surface, which is considered

future work.





9 | Evaluation & Final Control Structure

In the following the results for the controllers considered in previous chapters are compared quan-

titatively based on experimental results in terms of RMS- and maximum errors and the number

of tuning parameters. Furthermore, a final control structure is proposed based on the quantitative

performance results and experiences made in regard to controller tuning.

9.1 Quantitative Evaluation of Controllers

In order to evaluate industrial applicability of controllers, these are considered in terms of RMS-

and maximum position tracking errors and the number of tuning parameters which in some sense

emphasize the complexity of the tuning process. Hence, the evaluation complies (quantitatively) to

the evaluation criteria discussed in Section 2.8. Furthermore, experiences with the tuning process

in the implementation are taken into account. The results of the controllers that have been experi-

mentally tested and found to provide for satisfactory control performance are outlined in figure 9.1

for the three test cases.

In general it is found that the gain compensator (AGC) proposed in Section 3.2 improves control

performance significantly, which is also the reason for the rather accurate performance of all con-

trollers under consideration. From an overall perspective, the proposed homogeneous controllers

M-P, M-TA and M-STA demonstrate the most beneficial performance with few tuning parameters.

Also these controllers were found to be easily tuned and rather insensitive to parameter variations

compared to the sliding controllers. For these controllers, a too small boundary layer was found to

cause violent oscillations and the limit case between a too small boundary layer- and a sufficiently

large boundary layer was found to be somewhat narrow.

Considering specifically the homogeneous controllers, the M-TA and M-STA controllers are found

to be the appropriate choices for TC1 and TC2, whereas the M-P controller is the more appropriate

choice for TC3 where that lack of an integral term avoids possible limit cycles.
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Figure 9.1: Performance results for controllers considered in the project along with the
number of tuning parameters. (A) Test Case 1. (B) Test Case 2. (C) Test Case 3.
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9.2 Outline of Final Control Structure

Based on these considerations, and in order to maintain the number of tuning parameters at a

minimum, a general control structure that satisfies the requirements for industrial applicability,

may be composed from the M-STA controller with a switching integral term, also enabling the

possibility to eliminate the integral effect. Hence a novel industrial applicable control algorithm

and a (possible) tuning guide line is outlined as:

Proposed control algorithm:

uv =
1

Ĝ

(
ẋR −3.5

√
γ̄|e| δ

δ+1 sgn(e)−1.1γ̄Kisw

∫
t
|e| δ−1

δ+1 sgn(e)dt
)

(9.1)

Ĝ =
σ K̂vA

AA

√
σ2 +μ3

{ √
PS − sgn(xv)PL for xv > 0√
μPS − sgn(xv)PL for xv < 0

(9.2)

Kisw =

{
1 for |e| ≤ δisw

0 for |e|> δisw

(9.3)

A tuning guide line:

1. Obtain K̂vA, AA, μ , σ from valve- and cylinder data sheet information.

2. Set δ = 100, δisw = 0 and increase γ̄ until desired performance is achieved

3. Set δisw such that the steady state error is reduced at stationary reference input

4. Reduce δ until a satisfactory performance is achieved

Evidently, bearing in mind that Bosch Rexroth, among many other things, is a manufacturer of

valves and control electronics, the tuning of the algorithm (9.1), (9.2), (9.3) may be simplified even

further. With the structure implemented in standard, commercially available closed loop control

electronics, the parameters related to the valve K̂vA, σ may be tabulated in the controller memory.

This may enable the commissioning personnel of a given system just to choose the valve installed

and feed in the cylinder dimensions, and not care further about the parameters K̂vA, AA, μ , σ .

Hence, it is left to adjust γ̄ , δ , δisw.





10 | Summary

The development of electro-hydraulic components has provided the market with opportunity for

developing high performance hydraulic applications, posing strong requirements to hydraulic drives

operating in closed loop control regarding performance in terms of tracking accuracy, tracking con-

sistency and simple / easy commissioning etc. The intrinsic nonlinearities of hydraulic drives- and

systems in general make it difficult to comply with these requirements using conventional linear

methods, and commissioning processes are often difficult, time consuming and of an iterative na-

ture. The work presented in this dissertation, has been concerned with the development of control

structures for industrial hydraulic cylinder drives with the focus on accurate and consistent perfor-

mance, limited requirements for system information, and a limited number of tuning parameters in

order to facilitate a simple commissioning process.

Initially a classification of applications has been conducted in order to outline load- and hydraulic

component characteristics that can be expected in regard to industrial hydraulic cylinder drives, and

a test bench representing such characteristics has been established, modeled in detail, and verified.

A generalized model framework has been established, representing any such hydraulic cylinder

drive, taking into account possible unmatched valve- and cylinder asymmetries. Three different

test cases / scenarios have been outlined, and benchmark controllers have been established based

on best industrial practice, i.e. being linear controllers commonly applied in industry, with their

parameter designs based on conventional linear methods.

Generally, the ability to monitor system parameters online during operation, may provide the pos-

sibility to enhance system performance through compensation of e.g. nonlinearities and / or online

tuning of controller parameters. In this regard the applicability of the recursive least squares al-

gorithm was investigated with main emphasis on controlling the algorithm update gain in a proper

way. Doing this in a reliable way necessitates that signals applied in this process are rich enough

such that the parameter set providing for zero model estimation error is unique. Such a condition

contradicts with the motion performance, commonly required in industry. This fact asserts strong

requirements to the update gain control, and an evaluation of state-of-the-art methods for this in the

context of hydraulic drives were considered. It was found that as few as three parameters cannot

be estimated reliably, to an extend where such a method is industrially applicable. However, the

system gain may be estimated fairly accurately online, under certain model assumptions. Also a

model based approach for online estimation of the system gain using common data sheet informa-

tion and available sensors, has been proposed. When implemented for compensation of the system

gain, this compensator provides significant improvement of control performance. Based on these

results, all remaining developments of the project have been targeting such compensated cylinder
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drives.

In order to achieve accurate- and consistent position control performance with little commission-

ing effort, sliding mode control strategies were considered, with special focus on output feedback

control. The theoretical framework in regard to sliding mode control, and the applicability of such

controllers to hydraulic cylinder drives has been discussed. The successful application of sliding

mode controls was found to be strongly related to the slew rate, time delays and nominal dynam-

ics of hydraulic control valves. These features outline the main drawback for the application of

sliding modes controls, as the inability to realize discontinuous control inputs, possibly leads to

control chattering and high frequent oscillations in the system. Several different methods to avoid

chattering were considered, ranging from different continuous approximations of the discontin-

uous control input, to the usage of high order sliding modes. Continuous approximations of the

discontinuous terms imposes boundary layers on control constraints, to which sliding precision can

be guaranteed. However, within this boundary layer a proportional control is realized, and possible

instability modes may occur here dependent on the boundary layer width. The application of high

order sliding mode algorithms for chattering attenuation appear a simple and efficient solution, at

least under ideal conditions. However, the presence of finite sampling frequency, slew rate limita-

tions and time delay may significantly deteriorate performance, possibly leading to limit cycles.

Different controllers based on first order sliding modes with boundary layer were proposed, in-

cluding the power rate reaching law to improve speed of convergence. From the implementation

to the three test cases, it was found that such methods may enhance performance compared to

the linear benchmark controllers, also implemented with the proposed compensator. Similarly, the

second order sliding controllers based and the so-called prescribed convergence algorithm- and the

twisting algorithm has been utilized in control designs for chattering attenuation, and for direct

application in combination with boundary layers. From the experimental verification of these con-

trollers, these were found to perform on the level with the first order sliding controllers. A main

conclusion for the application of such controls is, that performance is highly sensitive to the bound-

ary layer width / thickness. The (direct) usage of the super twisting controller was also considered.

Results demonstrate that slew rate limitations and time delays significantly deteriorate the, ideally,

perfect performance, leading to limit cycles in the experimental tests conducted in this project.

However, the replacement of the switching term with a boundary layer function significantly alters

performance, and limit cycles can be avoided. Furthermore, it should be noted that the boundary

width applied here, is chosen somewhat smaller than those of the remaining controllers, due to the

integral action on the boundary layer function output. Hence, a higher level of robustness can be

achieved in comparison to conventional sliding controllers utilizing boundary layers.

The conclusion in regard to the general application of first- and second order sliding mode algo-

rithms in hydraulic output feedback control systems is, that in the event that more high performance

valves- and sensors are utilized, such control methods are applicable. However, for valves and sen-

sors commonly applied in industry today, such methods has limited applicability from a general

point of view.

Based on these findings, homogeneous extensions / modifications of the considered sliding algo-

rithms were proposed. The main features are, that these algorithms are continuous hence avoiding

boundary layers, and furthermore provide for finite-time convergence of controlled states to zero,

under certain model assumptions. The algorithms have been developed using weighted homogene-
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ity considerations, and finite-time convergence properties have been established from elaborated

research literature. The proposed homogeneous controllers are highly versatile in the sense that, de-

pendent of parameters, the resulting performance resembles that of their sliding mode counterparts-

or conventional linear controllers. This feature emphasizes their properties of being generally ap-

plicable to a wide ranges of systems, and especially to hydraulic drives. Experimental results

demonstrate the announced properties, and the controllers are furthermore easily tuned. Further-

more, these controllers exhibit significant improvement of control performance, compared to their

linear counterparts, in all cases implemented with the proposed compensator. In the specific case

with the homogeneous extension of the super twisting controller, only two parameters need to be

tuned, rendering this highly applicable from an industry point of view. Hence, this control struc-

ture together with the proposed gain compensator are considered the main result in regard to the

objective of this project.

Finally, an extension of the intriguingly simple structure of the twisting algorithm, was proposed,

constituting an algorithm containing three relay functions. A system controlled by such a con-

troller contain, ideally, infinitely many equilibrium point, which was proposed compensated using

a simple logic and a first order filter. The three relay algorithm was analyzed via geometric con-

siderations on the state trajectory, and was found to be asymptotically stable for certain initial

conditions. Simulation results demonstrate performance on the level with the twisting algorithm,

but with reduced control chattering. Furthermore, a partial framework for a controller with a sys-

tematic surface design, applicable to arbitrary order systems has been proposed. The main idea is

founded in an arbitrary order homogenous surface design, and stability issues for motion on this

surface remains an open topic, and an objective for future work. The application of these con-

trollers necessitates at least an additional measurement in terms of the velocity, and is hence not

directly applicable in many present day industrial applications. This summary answers the research

questions of the Introduction.
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A.1 Main Components of Hydraulic Test Bench

Component Description

4WRKE 10 E1-100L-3X/6EG24EK31/F1D3M Proportional flow control valve

4WRTE 10 V1-100L-4X/6EG24EK31/F1M Proportional flow control valve

4WREE 10 V50-2X/G24K31/F1V Proportional flow control valve

4WREE 6 V32-2X/G24K31/F1V Proportional flow control valve

A10VSO100 DFR /31R-PPA12N00 Variable axial displacement pump

DBETE-6X/315G24K31A1V Pressure control valve (pump LS)

HM 17-1X/250-C/V0/0 Pressure sensor

Table A.1: Main hydraulic components in test bench.

A.2 Parameters - Chapter 2

Parameter Axis 1 Axis 2 Axis 3 Axis 4

Bh [Ns/m] 9075 10900 30129 3300

Bm [Nms/rad] 8775 6830 − 2372

FfC [Nm] 2280 500 2045 500

FfS [Nm] 3000 300 174 50

cf1 [m/s] 0.011 0.0011 0.0010 0.02

cf2 [-] 2000 2000 2000 2000

AA [m2] 0.0127 0.0127 0.0045 0.0062

AB [m2] 0.0101 0.0096 0.0030 0.0031

CL [m3/s/Pa] 1e−13 2e−12 2.0e−12 2.1e−10

βF [Pa] 5.3e8 5.3e8 5.3e8 5.3e8

V0A [m3] 0.0030 0.0011 0.0011 0.0011

V0B [m3] 0.0103 0.0061 0.0035 0.0038

εAir [-] 0.04 0.04 0.03 0.04

Cad [-] 1.4 1.4 1.4 1.4

Table A.2: Friction-, cylinder and hydraulic parameters.
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Parameter

LAO0 425 [mm]

LBO0 1588 [mm]

LBC 487 [mm]

LCO0 1170 [mm]

LCO1 1220 [mm]

LDO1 350 [mm]

LEG 229 [mm]

LEH 1630 [mm]

LFH 474 [mm]

LFI 380 [mm]

LGH 1491 [mm]

LHO3 185 [mm]

LIO3 375 [mm]

LIO4 1133 [mm]

LO3O4 902 [mm]

LO0O1 2398 [mm]

LABmin 1170 [mm]

LCDmin 930 [mm]

LO2O3min 2005 [mm]

LEFmin 1185 [mm]

LCM1x -0.972 [mm]

LCM1y 0 [mm]

LCM2x 0 [mm]

LCM2z 0.68 [mm]

LCM3x 0.14 [mm]

LCM3y 0.819 [mm]

m1 508.8 [kg]

m2 312.5 [kg]

m3 149.3 [kg]

m4 213 [kg]

Izz1 129.96 [kgm2]

Iyy2 74.44 [kgm2]

Izz3 67.8 [kgm2]

Izz4 70 [kgm2]

ϕH1 0.1168 [rad]

ϕ33 1.8382 [rad]

ϕ01 1.3781 [rad]

ϕ03 0.1836 [rad]

Stroke - Cylinder 1 827 [mm]

Stroke - Cylinder 3 1050 [mm]

Stroke - Cylinder 2 583 [mm]

Stroke - Cylinder 4 892 [mm]

Table A.3: Manipulator parameters.
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Parameter Parameter

CLp 10e−11 [m3/s/Pa] VS 0.0030 [m3]

DP 3.18e−05 [m3/rad] βPS 8e8 [Pa]

ωm 152 [rad/s] ηP 0.95 [mm]

ζps 10 [-] ωs 5.45π [rad/s]

Table A.4: HPU parameters.

Parameter 4WRKE 4WRTE 4WREE 10 4WREE 6

ωv1 [rad/s] 150π 150π 120π 90π
ωv2 [rad/s] 220π 220π 138π 200π
ζv [-] 1.0 0.6 0.6 0.6

Table A.5: Valve parameters (dynamic).

Parameter KP Ki Kf+ Kf-

TC1 4.00 4.00 0.0045 0.0029

TC2 4.00 4.00 0.0045 0.0029

TC3 11.62 8.30 0.0034 0.0027

Table A.6: Benchmark controller parameters, with the input normalized to 100 %.

A.3 Parameters - Chapter 5

Parameter δ γ α ϕb [mm]

TC1 4.00 0.875 0.025 9

TC2 4.00 0.875 0.025 4

TC3 11.62 0.875 0.055 10

Table A.7: 1SMC-e controller parameters, with the input normalized to 100 %.

Parameter δ γ α λ ϕb [mm]

TC1 4.00 0.875 0.025 π 9

TC2 4.00 0.875 0.025 π 4

TC3 11.62 0.875 0.025 π 10

Table A.8: 1SMC-S controller parameters, with the input normalized to 100 %.
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A.4 Parameters - Chapter 6

Parameter δ γ α λ ϕb [mm]

TC1 4.00 0.875 0.025 1.0 9

TC2 4.00 0.875 0.025 1.0 4

TC3 11.62 0.875 0.030 0.7 10

Table A.9: PCA controller parameters, with the input normalized to 100 %.

Parameter δ γ α1 α2 ϕb [mm]

TC1 4.00 0.875 0.042 0.020 4

TC2 4.00 0.875 0.042 0.020 3

TC3 4.00 0.875 0.053 0.025 4

Table A.10: TA controller parameters, with the input normalized to 100 %.

Parameter C̄

TC1 0.03

TC2 0.02

TC3 0.05

Table A.11: STA controller parameters, with the input normalized to 100 %.

Parameter C̄ ϕb [mm]

TC1 0.03 0.5

TC2 0.02 0.5

TC3 0.05 0.5

Table A.12: STA-B controller parameters, with the input normalized to 100 %.

A.5 Parameters - Chapter 7

Parameter α γ
TC1 0.03 0.5

TC2 0.02 0.5

TC3 0.05 0.5

Table A.13: M-P controller parameters, with the input normalized to 100 %.
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Parameter α1 α1 δ
TC1 4.00 4.00 7

TC2 4.00 4.00 8

TC3 11.62 8.30 13

Table A.14: M-TA controller parameters, with the input normalized to 100 %.

Parameter γ̄ δ
TC1 4 8

TC2 2 8

TC3 3 8

Table A.15: M-STA controller parameters, with the input normalized to 100 %.



134 APPENDIX A. APPENDIX

A.6 Working Paper Referred in Chapter 3

Recursive Parameter Estimation of Electro-
Hydraulic Actuator Systems - A Review

Lasse Schmidt
Bosch Rexroth A/S, Denmark

Email: lasse.schmidt@boschrexroth.dk

Torben O. Andersen
Department of Energy Technology

Aalborg University, Denmark

Email: toa@et.aau.dk

Abstract—This paper provides a review of contributions in
the literature related to on-line parameter estimation of electro-
hydraulic actuator systems by use of the recursive least squares
method. Variations in contributions are primarily restricted to
be within the approach to control the algorithm update gain, and
these are classified as the exponential forgetting factor approach,
the variable forgetting factor approach, the variable forgetting
factor approach with dead zone, the covariance matrix regulariza-
tion approach and the controlled covariance trace approach. The
contributions are each evaluated with emphasis on system type
on which the scheme is applied, type of regression model used,
the ability of the algorithms to track parameter variations and
the boundedness of the algorithms. This review is carried out
bearing in mind the possibility of application to EHA systems
continuously operating under industrial conditions.

I. ABBREVIATIONS

The abbreviations used throughout this paper are:

CCT: Controlled covariance trace.

DZ: Dead zone.

EA: Estimation algorithm.

EFF: Exponential forgetting factor.

EHA: Electro-hydraulic actuator.

LP: Linear-in-parameters.

LS: Least squares.

PE: Persistent excitation.

RC: Regularization of covariance matrix.

RLS: Recursive least squares.

VFCR: Variable forgetting factor and covariance re-

setting.

VFF: Variable forgetting factor.

II. INTRODUCTION

With the development of reliable proportional flow control

components with medium transient performance characteris-

tics to acceptable prices, trends and demands are increasingly

to develop and deliver high performance, energy efficient

turn-key solutions. The great majority of hydraulic systems

developed are produced in a limited number for specialized

applications, where budgets are too limited to design pro-

fessionally engineered model based motion control systems.

In these cases stand alone economically feasible digital con-

trollers employing traditional linear control schemes, dedicated

to control electro-hydraulic components with ease-of-use inter-

faces, are widely used. However, the often limited knowledge

on control theory, usually results in poor performance with

no indications of stability margins, robustness to perturbations

in system parameters due the inherently nonlinear dynamics,

and parameters such as viscosity-temperature relations, friction

factors, air content, variant inertia load and so forth. Due

to this, commissioning of electro-hydraulic motion control

systems is often an iterative and hence expensive process

making it difficult to comply with tight budgets and delivery

deadlines. This, and the fact that performance requirements

are constantly increasing, naturally leads to the idea of em-

ploying more advanced control schemes in order to improve

control performance. However, such approaches often require

extensive system knowledge, which do not comply with the

industry in general, as system dynamic characteristics, load

characteristics and expected disturbances can rarely be defined.

Hence, in order for industry to capitalize on advanced control

strategies, emphasis must be put on the ability to obtain spe-

cific system parameters or characteristic dynamic properties

such as natural frequencies, damping ratio and system gain

based on sensors generally available in industry, i.e. piston-

and valve spool positions- and load pressure measurements.

By successfully obtaining such parameters previous to motion

control commissioning- and on the fly would greatly promote

the successful application of more advanced control strategies

in industry.

A. Identification of Electro-Hydraulic Actuator (EHA) Systems

Identification of EHA systems is typically applied as a part

of (indirect) adaptive control schemes. Various approaches

have been reported in literature, including various hydraulic

system types and EA types span from being based on neural

networks, differential evolution theory, supervised learning

etc., to various recursive and least squares approaches and

identification based on MATLAB functionalities. In general

many papers fail to provide information or guidelines on how-

and under which conditions the identification process is carried

out, whether time variant parameters are accounted for etc. In

the following a brief status on hydraulic system identification

is given to provide an overall picture on the topic.

The authors of [1], [2], and [3] applied neural networks for

the generation of regression models of nonlinear semi-active

hydraulic dampers, resulting in fairly precise models when

considering transient performance. The contributions [4], [5]

and [6] all concerned the identification (and for [4] and [6]

also the control) of electro-hydraulic systems by use of neural
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networks. In [4] a so-called optimal tracker employing neural

networks as its identifying structure and controller was devel-

oped, and shows to poses good adaptability and robustness,

concluded from transient responses, but shows poor steady

state performance. Also [5] presents good transient and steady

state model performance, whereas [6] lacks information on the

actual performance of the identification process.

Regarding supervised learning, [7] presented a so-called

Self-Adaptive Controller based on the least square support

vector machine. The controller termed LSVM-PID has the

main features of a LSVM identification- and self-adaptive

control networks. The scheme has been implemented as an

electro-hydraulic force servo, and results on the performance

of the identification process are limited, but an identified

constant parameter transfer function is presented, which is

known to fit hydraulic actuators only for specific operating

points, due to time variant dynamics.

System identification based on differential evolution theory

was first proposed by [8]. In [9] this method was applied

for the parameter estimation of an electro-hydraulic system

with a flexible load, and promising results on transient- and

steady state performance were presented. However, [9] lacks

information on the actual implementation, and the ability of

the algorithm to track time variant parameters.

In [10] and [11] an approach for identification and control

of electro-hydraulic position- and pressure servo systems are

presented, applying Matlab Toolbox functionalities. In both

cases model and parameter estimates of a symmetric EHA

system loaded by a spring-damper system are made - the

presentation of the hydraulic systems are limited. The iden-

tification procedures are carried out previous to a control

design process, and the results are in both cases models that

contained constant parameter values - this will, as mentioned

previously, only depict the system at a specific operating point.

A similar approach was presented in [12], that concerned the

modeling of a hydraulic circuit for off-highway vehicles, with

the parameter identification carried out off-line applying a

nonlinear least squares approach in Matlab.

B. Problem Statement & Contribution

This paper has the purpose of providing a review of con-

tributions reported in literature regarding recursive identifica-

tion/estimation of EHA systems - more specifically with the

application of the recursive least squares (RLS) algorithm.

This review is mainly focused on strategies for the control

of the RLS update gain. During the review of contributions

emphasis is put on the EHA system types on which RLS is

applied, the regression model applied, the parameter tracking

ability and the boundedness of the algorithm. Many contri-

butions focus mainly on the related control design and little

on the parameter estimation algorithm, and lack information

on how the implementation is carried out, performance of the

algorithms regarding the ability to actually estimate the true

parameters, track time variant parameters etc. Regarding the

latter, due to the inherent nonlinear dynamics of EHA systems,

some level of parameter variation will be present (depending

on the components), even if physical properties such as inertia

load, supply pressure, friction coefficients etc. remain constant.

This is due to volume chamber variation, nonlinear flow char-

acteristics of valves etc. Furthermore, parameter variations will

result from perturbations in the physical parameters. Hence the

ability of the EAs to capture such variations is crucial. The

nature of parameter variations depend naturally on operating

environment, available states and parametric information and

the approach to regression modeling.

Hence this review provide mains focus on the following

criteria, in order to draw some level of comparison between

the different contributions:

System type: The type of hydraulic system used, empha-

sizing main component properties as well as the load system

and available feedbacks.

Regression model: The regression model used for parame-

ter estimation, including the level of model simplification etc.

Parameter variations: Whether the EAs are able to track

time variant parameters (henceforward designated parameter

variations) resulting from unmodeled dynamics, variations in

the system states and/or resulting from variations in physical

parameters.

Algorithm boundedness: Whether the EAs, from the

information presented in the papers, may be considered

bounded at all times, and especially in periods of insufficient

PE.

To maintain some structure in the exposition of the contri-

butions, these are divided into five main sections defined by

the type of update gain control approach applied. These are:

Exponential forgetting factor (EFF-RLS): Modifications

to RLS algorithms containing exponential forgetting factors of

constant values.

Variable forgetting factor (VFF-RLS): Modifications to

RLS algorithms containing variable forgetting factors.

Variable forgetting factor with dead zone (VFDZ-RLS):
Modifications to RLS algorithms containing some kind of dead

zone in relation to the parameter updates.

Regularization of the covariance matrix (CR-RLS):
Modifications to RLS algorithms containing so-called regu-

larization of the covariance matrices.

Controlled covariance trace (CT-RLS): Modifications

to RLS algorithms applying control of the covariance matrices.

Although it turns out that most papers in which RLS type

of algorithms are applied, are concerned with indirect adaptive

control schemes, focus is put on the EA part of the algorithms.

III. EXPONENTIAL FORGETTING FACTOR (EFF)

In the area of RLS gain update modifications, the

application of EFF (with constant values) to RLS algorithms

seems the most common when investigating the general

literature, and in relation to EHA systems different

contributions have been reported.



136 APPENDIX A. APPENDIX

In [13] a so-called adaptive high bandwidth controller is

proposed, constituted by an adaptive feed forward combined

with a feedback control scheme. Here an EFF-RLS algorithm

is used for parameter estimation. The system for which

the controller is developed is a horizontally mounted, servo

valve controlled asymmetric cylinder with a constant inertia

load. Full state feedback is available in terms of piston

velocity- and position, and the actuator force. The system is

modeled in state space with the coulomb friction and stiction

considered unknown and the individual equations of the state

space representation are established as regression models.

For parameter estimation an EFF-RLS algorithm is applied

as proposed in [14], but with no discussion on the choice of

EFF. No discussion on algorithm boundedness is presented,

even though it is a well known property of EFF-RLS

algorithms, that the update gain may grow unbounded in

periods with insufficient PE. The tracking performance of

the developed controller is experimentally validated with

sinusoidal reference trajectories of different frequencies in

the range 0.5 − 11.0 [Hz] and amplitudes of ∼ 0.4 % of

the actuator range. Due to the limited trajectory, and that no

parameter perturbations are made, the tracking ability of the

EA may not be concluded from the results.

In [15], a continuous EFF-RLS algorithm is applied as a

part of an indirect adaptive control scheme for a hydraulic

asymmetric cylinder, actuating the rotary movement of a

robot arm. The cylinder is controlled by a servo valve,

with full state feedback available in terms filtered angular

acceleration, velocity and position of the swing motion, as

well as the actuator pressures. The system is modeled as a

linear-in-parameters (LP) regression model, and the EFF-RLS

proposed in [16] is applied for parameter estimation, not

discussing size of forgetting factor, EA boundedness etc. The

tracking ability of the controller is experimentally verified via

a rectangular-like cyclic reference position with a frequency

of approximately 1.5 [Hz]. Off-line parameter estimates are

obtained to represent the true system parameters (used to

evaluate the on-line parameter estimates), through a method

not further specified. Due to the regression model applied, the

assumption of constant parameters is considered reasonable.

Only estimates on the inertia load, coulomb friction and oil

bulk modulus are presented, showing convergence to the

off-line estimates. Furthermore, no information on the EA

performance after parameter convergence is shown, and no

perturbations to physical parameters are made. This together

with the somewhat constant parameters estimated, the ability

of the EA to track varying parameters can not be concluded.

Another but similar approach to parameter estimation is

proposed in [17], where an EFF-RLS algorithm is applied

in an indirect adaptive backstepping control scheme for an

EHA system. The system is constituted by a servo valve

controlled, fixed displacement motor with a constant inertia

load, and an external load not further specified. Full state

feedback in terms of velocity-, position and actuator load

pressure is available. A state space representation of the

system is established, assuming the load to be zero, and the

regression model for parameter estimation is established as a

LP model, i.e. with the regression vector containing known

nonlinearities and remaining parameters obtainable through

data sheet information and feedbacks. The EA is operating

on-line, with the continuous EFF-RLS algorithm proposed by

[18]. However, no discussion on the choice of EFF, nor the

algorithm boundedness is presented. The proposed controller

is validated through simulations, using a sinusoidal position

reference as input, with an amplitude of ∼ 2π [rad] and a

frequency of 1 [Hz]. The parameter tracking ability of the

EA is verified through a step-like perturbation to the viscous

damping coefficient of roughly 25 % of the initial value.

Whether the parameters converge to their true values is not

presented, however the control scheme shows adaptability to

the parameter variation.

In [19] an EFF-RLS algorithm is implemented as a part of

an iterative learning control scheme for an EHA system. The

system is constituted by a horizontally mounted symmetric

cylinder, controlled by a flapper nozzle type servo valve. A

time discrete linear regression model is applied, with the

load constituted by inertia-, damping and an additional force

containing disturbances and friction and full state feedback

are available in terms of piston velocity- and position. The

EFF-RLS method applied is similar to that of [20], but is

operating with respect to the number of operation cycles, and

not the number of samples. With the application of a 2 [Hz]
sinusoidal position trajectory with an amplitude of 5 % of

the cylinder range, the proposed controller is evaluated. The

parameter tracking ability of the EA is evaluated by reducing

the supply pressure to half of its initial value on-line, and it

is shown that the controller regained its tracking performance

after six iterations.

In [21] a self-tuning controller is designed for a passive

electro-hydraulic loading system, employing an EFF-RLS

algorithm. The hydraulic system is a servo valve controlled,

fixed displacement motor, apparently with a constant inertia

load, and position feedback. A discrete linear regression

model is used to represent the system in an EA, similar

to that of [22]. For controller validation experiments are

carried out by feeding a rectangular periodic reference to

controller. The parameter tracking ability of the EA is not

presented, however, the self-tuning controller utilizing the EA

demonstrates improved performance compared to a similar

but non-self-tuning type.

In [23] an adaptive state controller is designed for a servo

valve controlled asymmetric cylinder drive, with a constant

inertia load. Available feedbacks used in the parameter

estimation are the valve spool position, piston position-,

velocity- and acceleration. The model used in the EA is

based on a continuous linear transfer function containing

the feedbacks in the regression vector. The EA applied is
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similar to that of [22]. Apparently some kind of switch is also

applied in order to turn off the EA in periods of insufficient

PE - however no discussion this is given, nor is a discussion

on whether the algorithm will remain bounded. The reference

trajectory is not presented, nor are the parameter estimation

results, hence the parameter tracking ability of the EA may

not be evaluated.

In [24] a self-tuning controller is designed for a servo

valve controlled fixed displacement motor with a constant

inertia load, with the motor speed fed back. The system

is modeled as a linear time discrete model as proposed

in fx [22]. The EA applied is similar to that of [22]. A

rectangular periodic reference trajectory is applied for the

evaluation of the combined EA- and control scheme. The

resulting parameter estimates demonstrated convergence

to constant parameters. Furthermore, the tracking ability

of the EA is evaluated toward perturbations in the supply

pressure and the shaft load. The EA proves to respond to

these perturbations, however whether true parameter values

are tracked is not presented. Note; perturbations are applied

shortly after initiation of the EA, and in the case of a large
initial covariance matrix the parameter update gain might

have been sufficiently high to track these variations - hence

the effect of an ill-chosen forgetting factor may not be clear.

In [25] a self-tuning controller containing an EFF-RLS

algorithm is applied to a servo-hydraulic materials testing

machine. The system is constituted by a servo valve controlled

symmetric cylinder with a constant mass-spring-damper type

of load. Feedback available are the piston position, load

force and specimen strain. The system is modeled as a

linear regression model, and the EA applied is the EFF-RLS

type of algorithm proposed in [26]. In the results shown,

sinusoidal load- and strain references are fed to the controller

with a frequency of approximately 0.5 [Hz]. Estimated

parameters respond to some level of parameter variation,

however, convergence of parameters to their true values is

not discussed.

In [27] a self-tuning pole placement controller is proposed

for a hydraulic positioning system. The system is a servo valve

controlled symmetric cylinder with a constant inertia load and

spring like load, with the spring attached to a fixture, having

the position fed back. The system as modeled as a linear

regression model and the EFF-RLS approach proposed by [18]

is used for parameter estimation. Further discussion on the

EFF is not presented. The controller and EA are evaluated

by feeding a rectangular periodic input to the controller for

which the frequency and amplitude are not clear. The EA

demonstrated its tracking ability when parameters are abruptly

changed, however with a significant transient stage.

A. Summary on EFF-RLS

It may be summarized that in general only few contributions

have been made with EFF-RLS algorithms applied to EHA

systems, and the ones made provide only limited information

on parameter convergence to true parameters, and generally

lack information on ability to track parameter variations.

Furthermore, it is noted that applying an EFF of constant

value will cause old data to be discarded exponentially in time,

meaning that the weighting of old data compared to new data

is constant. Hence in periods with insufficient PE, noise may

become the dominant variation in the regressors, and may lead

to erroneous parameter estimates.

IV. VARIABLE FORGETTING FACTOR (VFF)

Having considered contributions utilizing the (constant val-

ued) EFF modification of the RLS algorithm for parameter

estimation, attention is put on contributions applying the obvi-

ous modification of a variable forgetting factor. This has been

investigated thoroughly in the general literature on the subject,

and regarding VFF approaches related to EHA systems in

literature, various approaches have been presented - from being

dependent on time only, to being dependent on the internal

states of the EA, etc.

A. Time Dependent VFF

In [28], the application of a VFF-RLS algorithm for

identification of an EHA system is discussed. The system

used is a horizontally mounted asymmetric cylinder with a

constant load, controlled by a two stage overlab valve, with

the piston position used as feedback. The system is modeled

as a linear discrete time model, based on the assumptions

that the piston areas are equal to each other, and that the

valve dynamics can be approximated by first order dynamics

- following from this, parameter variations must be expected,

however no discussion on this is presented. The VFF-RLS

algorithm proposed in [22] is applied, with the VFF being

variable according to [29], with no further discussion of

this topic. The VFF has the ability to vary from some

predefined initial value (below one), up to one, as the number

of samples evolves, i.e. the value of the VFF is completely

independent on the remainder of the algorithm, and will

eventually converge to one, and the update gain to zero. For

experimental verification of the EA, a sum of sinusoidal type

of input is applied, but no indication on the input signal

range, nor the resulting output position range is presented.

The model order is determined through off-line experiments,

and it is concluded that a third order model is sufficient to

represent the system. For comparison with on-line estimated

parameters, the model obtained in the off-line experiment

is used to represent the true system model, even though

some level parameter variation must occur, unless small in-

and output ranges are used. In the results presented, the

parameters converge to constant values - this can, however,

only be the case in a limited piston range (where parameter

variations must be considered small), or due to the fact that

the VFF converges to one, causing the parameter update gain

to tend to zero. This type of VFF modification will cause the

algorithm to eventually be bounded as the VFF tends to one

as the number of samples evolves. However, if insufficient
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PE is merging with a low value forgetting factor, the update

gain may grow unbounded similar to the EFF.

Another contribution by the same authors is presented in

[30], which discusses the application of a similar VFF-RLS

algorithm as in [28] - however, here the aspect of open-loop

versus closed-loop identification is taken into account in the

discussion. The system used is similar to that of [28], with

the same assumptions and regression model. However, for the

experimental results, a direct (open loop) approach is used,

making the estimation procedure somewhat similar to that of

[28].

In [31] a VFF-RLS algorithm similar to those presented in

[28] and [30] is applied as a part of an adaptive nonlinear

backstepping control scheme for an EHA system. Here the

system and regression model (LP approach) are similar to

those of [32] and [17], but with a VFF being dependent only

on time, but here being a continuous version. For experimen-

tal validation, a sinusoidal angular position reference with

an amplitude of approximately 2π[rad] and a frequency of

1 [Hz] is applied. The parameter tracking ability of the EA

is verified by application of an external load torque of ten

times the nominal load. The EA responds to this variation,

and the performance of the adaptive backstepping controller

is maintained, opposite to a similar but non-adaptive version in

which the increased load torque clearly affects the performance

of the controller. As the VFF will eventually tend to one, this

parameter adaption may be less effective if applied after a

larger period of time. It is found that the VFF approaches of

[28], [30] and [31] are somewhat similar in the sense that they

depend only on time (or the number of samples).

B. Model Error Dependent VFF

An alternative to a purely time dependent VFF, is to make

it dependent on the model estimation error. Such an approach

is made in [33], where a VFF-RLS algorithm is employed

for the parameter estimation related to an indirect adaptive

control scheme for hydraulically actuated materials testing

machines. The testing machine used has the possibility to

control load, position- and strain. The hydraulic actuation

system is a vertically mounted symmetric cylinder, attached

to a test specimen from below - hence it has a fairly constant

inertia load and a spring-like load produced by the test

specimen. The cylinder is controlled by a servo valve, not

further specified. Furthermore, the filtered- actuator force and

piston position are available from measurements. Regarding

the parameter estimation only an on-line estimate of the

spring stiffness is considered, as additional parameters are

known, resulting in a single parameter model (relating the

displacement to the force). An RLS approach similar to the one

proposed in fx. [22] is applied, modified with a VFF inversely

proportional to the squared model error within a predefined

lower bound, and an upper bound of one. Furthermore an

upper bound on the covariance trace is applied in order to

avoid covariance blow-up. Experiments are carried out on

three different machines, with the force range for the three

machines as 10 % − 100 % of the maximum rated force,

the stroke range as 37.5 % − 100 % of the maximum

stroke, and the piston area range as 10 % − 100 % of the

maximum piston area. Results show a fluctuation in the VFF

within its bounds, the covariance trace bounded, and a varying

estimated stiffness. However, no discussion on parametric

convergence is presented, but the adaptive controller shows

improved performance in comparison with a similar, but non-

adaptive type.

C. Covariance Trace Based VFF

Opposite to the VFF approaches given in the above sub-

sections, a rather thorough documented approach to apply

a VFF is reported in [34]. Here a VFF-RLS algorithm is

applied as a part of an indirect adaptive controller for hy-

draulic crane axes. Here the individual links of the crane are

actuated by (mobile) valve controlled asymmetric cylinders.

The filtered- piston position and actuator load pressure are

used as feedbacks. Through the filtering of feedback signals,

the derivatives of the signals are obtained, in order to carry out

the parameter estimation on continuous time transfer functions

representing the system (with a discrete VFF-RLS algorithm).

It is recommended that filters should be one order higher than

these transfer functions. A covariance trace based VFF and an

additional parameter- and covariance update control variable

is implemented, leaving only the covariance trace upper bound

and the VFF lower bound as variable EA parameters. For the

control of these parameters the VFF lower bound is calculated

based on the sampling time of the controller hardware, and

an identification time constant based on the approximate time

constant of the system. The upper bound of the covariance

trace is based on the average of the information matrix (the

inverse of the covariance matrix). Furthermore, to handle

component saturation, an override control of the parameter-

and covariance update terms is introduced. In order to verify

the proposed controller and EA, an input signal to the valve

is applied as a pulse like input with exponential decay and

of different amplitude and occurrence in time. The range of

the actuator is not defined. Through simulation studies, the

parameter tracking ability of the EA is evaluated by, at some

point in time, suddenly increasing the resonance frequency by

1/3, in a period with limited PE. Due to appropriate design

of the VFF control and the additional control variable, limited

response of the EA occurs - however, as some level of PE is

restored, the parameter change is quickly adapted by the EA.

D. Eigenvalue Based VFF

In [35] an adaptive speed controller used for constant load

pressure control is designed for a variable displacement motor,

with the swash plate angle controlled by a servo valve. The

regression model is based on the continuous time model, and

available feedbacks are the motor speed and the torque. In

periods of poor excitation, the forgetting factor is set to one

(no guidelines given), and in periods of excitation, the VFF

is operated in a range below one, dependent on the level
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of excitation. The VFF control is based on the eigenvalue
of the estimator, with the VFF proportional to this. In the

results shown, the parameters tend to constant values, and

no parameter variations are applied in order to evaluate the

ability to track parameter variations. Furthermore, algorithm

boundedness is not discussed.

E. Summary on VFF-RLS

Considering the VFF-approaches discussed in this section,

it is found that those presented in [28], [30] and [31] are

not applicable to EHA systems in general, as the VFF tends

to one, as time (or the number of samples) evolves. This

causes the VFF-RLS to approach the basic RLS, for which

it is known that the update gain will tend to zero in the

presence of sufficient PE, and the RLS will eventually loose

its ability to update the parameters (for a thorough discussion

on this, see [36]). Regarding the VFF-approach applied in

[33], the parameter estimates will be updated based on more

recent measurements, as the model error is increased. The

contribution reported in [34] seems generally applicable as all

system parameters here are considered unknown. The regres-

sion models are based on filtered states and the parameters

of continuous time transfer functions are identified directly.

Furthermore, during tests the update gain varies with the level

of PE, and the algorithm shows boundedness at all times,

and has the ability to track parameter variations. Also the

eigenvalue updated VFF presented in [35] may be suitable,

however this paper suffers from lack of information on how

to deactivate the EA in periods with limited PE. Furthermore

the stability and boundedness of the algorithm can not be

concluded directly from the paper.

V. DEAD ZONE BASED RLS (DZ)

Another approach is to update the algorithm based on a

dead zone for the model estimation error.

Such an algorithm is proposed in [37] as part of an indirect

adaptive control scheme for an EHA system. The EHA system

used is not completely defined, and information on the load

is limited - however it is periodic. Whether this is in terms

of inertia, gravity, external load force etc. is not presented.

It is stated that the system contains a two-stage flapper

nozzle type servo valve, and the actuator type appears to be

an asymmetric cylinder. Actuator load pressure- and piston

position are used as feedbacks. The system is modeled as an

8th order discrete time linear model in order to include some

level of higher order dynamics from disturbances, and in this

way make the identified model somewhat more accurate in

the presence of unmodeled dynamics (however this increases

the requirement for PE). The basic algorithm in this paper

is somewhat different from the type usually seen (e.g. [22]).

The model prediction error at the kth sample is based on the

estimated parameter of the kth sample, which is numerically

impossible - furthermore the update terms are based on the

regression vector and the covariance matrix at the (k − 1)th

sample, which differs from update terms usually seen for

RLS algorithms. The covariance matrix is updated based

on the sum of covariance matrices from previous samples,

and not the gradient as normally seen, which implies that

the EA may not be stated correctly. The forgetting factor is

controlled based on a model error dead band, causing the

forgetting factor to attain values between zero and one. In

case the model error is within the dead band, the parameter-

and covariance updates are turned off. This provides no

information on the boundedness of the EA - if e.g. the model

error increases in a period of insufficient PE, the forgetting

factor is reduced, causing the parameter estimates to based on

more recent information - however, as PE is insufficient, the

covariance trace, hence the update gain may grow unbounded.

For experimental validation a cyclic trajectory is applied,

with an amplitude of approximately 25 % of the actuator

range and a frequency of 10 [Hz]. No results on the actual

parameter estimates are presented, hence only verified through

the performance of the proposed controller. It is shown that

the adaptive controller maintain stability, and exhibits a small

tracking error compared to a non-adaptive version, indicating

parameter tracking performance of the EA. The parameter

tracking ability of the combined EA and control scheme is

verified through an on-line perturbation in the supply pressure

to 2/3 of its nominal value. Results for the controllers are

shown for the situation in which the supply pressure has

settled, not showing the transient stage even though of great

importance.

A similar approach is applied in [38], in which an adaptive

and repetitive controller are applied to a hydraulic system

for non-circular machining. The system is constituted by a

servo valve (two stage) controlled, symmetric cylinder with a

carriage constituting the load, with the piston position applied

as feedback. The system is modeled as a third order discrete

time model. The DZ-RLS algorithm in this paper is rather

similar to that of [37]. However, the covariance matrix is

updated based on the gradient between covariance matrices

from previous samples, and not the sum as in [37] - further

implying that the EA of [37] may be stated incorrectly.

Again the boundedness of the EA is not discussed, but

poses similar properties as that of [37]. No results on the

actual parameter estimates are presented, hence only verified

through the performance of the proposed adaptive controller,

for which the impact of the parameter estimation is not clear.

In the paper [39], by the same authors, the same DZ-RLS as

in [38] is applied for parameter estimation for an adaptive

feed-forward controller. Also here there is no discussion

on algorithm boundedness, and the risk of the update gain

growing unbounded in periods of insufficient PE. However,

parameters show convergence to constant parameters.

In [40] a VFDZ-RLS algorithm is applied together with

a nonlinear adaptive controller for an EHA system. The

system used is a horizontally mounted cylinder with a constant

inertia load, controlled by a low-cost proportional valve with

nonlinear flow characteristics and dead band, and with the
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piston position fed back. The system is modeled as a linear

time discrete system, extended to a Hammerstein model with

a polynomial term to account for the static nonlinear flow

characteristics. For parameter estimation, the RLS algorithm

for systems with bounded noise proposed in [26] is applied.

This proposes an additional control variable in the parameter-

and covariance update terms, including a dead band related

to whether or not a measure of the model error is exceeded.

Furthermore, a constant EFF is implemented (this approach is

also applied in [41]), and it is stressed that the EA is stable.

However, it is apparent from the EA that the covariance and

parameter update terms are switched off if the squared model

error is within some predefined bound - hence in periods of

insufficient PE, the covariance matrix may grow unbounded

due to the constant EFF. Hence in order for this algorithm to

work properly, some upper covariance bound must be applied.

The proposed controller and EA are verified experimentally

by applying a rectangular cyclic position reference with a

frequency of 1/8 [Hz], and a stroke of 50 % of the maximum

stroke. To validate the ability of the EA to track parameter

variations, the load is increased to 6.25 times its initial value

(the system is here at rest), to which the EA responds well.

Furthermore the supply pressure is increased on-line by 250 %,

and the controller and estimated parameters respond rapidly to

this, without the controller becoming unstable.

A. Summary on DZ-RLS

In this section two different RLS algorithms are discussed.

In [40] the activation/deactivation of the parameter- and co-

variance update terms based on the dead zone on the model

estimation error is presented. The EA in [37] is considered

incorrectly stated, and rather limited results on the actual

parameter estimation are presented. However, in [40] the actual

performance of the parameter estimation is well documented

through perturbations in inertia load and supply pressure, to

which the EA adapted well. Boundedness of the dead zone

based algorithm in [37] may not be concluded - however, a

proof of stability of the algorithm proposed in [40], is provided

in [42].

VI. VARIABLE FORGETTING WITH COVARIANCE

RESETTING (VFCR)

An alternative to control the update gain, i.e. the covariance

trace through a VFF, is by covariance resetting, as done in

[43] and [44]. In [44] a VFCR-RLS algorithm is applied

as a part of an direct/indirect adaptive control scheme for a

hydraulic asymmetric actuator. The system used is similar to

that of [15], with full state feedback. Two types of system

configurations are considered - one with a nullap servo valve,

and one with a proportional directional overlap valve. The

regression model applied is similar to that of [15], based on

physical system parameters, but also taking into account the

dead band of the valve. Furthermore, the regression model

is established in a LP type of way, such that the parameter

vector is nearly constant. The EA is similar to that used [15]

(with EFF), but with an additional modification in terms of

covariance resetting (CR), as proposed by [45]. The CR is

constructed as such, that when the lowest valued eigenvalue

of the covariance matrix reaches a predefined minimum, the

covariance matrix is reset to a diagonal matrix with predefined

values in the diagonal. For validation of the EA and the

controller, a rectangular like cyclic trajectory is applied

with a frequency of approximately 1/4 [Hz]. Parameter

convergence is achieved within few motion cycles for both

the servo valve-, and proportional valve configurations. The

EA performance in the presence of parameter variations is

not presented.

Another, but similar approach (regarding parameter

estimation) is presented in [43]. Here an indirect robust

adaptive controller for hydraulic actuators is proposed,

applying a continuous VFCR-RLS type of algorithm for

on-line parameter estimation. The system used is similar

to those of [15], [44] and [46]. State feedback is available

through filtered position-, velocity and chamber pressure

measurements, and a LP type of regression model similar to

[15], [32], [17] and [31], is used. A VFCR-RLS similar to

that of [44] is applied, with an additional upper bound on the

covariance matrix. Furthermore, regarding the VFCR-RLS

implementation, a parameter update restriction is applied in

order to avoid parameter updates in periods with insufficient

PE - as a result of this, the parameter update is turned off

if the velocity and acceleration are below some predefined

values. The validation of the controller and EA is carried

out under similar conditions as in [44]. In the results shown,

parameters are only nearly converging, not showing the

behavior of the EA after convergence. Furthermore, as for

[44], the parameter tracking ability EA is not evaluated.

Another contribution reported in [47] also applies a CR-RLS

algorithm for parameter estimation. The system used is a servo

valve-controlled, horizontally mounted asymmetric cylinder

with a fixed inertia load, and piston position feedback. The

system is modeled as a third order regression model. The EA

applied is the EFF-RLS type similar to that of [18]. The CR

modification is not explicitly presented, but it is stated that the

covariance is reset when a directional change in the reference

position is applied, which seems reasonable due to asymmetric

volume variation and flow gain. The EA responds to parameter

variations - however, whether convergence to true parameters

is achieved is not discussed. As the CR-RLS apparently had

an EFF of one, the EA must be considered bounded.

A. Summary on VFCR-RLS

Application of VFCR-RLS algorithms in relation to EHA

systems appears limited. Similar systems are used [44] and

[43], and the EAs are in both cases based on the state space

formulation for the system. The actual performance of the

CR is not evaluated in either of the papers, neither is the

parameter tracking ability of the EAs. Furthermore, only the

EA presented in [43] and [47] may be considered bounded.
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VII. REGULARIZATION OF THE COVARIANCE MATRIX

(RC)

Another approach which may be applied in order to pre-

vent the update gain from tending to zero and at the same

time maintaining the update gain bounded, is the so-called

covariance regularization approach.

This approach is reported in [48], and discusses the relations

between the covariance modification and regularization of

the RLS algorithm, and presents an analysis of the effect

of implementing such modifications with the main focus on

how to obtain regularization as proposed in [49], through

covariance modification. The achievements are implemented

on a hydraulic crane, not further presented. As mentioned, the

main focus is on how to obtain regularization via covariance

modification i.e. adding an additional matrix term in the co-

variance update algorithm. The regularization part of the paper

is based on the so-called Levenberg-Marquardt regularization

discussed in [20]. The focus is on deriving an algorithm that

possesses both tracking and regularization properties. Through

different approximations the algorithm proposed in [49] is

obtained, and it is stated that the eigenvalues of the covariance

matrix remains bounded, i.e. the trace of the covariance matrix

remain bounded. Simulation results show the covariance trace

being bounded during periods of poor excitation. Whether the

EA is able to track parameter variations is not presented.

VIII. CONTROLLED COVARIANCE TRACE - CCT-RLS

Another approach to control the parameter update gain is

through so-called controlled trace modification. Contributions

containing such modifications when applied to EHA systems

is presented in the following, and the section is divided into

two parts - one containing contributions related to constant

covariance trace control, and one containing a contribution

related to variable covariance trace control.

A. Constant Covariance Trace Control

In [50] a simplified adaptive control scheme for EHA

systems is presented using RLS for estimation of parameter

variations. The system used is a servo valve controlled,

horizontally mounted symmetric cylinder, apparently with

a constant inertia load and piston position feedback. The

system is modeled as a pure integrator and a gain in the

discrete time domain, neglecting remaining dynamics and

disturbances. Due to the simplified model, only the system

gain is unknown, and is estimated on-line via a CCT-RLS

- however, the CCT algorithm is not presented, as well as

no references are given regarding the origin of the algorithm

in literature. For experimental validation of the proposed

controller, a rectangular periodic reference with a frequency

of 0.4 [Hz] is applied. The parameter tracking ability of the

EA is evaluated by a change in the system gain to 2/3 of its

initial value both in simulation studies and experimentally,

and proved effective in tracking this variation.

In [51] an CCT-RLS algorithm is applied in the adaptive

control of a water hydraulic servo system. The system used is

an overlap servo valve controlled symmetric cylinder with a

constant sliding load, with the piston position fed back. The

regression model used for parameter estimation is a linear

discrete type of model. The method applied for parameter

estimation a RLS algorithm with two different forgetting

factors, controlled in order to achieve controlled trace of

the covariance matrix as proposed in [26], with no further

discussion on the controlled trace approach. For validation of

the controller, a rectangular periodic reference with maximum

stroke of 1/6 of the stroke range, at a frequency of 1/10 [Hz]
is applied. The ability for the EA to track parameter variations

is evaluated through load- and no-load situations, and at

two different supply pressures. No specific results on the

parameter estimation are presented.

In [32] a continuous CCT-RLS algorithm is applied for pa-

rameter estimation, previous to parametrization of a nonlinear

backstepping controller for an EHA system. The system and

regression model are similar to those used in [17] and [31], and

the parameter estimation is carried out by use of the continuous

RLS algorithm with controlled trace proposed by [18]. The pa-

rameter estimation is carried out prior to the control operation,

in open loop, and with an input signal being a sinusoidal input

of 3 [Hz] frequency and an amplitude of 10 % of the input

range. It is stated that parameter convergence is achieved, but

parameter estimates are not presented. Parameter convergence

to true values is not considered.

B. Variable Covariance Trace Control

Another and well-documented CCT-RLS approach is re-

ported in [52], in which a CCT-RLS is implemented as a

part of an indirect adaptive pole assignment position control

scheme for an EHA system. The system used is a servo

valve (overlap) controlled, horizontally mounted asymmetric

cylinder with a constant inertia load. The filtered (third order

filter) piston position is used as feedback, and the regression

model used is a third order discrete time model. The EA

applied is similar to the ones in [22] and [20] with EFF,

and with a CCT providing an upper bound on the covariance

trace, and the ability to turn off the parameter adaption if

the upper covariance trace bound is reached. The scheme is

experimentally validated by applying a rectangular periodic

reference with an amplitude of ∼ 3 % of the actuator

range, and a frequency of ∼ 0.60 [Hz]. For verification of

parameter tracking, the supply pressure is reduced to 20 %-

, and increased by 300 %, and the volumes between valve

and cylinder chambers are in- and decreased. The changes are

made abruptly during operation, and the parameter estimates

as well as the controller adapts well to these changes. A similar

contribution is reported in [53], by the same authors.

C. Summary on CCT-RLS

In [50], [51] and [32] controlled covariance trace algorithms

with the object of maintaining the covariance trace constant,

are presented. The boundedness of the EAs is not discussed,
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hence this property can not be concluded - however, if func-

tioning properly, such a modification will render the update

gain bounded. The ability of EAs to track parameter variations

is evaluated in [50], [51], but not in [32]. In [52] a CCT-RLS

algorithm, with object of controlling the trace dependent on

the level of PE is presented. The covariance trace is shown

to be bounded, and the ability of the EA to track parameter

variations through perturbations is shown.

IX. SUMMARY

In general the application of RLS type algorithms applied

to EHA systems appears rather fragmented regarding the

modification to fit the specific purpose, regression models etc.

Furthermore the evaluation of the EA performance also varies

significantly, both regarding the actuator range, and regarding

the parameter tracking ability, and no common approach on

how to design, nor validate EAs in relation to EHA systems

is demonstrated. Furthermore the general impression on this

topic is that only limited attention has been given to the EAs

when applied to EHA systems, an on how to compensate for

the drawbacks of RLS algorithm. The main attention are in

general given to the control schemes which are usually are

the main topics of papers containing EAs. Also the evaluation

of the EA performance is often given little attention, although

being crucial for the controller performance. In the following

a summary relating to the criteria of evaluation is given.

A. System Types

The most common system types used as target for the

EA- and controller design are horizontally mounted asymmet-

ric/symmetric cylinders controlled by servo valves, subjected

to nearly constant loads. This is the case in [13], [23], [25],

[27], [19], [28], [30], [47], [38], [39], [40], [50], [51], [52],

[53] and to some extend [15], [44], [43]. In [33], the cylinder

is vertically mounted, and in [37] the system information does

not allow the reader to consider the system at hand. Only in

[34], [48], due to the crane applications, parameter variations

are inherently present. The only significantly different systems

used are in [32], [17], [31], [24] and [21] in which valve

controlled fixed displacement motors are used, and in [35] in

which a variable displacement motor is used.

B. Regression models

The regression models applied in the contributions re-

viewed, can be summarized to primarily LP-models, linear

time discrete models and continuous transfer function models.

In [13], [15], [44], [43], [32], [17] and [31] the regression

models applied are LP models based on space space system

models.

In [21], [24], [25], [27], [19], [28], [30], [33], [37], [40],

[47], [51], [50], [52] and [53] linear time discrete (and in

[35] continuous time) models of different orders and sim-

plifications/extensions are applied - e.g. in [37] an eighth

order model is applied, assuming that all unmodeled dynamics

and disturbances are represented in this, and in [50] the

system is modeled as a discrete integrator and a gain. Also

in [40] also the system is modeled by a time discrete model,

but with a Hammerstein like extension incorporating a static

polynomial like nonlinearity to account for nonlinear spool-

flow characteristics.

In [23] and [34], continuous transfer functions are used as

regression models.

From the above it is found that mainly two approaches are

applied when considering the regression models - namely LP

models based on state space system representations, when full

state feedback is available, and linear time discrete models,

when a limited number of states are available.

C. Parameter Variations

Regarding the ability of the EAs to track parameter varia-

tions, this is not presented in several papers, even though this

is a rather crucial property when considering EHA systems.

In [13], [15], [21], [23], [25], [17], [28], [30], [47], [38],

[39], [35] [33], [44], [43], [48] and [32] no parameter perturba-

tions are made in the system parameters in order to evaluate

the tracking ability. In [19], [24], [37], [40], [51], [52] and

[53] the supply pressure is changed online, and in [24] and

[40] also by changing the load, and in [52] and [53] also by

changing the volumes between valve and cylinder chambers.

In [17] the viscous damping is perturbed, and in [31] and [51]

different load situations are considered. In [34] the resonance

frequency is perturbed, and in [50] and [27] model parameters

are perturbed.

It is found that many papers lack information on the ability

to track parameter variations, and in papers where this is

discussed, various parameter perturbations have been made,

not indicating any common approach for evaluation of EA

tracking ability.

D. Boundedness of Estimation Algorithms

None of the contributions utilizing EFF-RLS algorithms,

consider the boundedness of the EAs, even though this type

of RLS modification has the property that the update gain may

grow unbounded in periods of insufficient PE.

Regarding the VFF-RLS approaches made in [28], [30],

[31], these depend only on time, or on the number of samples

in the sense that as time evolves, the VFF will tend to one,

which eventually will cause the covariance trace, hence the

update gain tending to zero, and eventually to be bounded -

however, until this stage, if insufficient PE is merging with

a low valued forgetting factor, the update gain may grow

unbounded similar to the EFF-RLS. The VFF proposed in

[33] is inversely proportional to the squared model error

within a predefined lower bound, and an upper bound of one.

Furthermore an upper bound on the covariance trace is applied

in order to avoid covariance blow-up, rendering the algorithm

bounded.

Also the VFF-RLS proposed in [34] will remain bounded

through a covariance trace based VFF and an additional

parameter- and covariance update control variable. Further-

more, to handle component saturation, an override control of

the parameter and covariance update terms is implemented.
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This renders the overall EA bounded, and provides the ability

to control the parameter update taking into account the level

of PE.

Regarding the DZ-RLS algorithms, no discussion on

whether or not the EAs remain upper bounded is given.

However, a lower level of the covariance trace is obtained

based on the on model error dead band. For the DZ-RLS

algorithms discussed in [37], [38] and [39] in case of the model

error exceeding the dead band in a period of insufficient PE,

the VFF will decrease, and the covariance trace may grow

unbounded. In the algorithm proposed in [40], in periods of

insufficient PE, the update gain may grow unbounded.

In the VFCR-RLS algorithm proposed in [44], the covari-

ance trace will remain above some lower bound different

from zero, depending on the CR design, but no upper bound

is defined. In [43] on the other hand, an upper bound is

provided on the covariance trace also, and an override variable

is defined, disabling the update ability in periods of insufficient

PE. The EA presented in [47] must be considered bounded as

an EFF of one is apparently applied.

The RC-RLS algorithms presented will, due the nature of

the RC, cause the covariance trace to be globally bounded,

reducing the update gain in periods of insufficient PE.

Discussions on the boundedness of the CCT-RLS algorithms

in [50], [35] and [51] are not presented, and as limited infor-

mation is presented on the CCT modifications, no conclusions

can be made on EA boundedness. The algorithm proposed in

[32] can be considered bounded according to [18], and the

CCT applied in [52] and [53] provide an upper bound on

the covariance trace, and the ability to turn off the parameter

adaption if the upper covariance trace is reached - this renders

the EA bounded making the update robust towards periods

with insufficient PE.

It is found that boundedness of the EA algorithms reported

in many contributions are most often not discussed, and

in many cases boundedness of the algorithms can not be

concluded from the algorithms. This seems rather strange,

as this is a crucial and fundamental property, when applying

EAs to continuously operating systems, and especially EHA

systems.

E. Overview on Results

To provide a concluding overview on the (rather frag-

mented) findings obtained from the discussion of this paper,

these are summarized in table I, regarding two important

properties - the ability of tracking parameter variations and

whether algorithm boundedness may be concluded.

X. CONCLUSION

In this paper a review on the application of RLS-type

algorithms to EHA systems has been presented. The focus

was placed on the control of the parameter adaption gain,

and approaches reported in literature appear rather fragmented,

but may be divided into five overall approaches; the exponen-
tial forgetting factor approach, the variable forgetting factor
approach, the variable forgetting factor approach with dead

Evaluation Crite-
ria

Parameter variations Algorithm bounded-
ness

[13] No No
[15] No No
[17] Yes No
[19] Yes No
[21] No No
[23] No No
[24] Yes No
[25] No No
[27] Yes No
[28] No No
[30] No No
[31] Yes No
[33] No Yes
[34] Yes Yes
[37] Yes No
[38] Yes No
[39] Yes No
[35] No No
[40] Yes No
[44] No No
[43] No Yes
[48] No Yes
[50] Yes No
[51] Yes No
[32] No Yes
[52] Yes Yes
[53] Yes Yes

TABLE I
OVERVIEW OF FINDINGS REGARDING THE EA BOUNDEDNESS AND

PARAMETER TRACKING ABILITY. ”YES” INDICATES THAT THE PROPERTY

CAN BE CONCLUDED, AND ”NO” MEANS THAT IT CAN NOT BE

CONCLUDED FROM THE INFORMATION PROVIDED BY CORRESPONDING

PAPER.

zone, the covariance matrix regularization approach and the

controlled covariance trace approach.

This main purpose of the review was investigation of exist-

ing research contributions within RLS approaches to parameter

estimation, and to evaluate their applicability in relation to

continuously operating EHA systems. Here crucially important

properties are the parameter tracking ability of the algorithm,

and the algorithm boundedness. From the review, it is found

that two of the proposed approaches posses these properties

and may be applicable to continuously operating EHA systems

- these are presented in [34], [52] (and [53]). The remaining

papers reviewed may not be considered directly applicable

without further analysis and testing.
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