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ABSTRACT 

Recent studies of designing home energy management systems (HEMSs) have 

indicated that considering uncertainties and random parameters of various home 

resources such as photovoltaic (PV) arrays, plugged-in electric vehicles (PEV), and 

home load demand can significantly improve the HEMS optimal performance. 

Therefore, the subject of this thesis is to design a HEMS incorporating uncertainties 

arise from PV power output, home load demand (thermal and electricity), PEV trip 

time, and PEV state of charge (SOC) at plugged-in time. the contribution of this thesis 

is divided into three parts: 1) modeling of building resources 2) control-oriented 

modeling strategies and 3) performance and profit assessment of implementing the 

designed HEMS for building with different energy labels (determine the building 

storage efficiency). 

A contribution of this thesis is to provide a comprehensive comparison of the existing 

modeling techniques such as physics-based modeling (equation-based models), data-

driven or combination of them (hybrid modeling) techniques for different resources 

of a building. Then, these techniques are employed to capture the uncertainties of PV, 

home load demand (thermal and electricity) and PEV. The accuracy of the obtained 

models from each technique are validated by the historical data. Then, the pros and 

cons of each technique are presented. The results demonstrate the conditions, under 

which the methods can provide a reliable and accurate description of smart home 

dynamics. Eventually, a holistic model for the entire building is provided with 

considering building electrical and thermal parts. This holistic model is used by the 

controller to minimize the main objective of the problem while should not violate the 

problem constraints. In this section, some famous empirical PV models and current 

machine learning techniques such as artificial neural networks  

The second contribution is to develop a closed-loop online optimization controller to 

deal with uncertainties, stochastic parameters and nonlinearities of the problem. 

Therefore, a predictive HEMS is designed through nonlinear model predictive control 

(MPC) to minimize the building cost of energy and meet the user's preference in terms 

of the need for electricity and thermal energy. To the best of author’s knowledge, this 

is the first study in the smart home context that considered the user's thermal and 

electrical requirements by using the following home energy storages (HESs) 

technologies; 1) PEV battery and 2) building thermal mass (heating/cooling the 

building through HP) as home energy storages. Using the following, technologies as 

the building storages make the system economic. Furthermore, a trade-off is made 

between the HEMS optimal operation and PEV battery lifetime degradation cost. The 

last but not least, the simulation results are validated by comparing it with an off-line 

optimization counterpart in which all the future inputs are known in advance. 

Finally, the third contribution is to investigate the profit assessment of the designed 

HEMS in different buildings with different storage efficiency (different thermal 
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resistance) which indicates by the building energy label ranges from “A” to “G”. 

Moreover, the impact of having different heating emission systems, which affect the 

building thermal capacity, is investigated as well. The simulation results prove that 

not even the HEMS optimal performance in building with proper storage efficiency 

(Label “A”) is much better than the poor storage efficiency, but also the HEMS 

performance in meeting the optimization constrains is much close to desire point than 

the building with poor insulation quality. The last but not least, it is shown that in a 

building with the same energy label, the floor-radiator heating system can improve 

the HEMS performance in both energy cost minimization and fulfilling constraints 

than the radiator-only heating systems, because the floor-radiator heating system 

increases the building thermal time constant (by improving building thermal 

capacity). Although, the improvements reduce as the building energy label moves to 

label “G”. 
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SYNOPSIS 

Nyere undersøgelser af bygningsenergistyring (Home Energy Management 

System- HEMS) viste, at betragtning af usikkerheder og sandsynligheder for 

parametre kan forbedre HEMS-optimale ydelse. Disse usikkerheder stammer 

fra forskellige hjemmressourcer såsom fotovoltaiske (PV) solceller, 

tilsluttede elektriske køretøjer (PEV) trippetid, PEV tilstand af opladning 

(SOC) ved tilsluttet tid og hjemmebelastning efterspørgsel (termisk og 

elektricitet) i en boligbygning. Denne ph.d.-afhandling foreslår derfor design 

af en HEMS, der inkorporerer disse usikkerheder og tilfældige parametre. 

Denne ph.d.-afhandlings bidrag er opdelt i tre dele: 1) modellering af 

bygningsressourcer 2) kontrolorienterede modelleringsstrategier og 3) 

evaluering af resultater og fortjeneste ved implementering af det foreslåede 

HEMS til bygning med forskellige energimærker.  

Et af bidragene er at give en omfattende sammenligning af de eksisterende 

modelleringsteknikker såsom fysikbaseret modellering (ligningsbaserede 

modeller), datadrevet eller en kombination af disse to metoder (hybrid 

modellering). Derefter anvendes disse teknikker til at fange usikkerheden 

omkring PV, energiforbrug (termisk og elektricitet) og PEV. Nøjagtigheden 

af de opnåede modeller fra hver teknik blev valideret af de historiske data. 

Derefter præsenteres styrke og ulemper ved hver teknik. Resultaterne viser 

betingelserne, under hvilke metoderne kan give en pålidelig og nøjagtig 

beskrivelse af smarthusdynamikken. En holistisk model for hele bygningen 

blev opnået med hensyn til bygning af elektriske og termiske dele. Denne 

holistiske model bruges af controlleren til at minimere hovedomkostningerne 

ved problemet, mens den ikke må ramme problembegrænsningerne.  

Det andet bidrag er at udvikle en lukket-sløjf onlineoptimeringscontroller til 

at håndtere usikkerheder, stokastiske parametre og ikke-lineær opførsel af 

problemet. Derfor er en prædiktivt HEMS designet baseret på et ikke-lineær 

model prædiktive kontrol (MPC) for at minimere 

bygningsenergiomkostningerne og imødekomme brugerens præference med 

hensyn til behovet for elektricitet og termisk energi. Efter det bedste fra 

forfatterens viden er dette den første undersøgelse i smarthus-konteksten, der 

overvejede brugerens termiske og elektriske krav ved hjælp af følgende HES-

teknologier (home energy storeages); 1) PEV-batteri og 2) bygning af termisk 

masse (opvarmning / afkøling af bygningen gennem varmepumpe (HP)) 

som hjemmenergilagring. Brug af følgende teknologier som bygningslagre 

gør systemet mere rentabelt. Derudover foretages en afvejning mellem HEMS 

optimal drift og PEV-batteriets levetidsnedbrydningsomkostninger. Sidst, 

men ikke mindst, er simuleringsresultaterne valideret ved at sammenligne 
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dem med et off-line optimeringsmodpart, der bruger alle fremtidige input på 

forhånd.  

Endelig er det tredje bidrag at undersøge overskudsvurderingen af det 

designede HEMS i forskellige bygninger med forskellig 

opbevaringseffektivitet (forskellig termisk modstand), som blev indikeret af 

bygningsenergimærket fra “A” til “G”. Desuden undersøges virkningen af 

forskellige opvarmningsemissionssystemer, der påvirker bygningens termiske 

kapacitet. Resultaterne viser, at ikke kun den HEMS optimale ydelse ved 

bygning med korrekt opbevaringseffektivitet (Lable “A”) er mere bedre end 

den dårlige opbevaringseffektivitet, men også HEMS-ydelsen ved at opfylde 

optimeringsbegrænsningerne er meget tættere på det ønskede punkt end det 

bygning med dårlig isoleringskvalitet. Sidst, men ikke mindst, vises det, at 

gulv-radiatoropvarmningssystemet i en bygning med den samme 

energimærke kan forbedre HEMS-ydelsen i både 

energiomkostningsminimering og opfyldelse af begrænsninger sammenlignet 

med radiatoropvarmningsbygninger. På grund af gulv-radiatorvarmesystemet 

øges bygningens termiske opbevaringskapacitet. Forbedringerne er dog 

minimale for bygninger med energimærket “G”.  
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1. INTRODUCTION 

1.1 MOTIVATION 

Electricity consumption in Denmark is going to change in the upcoming years, 

especially in residential sections. The electricity demand is increasing as end-users 

are replacing traditional petrol-powered vehicles with plug-in electrical vehicles 

(PEV) and oil-fired burners with electric heat pumps (HPs). Therefore, the power 

network must be updated according to these changes with the same delivery quality 

as today. Moreover, these new upgrading has to meet Denmark’s ambitious climate 

and energy-policy targets regulations such as reducing CO2 emission, improving 

energy efficiency means and integrating more renewable energy resources. 

To meet the future end-users’ energy demand with the contribution to the above 

targets, the exciting residential buildings should turn to smart buildings or nearly zero 

energy buildings (nZEB) according to the EU Commission after 2020 [1]. Buildings 

play a significant role in the future of sustainable power networks as about 40% of the 

total energy consumption and 36% of the European Union’s emissions caused by them 

[2]. In a smart home, changing and increasing of electricity consumption can be 

managed efficiently as it provides a dynamic interaction between its resources, power 

system and consumers through metering, controlling and automation (similar to a 

smart grid). Therefore, a home energy management system (HEMS) is essential for a 

successful smart home. HEMS shifts and curtails households’ demand through smart 

home resources to improve the smart home performance according to electricity price 

and consumer comfort [3]. A smart home can have a variety of resources, including 

renewable resources (photovoltaic array (PV)) and energy storage systems (ESSs) 

such as batteries, plugged-in electric vehicles (PEV) and thermal storages (building 

thermal mass and hot water tank). Due to the integration of volatile renewable energy 

resources, stochastic PEVs mobility patterns, and random household energy 

consumption, randomness parameters and uncertainties have become the major 

challenges for the HEMS performance in terms of efficiency and economics. Thus, 

stochastic dynamic energy management or closed-loop real-time optimization has to 

be implemented to reduce the uncertainties and stochastic parameters impact on a 

HEMS performance. Recently, researchers have focused on developing stochastic 

energy management for integrating HPs, PEVs, and renewable energy into the 

household’s loads and grid.  

Therefore, in this thesis a new energy management strategy is proposed for the smart 

home to minimize the daily electricity cost through a nonlinear model predictive 

control (MPC) (closed-loop online optimization) while fulfilling the energy load 

demand, PEV charging/discharging and user’s comfortability requirements. 
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1.2 BACKGROUND  

All the research disseminated in this thesis is accomplished as a part of the smart home 

project in cooperation with Solar Flex (new name as Smart-Energi) and co-funded by 

Dansk Energi (Elforsk program grant number: 350-005). Solar Flex (Smart Energi) 

provides advanced power electronics, alternative energy technologies, and building 

stored energy to turn the residential buildings to smart homes. The smart home project 

aims to significantly increase the HEMS performance and efficiency compared to the 

current HEMS by incorporating uncertainties.   

1.3 SMART HOME CONFIGURATION AND OPERATION 

A conceptual sketch of the smart home project is shown in Figure 1.1. The 

configuration includes PV, PEV, HP, grid, appliance (thermal and electrical), real-

time internet-based data and HEMS. According to this figure, HEMS communicates 

with different home resources to ensure the power balance among all components in 

a way to minimize the cost of energy and meet the user’s energy needs. The HEMS 

saves the extra PV power generation either in an EV battery pack, if available, or in 

the building’s thermal capacity mass via heating/cooling the building space by HP, or 

by injecting the extra power into the grid. As can be seen in Figure 1.1, the HEMS 

uses weather forecast data, smart meter data and electricity price to improves its 

performance. In this thesis, irradiance, temperature, wind speed and humidity which 

influence the PV production and energy consumption are used as the meteorological 

data. The accuracy of PV and household load demand models increase by 

incorporating meteorological data such as outside temperature, wind speed, etc [4]. 

The PEV and HP are responsible for balancing the power flow between the grid, PV 

and household load demand. In other words, the extra PV power generation is saved 

as electricity in the PEV battery pack when it is available or is stored in the building 

thermal mass capacity. It is also barely possible to inject the PV power generation to 

the grid when both the PEV is not available and user comfort conditions are close to 

its acceptable maximum or minimum amount (close to its boundary constraints). 
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Figure 1.1. Overall structure of a smart home with its HEMS. 

The power flow schematic is exhibited in Figure 1.2. The PEV is connected to a 

bidirectional AC/DC inverter and PV is coupled to a unidirectional DC/AC inverter 

to feed AC loads, HP, PEV and interface with grid. HEMS governess power flow 

among smart home components. 

 

Figure 1.2. Electric circuit diagram of a smart home with power electronic technologies. 

In this thesis, the home energy management system consists of two agents: Prediction 

Engine (PE) and Decision-Maker System (DMS). The overall schematic of the HEMS 

structure is shown in Figure 1.3. The proposed energy scheduling method is based on 

the moving window algorithm (MWA). According to this approach, the energy is 

scheduled in each period, and the agent will be updated in each period, as well. In the 
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Prediction Engine (PE) should provide the accurate prediction of all stochastic 

variables of the system such as wind speed, ambient temperature, electricity price, 

PEV status (plugged-in time and Plugged-out time), PEV battery energy at plug-in 

time, PV power production and home energy demand (electrical and load) for the 

DMS.  

 

Figure 1.3. The HEMS structure and agents. 

 

As mentioned above, the stochastic variables should be forecasted by PE. In this 

thesis, the PE uses weather station data and utility data to find forecasting of wind 

speed, ambient temperature and electricity price through the internet. The rest of 

random parameters such as PEV status, PEV battery energy at plug-in time, PV power 

production and home energy demand (electrical and load) are forecast by PE agent. 

DMS decides to charge/discharge PEV or heating/cooling the building based on the 

provided forecasted data such as electricity price, PEV status, building inside 

temperature, etc. Hence, the accurate forecasting of the PE can assist the DMS to 

fulfill the household requirements and minimize the cost of energy.  

The task of the DMS is to make an optimum decision in the smart home. An optimum 
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minimizing the cost of the system, maximizing the profit of the system owner, 

increasing the reliability of providing the electricity, increasing the welfare of the 

resident, etc. Therefore, after the objective function is defined in the system, this agent 

should make an optimum decision. In this case, DMS faces a discrete optimization 

problem, which should satisfy different constraints related to different devices of the 

home such as loads, PVs, PEVs, and user’s thermal preferences. As mentioned before, 

the output signals of PE are the other inputs of the DMS that apply the uncertainty to 

the decision-making problem. There are different methods to deal with the uncertainty 

in the optimization problems like stochastic dynamic programming (SDP), interval 

optimization, robust optimization, online scheduling, Model Predictive Control 

(MPC), etc. MPC is the most common method for incorporating uncertainties to 

reduce the impact of forecast errors on DMS performance through smart meter data 
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(real-time operation). The MPC manipulates the home resources variables to optimize 

the energy cost while satisfying the user’s requirements. Then, the DMS (MPC) sets 

the optimum operating points for HP and PEV and sends the set points to the low-

level controllers. Low-level controllers should control very fast and continuously 

between two-time steps of the discrete optimization of decision-making problem to 

keep the operating point of the home resources near the set points if the turbulence 

has happened in the system. At the end of each time step, smart meters measure real 

data and send new signals to DMS and PE to update them for the next time step to re-

schedule the energy and update operating set points. In other words, the PE re-forecast 

the uncertainties and the DMS reschedules the optimum decision every time step 

according to the re-forecasted and smart meter data.  

1.4 RESEARCH HYPOTHESIS 

Following the discussion in the previous sections, the HEMS can improve the building 

energy efficiency, power quality, reliability and reduce the cost of energy and CO2 

emission using onsite renewable resources and flexible loads (PEV and HP).  

The HEMS performance is highly dependent on the accuracy of forecasted data 

provided by PE and DMS performance to work with uncertainties. In order to find 

accurate models for home resources, the impact of uncertainties and random 

parameters on the PV, load demand, PEV and building inside temperature have to be 

modeled or estimated. For example, modeling the impact of wind speed and solar cell 

temperature (dependent on the ambient temperature) on the PV power output, improve 

the forecasting of the PV power output significantly. Therefore, a combination of 

physics-based modeling approaches (empirical model or numerical model) with data-

driven models (using Artificial Intelligent (AI) (black box models)) is an alternative 

to capture the impact of uncertainties and un-modeled parameters for improving the 

PE forecasting. On the other hand, the DMS has to be able to reduce the effect of 

uncertainties and un-modeled parameters (forecast error) on the optimization 

performance through smart meter data, because it is not possible to find zero-error 

forecast models. Therefore, real-time closed-loop optimization techniques are the best 

candidates to deal with uncertainties such as MPC that swap its control signals in each 

time step according to smart predicted data. Hence, in this thesis, the expected 

outcome is to improve the energy efficiency by providing a proper MPC that can 

optimally coordinate the PEVs charge/discharging and HP rated power inside a smart 

home with significant penetration of renewable resources like PVs. Also, the system 

can potentially reduce the electricity consumption of the grid by 10-30% (depending 

on the profile of the user consumption and the building resources). Moreover, we 

expected that our work follows the policy climate and be economical, by the use of 

more renewable energy resources (maximizing PV self-consumption in buildings) and 

energy storage systems  (ESS) such as PEVs and building thermal mass. Thus, in 

relation to improving the HEMS performance in minimizing the cost of energy and 

fulfilling the user’s requirements, the research hypothesis is as follows:  
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 It is possible to improve the accuracy of forecasting using hybrid models 

(combination physics-based models with data-driven methods (massive 

measurement data or black-box models (AI and Artificial Neural networks 

(ANN)). 

 It is possible to improve the optimization of the HEMS using adaptive 

controllers such as MPC and sensing elements (smart meters). 

 Is the operating profits of the proposed HEMS improves in well-insulated 

buildings with different heat emission technologies. 

1.5 OUTLINE OF THE PAPERS 

Because the form of this thesis is a collection of papers, it is divided into an extended 

summary part and a part containing papers, which shows the contribution of the thesis. 

In the extended summery part, the background, motivation of the project and 

contribution of papers are presented. 

Moreover, four conference papers, one book chapter and three journal papers (two 

published and one revised) on highly qualified peer-review journals are extracted from 

this thesis. The papers are numbered from A-H. However, only papers A, C, F and D 

are placed in the second part of this thesis because other papers are some parts of these 

papers. Furthermore, the chronology of the papers is exhibited in Figure 1.4 and the 

papers are described as follows: 

 

Figure 1.4. Chronology of the disseminated papers. 

 

Paper A

Energy management 
strategies for smart home 
regarding uncertainties, 

Paper B

ANFIS Based Approach for 
Stochastic Modeling of 

Smart Home.

Paper C

A Comparison Study on 
Stochastic Modeling 

Methods for Home Energy 
Management Systems.

Paper D

Stochastic Smart Charging of 
Electric Vehicles for 

Residential Homes with PV 
Integration.

Paper E

Smart Energy Management 
System for Residential 

Homes Regarding 
Uncertainties of  .

Paper F

Predictive Home Energy 
Management System with 
Photovoltaic Array, Heat 
Pump and Plug-in Electric 

Vehicle

Paper G

Net-Zero Energy Buildings: 
Modeling, Real-Time 

Operation, and Protection.

Paper H

Profit Assessment of Home 
Energy Management System 

for Buildings with A-G 
Energy Labels

Forecast 

modeling

Controller 

and 

optimization 

Profit 

assessment
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Paper A [5] 

In this paper, a brief state of the art review of the context of smart home, HEMS, 

stochastic optimization methods, building resources and their different uncertainties 

is presented. Moreover, an overview of smart home and HEMS concepts in 

minimizing the cost of energy and CO2 emission is given. The paper A is the starting 

point for the rest of the papers of this thesis.  

Paper B [6] 

The review in paper A proved that considering uncertainties and implementing 

stochastic methods can improve the HEMS performance in reducing the home energy 

cost. Therefore, in paper B, uncertainties related to the PV power output and home 

load demand are modeled through machine learning techniques such as ANN (multi-

layer perceptron architecture) and adaptive neuro-fuzzy inference system (ANFIS). In 

this paper, it is proved that both ANN and ANFIS are proper tools for capturing the 

uncertainties of home load demand and PV power output.  Finally, a stochastic model 

is obtained for the smart home with PV, PEV and HP. The results of the system are 

validated by the real measured data. The results of this paper lead to the study work 

in paper C.  

 

Paper C [4] 

As explained in paper B, some advantages of AAN models are their ability to 

approximate the nonlinearity of the system and they can keep improving as more data 

fed into them. But their downsides are highly dependent on the data quality & 

quantity, very bias to the data they trained based on them and not interpretable (black 

box). For this reason, in paper C, other data deriving modeling methods, which are 

combinations of physics-based modeling methods with either massive measurement 

data or data-driven approaches, are studied and compared with pure black-box 

models. The aim of paper C is to present a comprehensive comparison for modeling 

different smart home resources such as PV, PEV, building space heating and home 

energy demand through other data-driven and probability methods. Finally, the 

accuracy, pros and cons of each model are discussed and reviewed. The results of 

paper C give rise to works D, E, F, G and H.  

Paper D [7] 

 This paper aims to design a controller for smart charging/discharging of the PEV in 

a residential building with the models obtained in paper C. In this paper, the closed-

loop controller has to track a desire set point (SOC) of the PEV when it is available. 
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This study is a fundamental study of the papers E and F to investigate the role of PEV 

on HEMS performance.    

Paper E [8] 

In paper E, a HEMS is formulated for a smart home to minimize the electricity cost 

under time-varying electricity price signals, PV, household demand and PEV 

uncertainties. Besides, the PEV charging/discharging and home electrical power 

demand requirements have to be satisfied smartly and optimally. In this study, only 

the electricity need for energy is satisfied and user’s thermal comfort and thermal 

energy needs are not studied. Therefore, paper F is proposed to complement and 

improve paper E.  

Paper  F [9] 

Paper F is a consist yet extended version of paper E. In this work, the HEMS has two 

effectively manipulate variables (PEV and HP) in order to minimize the cost of energy 

according to electricity tariffs of use. Moreover, the battery lifetime degradation, user 

thermal comfort level and fast dynamic behavior of the system studied. The outcomes 

of paper F utilized in paper H to investigate the profits of designed HEMS in highly 

insulated and poorly insulated buildings with different heat emission systems.  

Paper G [10] 

Paper G is a combination version of the all the above mentioned works with more 

details. This work aims to present a tutorial study for researchers who are interested 

in working in this context with different applications such as modeling monitoring, 

fault detection and protection applications. 

Paper H [11] 

In previous papers, the advantages of HEMS for residential buildings in terms of 

minimizing cost and improving comfortability are discussed. However, there is still a 

need for a study to evaluate the profit assessment of real-time HEMS in existing 

residential buildings with different energy labels (insulation quality). In paper H, the 

profits of implementing real-time HEMS in buildings with varying labels of energy 

are investigated. Moreover, the impact of building thermal capacity on the HEMS 

performance is studied considering two different heating systems: radiator only and a 

combination of floor–radiator system in each building. The results show that the 

HEMS performance increase in a building with proper insulation quality rather than 

building with poor insulation quality. Finally, it is observed that the floor-radiator 

heating system can improve the HEMS performance in terms of minimization of the 

energy cost and meeting the user’s requirements rather than the radiator only system. 
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However, these improvements can be negligible for buildings with poor insulation 

quality (buildings with labels “F” and “G”). 
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2. STOCHASTIC MODELING OF SMART 

HOME RESOURCES 

2.1 INTRODUCTION 

The first essential step in designing an effective HEMS is to obtain appropriate 

models for the smart home resources, including PV model, building space 

heating/cooling dynamics, user’s thermal preference model, PEV 

charging/discharging model, and electrical home load demand. Therefore, the 

uncertainties and stochastic parameters of each of the mentioned components are 

studied in this section. Then, some models are presented by different modeling 

techniques, such as physics-based modeling methods, data-driven methods and hybrid 

modeling methods (a combination of the two last modeling methods), which 

somewhat incorporate uncertainties. Last but not least, the strengths and weaknesses 

of each technique are discussed.  

In this chapter, only different modeling methods of each component are introduced 

and discussed. The results about validation and accuracy of each model are presented 

in paper C [4], in which the introduced modeling methods in this chapter are used to 

model different home resources. Then obtained models are validated and their 

accuracies are compared.  

2.2 PHYSICS-BASED MODELING 

Physics-based modeling methods are the most common approach in the engineering 

community for modeling physical phenomena. It constitutes three following stages: 

1) Observing a physical system of interest; 2) developing partial understanding 3) 

finding mathematical equations, which describe the process understandings, and 

solving them ultimately [12]. In the literature, these methods broadly subdivided into 

experimental and numerical modeling. Empirical modeling includes full-scale 

laboratory experiments to understand a physical phenomenon and find correlations 

and models of quantities of a system. On the other hand, numerical modeling is a 

process of developing mathematical modeling of a physical object and perform on a 

computer to predict the behavior of a physical system. One of the great advantages of 

physics-based modeling methods is that they are less biased than data-driven models 

because they are driven by natural laws. However, the main disadvantage of these 

methods is that they can only model known part of a system and a large part of the 

physics may be ignored according to the partial understanding and assumptions [12]. 

Moreover, they can be too computational demanding and can be led to numerical 

instability due to complexities of the equations. In order to address these issues, data-

driven approaches are proposed. 
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2.3 DATA-DRIVEN METHODS 

Nowadays, data-driven approaches are getting more and more attention because of 

abundant sources of data, open-source libraries (TensorFlow and openAI) and cheap 

computational infrastructures like CPU.  By data-driven modeling, full physics of a 

process can be modeled because data is treated as a manifestation of both known and 

unknown natures’ laws in these modeling methods.  Generally, data-driven modeling 

consists of data generation, data processing, safety and advance data-driven modeling 

techniques.  Thanks to the availability of cheap sensors technologies, the data can be 

generated and stored in comprehensive databases [13]. These data can be used for 

training machine learning (ML) models, which are broadly utilized for analyzing data. 

ML is a study of algorithms and statistical models that can keep on improving through 

feeding more and more data (experience) to them [14]. In the literature, ML is sorted 

into supervised, unsupervised and reinforcements learning. In this thesis, supervised 

algorithms, are discussed and presented for obtaining forecast models for building 

resources [12].  

 Supervised learnings are techniques to provide learning mappings from independent 

variables to dependent variables in classification or regression applications. Decision 

tree, ANFIS, ANN, deep neural network (DNN) are the most popular supervised 

learning. The most advantages of ML algorithms are that 1) their training models can 

be improved as more data fed into them, 2) they can model unknown physics of a 

process and uncertainties, 3) the trained models are very stable for prediction 

applications. However, it has some disadvantages as well, 1) they are uninterpretable, 

2) they are not effective in the absence of enough data, 3) they are extremely biased 

upon the data they were trained on. Therefore, new modeling approaches which are a 

combination of physics-based models and data-driven methods are proposed as hybrid 

modeling methods to address the shortfalls of the aforementioned modeling methods 

[12].  

2.4 HYBRID MODELING  

Hybrid modeling is defined as a modeling method, which incorporates the 

understanding of a physics-based modeling approach with either the accuracy and 

pattern-identification capabilities of advanced data-driven algorithms or big data 

(measurements) or combination of all of them. In hybrid modeling, the known physics 

of a physical process (main principles roles of a physical system) is modeled by 

mathematical equations, whereas the unknown parts (disturbances, perturbation and 

stochastic parameters) are obtained through either ML techniques (ANN and DNN 

techniques) or big data measurement. The different modeling techniques are presented 

in Figure 2.1.  As can be seen, the hybrid modeling can be placed at the intersection 

of big data, physics-based modeling and data-driven modeling. 
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All aforementioned modeling techniques are used in the smart home literature to 

model different components used inside the smart home. In sequence, they are 

explained. 

 

Figure 2.1. Hybrid analysis and modeling. 

 

2.5 PV MODELING 

PV systems are one of the critical components of a smart home, which can supply a 

big proportion of the needs for energy in a residential building in a clean way. 

Therefore, finding an accurate and proper model for  PV systems is essential for the 

HEMS performance in minimizing the cost of energy and satisfying the user’s needs. 

The PV power output is very stochastic and volatile, due to many factors such as the 

time of day, clouds, wind speed, pollution, humidity, etc [15]. Therefore, the effects 

of these factors have to be considered in the obtained PV model to improve the PV 

model accuracy. Many studies proposed some PV models which incorporate some of 

these uncertainties for calculation of the PV output. Physics-based modeling, data-

driven approaches and hybrid modeling are utilized in PV modeling literature. In 

Table 2-1, an overview of PV generator models through the mentioned techniques are 

presented. According to Table 2-1, the PV physics model (obtained through physics-

based modeling method) more often is used in research related to the manufacturing 

and development of solar cell materials and aimed to describe the behaviors of the 

photovoltaic materials (2D, 3D FEM models). The electrical equivalent models (can 

obtain through either physics-based modeling or hybrid modeling ) are often used for 

maximum power point tracking (MPPT) control, shading modeling and PV 

depredation. Finally, the PV performance models (hybrid models, data-driven 

approaches and physics-based modeling) are often employed for planning, 

Physics-based 

modeling
Big data

Data-driven modeling

Hybrid  

modeling
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performance analysis and PV energy production. The PV performance and electrical 

equivalent models are presented in this thesis since the PV energy generation is 

essential for the HEMS.  

Table 2-1 

PV power generation models 

 

Physics-based 

models 

Electrical 

equivalent 

models 

Performance 

models 

Energy production    

Electrical behavior    

Physics behavior    

 

Not applicable Applicable 

 

2.5.1 PV EQUIVALENT CIRCUIT MODEL 

There are many equivalent circuit models for PV systems such as three-parameter 

model, four-parameter model, five, six or seven parameter-model, etc [16][17]. As an 

example, the four-parameter model is illustrated in this subsection [18]. This model is 

an electrical circuit that includes an ideal current source paralleled with a diode and 

resistance 
pR and series with a resistance sR . The variable sR  represents the 

resistance between the conductor and semiconductor material, while the diode 

represents the semiconductor materials in this model. The four-parameter equation is 

given as follows [18]: 
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, ,pv array s m c cell pvp N N n V I  (2.3) 

where  cellV  and dV  are the voltages of PV cell and diode respectively; 
pvI  is the 

output current of PV cell , sI  is the current saturation, and 
,cs refI  is the reference short-

circuit current of the PV cell at standard test condition (STC ) (25 C  and 1000 2w m  

); ,A k  and q  are an ideal factor, the Boltzmann’s constant, and an electron charge, 

respectively; cT , aT  and rT  are the PV cell, ambient temperature and reference 

temperature respectively; e and wv   are the effective solar irradiance and wind speed 

respectively; a  and b  are empirical parameters, and IK  is the short-circuit current 

temperature coefficient; 
,pv arrayP is the output power of the PV arrays, and cn  is the 

number of cells in series in a module’s cell string; the variables mN  and sN  are the 

number of modules and subarrays respectively. The variable e can be calculated 

through sun position and clear sky models [19][20]. In this model, since the 

parameters a  and b are estimated through measurement-based data, therefore, this 

model is obtained through hybrid modeling techniques (physics-based modeling 

combined with data-driven methods and big data analysis). For the rest of the models, 

the reader can conclude what type of modeling methods are used. 

2.5.2 SIMPLE PV PANEL EFFICIENCY MODEL (SIMPLE MODEL) 

As shown in Eq. (2.4), the PV output is a linear function of effective irradiance e  

in this model. It can be parameterized from the PV panel datasheet. As it is evident, 

many parameters, such as the effect of temperature and wind speed, are not modeled, 

so, the model accuracy is not proper for PV power prediction [21]. 
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where 
,pv mP , and 

,pv arrayP  are the maximum point of the PV power for the PV module 

and array ( kW ), s is the solar irradiance under STC ( 21000W m ). 

2.5.3 PVWATT MODEL 

In this model, the PV output power is a linear function of effective irradiance and 

solar cell temperature, as presented in Eq. (2.5). Because of solar cell temperature 

consideration (wind speed and ambient temperature impacts are modeled based on 

Eq. (2.2)), the accuracy of this model is more than the Simple Model. Likewise, the 

previous model, it can be parameterized from the PV module datasheet [22]. 

 

 , , 1 ,
1000

e

pv array s m mp m c rP N N P T T


        (2.5) 

where the variable   is the peak power normalized temperature factor (1 C  ).   

2.5.4 SANDIA PV ARRAY PERFORMANCE MODEL (SAPM) 

The SAPM is an empirical model that is obtained by the solar technologies 

department at Sandia[23]. In this model, photovoltaic module characteristics such as 

electrical, thermal, and optical characteristics are considered in the model, and the 

model is designed to use hourly solar resources and meteorological data. In this model, 

the PV power output is a nonlinear function of effective irradiance and PV cell 

temperature. The SAPM equations are as bellows[23]: 
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where 
mpI  and

mpV  are the PV current and voltage at maximum power point; 
,mp refI  

and 
,mp refV  are the PV current and voltage at maximum power point under reference 

condition respectively; 0C  and 1C are empirical parameters which determine the 

coefficients relating 
mpI  to effective irradiance respectively; likewise  2C  and 3C are 

empirical parameters which determine the coefficients relating 
mpV  to effective 
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irradiance respectively, 
mp  and 

mp are the normalized temperature factor for 
mpI  (

1 C )  and temperature coefficient for module maximum power-voltage 
mpV  (V C

).  cT  is thermal voltage’ per cell at temperature cT . It is about 26  mV  per cell 

for diode factor of unity (n=1) and a cell temperature of 25ºC. The SAPM accuracy is 

about 1% , which is very high [23]. It can also be used for modeling various PV 

technologies. In this thesis, the system advisor model (SAM), which is a desktop 

application, is employed to compute the PV power output by using the above-

mentioned PV performance models [21]. SAM calculates the PV power performance 

by given the system specification data and typical meteorological year data (TMY). 

The TMY data contains information associated with the location of the PV systems, 

including latitude, longitude, time-zone, elevation, as well as meteorology data, 

including ambient temperature, wind speed, and solar irradiance for one year. Thanks 

to this information, SAM can calculate sun position, effective irradiance, the 

temperature of PV cell, DC loss of arrays and inverter loss. More information related 

to SAM can be found in [21].  

2.5.5 ANN-BASED PV PERFORMANCE MODEL 

PV performance modeling literature is reached by different ANN architecture to 

forecast the PV output power. ANN are computational systems, inspired by the neural 

network of animal brains [24]. Different ANN architecture, including multilayer 

perceptron (MLP) [25], radial-basis function neural network (RBF-NN)[26], recurrent 

neural network (RNN) [27] and adaptive neuro-fuzzy inference system (ANFIS) [6] 

have been employed to obtain black-box models for the PV power generation. These 

methods are explained in this subsection. 

2.5.5.1 MLP 

The MLP structure is the most popular type of ANN for load and PV power 

production [28]. The MLP architecture includes input layers, hidden layers, and 

output layers. A representative of MLP architecture is illustrated in Figure 2.2. In this 

architecture, the inputs of the output layer are the outputs of the hidden layer. The 

MLP formulation is expressed for Figure 2.2 as given [28]: 
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where  W  and U  are the weight matrixes  and k  is the bias vector. For training 

the MLP, the back-propagation algorithm is frequently used, which employs the 

steepest descent approaches such as the Levenberg-Marquardt Algorithm by 

computation of the loss function gradient toward to the ANN parameters.  

 

Figure 2.2. A representative MLP architecture with two hidden layers. 

2.5.5.2 RBFNN 

RBFNN is very similar to MLP in terms of structure and architecture, which is 

composed of input, hidden and output layer and the output of one layer is the input of 

another layer. However, the RBFNN has only one hidden layer compared with the 

MLP, which can have many layers.  Besides, the transfer function in the hidden layer 

of the RBFNN is a radial basis function (RBF). A traditional RBFNN with n neurons 

and Gaussian RBF can be formulated as bellows [29]: 
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where
jC  and 

jr  are the center and variance of the Gaussian function. RBFNN has 

frequently used for regression problems such as PV performance model application 

and the responses of RBFNN change (increase/decrease) with the distance to the 

central point.  
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2.5.5.3 RNN 

Today, Deep learning algorithms are promoting tremendously compare with 

shadow learning algorithms such as MLP or RBFNN algorithms [30]. In contrast with 

RBFNN and MLP, the deep learning algorithms have a lot of numbers of hidden 

layers, which can capture more nonlinearities and uncertainties of the problem [31]. 

Thus, for capturing the nonstationary and long-term dependencies of the forecast 

problem, the RNN is employed as a powerful deep learning algorithm. The RNN 

formulation is proposed as [31]:  

 

 

 

1t t t

t t

S f U x W S

y g V S

   

 
 (2.10) 

where the  .f  and  .g  are nonlinear functions of weight matrixes ,W U V  and 

network memory tS  . RNN architecture is exhibited in Figure 2.3.  

 

Figure 2.3. A simple schematic of an RNN architecture. 

In the structure of the RNN, network memories (internal state ) play critical roles as 

they process the sequence of inputs, unlike the weight connection in the basic neural 

network [32]. In RNN, the output is computed based on the current time and last 

memories, because the information of the former time step can be stored in the hidden 

states.  For this ability (information transmission from the last node to the next node) 

the RNN performance is much better than shallow learning algorithms especially 

when the output is near to its related inputs. Due to the transmission of information 

from the last node to the next node, the performance of the RNN is quite good. Today, 

RNN is using widely in regression prediction problems such as load forecasting and 

PV power generations.  
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2.5.5.4 ANFIS 

In order to take the advantages of ANN methods and the fuzzy inference linguistic 

expression function, ANFIS modeling approaches are proposed. ANFIS training is 

easier than ANN and needs less computational power because logics of a physical 

asset are involved during its training [33]. Nevertheless, because this is a data-driven 

approach, its performance is highly dependent on the quality of the provided data. In 

this approach, any nonlinear functions can be estimated by the fuzzy inference system 

part of ANFIS according to a set of fuzzy “if-then” rules [34]. ANFIS is frequently 

employed for load and PV power forecasting applications as well [35]. A 

representative ANFIS structure for PV power forecasting application is presented in 

Figure 2.4. Months, days of a week, hours, humidity, wind speed, solar irradiance, 

and ambient temperature are applied as inputs to the ANFIS and historical PV power 

is used as target or output of the trained ANFIS. Moreover, in literature, it is 

recommended to use Gaussian membership functions with subtractive clustering 

methods to generate fuzzy-inference for multiple input systems.  

 

Figure 2.4. ANFIS architecture for forecasting PV power output. 

2.6 HOUSEHOLD DEMAND MODEL  

Similar to the PV performance modeling, load modeling has been obtained through 

different techniques such as data-driven methods or hybrid modeling methods. In this 

section, different load modeling techniques in literature are presented. Generally, load 

models can be divided into static models, dynamic models and composite load models 

which are obtained through data-driven modeling approaches. 
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2.6.1 STATIC LOAD MODEL 

In this model, the home load power is a function of bus voltage magnitudes and 

frequency at any instant of time. Commonly, this model is used to represent static 

loads in power systems such as resistive loads, and sometimes as an approximation 

for dynamic loads, e.g., induction motors, but can be applicable for home load demand 

modeling as well. This model is presented as [36]: 
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where actP  and reactQ  are power active and reactive at voltage bus magnitude V  , 

respectively; subscribe 0 refers to the initial operating condition. In the literature, the 

Eq. (2.11) are widely rewritten as the ZIP model, which composed of constant current 

I, constant impedance Z and constant power P. In this model, the active power and 

reactive power modeled the voltage of the load in a polynomial format given by [37]: 
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where 1p to 3p and 1q to 3q are the model parameters that have to be identified 

through identification techniques.  

2.6.2 DYNAMIC MODELS 

The static model performance can be justified for fast dynamics loads, which reach 

their steady-state responses quickly.  However, there are some cases that dynamic load 

components have to be accounted for accurate representation. In dynamic models, 

active power and reactive power are represented as a function of voltage and time. In 

a building, thermostatic loads such as refrigerators, heating/cooling systems and water 

heater are the most significant aspect of dynamic characteristics of building loads. The 

dynamic loads are explained in section 2.8 of this thesis. 
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2.6.3 COMPOSITE LOADS 

Similar to PV performance modeling,  data-driven modeling techniques such as 

different ANN architectures included MLP, RBFNN, RNN, and ANFIS are 

extensively utilized for load modeling  [28], [26] and [38]. Both dynamic 

(thermostatic loads and induction motors) and static loads can be modeled through the 

above-mentioned techniques by having historical data of householders’ consumption. 

In other words, ANN methods have no physical meaning and entirely rely on 

measurement data. An ANN is combined with a set of processing neurons or units 

which interconnected by weights. The ANNs are trained by using a sequence of input 

and output patterns, which leads to the final computed weighted values that determine 

the load model. Two ANN based modeling methods are presented in [39]. Moreover, 

[40] provided an ANN-based composite load model for stability study purposes in 

which a two-step RNN algorithm was developed in the first step an RNN trained with 

simulation data and the trained RNN update itself using measurement data in the 

second step. Although ANN is very powerful in modeling complex nonlinear systems, 

data quality and obtaining enough data over a wide range of operating conditions are 

still challenging.  

To prevent duplicating sentences and approaches, these architectures are not 

illustrated in this subsection (refer to subsection 2.5.5), but these techniques are used 

in extracted papers of the thesis for both load modeling and PV forecast modeling.  

2.7 PEV MODELING 

The challenges for modeling a PEV in a building arise from uncertainties related to 

the PEV trip time model (plugged-in time and plugged-out time) and PEV state of 

charge (SOC) at plugged-in time. Thus, in this section, these uncertainties are modeled 

through famous probability-based techniques.   

2.7.1 PEV TRIP TIME MODEL 

The PEV status kX  (available 1kX  /not available 0kX  ) is a very stochastic 

parameter. Therefore, to capture this uncertainty, probability-based techniques (data-

driven methods) such as Markov chain and roulette wheels mechanism (RWM) with 

truncated Gaussian distribution are employed in literature to forecast the PEV 

plugged-in and plugged-out times.  

2.7.1.1 Markov Chain 

Markov chain is a kind of mathematical system based on a specific transient 

probability matrix, which experiences the transition from one state to another state 

[4]. In this system, the transition probability to any particular state only relies on the 

current state and time elapsed. The Markov chain is the most common method in the 
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PEV literature for modeling the PEV status. A represented Markov chain with two 

states is shown in Figure 2.5, which is an excellent example of the PEV status. As it 

is seen, if the transient probability from zero state to one state is equal to  C k , the 

probability of the zero state to keep its current status is  1 C k at time k and vice 

versa.  The transient probability matrix can be obtained through analyzing massive 

data relating to the householder's daily traveling patterns. More information related to 

the amount of transient probability can be found in [15]. 

 

Figure 2.5. A representative Markov Chain with two states (zero state and one state). 

2.7.1.2 RWM 

RWM is another probability-based technique that is used in literature to forecast the 

PEV status by truncated Gaussian distribution. This distribution is widely employed 

for PEV plugged-in time, plugged-out time and even for PEV plugged-in SOC. For 

more information and distribution, details refer to [41].  

2.7.2 PEV BATTERY ENERGY AT PLUG-IN TIME MODEL 

One of the critical values is the forecasted amount of the SOC of the PEV battery at 

arrival time for HEMS to improve its effectiveness. The SOC of PEV value at the 

plugged-in time affects by several factors such as traffic condition, driving distance, 

driving style, number of users, etc. In this thesis, only the effect of driving distance is 

considered. The  SOC value at the plugged-in time is calculated as [9]: 

 

min min, ,

, ,

out cc

in

out cc

SOC if SOC SOC d SOC
SOC

SOC SOC d otherwise

  
 

 
 (2.13) 
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where 0.159 (1 )cc
PEV

SOC km
Q

 ; inSOC and outSOC are SOC values at arrival and 

departure times respectively;  minSOC is the acceptable minimum value of  SOC; d is 

the driving distance  km  and pevQ  is the PEV battery capacity  kWh . According to 

Eq. (2.13), the amounts of outSOC  and d  are needed for forecasting inSOC . The 

amount of outSOC is the known value while the amount of d  is unknown. Thus, the 

conditional probability method and again RWM with truncated Gaussian distribution 

are utilized to estimate the driving distance which results in finding inSOC . Because 

RWM is explained above, only conditional probability is presented here. 

2.7.2.1 Conditional Probability 

One of the essential concepts in the probability theory is the conditional probability 

that the probability of occurring an event is conditional to happening another event. It 

is a valuable method to calculate the conditional probability of inSOC A  for a given 

outSOC B . It can be calculated by analyzing massive data related to the daily 

driving distance of PEVs. In this thesis, the data are obtained from the US national 

household travel survey 2009 [42]. The conditional probability  inSOC  for a Nissan 

leaf with a 24  kWh  battery pack is presented in Figure 2.6 according to this data.  

 
Figure 2.6. Conditional Probability of inSOC by given outSOC . 

2.7.3 PEV BATTERY SOC MODEL 

When the PEV is available for HEMS, its function is like stationary batteries and the 

PEV battery SOC charging/discharging dynamics is formulated as follows: 
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(2.14) 

where t is the time interval; evP 
is the power charging/discharging of the PEV (sign  

  denotes to charging mode ( the PEV power is positive) or discharging mode (the 

PEV power is negative)), respectively;   is the loss efficiency. Moreover, the SOC 

of the PEV battery has to meet the following constraint: 

 

min k maxSOC SOC SOC   (2.15) 

where maxSOC and minSOC are the maximum and minimum amounts of the SOC 

respectively. To sum up, the SOC dynamics of the PEV battery for an entire day turn 

to a nonlinear peace-wise function which is presented below: 
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 (2.16) 

where the term “Pro” refers to the conditional probability of inSOC by given a specific

outSOC .  

2.8 SPACE HEATING/COOLING DYNAMICS AND USER 
THERMAL PREFERENCE MODEL  

Building thermal mass or capacity is a potential candidate for use as energy storage 

systems in building, especially in highly insulated buildings [43]. However, it should 

not compromise the householder's thermal comfort preferences. Thus, the dynamic 

models of building space heating and user’s thermal preference are very critical for 

HEMS's successful performance. In this section, the building thermal dynamics and 

user’s thermal comfort model, such as adaptive predicted mean vote-percentage 

(APMV) are presented.  
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2.8.1 BUILDING THERMAL DYNAMICS  

The building’s thermal capacities and building thermal resistance are critical 

parameters to obtain proper models for space heating/cooling of a building. Building 

thermal capacity and building thermal resistance significantly affect building storage 

efficiency. The thermal capacity of a building can store or release the heat energy 

dynamically over time. Due to the ability to use heat gains in winter and smoothing 

temperature peaks in summer, the building's thermal mass or capacity plays a vital 

role in improving the building’s energy performance [44]. Another critical factor is 

the building transfer of heat through the building’s envelope. The overall heat losses 

in a building are included in heat losses from opaque surfaces ( walls, roof and floors), 

heat losses from windows and heat losses through thermal bridges (window frames, 

and uninsulated slab edges) according to the standard EN ISO 13789:2007 [44]. The 

heat losses through different parts of a building distribution are exhibited in Figure 

2.7 [44]. A large proportion of the overall energy loss is passed through attics and 

walls, according to Figure 2.7. Therefore, using highly insulated materials can result 

in thousands of dollars saving in energy bills. In this thesis, a detached single-family 

house with plinth foundations is considered. For simplicity, the building thermal 

dynamic load is considered as a first-order RC model based on the total building 

thermal capacity and whole building thermal resistance. In this model, the concrete 

slab floor, light, wooden and other parts of the building capacity are lumped to the 

overall building thermal capacity. Also, the walls, floor, windows and roof thermal 

resistance are lumped in the overall building thermal resistance. Moreover, different 

technologies like electric water heaters (EWH), heat ventilation air conditioner 

(HVAC) and HP are frequently employed for cooling and heating of buildings through 

either radiator only or floor-radiator combination heating system. In this thesis, 

ground source HP is used and its structure is presented in Figure 2.8 for cooling and 

heating purposes. Furthermore, the building thermal dynamics are formulated as given 

in [9] and [45]: 
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Figure 2.7. Heat transfer distribution among different components of a building. 

 

 

Figure 2.8. Heat emission system with a ground source heat pump. 
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(2.18) 

where overallC  kWh C , overalR  C kW and overall ( )k W C  are the overall 

building thermal capacity, resistant and conductivity respectively; overall  is the overall 

building thermal time constant; i


 and hpP 
 are the heating/cooling thermal and 

electrical power (the signs   denote the heating and cooling modes of HP)  kW  

respectively; COP is the HP coefficient of performance; inT and outT  are inside and 

outside of building temperatures  C respectively. According to Eq. (2.18), the 

ambient temperature and hpP 
 are inputs of the system, but the ambient temperature 

is like a stochastic disturbance. HEMS has to manipulate the hpP 
 in a specific range 

to keep the user’s thermal comfort (APMV criteria) in an acceptable interval as given 

by: 

 

min m

in

ax

m max

hp hp hp

APMV APMV APMV

P P P

 

  



 (2.19) 

where 
max

hpP , 
min

hpP are maximum and minimum power of the HP respectively; 

minAPMV  and maxAPMV are the maximum amount of householder’s thermal 

condition. In this standard, the user’s comfort scaled from -2 to +2. Each number 

appointed to certain thermal comfortability conditions, which is presented in Table 

2-2.  

 

Table 2-2 

AMPV standard comfortability level. 

AMPV -2 -1 0 +1 +2 
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Thermal 

Comfort 

Very Cold Cold Ideal Warm Very 

warm 

 

2.8.2 USER THERMAL PREFERENCE (APMV) 

In classical research, to satisfy the user’s thermal comfort, only the indoor temperature 

was used as the comfort parameter, which has to be limited within a desired 

temperature in literature [46]. However, today it is not used longer because according 

to ISO 7730 thermal comfort model, many factors including indoor temperature, 

humidity, clothing condition, etc. have significant impacts on comfort level [47]. The 

ISO 7730 model is a thermal comfort standard provided by the American Society of 

Heating, Refrigerating and Air conditioning Engineers (ASHRAE) and is widely used 

in literature as the predicted mean vote–percentage people dissatisfied (PMV-PPD) 

[47]. However, this model still has some downsides, which should be addressed. For 

example, the human body is considered as a passive recipient in this model, while in 

practice, people react to thermal dissatisfaction through different ways such as taking 

off or wearing more clothes, opening or closing windows, etc. [48]. Therefore, 

considering the householders’ reaction, an adaptive version of the ISO 7730 model is 

provided lately [49]. In this paper, an adaptive predicted mean vote (APMV) 

percentage comfort model is presented as [50]: 

 

1 , 1 , 1. . ,k in k v kPMV A T B P C    (2.20) 

   ,19.65 4030 273

, 10 in kT

v k kP RH e
 

   
(2.21) 

 11 .k k kAPMV PMV PMV   (2.22) 

The details about the parameters of the model can be found in [50]. In the next chapter, 

the control based modeling approaches are introduced and their weaknesses and 

strengths are expressed.  
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3. CONTROL AND OPTIMIZATION  

BASED MODELING APPROACHES 

3.1 INTRODUCTION 

In reality, in the field of operation research, which deals with future planning, it is 

hard to find accurate models, which are fully matched with real physical systems and 

predict the futures of events with zero error. These mismatches affect the HEMS 

performance during practical implementation because the impacts of uncertainties are 

not modeled or modeled with low accuracy. Thereby, stochastic controllers or real-

time controllers are proposed as some solutions to deal with inaccurate models and 

unmolded uncertainties.  The effectiveness of these controllers to reduce the impact 

of errors and un-modeled uncertainties are proved for different applications such as 

energy management systems, navigation, etc. These controllers are sorted based on 

their forecasting requirements in literature [51]. For instance, stochastic dynamic 

programming (SDP) methods incorporate the uncertainties into the models, online 

scheduling methods do not use forecast data and MPC uses forecast points to compute 

a set of optimal set points over a prediction time horizon.  MPC is a well-known 

method for real-time applications to reduce the impact of the uncertainties on the 

HEMS performance through measurement data among the introduced methods, [51]. 

In [52], the strengths and weaknesses of these control approaches under uncertainties 

are completely expressed. These methods are briefly explained in the next 

subsections. 

 

3.2 STOCHASTIC DYNAMIC PROGRAMMING   

Similar to the dynamic programming, which is a general approach for solving the 

deterministic optimization problems, the stochastic/probabilistic dynamic 

programming (SDP) is aimed to solve stochastic optimization problems. Generally in 

the SDP approach, one or several parameters are modeled as stochastic variables in 

the optimization problem. It is introduced by Bellman and Dreyfus as a well-known 

technique for solving problems of decision making under uncertainties. Because, in 

this method, the stochastic programming technique is mixed with dynamic 

programming techniques which make it a powerful technique for solving optimization 

problems under uncertainties. This method depends on finite state-space models to 

minimize the cost function and can be solved by using backward recursion or forward 

recursion algorithms. In the backward recursion, the optimization problem solves 

from the final time step and recursively computes the optimal pathway back to the 

first state. In some literature, the SDP is named as Markov decision process because 

it is Markov chain generalization  [51]. Moreover, due to the size of the problem which 

https://en.wikipedia.org/wiki/Stochastic_dynamic_programming#Backward_recursion
https://en.wikipedia.org/wiki/Stochastic_dynamic_programming#Forward_recursion
https://en.wikipedia.org/wiki/Stochastic_dynamic_programming#Forward_recursion
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arises with respect to the state numbers, the SDP problem sometimes turns to a 

nondeterministic polynomial problem (NP-hard problem). Although, it can be 

approximated in polynomial time, which is commonly used for HEMS applications 

[53]. 

 

3.3 ONLINE SCHEDULING APPROACHES  

Another famous optimization approach in optimal operation research is online 

optimization or online scheduling approach that deals with optimization problems 

with incomplete or no knowledge of the future. In contrast with classical optimization 

problems where the complete information is assumed for solving the optimization 

problem, online optimization algorithms solve the problem with no prior data of future 

inputs. Online optimization approaches are sorted in two main categories 1) online 

problems in which the optimal decisions are made consecutively according to a piece-

by-piece input; 2) online problems where the optimal decisions are made only once. 

In the first class, once inputs appear, online optimization should find the optimal 

solution for the plan. In this method, since the uncertainties are not modeled, the 

scheduler should find some solutions for adding new items or information that appear 

in a queue. The Tetris problem is a famous classical online optimization, which has 

upcoming unknown inputs, and the programmer may develop some sub-optimal 

programs. In the second class, an optimal decision is made only once. The Ski rental 

problem is a good example of the second class of online optimization. In this online 

problem, the concept of online scheduling or online optimization is a little unclear, 

and it is misunderstood with the MPC concept in many types of research. However, 

they represent a different class of scheduling problems [54]. Online scheduling 

approaches are used in many applications. For example in [55], it is utilized for the 

HEMS application to minimize the peak loads. Generally, for evaluating the 

effectiveness of the online optimization approach, its output should be compared to a 

corresponding off-line optimization algorithm that all the inputs are knowns in 

advance. 

 

3.4 MODEL PREDICTIVE CONTROL  

MPC is a powerful advance control method that is employed widely in many 

industrial applications such as process industry, automotive, energy, aerospace, 

robotic, etc. since the 1980s. It is a feedback control method that uses a model of a 

process to predict the future outputs of a system. Hence, MPC performance is relayed 

on the process dynamics. The MPC strengths are listed as follows: 

1) It can handle multi-input, multi-output systems (MIMO) that have interactions 

between inputs and outputs because MPC is a multivariable controller which controls 

a process outputs simultaneously by taking into account all the interactions between 

system variables.  
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2) MPC can handle constraints of a process in which the constraints can arise from 

either the physics of a system or safety requirements or monetary requirements. 

Overlooking constraints can lead to undesired results; hence, it is necessary to fulfill 

the constraints of a system.  

3) The third feature of the MPC is its preview capability, which looks like feedforward 

controllers. MPC can easily incorporate future reference information into the control 

problem to improve its performance. 

4) The last but not least feature of the MPC is that it is a very simple method, easy to 

understand and easy implementation for varieties of systems 

Although the MPC performance is highly dependent on certain forecasts, it can 

work reasonably with stochastic problems as well. Because MPC can periodically, 

upgrade its decision-making while solves the optimization problems or controlling a 

process by receiving new information about the stochastic parameters. Due to the 

MPC is a greedy method (hope to find globally optimal solutions at the end by finding 

locally optimal solutions at each step), the scheduler has to be sure that the horizon 

time is long enough to prevent myopic optimization [51]. In general, for validating 

the MPC performance its outputs are compared to a corresponding off-line 

optimization approach with deterministic forecast points (the best-case scenario).  

In this thesis, the MPC approach is selected as the controller of the smart home HEMS. 

Therefore, the MPC is in charge to manipulate the variables of hpP  and pevP  to reach 

the problem target, which is minimizing the electricity cost, whereas the problem 

constraints have to be met including user’s thermal comfort conditions, household 

load demand (thermal and electricity), PEV charging/discharging requirements and 

battery life-time depredation cost. The overall schematic of the HEMS with its MPC 

is shown in Figure 3.1. As it is presented in Figure 3.1, by coordinating the PEV 

charging/discharging and handling hpP , the MPC follows the objective of the 

problem.  

 

 

Figure 3.1. HEMS schematic with MPC and forecast blocks. 

 

In this thesis, the state space representation of the HEMS is presented as given:  
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where , ,

T

k k k in k grid kx E AMPV T P    , , ,

T

k ev k hp ku P P    , 

, , ,

T

k mp array k dem k k kd p p X E    , and ,k grid ky p  are defined as the state, control 

signal, disturbance and output of the system respectively. For simplicity, the 

prediction horizon N  is chosen to be equal to the control horizon, which is 24 (h) with 

time step 1t   (h). Thereby, the cost function is given: 
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(3.2) 

 

 , ,

l

ev k k pev k kC X P E    (3.3) 

where kC is the time-varying electricity price ($/kWh) and pev ,kC  is the PV battery 

lifetime degradation cost model. The variables  and l are cost factor and leakage 

loss factor of PEV battery respectively. According to the Eqs. (3.1), (3.2) and Figure 

3.1, the MPC has to find a tradeoff between the optimal energy usage cost and PEV 

battery aging cost as the main objectives of the problem. Furthermore, the MPC has 

to guaranty satisfying all the problem constraints. In this thesis, since the control 

problem is a nonlinear dynamic optimization problem; the following numerical 

solutions are introduced to solve it.  

 

3.4.1  NUMERICAL SOLUTIONS FOR NONLINEAR DYNAMIC 
OPTIMIZATION PROBLEMS 

There are still many challenges to designing nonlinear control and optimization for 

systems with differential and algebraic equations (DEA). In recent years, advanced 

numerical techniques such as simultaneous methods, decomposition approaches, 

efficient nonlinear programming solver have addressed some of these challenges. In 

general, simultaneous and sequential approaches are two main numerical methods for 

solving dynamic optimization problems and nonlinear MPC [56]. In the sequential 

methods, the equations of the models are solved recurrently to converge to the 

tolerance of the provided objective function and gradient at each time step. The 

simulation process is repeated after defining the new decision variable for the next 

time steps of the optimization time horizon. The advantages of sequential approaches 

are their easy implementation and its ability to always provide feasible solutions with 

respect to the dynamic model because they solve the equations of the system by 

forwarding integration. However, its main disadvantage is that for problems with large 

numbers of freedoms it may provide sub-optimal solutions (fail to converge in a 

reasonable time).  

In contrast with sequential methods, the simultaneous method solves the optimization 

problems and equations of the models in parallel. Due to the computational advantage 
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of the simultaneous method, it is recommended for control problems with many 

decision variables but with moderate sate variables. One of the features of the 

simultaneous methods is that they can convert a DEA optimization problem to one of 

the famous optimization programming forms such as LP, NLP or MINLP (depending 

on problem characteristics) through direct transcription which is known as orthogonal 

collocation on finite elements [26]. Then, the LP, NLP or MINLP problem can be 

solved by large scale solvers such as the interior point solver (IPOPT) and active set 

solver (APOPT). In this thesis, the optimization problem is converted to an MINLP 

problem and the APOPT solver is employed to solve the optimization problem. 

Hence, the APMonitor optimization Matlab toolbox is used. It is a powerful toolbox 

to perform estimation, optimization and predictive control by several solvers, 

including APOPT and IPOPT. APOPT solver is the only solver, which can handle 

MINLP problems in APMonitor.  
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4. HEMS PERFORMANCE AND PROFIT 

ASSESSMENT 

4.1 INTRODUCTION  

The strengths of the optimal operation of HEMSs for residential buildings are 

investigated comprehensively in existing literature, but there is still a need of study to 

evaluate the profit assessment of HEMS for building with different energy labels that 

determine the building energy storage efficiency (different insulation quality). Hence, 

in this chapter, a comprehensive comparison of the optimal HEMS performance in 

residential buildings with different energy labels and different emission heating 

systems (floor-radiator heating system and radiator only system) is conducted. In this 

chapter, the designed HEMS with the controller in section 3.4 is implemented to a 

residential building (building specification is outlined in section 2.8.1) in Denmark 

for different energy labels defined from A to G according to the latest Danish building 

regulations [58]. 

 

4.2 BUILDING ENERGY LABELS AND SCENARIOS 

The HEMS is implemented in the following scenarios: 

 

Case I: Building with energy label “A” (maximum storage efficiency) 

Case II: Building with energy label “B” 

Case III: Building with energy label “C” 

Case IV: Building with energy label “D” 

Case V: Building with energy label “E” 

Case VI: building with energy label “F” 

Case VII: Building with energy label “G” (worst storage efficiency) 

 

The HEMS is performed for building with different heat emission systems including 

radiator-only heating and floor-radiator combination heating systems (slab thickness 

9 cm) in each case study. The building thermal capacity is improved by the use of 

either a pure floor heating system or floor-radiator combination heating system. This 

improvement depends on the floor thickness, floor surface which equipped with floor 

heating and material type of the floor such as concrete, tile and carpet [59]. In this 

study, it is assumed that if 30% of the floor surface equipped with floor heating and 

the rest equipped by radiator heating systems, the thermal capacity of the building(

buildingC ) increases by 25% compared with radiator only heating system. Moreover, in 

this study, the building is equipped with the following technologies: 

1) Nissan Leaf PEV ( 24 ( )kWh  lithium-ion battery pack), assumed the same driving 
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habits for all cases. 

2) PEV charging box of 240 (V), 16 (A), 

3) 4 (kW) PV system including two paralleled subarrays with 8 PV series panels  

4) Solar Edge inverter (model SE4000) with a maximum AC output power of 4000 

(VA) and 220/230 (V) (AC) output voltage.  

The building energy label is a criterion to measure the quality of a building in terms 

of energy use and energy loss. In order to define an energy label for a building, many 

factors such as building insulation quality, building structure, etc. have to be taken 

into account. Building insulation is the most important factor in improving a building 

energy label and storage efficiency because the building performance in terms of 

saving thermal and cooling energy is determined by the insulation materials that are 

used in different parts of a building. Based on the latest Denmark building regulation 

BR2020, maximum energy use in a building with an energy label of “A” has to be 

less than  27
2( )kWh m per year [60]. Hence, for a building with a floor area of 150 

(m2), 15 (m) length, 10 (m) width and 2.7 (m)  height, the following insulation 

requirements which are presented in Table 4-1, have to be met for different parts of a 

building with energy label “A” in Denmark. 

 
Table 4-1 

 Building insulation requirements for a building with label “A” according to BR 2020  [11]. 

Building construction Thickness 

(mm) 

U  value 

2( . )W m C  

Area 

(
2m ) 

Exterior windows 

and doors 

- 0.8 33 

Floor 300 mm 0.1 150 

Exterior walls 300 mm 0.12 102 

Roof and ceiling 455mm 0.08 150 

 

According to the regulation for a building with energy label “A”, the maximum 

windows and doors size is 22 (m2), per 100 (m2), of living space. According to Table 

4-1, the overall heat transfer conductivity is computed as given [11]: 

 

ovrall floor floor Win win wall wall roof roofA U A U A U A U      (4.1) 

Moreover, for simplicity, it is presumed that the building energy loss is a linear 

function of the overall heat conductivity. Thereby, the building energy loss or use per 
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(m2) is presented in Table 4-2, for different energy labels based on Denmark's latest 

building regulation. Consequently, the building conductivity and building thermal 

time constant are computed for the above-mentioned size building and presented in 

Table 4-2 as well. For instance, the building with energy label A has a conductivity 

0.066overall   ( )kW C while for the same building with label “B” it is 0.2 ( )kW C

. It means improving the insulation results in reducing building conductivity from 0.2 

to 0.66. Therefore, reducing the conductivity leads to improving the building thermal 

time constant from 6.675 (h) to 20 (h) and consequently reducing the energy loss from 

84.66 to less than 27 
2( )kWh m  per year. 

 
Table 4-2 

Overall building energy loss and thermal specifications for buildings with different energy labels. 

Building’s label Maximum energy loss for 

one year 

2( )kWh m  

overall  value 

( )kW C  

  value for 

radiator heating 

system 

(h) 

A <27 0.066 20 

B <70+2200/Area=84.66 0.2 6.675 

C  <110+3200/Area=131.33 0.321 4.158 

D <150+4200/Area=178 0.435 3.06 

E <190+5200/Area=224.66 0.55 2.427 

F <240+6500/Area=283.33 0.7 1.9 

G >240+6500/Area  1.2 1.112 

 

4.3  RESULTS 

The HEMS optimal results are presented for a building which is outlined in section 

2.8.1 with different energy labels (seven cases). The system parameters related to 

building components and users are presented in Table 4-3. The HEMS controller is 

the MPC which is outlined in secion3.4. The building load demand and PV output 

power are predicted by MLP and SAPM models which are explained in sections 

2.5.5.1 and 2.5.4 respectively. Moreover, the data related to weather forecasting is 
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updated at each time resolution by weather station services, which can be used via 

application programming interfaces. The simulation results are shown for week 2 in 

January 2017.  Furthermore, the building with HP size in Table 4-3 cannot meet the 

user’s thermal preference requirement for the building with energy label “G”, 

therefore, the size of HP is increased 12 (kW) for this case. The baseline results 

(without HEMS) of each case is presented to be compared with the HEMS optimal 

performance to prove the effectiveness of the HEMS for each case.  A rule-based 

controller is formulated to fulfill the problem requirements without optimizing the 

cost of energy for the baseline model.  
Table 4-3 

Smart home parameters [11]. 

EV battery parameters 

max

evP   
min

evP  Q      

3.5 (kW) -3.5 (kW) 24 (kWh) 0.05 

SOC lower limit 0SOC  SOC upper limit 

25% 0.6 90% 

Thermal parameters 

min

hpp   
max

hpp  COP 

0 (kW) 6 (kW) 4 

minAPMV  
maxAPMV   buildingC  

,0inT  

-0.4 +0.4 1.32 

( )kWh C  

25  C  

User’s clothing parameters 

Time Range Icl Clothing Condition 

[7:00, 22:00] 0.7 Short sleeve shirt, light trousers, 

shoes 
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[22:00,  7:00] 0.3 Underwear, T-shirt 

 

In Figure 4.1, the HEMS optimal performance is compared with the baseline 

performance for seven different cases with two heating systems to prove the 

effectiveness of the designed HEMS. According to Figure 4.1, the energy cost of the 

building is reduced for either baseline performance or HEMS performance when the 

building energy label or building insulation quality is improved (the best minimum 

case happens for building with energy label “A”). As an example, in Case I (label 

“A”) the home energy cost is 20.1 ($/week) and 11.8 ($/week) for baseline and HEMS 

performance with floor-radiator heating system, respectively. While in Case VII (label 

“G”) the cost of energy is 90.95 ($/week) and 66.8 ($/week) for the same situation. As 

a fast result, the more improvement in building insulation is made, the more reduction 

of energy cost has happened whether the building used HEMS or not. 

The second and more important result is to analyze the impact of having HEMS for 

buildings with different insulation quality in reducing energy cost. Therefore, Table 

4-4 is presented to highlight the HEMS optimal performance for different cases. For 

instance, in Case VI (label “F”) the HEMS reduced the energy cost from 58.43 

(baseline performance) to 42.1 ($/week) (about 27.6%) with the floor-radiator 

combination heating system and reduced by 27.94% with a radiator-only heating 

system. At the first glance, it is obvious that the HEMS can reduce the building energy 

cost for all cases with different heating systems (by more than 26% in all cases (except 

case VII with radiator only). 

However, by analyzing Figure 4.1 and Table 4-4, it is clear that the HEMS 

performance is much better in a well-insulated building than poor-insulated building. 

For example, in case I the building energy cost with HEMS is reduced by about 41% 

while in case VII the energy cost is minimized by around 26% (with the floor-radiator 

combination heating system). It shows that the HEMS can have better optimal 

performance (in terms of minimizing the building energy costs) in highly insulated 

buildings. 
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Figure 4.1 Total home energy cost for different energy labels (A-G) and two different heating systems 

(floor-radiator combination and radiator only), during January 2017. 

 

Table 4-4 

 Energy cost reduction by HEMS as compared with baseline operation for buildings with different 

energy labels and different heating systems [11]. 

Building Label Radiator Only (%) Floor and radiator combination 

(%) 

A 35.77 41.3 

B 35.5 39.5 

C 30.3 34.44 

D 29.3 33 

E 28.22 31.41 

F 27.6 27.94 

G 25.75 26.55 

 

The second aspect, which has to be checked, is analyzing the HEMS performance 

in fulfilling problem constraints. Therefore, the HEMS performance for satisfying 

problem constraints such as the user’s thermal preference and EV battery energy are 
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presented for the case I (Label “A”) and VI (Label “F”) with radiator-only heating 

system in Figure 4.2. For better resolution and clarity, the results are shown for four 

days from Monday to Friday. As it can be seen in Figure 4.2 (a), the user’s thermal 

comfort criteria (APMV) and building inside temperature are -0.4 and 18.5   C

during most of the daylights (marginal comfortability) for case IV(Label “F”). 

Similarly, in Figure 4.2 (c), the PEV battery charge and discharge between the minimum 

and maximum of its acceptable values in order to compensate the lack of building 

storage efficiency for case IV. In contrast, as it is shown Figure 4.2 (a), the APMV 

criterion is close to zero most of the times and the building inside temperature is above 

20  C  all the week (except on Monday) even though the outside temperature is 

around 4 degrees on average for this week (Figure 4.2 (b)) for case I. Likewise, the  SOC 

of PEV battery changes are very small (results in improving battery lifetime [9]) for 

the case I compared with case IV as it is shown in Figure 4.2 (c). As a consequence, 

when the building storage efficiency is poor (low building thermal resistance), the 

problem constraints move to the acceptable boundaries values to meet the main 

objective of the problem (minimizing the energy cost as much as possible). Otherwise, 

when the building storage efficiency is proper, these parameters remain near the 

desired points most of the time (APMV stays close to zero and SOC variation is 

small). Therefore, for case I, even the HEMS optimal performance is very good, the 

HEMS performance for fulfilling the requirements of the problem is much better than 

the cases with poor insulation quality. 
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Figure 4.2. HEMS performance comparison for satisfying building’s requirements with radiator 

heating system for buildings with label “A” and “F”; (a) user’s thermal preference criteria (APMV) and 

indoor temperature, (b) outside temperature, (c) SOC and status of PEV. 

 

For better understanding, the grid power pattern compared with electricity price and 

power distribution among the building resources (HP, PEV, PV, load and grid) are 

presented for the case I with the radiator-only system in Figure 4.3. According to 

Figure 4.3 (a), the HEMS maximizes the usage of grid power from midnights to 

mornings around 7:00 when the electricity price is minimum. While the HEMS 

minimizes the use of power from the grid during peak loads when the electricity price 

is maximum. According to Figure 4.3 (b), the HEMS uses the HP to store thermal 

energy in building and charges the PEV battery after the midnights when either the 
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electricity price is minimum or when the PV has extra production. In contrast, the 

HEMS reduces or stops the HP power to decrease the building temperature or 

discharge the PEV battery (if available) during the peak electricity price to minimize 

the use of grid power as much as possible. As can be seen, on Monday, Wednesday 

and Thursday evenings, the PEV is available; so, it is discharged to supply a 

proportion of the user’s load demand (thermal and electricity). Similarly, the HEMS 

only stops HP working in Tue evening (peak load ), because the PEV is not available 

and HP is the only manipulated variable to decrease the power from the grid which 

results in reducing APMV criteria and building temperature Figure 4.2(a). Furthermore, 

when the PV production is bigger than the load demand such as on Tuesday, 

Wednesday and Thursday, the HEMS charges either the PEV (if available) or building 

thermal storage as heating or cooling the building to maximizes the share of PV 

consumption in the building. Otherwise, the extra PV production is sent to the grid by 

the HEMS to avoid violating the problem constraints (either EV maximum charging 

or household’s thermal preference). Hence, the grid power is not positive on Tuesday 

and Thursday afternoon because it is not possible to store the PV power as thermal or 

electrical energy in home energy storage (PEV battery and building thermal mass). 

 

 

 
Figure 4.3. a) Grid power usage for a building with energy labels “A” and a radiator system over four 

days in January 2017 according to electricity price; (b) power distribution among PV, HP, PEV, and grid 

for Case I. 
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For more details about the HEMS, optimal performance and its effectiveness refer to papers F and H. 
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5. CLOSING REMARKS 

5.1 CONCLUSION  

The thesis studied the improvement of HEMS in three parts: 1) modeling, 2) control-

oriented modeling and optimization, 3) performance and profit assessment of the 

developed HEMS. The HEMS state of the art was established in paper A. The current 

modeling techniques were explained including physics-based, data-driven and hybrid 

modeling techniques. The building resources models with their uncertainties were 

obtained through these techniques in paper C. Then a nonlinear MPC was designed as 

the HEMS controller to minimize the cost of energy through manipulating the power 

flow among the smart home resources (HP, PEV, load and grid). The controller 

structure and HEMS effectiveness were explained in paper F with details. The last but 

not least, the HEMS profit assessment was studied for building with different energy 

labels (storage efficiencies) and different heat emission systems (floor-radiator 

combination or radiator only heating systems) in Paper H comprehensively. 

As emphasized in the paper A (state of the art review paper), only a few works took 

into account the uncertainties and stochastic parameters of building resources when 

designing HEMS for smart homes. Hence, in paper C, a comprehensive comparison 

was conducted to analyze the advantages and disadvantages of current modeling 

techniques for modeling the building resources regarding their uncertainties and 

stochastic parameters. Then these techniques were used to find proper models for 

building resources such as PV power output, PEV status (plugged-in time and 

plugged-out time), PEV state of the charge at plugged-in time and home load demand. 

The results for PV model comparison showed that equation-based models with 

measurements (empirical models) especially the SAPM model is more accurate than 

other methods. According to the results, it is observed that PV equation-based models 

could be generalized for a variety of PV systems only by knowing the system PV size 

and the PV specifications. However, black-box techniques are very biased to the data 

that they are trained in. The load modeling comparison showed that the quality of data 

has a high impact on the ANN performance in terms of reducing the error and variance 

especially when enough data is utilized for ANN training. The accuracy of the 

obtained Markov Chain model was computed by analyzing the daily driving pattern 

of three different electric vehicles. Finally, a holistic model was present for a smart 

home integrated with PV, HP and PEV to be used for monitoring, control and fault 

detection applications. 

According to the obtained models from paper C, a novel predictive HEMS was 

formulated for a smart home with PV, HP and PEV in paper F. Moreover, in paper F, 

the building thermal mass and PEV battery were used as home energy storage for 

saving thermal and electrical energy, respectively. Using these items made the system 

economic because their main tasks are for other purposes such as transportation and 



ENERGY MANAGEMENT SYSTEM FOR SMART HOMES: MODELING, CONTROL, PERFORMANCE AND PROFIT 
ASSESSMENT 

50 

living situations (no need for batteries or other thermal storage which highly increase 

the capital investment cost). The recommended models obtained in paper C were used 

by a nonlinear MPC to minimize the building energy cost while satisfying the user’s 

requirements as well. The simulation was performed for different scenarios. First, the 

simulation was performed with the objective function of minimizing only the building 

energy cost. In the second scenario, the simulation results were provided with a trade-

off objective function between the building optimal performance and PEV battery 

aging cost. In the second scenario, the simulation results demonstrated that the 

proposed HEMS could reduce the electricity cost up to 27.6 % in comparison with a 

non-optimization rule-based controller. Moreover, the effectiveness of the optimal 

performance of the designed novel predictive HEMS was validated by an off-line 

optimization counterpart with having all the entire future inputs in advance. Last but 

not least, the MPC performance with different time horizons and time-steps in a day 

were analyzed for the case of fast dynamic behavior. 

In connection with the previous study (paper F), the designed predictive HEMS were 

employed for a residential building with different storage efficiency (energy labels) 

in paper H. Then a comprehensive profit assessment presented for designed HEMS 

with two heat emission systems 1) floor-radiator combination heating system and 

radiator only heating system. The impact of building storage efficiency (different 

insulation quality) on improving HEMS optimal performance and fulfilling the 

optimization constraints was analyzed and discussed. Also, the impacts of EV to home 

technology and having different heating emission systems (having different building 

thermal capacity) in improving the HEMS optimal performance were presented and 

analyzed. As a consequence, it was proved, that having high building thermal capacity 

(floor-radiator heating system technology) improves the HEMS optimal performance 

and user’s comfort level as it was compared with low building thermal capacity (using 

radiator only system). The simulation results demonstrated, that the more 

improvement happens in building thermal capacity (floor-radiator combination 

heating system) and building thermal resistance (moving towards the energy label 

“A”), the more HEMS’ performance could improve in terms of optimal performance 

and the user’s requirements fulfillment. Finally, it was observed that the HEMS 

increased the role of PEV when building insulation was poor (low thermal resistance) 

because the building storage efficiency is decreased when the building thermal 

resistance reduce: so, the building can not keep the thermal energy for later use. 
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5.2 FURTHER WORK 

This Ph.D. topic is completely a broad study and has to cover various technologies to 

design a HEMS in the context of smart homes or nZEB. But it is not possible to cover 

all the parts of the system in three years and still some parts need more research 

improvements. In this section, the improvements are divided into three parts: 1) 

modeling, 2) controlling 3) implementation. These improvements are explained as 

follows: 

 The first part which still needs improvement is the modeling section. There 

is still a need for better models to capture more uncertainties and stochastic 

parameters of the building variables. For example, only deriving distance 

parameter is considered for modeling the SOC of PEV battery at the plugged-

in time. However, in reality, other factors affect the SOC of PEV battery such 

as traffic situation, deriving style, etc. Therefore, it is needed to use cutting-

edge modeling techniques to find models for unknown parts of components. 

Today, the hybrid modeling technique is a hot topic for modeling different 

technologies by mixing physics based-modeling and data-driven techniques. 

 The second part is in the control section. There is still a need for a holistic 

control approach which not only deals with slow dynamics but also needs 

fast reaction to fast dynamics of the systems. The idea of multi time scale 

MPCs seems potential methods for dealing with the fast dynamic behavior 

of the system. The control structure of this idea consists of one centralized 

MPC and many local MPC (equal to building components which supposed 

to be controlled). In this idea, the main MPC can work in a one-hour 

resolution and deal with slow dynamics and define set-points for building 

components, while the local controller works continually at each discrete 

time resolution of the main controller to follow the defined trajectory set-

points. 

 The third section is laboratory-scale implementations of the designed HEMS 

in the context of a smart home or nZEB. There are many research studies in 

the field of nZEB which only presented numerical results (simulation results) 

but no studies can be found related to the real implementation of an nZEB or 

smart home with a real-time HEMS to present experimental results for 

proving the HEMS effectiveness. All the existing results are performed in 

simulations and there is a need for presenting experimental results of a 

designed HEMS in the context of smart home or nZEB 
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