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Abstract

It is very common in medical research to study the time to occurrence of a
particular event such as death or a specific disease in a group of individu-
als. The data that are gathered in such studies is almost inevitably subject to
what is called right censoring so that, for some individuals, the event is only
known to not have occurred within a certain amount of time. An even more
inhibiting type of censoring, interval censoring, emerges when the status of
the event is only assessed at a number of distinct time points. In this case,
the only available information when the event is first observed is that it has
occurred at some point since the last assessment with negative status. Inter-
val censored data is very often also complicated by competing risks of other
events that may occur and thus preclude the event of interest. Most statistical
methods to handle interval censoring typically impose assumptions on the
distribution of the actual event times to enable the use of parametric models,
which have mathematical properties that make them easy to employ to in-
terval censored data. However, this limits the way in which we can measure
the association between potential risk factors and the event of interest using
regression models. An alternative way of handling censoring is to transform
the incomplete data to a set of pseudo-observations, which can be analyzed
with a versatile family of regression models, called generalized linear mod-
els, to measure associations with a range of easily interpretable measures.
This pseudo-observation approach is based on non-parametric methods to
define the transformation of the data, but by applying an alternative tech-
nique based on splines, which are very flexible parametric functions, we are
able to formulate a set of pseudo-observations for interval censored data.
These parametric pseudo-observations can then be used in generalized lin-
ear models to estimate associations with risk factors using measures that are
relevant in the specific context of each study.
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Resumé

I medicinsk forskning er det meget almindeligt at undersøge tiden til en be-
stemt hændelse, såsom død eller en specifik sygdom, forekommer i en grup-
pe individer. De data, som indsamles i sådanne studier, er næsten uund-
gåeligt underlagt såkaldt højrecensurering, således at hændelsen for nogle
individer kun vides ikke at være forekommet indenfor en bestemt tid. En
endnu mere begrænsende form for censurering, intervalcensurering, opstår
når status for hændelsen kun opgøres på en række adskilte tidspunkter. I det-
te tilfælde er den eneste tilgængelige information, når hændelsen observeres
første gang, at den er opstået på et tidspunkt siden seneste opgørelsestid
med negativ status. Intervalcensurerede data er ofte yderligere kompliceret
af konkurrerende hændelser, som kan forekomme og dermed udelukke den
hændelse, man ønsker at undersøge. De fleste statistiske metoder til at hånd-
tere intervalcensurering forudsætter typisk antagelser om fordelingen af de
faktiske hændelsestider for at muliggøre brugen af parametriske modeller,
som har nogle matematiske egenskaber, der gør dem lette at anvende på in-
tervalcensurerede data. Dette begrænser dog mulighederne for ved hjælp af
regressionsmodeller at måle sammenhængen mellem potentielle risikofakto-
rer og hændelsen, man ønsker at undersøge. En alternativ måde at håndtere
censurering på er ved at transformere de ukomplette data til nogle såkald-
te pseudo-observationer, som kan analyseres ved hjælp af en alsidig familie
af regressionsmodeller, generaliserede lineære modeller, til at måle associa-
tioner med en række let fortolkelige mål. Denne tilgang med pseudo-obser-
vationer er baseret på ikke-parametriske metoder til at definere transforma-
tionen af data, men ved at anvende en alternativ teknik baseret på splines,
som er yderst fleksible parametriske funktioner, kan vi formulere pseudo-
observationer for intervalcensurerede data. Disse parametriske pseudo-ob-
servationer kan så anvendes i generaliserede lineære modeller til at estimere
sammenhænge med risikofaktorer udtrykt som størrelser, der er relevante for
den specifikke kontekst i det enkelte studie.
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Background

1 Introduction

1.1 Outline

As the papers upon which this thesis is based describe different aspects of the
developed methods in both statistical and epidemiological frameworks, the
thesis itself will give a quite thorough introduction to the intended settings
and an explanation of the core aspects of the methodology and the challenges
it has been developed to overcome.
The thesis first presents the specific clinical setting that inspired the method-
ological work that follows. This clinical dataset was analyzed in Paper B and
will also be considered in the thesis as a motivating example and an applica-
tion of the methods.
The methodological part of the thesis first reviews some basic methods for
time-to-event data, and then describes two core ideas that we employed in
developing the proposed method, namely pseudo-observations and the flex-
ible parametric modeling approach. Then, I will formulate an alternative
to the non-parametric pseudo-observations for right censored time-to-event
data with competing risks, which we proposed in Paper A. After that, I will
show how we extended this method in Paper B to cover a situation with
interval censoring on the event of interest and the methodological part will
conclude with a section that reframes the methodological work in an epi-
demiologically applied setting. For this purpose, I will show the methods
applied to a dataset with the illustratively advantageous feature that we can
work with both a right censored and an interval censored version of the event
time data. This dataset was also used in Paper C.

1.2 Motivating example

When a person is known to experience irregularities of the heart rhythm,
known as arrhythmias, and is considered at risk for sudden cardiac death
as a consequence, the treatment strategy is often the use of an implantable
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Background

cardioverter-defibrillator. This is a specialized device, which functions both
as a pacemaker to help maintain a stable heart rhythm by giving electrical
stimuli but is also capable of giving a high-voltage shock if needed. These
devices consist of a generator box and two leads that are connected to the gen-
erator, while the other end is inserted into the heart through a large blood
vessel. Fig. 1 illustrates an implanted device. The leads are complex con-

Fig. 1: Illustration of an implantable cardiac device.

structions consisting of shock coils that connect to multiple wires, which are
protected by an insulation material. A particular type of leads has been un-
der scrutiny due to a potential risk of a specific insulation failure in which the
wires wear through the insulation material as a result of the stress that the
ordinary movement of the patient’s torso puts on them. These mechanical
failures, called externalizations, are potentially very dangerous for the patient
because the leads may become sensitive to false signals with the consequence
that the device might give a shock in an inappropriate time.
In an effort to understand the mechanisms behind this critical phenomenon,
researchers have been interested in performing regression analyses on the
time to an externalization event. The event, however, can go unnoticed with
no detectable symptoms and is usually not noticed until a routine examina-
tion in the form of an X-ray or fluoroscopy imaging is performed. This means
that the available data has the form of a number of examination times and the
externalization status (present or not present) at each examination. This type
of data structure is known as interval censored data. Traditional methods for
right censored time-to-event data, however, require knowledge of the actual
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1. Introduction

time of the occurrence of the event or a censoring time if the event did not
occur within the observed period, whereas interval censored data requires
quite different techniques.
One of the factors that have been suspected of being associated with the exter-
nalization risk is the amount of slack in the lead. The hypothesis behind this
is that without a sufficient amount of lead slack the patient’s muscle move-
ments put more strain on the lead and thus increase the wear in the long
run. But there have also been speculations that too much slack would entail
a more immediate increase in risk due to sharper bends of the lead, which
might cause excessive abrasion leading to externalization. Hence, modeling
of the externalization rate should be performed with due care to reflect the
potentially quite different risk patterns over time.
The dataset that I will analyze for illustrative purposes in this thesis has been
described by Larsen et al. [20]

1.3 Time-to-event data and basic notation

The fundamental real-life circumstance that must be dealt with when consid-
ering time-to-event data is that right censoring of study subjects can prevent
the observation of the actual time of the event of interest. In such cases, the
information is limited to the knowledge that the event has not yet occurred
at the time of censoring. Right censoring is very common in studies where
the outcome is the time to some specified event, and it is generally caused
by either loss-to-follow-up or an administrative censoring due to ending of
the study or data availability. It is important to note that censoring is only
related to the observation of the event and not the actual occurrence of the
event. Most of the methods developed for right censored data thus assumes
independent censoring meaning that the time to censoring and the time to the
event of interest are independent processes.

Functions related to the distribution of time-to-event data

If we let the random variable T denote the time to event with density function
f , we can characterize the extent of the risk at any particular time during
follow-up, t, by the hazard function, which can be considered as a measure of
the instantaneous risk and is defined as

h(t) = lim
∆t→0

P(t ≤ T ≤ t + ∆t|T ≥ t)
∆t

.
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Another commonly studied function related to the survival distribution for
T is the survival function,

S(t) =
∫ ∞

t
f (u)du,

or the related cumulative incidence function, which is simply the distribution
function F(t) = 1− S(t). The survival function describes the probability of
a random individual from the relevant population to survive at least until
the time point at which the function is evaluated. Similarly, the cumulative
incidence function describes the probability of having experienced the event
prior to a given time point.
The survival function and the hazard function have a simple relationship
involving the density function, since

h(t) =
f (t)
S(t)

=
d
dt

ln(S(t)),

where the second equality follows from the fact that f (t) = d
dt F(t). By in-

tegration of this equation, we obtain what is known as the cumulative hazard
function,

H(t) = − ln(S(t)). (1)

Data structure of right censored data

In a right censored setting, we observe data of the form (ti, di), where ti de-
notes the observed time to event or censoring for subject i in a study popula-
tion of n individuals, and di is an indicator for observing the event of interest.
This notation implies that we have defined a time scale with a well-defined
origin on which the functions are defined. In practice, the choice of a time
scale will depend on the specific characteristics of the given study setting, but
for the remainder of this thesis, I will be using the simple time scale, usually
referred to as time-on-study, where time zero is defined as the time that the
individual enters the study.

1.4 Classical methods

Non-parametric estimators of survival and cumulative incidence

In contrast to a fully observed continuous outcome, for a time-to-event out-
come it is not obvious how to give a simple descriptive summary of the
observed data. We are unable to measure the mean of the time to event due
to the censoring of some individuals. This is very often handled by using the
non-parametric product-limit estimator of the survival function, usually re-
ferred to as the Kaplan-Meier estimator. [15] For a particular dataset there will
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1. Introduction

be a set of distinct observed event times, t1, t2, . . . and a corresponding num-
ber of events occurring at these time points, d1, d2, . . ., and the Kaplan-Meier
estimator, Ŝ(t), is then defined as

Ŝ(t) = ∏
i:ti≤t

(
1− di

ni

)
,

where ni is the number of subjects still under observation and not yet hav-
ing experienced the event of interest at time ti. This estimator is a piecewise
constant function of time with jumps at the observed event times. For the
Kaplan-Meier estimator to give unbiased estimates of the survival function,
the independent censoring assumption is paramount because it ensures that
the subjects who are still under observation and considered at risk of the
event of interest are representative for the entire subset of individuals who
can still experience the event whether we can observe it or not. From the
Kaplan-Meier estimator, we can obviously obtain an estimator of the cumu-
lative incidence function as 1− Ŝ(t).
The cumulative hazard function can be estimated by the Nelson-Aalen esti-
mator [1, 24],

Ĥ(t) = ∑
i:ti≤t

(
1− di

ni

)
.

A non-parametric estimator of the cumulative incidence function that can
also incorporate competing risks, which we will consider in Section 1.6, is
the Aalen-Johansen estimator [2], which can be obtained by combining the
Kaplan-Meier and Nelson-Aalen estimators.

The Cox proportional hazards regression model

Performing regression modeling on right censored time-to-event data has
been completely dominated by the commonly applied Cox proportional haz-
ards model. [9] As the name suggests, this model relies on the assumption
that hazard functions for different values of the independent variables are
proportional. Inference in the model is based on a partial likelihood approach
where the general shape of the hazard, determined by a baseline hazard func-
tion, is unspecified in the model and is estimated semi-parametrically when
the model is fit to a given dataset using the Breslow estimator. [5] For a vector
of explanatory variables, z, the model can be formulated on the log hazard
scale as

ln(h(t; z)) = ln(h0(t)) + βᵀz,

where β are the regression coefficients and h0 is the baseline hazard function.
In the Cox proportional hazards model, the association between the outcome
and an explanatory variable, say the j’th element of z, is measured by the ratio
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of the hazards known as the hazard ratio, HRj = exp(β j), which is interpreted
as the relative instantaneous risk for a one-unit difference in the explanatory
variable. The Cox model does not assume the same strictly independent
censoring as the non-parametric estimators, but only independence given the
regression variables.

Parametric models

Fully parametric models, i.e. models that are completely specified by a finite
number of parameters, have some mathematical advantages in that inference
can be based on a full likelihood approach. For a parametric model deter-
mined by a set of parameters, θ, the likelihood function can be written as

L(θ; z) =
n

∏
i=1

f (ti; zi)
δi S(ti; zi)

(1−δi), (2)

where zi is the values of the explanatory variables for the i’th subject and δi
is an event indicator.
For any assumed parametric distribution of the time to event, this likelihood
function can be maximized to find estimates, β̂, of the regression coefficients.
Some of the simpler parametric models include the Weibull model with haz-
ard function h(t; k, b) = bktk−1, and a piecewise version of the Exponential
distribution with constant hazard function. Due to the rather restrictive dis-
tributional assumptions in these models, their application in medical research
has been quite limited compared to the Cox proportional hazards model.

1.5 The flexible parametric model

With the increasing computer performance, new methods relying on numeri-
cal maximization of complex likelihood functions with more parameters have
become feasible alternatives to the traditional distribution-based parametric
models. A number of different approaches using splines to model different
functions related to the distribution of a time-to-event variable have been pro-
posed. [6, 12, 18, 19, 31, 32] The most commonly applied of these approaches
is probably the flexible parametric model suggested by Royston & Parmar. [32]
This model can be formulated in either a proportional odds or a proportional
hazards version but I will only be using the proportional hazards version
where the model can be written as

ln(H(t; z)) = s(ln(t); γ) + βᵀz.

In this formulation, s(ln(t); γ) is a restricted cubic spline with m internal
knots evaluated in log time that is used to model the log cumulative base-
line hazard function and has parameters γ = (γ0, . . . , γm+1). A restricted

8



1. Introduction

cubic spline is determined by a set of basis functions, v1(·), . . . , vm(·), and
the parameters as

s(x; γ) = γ0 + γ1x + γ2v1(x) + · · ·+ γm+1vm(x).

More details on restricted cubic splines can be found in the Appendix of
Paper A. Using a spline to model the log cumulative baseline hazard gives the
advantage of being able to model almost any realistic shape of the underlying
distribution function while allowing for full likelihood estimation owing to
the parametric nature of the model.
The flexible parametric model provides a smooth estimator of the cumulative
baseline hazard function based on the spline parameters using the relation

H0(t) = exp (s(ln(t); γ)) . (3)

This has particular advantages in a competing risk setting with interval cen-
sored data, as we shall see.

1.6 Competing risks

So far, I have only been considering right censored data where all individu-
als are bound to eventually experience the event of interest. For studies of
survival time, this is a reasonable approach but for most non-fatal outcomes
in living creatures, the omnipresent risk of dying interferes with this sim-
ple order of things, whether we like it or not. For instance, individuals are
certainly no longer at risk of developing a specific disease once they have
died. Hence, in a wealth of different research questions the presence of one
or more competing risks should be accounted for. This is not to be confused
with censoring where, as I have already pointed out, the risk of the event of
interest should be the same regardless of the censoring status.
The competing risk phenomenon is often considered as a simple multi-state
model in which each individual is in an event-free state at the beginning of
follow-up, but can then move to one of K different states during follow-up.
This can be visualized as in Fig. 2, which also appears in Paper C. Each of
the arrows in Figure 2 represents a potential transition from one state to an-
other, and they can be modeled by individual cause-specific hazard functions,
h1(·), . . . , hK(·). There are no arrows out of any other state than State 0 so
for the purpose of the model we consider each of the states 1, . . . , K to be
absorbing states.
In a competing risk setting, there is not a simple relationship between the
cause-specific hazard and the cumulative incidence as in (1) for right cen-
sored data. The cause-specific cumulative incidence for cause d, Fd(·), can,
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State 0

State 1

State 2

State K

h1

h2

hK ...

Fig. 2: A multi-state model with K competing risks.

however, be calculated from all of the K cause-specific hazard functions,

Fd(t) =
∫ t

0
hd(u) exp

(
−
∫ u

0

K

∑
k=1

hk(v)dv

)
du =

∫ t

0
hd(u) · S(u)du, (4)

where S(·) refers to the overall survival, which expresses the probability of not
having experienced any of the K events at a given time.

1.7 Pseudo-observations

If we imagine for a while that we actually had a fully observed dataset of
time-to-event data with no censoring, what kind of regression models would
then be relevant for estimating associations? One obvious approach would
be some kind of linear model on the event times, which would be relevant for
assessing the difference in expected time to the event under different values
of an exposure variable in a relevant scale. We might also be interested in
modeling the probability of having experienced the event at a certain time
point by perform regression on a binary outcome. Both these approaches
would be feasible within the general theory of generalized linear models.
But confronted with the harsh reality that right censoring is an issue, which
must be dealt with in practice perpetually, a transformation of a right cen-
sored dataset into some fully observed data with some appropriate math-
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1. Introduction

ematical properties would be a savior. A very clever transformation of a
right censored dataset that provides just this has become increasingly pop-
ular in the recent decades. This transformation gives rise to a set of pseudo-
observations and they are derived as follows. [3,4] Based on the full right cen-
sored data sample, we calculate an estimate of the function, f , that describes
the scale at which we are ultimately interested in measuring associations by
a parameter θ. This gives us a full-sample estimator, θ̂, of the expected value
E[ f (X)], where X is the vector containing the fully observed data. Similarly,
we could obtain an estimator, θ̂(−i), based on the leave-one-out (or jackknife)
sample where the i’th observation is left out. The transformation of the right
censored dataset then consists of performing the transformation defined by
calculating the pseudo-observations as

θi = nθ̂ − (n− 1)θ̂(−i), for i = 1, . . . , n. (5)

That is, the i’th pseudo-observation measures what the difference in the esti-
mator of θ would be had the i’th observation in the dataset not been there.
The most common application of the pseudo-observation approach is to es-
timate the cumulative incidence function by one minus the Kaplan-Meier
estimator or, in the presence of competing risks, by the Aalen-Johansen es-
timator. In this situation, it can be shown that the resulting non-parametric
pseudo-observations have the property that, for large samples, E[θi|zi] ≈
E[I(Ti ≤ t, Di = d)|zi] = Fd(t|zi), where Fd(t|zi) is the cause-specific cumu-
lative incidence for cause d given the values of the explanatory variables for
the i’th subject. [11] This means that we can use the pseudo-observations as
the outcome variable in a generalized linear model to obtain estimates of as-
sociations with the explanatory variables.
More specifically, we can formulate regression models for a range of differ-
ent association measures such as hazard ratios, risk differences, relative risks,
and difference in restricted mean survival time. This can be achieved using
the generalized linear model [4]

g(E[ f (T)]) = β0 + ∑
j

β jzj,

for suitable choices of the function, f (·), and link function, g(·). In the above
example where f (T) = I(Ti ≤ t, Di = d), we can use the identity link function
to model the absolute difference in cause-specific cumulative incidence, or
we can use the log function to model relative associations in terms of the
cause-specific relative risks. We can even obtain an estimate of the hazard
ratio in a proportional hazards model at a specific time point by using the
link function g(t) = ln(− ln(t)). Another useful choice is to use the overall
τ-restricted mean function, f (T) = min(T, τ), by the integral of the Kaplan-
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Meier estimator,
∫ τ

0 Ŝ(u)du, and apply a model with identity link function,

E[min(T, τ)] = β0 + ∑
j

β jzj,

to obtain estimates of the amount of expected loss of lifetime due to a given
explanatory variable.
Estimating the variance of the regression coefficients in these models has
been the subject of a considerable amount of research in itself. For pseudo-
observations based on the Aalen-Johansen estimator, it was originally pro-
posed to use a robust sandwich estimator of the variance or applying a non-
parametric bootstrap procedure, and the sandwich estimator has become the
standard in practical applications. However, Jacobsen et al. [13] have shown
that this is generally a conservative estimator and Overgaard et al. [26, 27]
have suggested and thoroughly studied an alternative estimator. For the pur-
pose of this thesis however, I will be using the slightly conservative sandwich
estimator.
The modeling framework that I have presented here covers the case of pseudo-
observations calculated at one time point only, but models can also be formu-
lated for a finite number of time points. Such models should take into account
the correlation between the pseudo-observations for each individual. Since
the pseudo-observations are based on overall estimators of the cumulative in-
cidence function, the assumption of independent censoring is crucial for the
above results to hold. If this is not fulfilled, however, pseudo-observations
can be calculated in strata of the relevant variables to obtain unbiased es-
timates. A thorough discussion on assumptions on possible remedies for
violations is given by Mortensen et al. [23]

1.8 Interval censoring

The methods described above that rely on observing exact event times, at
least for some individuals, are not directly transferable to interval censored
data. As mentioned in Section 1.2, interval censoring implies that we only
have information on the event status at a given set of examination times such
that when we observe an event of interest in one individual, all we know is
that it has occurred since the last time we observed that it had not yet oc-
curred. So, if the event has not occurred at visit time L but has occurred at
time R, we know that it occurred somewhere in the interval (L, R). If, on the
other hand, the event had not occurred at the last examination time L, this
situation corresponds to a right censoring at this time and we could cover
this by setting R = ∞ such that the event is only known to occur at some
point after L. All examinations prior to L or after R give no further relevant
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information.
Interval censoring is not limited to the study of time-to-event outcomes but
can also occur when measurements are for other reasons only known to lie
within an interval. This could be the case when measurement of an out-
come is only possible by assessing whether or not the value exceeds certain
thresholds. Although the methods I will be discussing are applicable more
generally, I will stick to the terminology from the time-to-event setting.
For any of the methods discussed in the following, a crucial assumption is
that the examination times are independent of the event status. That is, the
examination pattern must be determined either by a fixed schedule or gov-
erned by a random process, which is independent of the event time process.
In practical applications, this is an important limitation.
One other important thing to note about interval censored data is that there
is a greater amount of unknown information than just the exact time of the
events, since an individual for which we do not observe the event at the last
examination time will subsequently be censored with unknown event status.
This means that the event might have occurred somewhere between the last
examination time and the censoring time, or it might not. This additional
uncertainty should be accounted for when we perform any kind of statistical
inference.

Data structure

A simple dataset of interval censored time-to-event data can then be charac-
terized by two variables where one contains the last known time when the
event had not occurred (potentially at time zero) and the other contains the
first known time when the event had occurred (potentially never; e.g. coded
as a missing value).
In practice, it is quite common to have a dataset consisting of a mix of (right
censored) exactly observed and interval censored event times. This can hap-
pen if, for instance, data are gathered from different sources, but it can also
happen if the event of interest can either be detected immediately or go un-
noticed until a specific examination is performed. These two different mech-
anisms both leading to a mix of right and interval censored data differ in
the sense that in the first case individuals are predetermined to be observed
by either continuous or pointwise follow-up whereas in the second case ex-
actly observed event times are added to otherwise interval censored data.
Right censored data can be considered a special case of interval censored
data with R = ∞ for censored individuals and L = R for exactly observed
event times. [22]
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Non-parametric estimation of survival

The extremely popular Kaplan-Meier estimator for right censored data does
not have a direct counterpart for interval censored data. However, both
Peto [28] and Turnbull [36] derived the same non-parametric estimator of
the survival function. The procedure for finding this estimator is not very
straightforward and applications of the estimator has been limited. The es-
timator is defined by a set of intervals between which the value is constant,
but it is not explicitly defined within the intervals since any function with the
appropriate increase within the intervals has the same likelihood.

Example, cont. In the ICD dataset introduced in Section 1.2, we can ob-
tain a naive estimator of the survival function for the externalization event
by erroneously right censoring at death and employ the Peto-Turnbull ap-
proach. In Fig. 3, I show the Peto-Turnbull estimator for the two exposure
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Fig. 3: The Peto-Turnbull estimator of the externalization survival in the ICD data.

groups, low and high slack, separately. We can see that, most of the intervals
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(shaded grey) where the Peto-Turnbull is undefined are very short. Although
there are 11 and 26 observed externalization events in the group with high,
respectively low, slack, the curves jump at 5 and 6 intervals. The estimated
externalization survival after 8 years is about 0.90 for the low slack group and
0.70 for the high slack group, indicating that the estimated cumulative inci-
dence at 8 years is about 10 and 30%, respectively. However, by censoring at
death, we are assuming that the patients who die before having experienced
an externalization event still have the same risk after their death as those who
are still observed at similar time points.

Parametric regression models

The likelihood contribution for different individuals depend on the trajec-
tory of that individual. For an event that is observed to occur in the interval
(L, R), the likelihood contribution is the difference in the survival function
over the interval, i.e. S(L) − S(R), while for right censored or exactly ob-
served event times the contributions are as described in (2). [17] With these
analytical expressions for the likelihood contributions, it is rather straightfor-
ward to apply standard maximum likelihood methods to interval censored
data by using a distribution-based parametric model. The Weibull and piece-
wise Exponential models mentioned in Section 1.4 are then easily extended to
an interval censored setting. As is the case for right censored data, the para-
metric models yield precise estimates of the relevant quantities if the model
provides a good fit to the data and thus adequately describes the underlying
risk patterns. In such situations, parametric models also offer the opportu-
nity to produce smooth estimators of the functions describing the distribution
and calculating out-of-sample predictions. However, if the model is misspec-
ified in terms of the distributional assumptions the result will be apparently
precise estimates that do not have the intended interpretation.

Example, cont. If we stick to the naive approach of right censoring at
death, we can fit a parametric model to the ICD dataset by assuming that the
externalization event times follow a Weibull distribution and that the hazard
functions for the two slack groups are proportional. This model fits the data
reasonably well, and the estimated hazard ratio is 3.1 (1.5 to 6.2). Based on
this model, we can also estimate the externalization survival functions for low
and high slack, and these are shown in Fig. 4. The parametric nature of the
Weibull model facilitates a smooth estimate of the baseline hazard function
such that, in contrast to the Peto-Turnbull curves in Fig. 3, the estimated
survival curves are smooth.
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Fig. 4: The estimator of the externalization survival in the ICD data based on a Weibull model.

Midpoint and right endpoint methods

The relatively strict assumptions of the parametric models and the lack of
generally accepted non- or semi-parametric regression modeling approaches
for interval censored data has led to a common practice of imputing either
the interval midpoint or the right endpoint of the interval for the event time
and use standard methods for right censored data. Using either of these
methods also requires a crucial, yet often neglected, decision about how to
handle individuals for whom we do not observe the event of interest. One
way to handle these would be to censor at the last examination, since we
do not know whether the event of interest has occurred after that. However,
this would entail that all individuals that die during follow-up would be
considered as censored and we would thus not see any competing events in
the imputed dataset. If we, on the other hand, censor individuals without
an observed event of interest at the end of their observable follow-up, we
would be assuming that they did not experience the event of interest after
their last examination even though we do not know this. In this PhD project,
I have chosen to use a combination of these two methods so that individuals
without an observed event of interest are coded as dead at the observed time
of death if any and are otherwise censored at their last examination time.
The validity of the midpoint and right endpoint imputation approaches has
been discussed by several authors [10,22,25,30] and are generally considered
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questionable, at least when the underlying hazard function is not flat. The
right endpoint is the last point at which the event could have occurred, and
this obviously leads to an underestimation of the cumulative incidence at
any particular time point. The midpoint imputation approach is also known
to lead to potentially biased results and underestimate the standard error of
parameter estimates [16,21,25], and the censoring at the last examination time
for individuals without an observed event of interest means ignoring some
information that is actually present in the data.

Example, cont. If we use midpoints or right endpoints in the ICD data,
we can apply standard right censored methods by estimating externalization
survival with the Aalen-Johansen estimator. This enables us to account prop-
erly for the competing risk of death by estimating cause-specific cumulative
incidence of externalization. Fig. 5 shows the estimated cumulative incidence
of externalization based on midpoints (blue curves) and right endpoints (red
curves). The curves show some interesting features. First, we can clearly
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Fig. 5: Aalen-Johansen estimators of the cumulative externalization incidence in the ICD data
based on midpoints and right endpoints.

see that when we use right endpoints, the events occur later than with the
midpoints such that the estimated cumulative incidence remains low until
much later in follow-up. Second, at later follow-up times, we notice that
the estimate based on right endpoints increases to a higher level than that
of the midpoints. This phenomenon occurs because more individuals have
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already been censored at the event times, which causes the jumps in the
Aalen-Johansen estimator to become larger.
If we fit a Cox proportional hazards model to the midpoints or the right end-
points, we can obtain estimates of the cause-specific hazard ratio comparing
the externalization rate with high slack to that with low slack. This gives
an estimated hazard ratio of 2.9 (1.4 to 5.9) for the midpoints and 3.5 (1.7 to
7.1) for the right endpoints, which reflects the differences we observed in the
Aalen-Johansen curves quite well.

Competing risks and the illness-death model

Since the event of interest in an interval censored setting is almost never
death (for which we generally observe an exact time), competing risks will
inevitably be a phenomenon that should be taken into account. As I have
already mentioned in Section 1.6, this is usually handled by considering a
multi-state model with a number of different states that each subject can
move to from the initial state. For simplicity, I will, henceforth, combine all
event types other than the event of interest into a common competing event,
thus simplifying the model in Fig. 2 to a situation with K = 2.
When the event of interest is interval censored, although it is still true that
there are two possible transitions out of the initial state, the limited infor-
mation for some individuals renders the competing risks multi-state model
inadequate. If an individual is not seen at an examination time with the
event of interest before the competing event occurs, we simply do not know
to which state this individual moved from the initial state because the event
of interest may or may not have occurred. Similar uncertainty exists if the in-
dividual is censored without a preceding positive examination for the event
of interest. To fully exploit the information that we do have, we need to
model the complete set of possible transitions so we can model the potential
transitions as well as the observed transitions. This gives rise to expanding
the multi-state model to an irreversible illness-death model [7] where it is also
possible to experience the competing event after the event of interest, such
that we are no longer just considering the time to whatever event occurs first.
I have illustrated this in Fig. 6, which also appears in Paper C. In this model,
we consider only State 2 to be an absorbing state, and the term irreversible
refers to the fact that we do not allow transitions from State 1 back to State 0.
In the terminology of an illness and death, this means that the disease we are
considering is incurable. I will model the transitions in the irreversible illness-
death model using transition-specific hazard functions, h01(·), h02(·), and h12(·),
under a semi-Markov assumption meaning that each transition-specific haz-
ard function, hkl(·), only depends on the time since entry into the current
state, k. The transition from State 1 to State 2 may seem redundant for the
purpose of modeling the event of interest, i.e. the transition from State 0
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State 0
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h01

h02
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Fig. 6: The irreversible illness-death model.

to State 1, but we will see in Section 2.2 that it is imperative to model this
transition as well.

Data structure with competing risks

Since we are no longer just considering the time to and type of the first
event to occur, the data structure needs to be extended to accommodate the
additional information for each subject. One possible way to do this is to use
multiple data records to describe the different transitions for each individual,
but in the following I will be using a different structure where the trajectory
of each individual is described by a set of five variables in place of the two
variables needed in the right censored competing risk setting, since there
are now two relevant event types where one is potentially interval censored.
The notation I will use follows that used in Paper B where the variables are
defined as follows for the i’th individual.

List 1.

d1i is the indicator for an observed event of interest (either exactly ob-
served or interval censored)

l1i is the last known negative time point (potentially at time zero)

t1i is the observation time for the event of interest (either the exact time
or the first positive examination time)

d2i indicates a competing event (exactly observed)
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t2i is the observation time for the competing event

To distinguish between events of interest, which are exactly observed and
those that are observed in an interval, I will use the convention that if the
event of interest is observed exactly at time t1i then l1i is set to missing as it
is then no longer relevant.

2 Methodology

In this section, the fundamentals of the proposed analysis approach are ex-
plained. The parametric approach for calculating pseudo-observations for
right censored competing risks data is detailed in Section 2.1, and in Section
2.2 I explain how this method can be extended to cover the case of an interval
censored event of interest. In Section 2.3 I aim to frame the proposed meth-
ods in a more epidemiological context and give some practical comments and
caveats.

2.1 Parametric pseudo-observations for right censored data
with competing risks

This section is based on Paper A and it introduces the basic methodology in
which this PhD project has resulted. The general idea behind the method is
to use the flexible parametric approach to estimate the marginal cumulative
incidence function and define pseudo-observations based on this estimator. I
consider a setting with competing risks to cover the more general case and
work with the cause-specific versions of the relevant functions.

Definition

If we consider the non-parametric pseudo-observations defined in (5), they
are most often based on the Aalen-Johansen estimator of the cause-specific
cumulative incidence function. This function has two main limitations in
relation to the variability of the point estimates. First, it is a piecewise con-
stant function so, particularly when events are scarce, small differences in the
observed event times may cause rather large differences in point estimates.
Second, it is constructed in such a way that it uses only information up to,
but not beyond, the time point at which it is evaluated. These circumstances
might suggest that by fitting a spline to the entire follow-up data we will
be able to make better use of the information and decrease the sensitivity to
small fluctuations in the observed data.
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To obtain such an estimator of the cumulative incidence function, I have fol-
lowed the approach of Royston & Parmar [32] in their flexible parametric
model to fit a restricted cubic spline to the log cumulative hazard function in
log time. Fitting such splines for each transition in the competing risk model
yields a set of estimated spline parameters, γ̂1, . . . , γ̂K, which can be used to
obtain an estimator for the cause-specific cumulative incidence function for
the event of interest by applying the formula in (4). I will be using the flexible
parametric model only marginally such that the estimator of the cumulative
baseline hazard function in (3) will work as the overall estimator, θ̂, in (5).
By denoting the spline-based estimator of the baseline cause-specific cu-
mulative hazard for the event of interest as θ̂p and the corresponding i’th
leave-one-out estimator as θ̂

p
(−i), we can then define a set of parametric pseudo-

observations for the cause-specific cumulative incidence as

θ
p
i = nθ̂p − (n− 1)θ̂p

(−i), for i = 1, . . . , n. (6)

These parametric pseudo-observations can then be used in generalized linear
models as described for the non-parametric pseudo-observations in Section
1.7. I suggest that the splines fitted in the leave-one-out samples should be
based on the same knot points as for the full-sample fit. The reasoning behind
this suggestion is that if we aim to find the contribution of each individual
to the full-sample estimator of the cumulative incidence function for which
the spline knots have been defined, we would not accurately reflect this if the
spline knots were redefined for the leave-one-out estimator.
I have not theoretically justified that θ̂p is an approximately unbiased esti-
mator of the cumulative incidence function, but in Paper A we have per-
formed an extensive simulation study that examines the empirical properties
of the parametric pseudo-observation approach in terms of bias and estimate
variability and compared these to the properties of non-parametric pseudo-
observations.

Simulation results

In our simulation study, we generated datasets in different scenarios to assess
the influence of different elements in a practical application of the method.
The evaluations are based on 5 000 repetitions in each specific setting. The
general conclusion from the simulation study was that the parametric pseudo-
observation approach gave unbiased estimates with appropriate coverage. In
the simplest settings with no competing risks and constant event intensities,
we observed that the standard deviation of the regression coefficient esti-
mates based on the parametric pseudo-observations was about 7 or 8% lower
than those based on non-parametric pseudo-observations. This relative effi-
ciency decreased when we introduced a competing risk. By further investi-
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gations, we found that the magnitude of the relative efficiency was mainly
determined by two factors.

1. The size of the risk set at the analysis time point

2. The amount of information in the dataset that lie beyond the analysis
time point

Since the size of the jumps in the non-parametric estimators is directly re-
lated to the number of individuals still at risk at each observed event time,
the first point supports our initial hypothesis that a smooth estimator pro-
vides more stability in the estimation. The second can be explained by a
fundamental difference in the way the estimators are constructed. When
evaluated at a given time point, the non-parametric estimators do not take
into account what happens after this time point, whereas the spline is always
fitted to the entire follow-up data and is then evaluated at the given time
point. This means that the non-parametric estimators basically use less of
the information available in the dataset, which further adds to the instability
of the estimates. The specific results from Paper A that give rise to these
deductions are those from the scenarios in which we adjusted the amount of
additional information after the analysis time point and adjusted the size of
the risk set at the analysis time point.

Conclusion

The contents of this section constitute the crux of the methodological con-
tribution in this thesis. The idea of replacing the non-parametric estimators
typically used to calculate pseudo-observations for the spline-based para-
metric estimators was based on the hypothesis that this would produce an
improvement in terms of more stability in the final coefficient estimates. We
have developed the methods in a right censored setting with competing risks
and performed simulations that suggest that the method performs at least as
well as the traditional non-parametric pseudo-observation approach and in
some situations provide a valuable gain in efficiency.
Settings where the observed gain would occur are rather common in ap-
plied medical research. Examples include register-based studies where there
is often a surplus of follow-up readily available, which could be included
in the dataset to add information after the analysis time point. If, on the
other hand, the observed follow-up data is utilized to full extent in terms of
follow-up time, the risk set might be diminishing at the analysis time point
such that the smooth estimation will provide an improvement in stability of
the non-parametric methods.
The price we pay for the improvement in stability is the added complexity
of computation of the pseudo-observations. Fitting splines to each of the
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leave-one-out samples is a rather demanding procedure that requires use of
numerical optimization of likelihood functions, which entails quite intensive
computer processing in comparison to the non-parametric counterpart. In the
datasets that I have worked with in relation to this thesis where the number
of observations has been between 250 and 400, the computations can typically
be performed on an ordinary PC in less 5 minutes, though. Implementing the
methods in a statistical software program with existing procedures for fitting
restricted cubic splines requires some programming knowledge, but it should
be feasible to achieve a working solution without using overly advanced pro-
gramming. In Paper A, I have provided an example of an implementation in
Stata software.

Application to the ICD data

In the ICD dataset, we can calculate both non-parametric as well as para-
metric pseudo-observations based on the midpoint imputation method pre-
viously described. Since we are considering death as a competing risk, the
calculation of non-parametric pseudo-observations is based on the Aalen-
Johansen estimator using the midpoint method. The full-sample estimators of
the cumulative incidence based on the Aalen-Johansen estimator and spline-
based estimators with 3 through 5 spline knots are show in Fig. 7. Adding
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Fig. 7: The Aalen-Johansen and spline-based estimators of the cumulative externalization inci-
dence in the ICD data.

more than 4 knots does not seem to increase the fit of the spline-based es-
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timators and I will calculate parametric pseudo-observations using 4 knots
in this illustration. I thus calculated non-parametric and parametric pseudo-
observations at 5 years of follow-up and used generalized linear models with
identity and log link functions to compare the cumulative incidence at 5 years
between the two slack groups. The non-parametric approach gives an esti-
mated risk difference of 9.2% (3.2% to 15.1%) and the parametric approach
gives 9.0% (3.2% to 14.7%). The estimates of the relative risk are 3.2 (1.5 to
7.0) and 3.1 (1.5 to 6.5), respectively. This suggests that the parametric and
non-parametric approaches in the setting give very similar point estimates
and that the parametric approach might give a slight increase in efficiency.

2.2 Extending the parametric pseudo-observations to interval
censored data

In Paper B, the parametric pseudo-observation method is extended to cover
the case of interval censored data. As I have discussed in Section 1.8, meth-
ods to deal with a competing risks setting are not directly transferable to an
interval censored setting and data should instead be considered in an illness-
death model. Since datasets from such settings may in practice consist of a
mixture of right and interval censored data for the event of interest, I will
consider the general case where both types of data can occur.

Definition

The definition of parametric pseudo-observations is basically the same for
interval censored data as in the right censored case with competing risks.
The difference lies in how we estimate the cumulative incidence function that
describes the transition into the state defined by the event of interest. In the
right censored competing risks setting, this was obtained by estimating the
cause-specific cumulative incidence function using the K cause-specific haz-
ard functions, which can be estimated separately by considering the risk set
and event times for each event type. In the more complex case of an illness-
death model with an interval censored event of interest, the transition-specific
hazard functions have to be estimated simultaneously in one likelihood max-
imization procedure because we must take the potential transitions of indi-
viduals into account.
The contribution of each individual to this likelihood function will depend on
the patient’s trajectory through the states in the illness-death model. There
are six such trajectories that can occur. [35]

Trajectory 1 An exactly observed event of interest followed by right censoring

Trajectory 2 A negative examination followed by censoring
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Trajectory 3 An interval censored event of interest followed by censoring

Trajectory 4 An exactly observed event of interest followed by death

Trajectory 5 A negative examination followed by death

Trajectory 6 An interval censored event of interest followed by death

Each trajectory gives rise to a particular contribution to the likelihood func-
tion, Li for the i’th individual, and I will describe these using the notation
defined in List 1 on page 19. I have already introduced the transition-
specific hazard functions, h01(·), h02(·), and h12(·), and following that nota-
tional style, I will refer to the transition-specific cumulative hazard functions,
H01(·), H02(·), and H12(·), from which we can define the event-free survival
function as

S(t) = exp (−H01(t)− H02(t)) .

We can now specify the likelihood function as the product of the contribu-
tions [17] defined as follows. Since Trajectories 4–6 are similar to Trajectories
1–3 with the exception that the individual dies instead of being censored, we
can write the contributions in three expressions.
For an individual following Trajectory 1 or 4,

Li = S(t1i)h01(t1i)
exp(−H12(t2i))

exp(−H12(t1i))
h12(t2i)

d2i ,

for an individual following Trajectory 2 or 5,

Li = S(t2i)h02(t2i)
d2i +

∫ t2i

l1i

S(u)h01(u)
exp(−H12(t2i))

exp(−H12(u))
h12(t2i)

d2i du,

and for an individual following Trajectory 3 or 6,

Li =
∫ t1i

l1i

S(u)h01(u)
exp(−H12(t2i))

exp(−H12(u))
h12(t2i)

d2i du.

This is obviously a rather complex likelihood function and I have used a
Newton-Raphson algorithm to maximize it over the parameter space of spline
parameters, γ01, γ02, γ12. In practice, it is worthwhile to obtain starting val-
ues for the maximization procedure by fitting a simpler model. We have
presented a suggested method for this in Paper B.
When this likelihood function has been maximized, the resulting estimates
can be used to find an estimate of the cumulative incidence function for the
event of interest using the formula

F01(t) =
∫ t

0
h01(u)S(u)du. (7)
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Letting θ̂ IC denote the full-sample estimate of the cumulative incidence func-
tion, and θ̂ IC

(−i) the leave-one-out counterpart, we can then define the para-
metric pseudo-observations for an interval censored event of interest with
competing risks on the same form as in the right censored case in (6).

θ IC
i = nθ̂ IC − (n− 1)θ̂ IC

(−i), for i = 1, . . . , n. (8)

The pseudo-observations thus defined constitute the suggested solution to
the original methodological challenge that this PhD project has sought to
overcome; an interval censored event of interest that is expected to follow risk
patterns that do not follow the same fundamental shape for different values
of explanatory variables. The pseudo-observation framework provides an
appealing versatility in terms of association measures and the spline-based
modeling approach enables these pseudo-observations to be calculated for
interval censored data without any assumptions about the distribution of the
event times.
Since the calculation of these pseudo-observations involves maximization of
a complex likelihood function in each leave-one-out sample, the method re-
quires considerably more computational time than is needed in the case with
right censored data only.

The penalized likelihood approach

Simultaneously with the development of our method, a quite similar method
was proposed by Sabathé et al. [34], which builds upon a penalized likelihood
approach to modeling interval censored data in an illness-death model. [14]
In this approach, the transition-specific cumulative hazard functions are mod-
eled directly by linear combinations of monotone I-splines [29] and the pa-
rameter estimates are obtained by maximizing a penalized likelihood func-
tion with a penalty parameter for each transition to control the smoothness
of the estimated hazard functions. In addition to the knot positions and the
penalty parameters, this model contains a high number of parameters equal
to the order plus the number of internal knots and the authors therefore rec-
ommend against using it for right censored data.
The pseudo-observation approach by Sabathé et al. is very similar to our
suggested approach and we have calculated pseudo-observations using both
approaches in our simulation study in Paper B to compare their performance.

Simulation results

In a relatively simple setting with exponentially distributed event times and
a mix of exactly observed and interval censored event times for the event of
interest in an illness-death model, we have performed a simulation study that
is presented in detail in Paper B. For the simulated datasets, we compared
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the estimates of the cumulative incidence of the event of interest as well as
the association with a binary exposure measured by the risk difference and
relative risk. Due to the intensity of the calculations we had to limit the num-
ber of repetitions in this simulation study to 1 000.
The parametric pseudo-observations in (8) showed no notable biases and the
coverage probabilities were quite close to the nominal value of 95%. Com-
pared to the penalized likelihood approach, our approach gave slightly larger
standard deviations of the regression coefficients.

Conclusion

By establishing a method for calculating parametric pseudo-observations for
interval censored data with competing risks, I have presented a workable so-
lution to the challenge of formulating regression models for such data. The
method is solidly grounded in the sense that it has proven quite effective in
the simpler case of right censored data where it offers a potential gain in
terms of lower uncertainty of regression coefficient estimates.
There are two main limitations of the applicability of the method. First, it
requires great amounts of computer power, which might be a deal breaker in
some settings. However, with the ever-increasing computational capacity in
general-purpose computers and the developments within high-performance
computing, this limitation is likely to decrease over time. Second, the com-
plexity of the likelihood function requires rather complex programming in
order to implement the methods in practice. I have not developed a pub-
licly available software solution as part of this PhD project because my main
objective was chosen to be the development of the methodology. I have imple-
mented the method in Stata software by making use of a number of packages
and the built-in command, ml, for maximizing a user-specified likelihood
function. The penalized likelihood approach has been implemented in an
unpublished R package, pseudoICD, that is available on GitHub. [33]
Despite these limitations, I believe the method has the qualities to become
a valuable addition to the vast toolbox of biostatistical methods. The fields
of application of the method are not limited to studies of time-to-event data;
interval censoring occurs as a consequence of practical limitations to mea-
surements of an outcome in other situations as well.

Application to the ICD data

To conclude the analysis of the ICD example data, I have calculated paramet-
ric pseudo-observations based on the examination times in the dataset. The
ICD dataset contains no exactly observed events of interest, so all of the 37
observed events of interest are interval censored. The estimated cumulative
incidence of externalization based on the splines fit to the full-sample inter-
val censored data (Fig. 8) is very similar to the spline-based curves obtained
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Fig. 8: The full-sample spline-based estimator of the cumulative incidence of externalization in
the ICD data.

using the midpoints and a right censored competing risks approach (Fig. 7).
The estimate of risk difference at 5 years between high slack and low slack
using the parametric pseudo-observations for the interval censored data is
7.1% (0.4% to 13.8%) and the estimate of relative risk is 3.0 (1.1 to 8.1). This
is a slightly higher estimate of the absolute difference in risk than we found
using the midpoints, while the relative risk is slightly lower.

2.3 Epidemiological context

Interval censored data may occur in a wide range of different epidemiological
settings. The data that I have been working with in this thesis is an example
of a patient population that is followed by routine examinations to monitor,
among other things, the occurrence of the particular event of interest. But any
kind of systematic assessments over time can give rise to interval censored
data.
An extreme form of interval censoring arises from population screening data
where each individual might have a maximum of one examination time; this
special case of interval censoring is sometimes referred to as current status
data. These data are often only used to assess the prevalence of a certain con-
dition in a population measured by the proportion of positive examinations,
but by considering the data as interval censored and applying the paramet-
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ric pseudo-observation approach it would be possible to estimate cumulative
incidence and perform regression analyses and use different meaningful as-
sociation measures.

Methodological considerations

As already argued in Section 1.8, imputation of either right endpoints or in-
terval midpoints are not guaranteed to produce unbiased estimates of the cu-
mulative incidence and that alone should constitute a serious caution against
using these methods if it can be avoided. Using a spline-based method in
an illness-death model provides a way to use the available information to
the full extent by taking into account the potential events that have not been
observed to occur.
The parametric pseudo-observation approach does not impose assumptions
about specific shapes of the risk over time but it does require that this can be
captured by the spline that is fit to the logarithm of the cumulative hazard
function. Although this covers a very wide range of shapes, there are some
functional forms that a restricted cubic spline is not technically able to model
exactly. In Paper B we simulated event times from a log-logistic distribution,
which the flexible parametric approach does not cover, and our simulations
indicated that this does not constitute a problem in practice as we neither saw
signs of bias nor problems with the width of the confidence intervals. In con-
trast, all our simulations have shown that the flexible parametric approach
produces unbiased estimates with reasonable coverage. However, there are
some important assumptions, which are essential for the parametric pseudo-
observation approach to produce valid results.

Independent censoring The censoring mechanism(s) must be independent
of the event process(es). This assumption can be relaxed by calculating
the pseudo-observations within strata of the data. [4] This assumption
is the same for non-parametric and parametric pseudo-observations for
right censored data as well as for parametric pseudo-observations for
interval censored data.

Conditionally independent examination process For interval censored data,
the process that controls each examination time must be independent
of the event processe(s) given the history since the previous examina-
tion. [7] This is a universal assumption for methods for handling inter-
val censored data.

Semi-Markovian illness-death model The illness-death model we are assum-
ing must satisfy the assumption that the transition-specific hazard func-
tions do not depend on the history prior to entering the current state.
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It is not possible to evaluate these assumptions on the basis of the collected
dataset, and they should thus be justified by considering the particular cir-
cumstances and what is known or can reasonably be assumed about the dif-
ferent mechanisms.

Worked example: DANPACE II

In Paper C, we present an analysis of the ongoing trial, DANPACE II, in
which patients implanted with a pacemaker are followed for up to two years
after the implantation date. The pacemaker devices monitor the heart rhythm
of patients and for this analysis we record the date of the first episode of atrial
fibrillation after implantation. The atrial fibrillation event is defined as atrial
fibrillation lasting for at least 6 minutes. The pacemaker records the date of
an atrial fibrillation event and this provides data that can be analysed using
methods for right censored data. Moreover, the patients are scheduled to
have their pacemaker checked in the hospital routinely after 3, 12, and 24
months of follow-up. If we evaluate the event status only at these checks, we
can consider the data as interval censored. Since we do not have the actual
examination dates, we have added some random variation to the examination
times from a normal distribution with a mean value of zero and a variance
of 10 days such that 95% of the patients will have examination times within
roughly one week of the scheduled date.
To illustrate the use of the parametric pseudo-observation approach, I will
use these data to estimate the cumulative incidence of atrial fibrillation and
evaluate the association between atrial fibrillation and the age of the patient
by the time of pacemaker implantation.
The overall cumulative incidence of atrial fibrillation can be estimated us-
ing both the right censored and the interval censored spline-based methods
and Fig. 9 shows both of these curves. It is clear from the exact data that a
lot of the pacemaker patients experience an atrial fibrillation within the first
couple of months after having their pacemaker implanted. The interval cen-
sored data does not contain the necessary information to capture this sharp
increase. Consequently, any method will underestimate the increase in the
very early follow-up.
First, I will take a look at the data in the dataset and then I will go through the
steps needed to perform an analysis based on parametric pseudo-observations.
Fig. 10 shows a graphical representation of the trajectories for four of the par-
ticipants in the trial. They are chosen randomly to represent the four different
trajectories that are possible to observe in the study. The time scale is cho-
sen such that each patient enters at time zero. Patient A has an examination
after 1 year of follow-up with no atrial fibrillation episode and is then cen-
sored after 1.3 years (Trajectory 2). Patient B has an atrial fibrillation episode
after roughly 6 months, which results in a negative examination at about 3
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Fig. 9: The spline-based estimators of the cumulative incidence of atrial fibrillation in the DAN-
PACE II data.
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Fig. 10: The trajectories of four patients in the DANPACE II data. Crosses indicate the exact
time of atrial fibrillation, black lines indicate the interval in which the event is observed, grey
lines indicate the last observed interval for participants in which no atrial fibrillation episode is
observed, and black dots indicate death times.
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months followed by a positive examination at 1 year, giving rise to an inter-
val censored observed event, and survives for the remainder of the follow-up
(Trajectory 3). Patient C has a negative examination after 1 year and then
dies shortly after (Trajectory 5). Patient D has an atrial fibrillation episode
just after having the pacemaker implantation, which is seen at the 3-month
examination, and then dies almost 2 years after the implantation (Trajectory
6). These four patients are coded in the dataset by the variables described in
List 1 on page 19 as shown in Table 1.

Table 1: The values of the variables describing the trajectories of one patient following each of
the four trajectories in the DANPACE II data.

Patient Trajectory d1i l1i t1i d2i t2i

A 2 0 1.02 1.30 0 1.30
B 3 1 0.30 1.00 0 2.00
C 5 0 1.01 1.12 1 1.12
D 6 1 0.00 0.24 1 1.83

Suggested workflow

I here present a simple step-by-step workflow for using the parametric pseudo-
observation approach for interval censored data. I do not advocate use of any
specific statistical software and thus only indicate how to implement each
step in general terms.
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1. The validity of the assumptions in Section 2.3 should be assessed. Strat-
ification of the steps 3–6 may be necessary if the assumption of inde-
pendent censoring is violated.

2. The data must be organized in the appropriate way. The exact def-
initions may depend on the specific software used as different soft-
ware may impose different conventions, but the basic information to be
coded generally follows the content in List 1, page 19.

3. Determine number and positions of spline knots to be used. Note that
these do not need to be the same for the different transitions. In prac-
tice, determining the knot points will be done by repeating the next step
for different values and evaluate the trade-off between fit and smooth-
ness by plotting the fitted splines.

4. The illness-death model should then be fit to the full dataset by max-
imizing the likelihood function defined in Section 2.2. This implies
fitting the splines for each of the transitions 0 → 1, 0 → 2, and 1 → 2,
thus obtaining estimates, γ̂01, γ̂02, γ̂12, of the spline parameters. Use
these estimates and (7) to find the full-sample estimator of the cumula-
tive incidence for the event of interest, θ̂ IC.

5. Using the spline knots determined in step 3, step 4 should be repeated
for each subsample, i = 1, . . . , n, to find the leave-one-out estimators,
θ̂ IC
(−1), . . . , θ̂ IC

(−n). For efficiency, it is recommended to use the estimates
from step 4 as starting values for the maximization process.

6. The parametric pseudo-observations, θ IC
1 , . . . , θ IC

n , can then be calcu-
lated using the definition in (8).

7. Use appropriate generalized linear models as discussed in Section 1.7 to
estimate associations between the outcome of interest and the exposure.

This suggested workflow provides a simple overview of the construction of
the parametric pseudo-observations for interval censored data and summa-
rizes the overall conceptual framework that they are based upon.

Worked example, cont.

I conclude this section with an analysis of the DANPACE II data where I
consider the association between the atrial fibrillation outcome and age as a
continuous exposure variable.
The assumptions are relatively easy to justify in this setting. The only (right)
censoring that occurs in the data is the administrative censoring induced by
the data collection date by which time some of the participants did not reach 2
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years of follow-up. The examination times are determined by a fixed sched-
ule for all individuals with purely random deviations. The semi-Markov
property of the assumed illness-death model is only relevant for the tran-
sition from having experienced an atrial fibrillation episode to death. The
assumption then translates to an assumption that the risk of dying does not
depend on the time from pacemaker implantation to the next episode of atrial
fibrillation. Since the overall risk of dying in this trial is very low such that
only 4 participants die after having experienced the atrial fibrillation event,
we can safely assume that any violations of this assumption will not have
severe consequences for the analysis.
Due to the homogeneity of the examination times in the study, I have used
only 3 knots for the splines, and for the 0 → 1 transition they are placed
at time 2.3, 3.0, and 23.9 months. I then found the full-sample and leave-
one-out estimates of the cumulative incidence of atrial fibrillation evaluated
at 6 months, 1 year, and 2 years, and calculated the parametric pseudo-
observations on the basis of these values. Fig. 11 shows a histogram of the
pseudo-observations calculated at 1 year of follow-up. Andersen & Perme
studied the behavior of non-parametric pseudo-observations and saw that
they generally take on values in a range that is somewhat larger than the
interval from zero to one. [4] The parametric pseudo-observations in this
dataset tend mostly to take values close to either zero or one with some
larger deviations.
I analyzed the pseudo-observations separately in generalized linear regres-

sion models using both the identity link function to estimate the risk differ-
ence and the log link function to estimate relative risk while adjusting for the
sex of the participants. I have scaled the estimates to correspond to a differ-
ence of 10 years and presented them in Table 2. The cumulative incidence is

Analysis time CIP (95% CI) RD (95% CI) RR (95% CI)

6 months 41.4 (36.0 to 46.8) 6.4 (1.5 to 11.3) 1.17 (1.04 to 1.31)
1 year 45.7 (40.0 to 51.3) 6.9 (1.7 to 12.1) 1.16 (1.04 to 1.29)
2 years 47.4 (41.4 to 53.4) 7.1 (1.7 to 12.5) 1.15 (1.04 to 1.28)

CIP: Cumulative incidence proportion (as percentage)
RD: Risk difference (of percentages)
RR: Relative risk

Table 2: Results of regression analyses based on parametric pseudo-observations of the DAN-
PACE II data.

already quite high after 6 months and it only increases moderately after that,
which is also clear from Fig. 9. There is some increase in the absolute risk dif-
ference between differently aged participants, whereas the relative risk seems
very stable over these three analysis time points.
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Fig. 11: Histogram of the pseudo-observations evaluated at 1 year.

3 Conclusion

With this project, I have sought to close a methodological gap by develop-
ing a workable solution to the practical problem of formulating regression
models in a setting with an interval censored event of interest that is subject
to competing risks without imposing strict distributional assumptions. In
doing so, I have first established an alternative way of calculating pseudo-
observations in a right censored competing risks setting. This proved to pose
a valuable addition to the existing methods in itself, since the spline-based
flexible parametric approach proved to provide benefits over the traditional
non-parametric approach. I then continued to extend the methodology to
settings with interval censoring of the event of interest and have shown that
the method seems to work reasonably well for this more complicated situ-
ation. The complex calculations and maximization that this requires does
make greater demands on the programming effort and the available com-
puter processing power.
The application of the developed methods would certainly benefit from im-
plementation in publicly accessible software packages. Such software should
be developed with a great amount of attention on efficient programming.
There is also a great deal of exception handling that should be implemented
to make sure that the software creates reasonable output under different cir-
cumstances and provides sufficient details on potential problems.
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Although the parametric pseudo-observation approach is developed with the
intention to minimize the constraints from strict assumptions, there are still
some potentially limiting assumptions that for the most part are irremediable.
I have already mentioned how the independent censoring assumption can be
relaxed by calculating pseudo-observations by stratification, and further ways
to accommodate violations of assumptions would increase the applicability
of the methods. Another potential way of handling dependence issues is by
employing the flexible parametric approach with covariates when splines are
fit in the illness-death model. I have not pursued this idea, but it might be
considered as a generalization of the stratified pseudo-observation approach.
Recently, Cook & Lawless [8] proposed a joint modeling approach to han-
dling dependent loss-to-follow-up censoring with interval censored data that
might be transferable to the pseudo-observation approaches. Joint modeling
might even be utilized further to ease the assumption of independence of ex-
amination times. That would substantially expand the range of applications,
since this would refine the method to cover analyses of disease occurrence
in situations where examinations might be prompted by symptoms. Most
register-based studies of disease incidence assume that the disease occurs at
the date of diagnosis and that people who die without having the specific
diagnosis do not have the disease.
In conclusion, the methodology that we have developed for both right and
interval censored data with competing risks constitute a valid alternative and
addition to the existing methods with some interesting possibilities for fur-
ther development.
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Pseudo-observations based on the nonparametric Kaplan-Meier estimator of the
survival function have been proposed as an alternative to the widely used Cox
model for analyzing censored time-to-event data. Using a spline-based estima-
tor of the survival has some potential benefits over the nonparametric approach
in terms of less variability. We propose to define pseudo-observations based on
a flexible parametric estimator and use these for analysis in regression models
to estimate parameters related to the cumulative risk. We report the results of a
simulation study that compares the empirical standard errors of estimates based
on parametric and nonparametric pseudo-observations in various settings. Our
simulations show that in some situations there is a substantial gain in terms
of reduced variability using the proposed parametric pseudo-observations com-
pared with the nonparametric pseudo-observations. The gain can be measured
as a reduction of the empirical standard error by up to about one third; corre-
sponding to an additional 125% larger sample size. We illustrate the use of the
proposed method in a brief data example.

K E Y W O R D S

flexible parametric models, pseudo-observations, time-to-event

1 INTRODUCTION

The Cox model proposed by Cox1 is by far the most applied regression model for time-to-event data in the medical liter-
ature for comparing rates of events. The model is often formulated as a regression model of the hazard function, h(t), on
a set of regression variables, z, as

ln (h(t; z)) = ln (h0(t)) + 𝜷⊺z, (1)

where 𝜷 is a vector of regression coefficients. The Cox model in (1) assumes proportionality of the hazard functions for
different values of regression variables and independent censoring conditionally on the regression variables. The model is
a semiparametric model in that the baseline hazard function, h0(t), is left unspecified, whereas the comparisons between
rates are described by the hazard rate ratios exp(𝜷). The hazard rate ratios are estimated using Cox partial likelihood and
the integrated baseline hazard function, H0(t) = ∫ t

0 h0(s)ds, is estimated semiparametrically by the Breslow estimator2

which is a step function with jumps at observed event times. An important application of the Cox model is in the presence
of competing risks where the model can be applied to the cause-specific hazard functions.3

As an alternative to the semiparametric Cox model, Royston and Parmar have suggested to perform a fully parametric
regression analysis by formulating a flexible parametric model based on modeling of the log cumulative hazard function

Statistics in Medicine. 2020;39:2949–2961. wileyonlinelibrary.com/journal/sim © 2020 John Wiley & Sons, Ltd. 2949
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using splines. This model can be written on the log cumulative hazard scale as

ln (H(t; z)) = s(ln(t); 𝜸) + 𝜷⊺z, (2)

where s(⋅; 𝜸) is a restricted cubic spline (for further details on restricted cubic splines, see Appendix A1). One advantage
of this approach is that a parametric model yields more precise estimates of model parameters.4 It also provides smooth
estimates of the baseline survival and hazard functions which may be favorable, particularly for datasets with few events.
Smooth estimates are also preferable if data protection authorities do not permit presenting data based on single individual
data as a step function with jumps at observed single event times.

A different modeling approach is the use of pseudo-observations which was proposed with the objective of analyzing
other effect measures than the hazard rate ratio. The idea is to create a transformation of the time-to-event data, the
pseudo-observations, that are analyzed using estimating equations for a generalized linear model (GLM).5 The original
proposed method is based on a nonparametric estimator of a parameter of interest and, hence, we will refer to it as
the nonparametric pseudo-observation approach. The pseudo-observation approach offers great versatility in terms of
effect measures in addition to the hazard rate ratio, for example, also risk difference (RD), risk ratio (RR), difference
in t0-restricted mean life time,6 and life-years lost due to a specific cause.7 In a setting with competing risks, it is most
common to work on the cause-specific cumulative incidence scale to obtain estimates of RRs. In the following, we will
hence discuss pseudo-observations on the cumulative incidence scale only even though the choice of scale is not fixed in
general applications.

In this article, we propose a modeling approach that uses a combination of the spline-based estimation of the haz-
ard function and the pseudo-observation approach by calculating parametric pseudo-observations using an estimate of
the cumulative incidence proportion (CIP) obtained from a flexible parametric model in order to estimate different effect
measures. By combining the approaches of the flexible parametric model and pseudo-observations we aim to obtain
pseudo-observations with greater precision than the nonparametric version. The suggested approach models effects on
the cumulative incidence scale similarly to the nonparametric pseudo-observation approach while it takes advantage of
the features of a parametric model similarly to the flexible parametric model. In Section 2, we will give a short introduc-
tion to the nonparametric pseudo-observations and present the proposed modeling approach. In Section 3, we present
a simulation study that compares the potential bias and the efficiency of the proposed approach to that of the nonpara-
metric pseudo-observations. We then show an application of the method in Section 4 and conclude the article with a
discussion of the observed advantages and disadvantages of the different modeling approaches in Section 5.

2 METHODOLOGICAL DETAILS

2.1 Nonparametric pseudo-observations

The basic idea behind the pseudo-observation approach is to make a transformation of the time-to-event data that provides
a dataset without censoring which can be used in place of the original censored observations.

Let (Ti,Di) denote the survival time and the event type indicator for K event types for the i'th subject. We are interested
in modeling the cause-specific cumulative incidence function for a given event type d, Fd(t), and we will estimate this using
the Aalen-Johansen estimator.8 The pseudo-observations can then be thought of as the contribution for each observation
to this estimator.

If we denote the nonparametric estimator based on all n observations as �̂�np, and the leave-one-out estimator based
on all observations except the i'th as �̂�np

(−i), the i'th pseudo-observation is defined as

𝜃np
i = n�̂�np − (n − 1)�̂�np

(−i). (3)

To calculate the pseudo-observations we must choose one or more time points at which to evaluate the cumulative
incidence function. For simplicity, we will refer to just one time point, t, in the following and we restrict the focus of the
remainder of this article to one time point.

In the special case with no competing risks, the Aalen-Johansen estimator of the cumulative incidence function
reduces to one minus the Kaplan-Meier estimator of the survival function.9



NYGARD JOHANSEN et al. 2951

The pseudo-observations based on the Aalen-Johansen estimator have the property that, for large samples, E[𝜃np
i |zi] ≈

E[I(Ti ≤ t,Di = d)|zi] = Fd(t|zi), where Fd(t|zi) is the conditional probability that an event of type d has occurred in the
i'th subject prior to time t given the covariates.10 Hence, the pseudo-observations provide a set of data points that can be
used in a generalized linear regression model to obtain estimates of effects on the cause-specific cumulative incidence

g (Fd(t|zi)) = 𝜷⊺zi, (4)

where g is a link function. When several time points are considered, the GLM should take the correlation between
pseudo-observations at different time points for the same individual into account.

The GLM regression for the pseudo-observations provides an unbiased, though probably not optimal, estimate of the
regression parameter 𝜷 and the standard deviation of this can be estimated using a sandwich estimator. Jacobsen and
Martinussen11 and Overgaard et al12 have recently proved that estimation of the standard error can be improved slightly.
However, the gain from this improvement has been found to be negligible. Here, we will use the computationally much
simpler, but slightly conservative sandwich estimator.

Unlike in the Cox and flexible parametric models, simple uses of the pseudo-observation approach requires that cen-
soring is independent of covariates but, following Andersen and Perme,13 this extra assumption may be avoided when
censoring only depends on categorical covariates by stratifying the calculation of pseudo-observations on the relevant vari-
ables. Binder et al have suggested an alternative approach to handling covariate-dependent censoring which is based on
inverse probability of censoring weighting.14 Mortensen et al15 have performed a comprehensive review of the validation
of assumptions for nonparametric pseudo-observations and potential remedies for violations.

2.2 Proposed approach: Parametric pseudo-observations

To obtain a potential improvement of the nonparametric pseudo-observations, we will use a very simple version of the
flexible parametric model without any regressors to estimate the baseline log cumulative hazard function. This will then
be transformed to an estimator of the marginal cumulative incidence function which can be used to calculate parametric
pseudo-observations. These parametric pseudo-observations could then be used to form regression models using GLM
regression as is done for nonparametric pseudo-observations.

The transformation of the estimator of the log cumulative hazard function to an estimator of the cumulative incidence
function is based on the relation between the cause-specific cumulative incidence function and the cause-specific hazard
functions, h1(⋅),… , hK(⋅),

Fd(t) = ∫
t

0
hd(u) exp

(
−∫

u

0

K∑
k=1

hk(v)dv

)
du.

This expression cannot be solved analytically, and estimation of the cumulative incidence function must be based
on numerical methods using estimates of each of the K cause-specific hazard functions.16 However, in a setting with no
competing risks, the expression simplifies to

F(t) = 1 − S(t) = 1 − exp (−H(t)) ,

and the cumulative incidence function can be estimated directly using the fitted spline from the model in (2) by 1 −
exp (− exp (s(ln(t); 𝜸))). We will denote the parametric spline-based estimator of the cumulative incidence function thus
obtained as �̂�p and its i'th leave-one-out counterpart as �̂�p

(−i). The splines based on leave-one-out samples are fitted using
the same knot positions as the full-sample version.

Having obtained this, we can define a set of parametric pseudo-observations as

𝜃p
i = n�̂�p − (n − 1)�̂�p

(−i). (5)

This implies that calculation of the pseudo-observations requires n spline estimations of the log cumulative hazard
function. The parametric pseudo-observations can then be analyzed using a GLM regression as in (4) and the standard
errors of the regression coefficients, 𝜷, are obtained by a sandwich estimator as in Andersen and Perme.13
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The assumption about marginal independence of censoring that applies to nonparametric pseudo-observations is
also applicable for the proposed parametric pseudo-observations. For the parametric pseudo-observations, calculating
stratified pseudo-observations corresponds to the estimation of log cumulative hazard by a different spline for each level
of the stratification variable. However, the censoring process can also be modeled using the approach of Binder et al14 for
nonparametric pseudo-observations.

The proposed approach requires the analyst to determine the number and location of knots to use for fitting the
splines. This obviously introduces an additional uncertainty that is not accounted for analytically. Care should be given
to the choice of knots and it is recommended to investigate the potential impact of alternative choices.17

3 SIMULATION STUDY

3.1 Simulation strategy

We have evaluated the performance of the nonparametric and parametric pseudo-observation approaches in seven dif-
ferent scenarios. Each scenario is a variation of a general set-up in which one aspect is varied. The general set-up is
chosen to mimic a typical clinical or register-based study comparing two exposure groups of individuals, denoted as
exposed and nonexposed, with staggered entry. Individuals enter the study during an accrual period of 6 years which
is followed by a follow-up until 13 years after the beginning of the accrual period. This implies that individuals have
a potential follow-up for at least 7 and at most 13 years. Where nothing else is stated, we have used a fixed sample
size of n = 500. The aim in each setting was to estimate the overall event probability (the CIP) at 10 years as well
as the effect measures RD and RR comparing the two exposure groups also evaluated at 10 years. This means that
there is some information in the observed data which lies after the analysis time point; in this case up to 3 years of
follow-up.

In each scenario, we generated 5000 replications of datasets for each variation. We considered 50% of each sample
exposed and 50% nonexposed according to a nonrandom allocation. We then simulated time-to-event data from expo-
nential distributions such that the cumulative incidence of the event at t = 10 was 1

3
in nonexposed individuals (ie, a rate

parameter of 1
10

log( 1
3
)) and 2

3
in exposed individuals (rate parameter of

(
1

10
log

(
2
3

))
. This gives an overall CIP of 0.5, a

RD of 1
3
, and a RR of 2 at t = 10. We imposed a uniform censoring on the interval from 7 to 13 to serve as the administra-

tive censoring assuming a constant accrual rate. In addition, we simulated independent loss-to-follow-up censoring from
an Exp

(
1

10
log

(
1
6

))
distribution. We then estimated CIP, RD, and RR at time t = 10 in each sample using both nonpara-

metric and parametric pseudo-observations with three knots for the splines. After 10 years of follow-up, the expected size
of the risk set is 20.8% of the original sample size.

The seven scenarios we consider are designed to assess the influence of (1) the sample size, (2) the number of knots
for the fitted splines with more complex time-to-event distributions, (3) competing risks of different intensity, (4) model
misspecification, (5) the amount of additional information after the analysis time point, (6) using a smooth estimator, and
(7) covariate-dependent censoring.

All simulations and analyses were performed in Stata/MP version 15.1 and an example of how to calculate parametric
pseudo-observations and estimate effect measures is shown in the Supporting Information. We used the Stata packages
survsim,18 stpsurv, stpci19 and stpm2.17

Scenario (1) Sample size In this scenario, we simulated data based on the general set-up with varying sample sizes of
n = 50, 100, 250, 500, and 1000.

Scenario (2) Complex distributions The time-to-event data were simulated from a two-component mixture Weibull dis-
tribution instead of exponential distributions to simulate more complex time-to-event distributions. In
this scenario, we varied the number of internal knots from 1 to 9.

Scenario (3) Competing risks We introduced a competing risk by simulating a second event process which is associated
to the exposure similarly to the event of interest but with rate parameters yielding hazard ratios relative to
the event of interest equal to .5, .75, 1, 1.5, and 2.

Scenario (4) Model misspecification The time-to-event data were simulated from a log-logistic distribution in which the
cumulative hazard function cannot be represented as a cubic spline and we varied the number of internal
knots from 1 to 9.



NYGARD JOHANSEN et al. 2953

F I G U R E 1 Hazard functions from
the mixture Weibull and the log-logistic
distribution used in Scenarios (2) and (4)
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Scenario (5) Additional information In this scenario there was no accrual period such that by varying the administrative
censoring time over the range 10, 11,… , 20, we adjusted the amount of additional information used when
fitting the splines.

Scenario (6) Smoothing Without an accrual period and with administrative censoring at the analysis time point, we
introduced a uniform censoring on the interval from t = 0 to t = 10, 11,… , 20 to reduce the risk set to
varying percentages of the original sample size at the analysis time point.

Scenario (7) Covariate-dependent censoring We introduced a covariate-dependent censoring by simulating the
loss-to-follow-up censoring to have twice of the original rate in the exposed group while we
retained the original rate in the nonexposed group. In this scenario, we performed both a naive analysis
ignoring the dependent censoring and an analysis in which we calculated pseudo-observations with strat-
ification on the exposure variable. For completeness, we also included an analysis with stratification but
no dependent censoring.

The two-component mixture Weibull distribution in Scenario (2) is determined by two sets of scale and shape
parameters, (𝜆1, 𝛾1), (𝜆2, 𝛾2), and a mixture probability, p. The cumulative incidence function can then be expressed as

F(t) = 1 − (p exp(−𝜆1t𝛾1) + (1 − p) exp(−𝜆2t𝛾2)) .

We used the parameters (𝜆1, 𝛾1) = (.01, 1.9), (𝜆2, 𝛾2) = (.015, 5), p = .7. The cumulative incidence function for the
log-logistic distribution used in Scenario (4) can be expressed as

F(t) = t𝛽
𝛼𝛽 + t𝛽

,

and we simulated data with (𝛼, 𝛽) = (8, 1.5). The hazard functions from the mixture Weibull and the log-logistic
distributions are shown in Figure 1.

We analyzed each dataset using both nonparametric and parametric pseudo-observations to obtain parameter
estimates and 95% confidence intervals at time t = 10.

For each modeling approach, we report the empirical standard error, bias calculated as the difference between the
median of the estimates and the corresponding theoretical value, the coverage of the confidence intervals, the relative
efficiency calculated as the ratio of the empirical standard errors from the two approaches, and the corresponding ratio
of required sample sizes.20,21
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Nonparametric POs Parametric POs

SD Bias Cov. (%) SD Bias Cov. (%)
Relative
efficiency

Relative
sample size

Scenario (1) n

50 0.077 −0.002 95.2 0.072 0.000 95.3 1.07 1.16

100 0.054 0.001 95.6 0.050 0.001 96.1 1.08 1.17

250 0.034 0.000 95.9 0.032 0.000 95.8 1.07 1.14

500 0.024 0.000 96.3 0.022 0.000 96.3 1.08 1.17

1000 0.017 0.000 95.3 0.016 0.000 95.7 1.08 1.17

Scenario (2) Knots

1 0.021 0.000 95.6 0.017 −0.005 95.3 1.19 1.42

2 0.021 0.000 95.8 0.018 −0.005 95.5 1.15 1.31

3 0.020 0.000 95.7 0.019 0.007 93.8 1.10 1.21

4 0.021 0.000 95.4 0.019 0.002 94.8 1.12 1.24

5 0.021 0.001 95.2 0.019 0.002 95.1 1.13 1.27

6 0.021 0.000 95.3 0.019 0.001 95.3 1.13 1.27

7 0.021 0.000 95.3 0.019 0.002 95.5 1.13 1.27

8 0.021 0.000 95.5 0.019 0.001 95.4 1.11 1.23

9 0.021 0.000 95.1 0.019 0.001 95.7 1.12 1.26

Scenario (3) HR

0.5 0.024 −0.001 95.2 0.023 0.000 95.4 1.05 1.10

0.75 0.023 0.000 95.8 0.022 0.000 95.3 1.04 1.09

1 0.023 0.000 95.2 0.023 0.001 94.8 1.03 1.06

1.5 0.022 0.000 94.4 0.022 0.000 94.5 1.02 1.05

2 0.021 −0.001 95.0 0.021 0.000 95.2 1.02 1.05

Abbreviations: SD: Empirical standard error, defined as standard deviation of parameter estimates.
Bias: Defined as absolute deviation of median parameter estimates from true parameter values.
Cov.: Coverage, defined as percentage of estimated 95% confidence intervals containing the true parameter values.
Relative efficiency: Defined as standard error of nonparametric divided by standard error of parametric estimates.
Relative sample size: Defined as relative efficiency squared.
HR: Hazard ratio between the competing event and the event of interest.

T A B L E 1 Precision of the
cumulative incidence estimates
based on 5000 replications in
Scenarios (1) to (3)

3.2 Nonvalid estimates

We recorded how many times the estimation procedures failed to produce valid estimates for each of the three parameters.
We defined as nonvalid estimates cases where the GLM estimation procedure did not converge or the estimate was unre-
alistically small or large (CIP estimates outside the range (0; 1), RD estimates outside the range (−1; 1), and RR estimates
outside the range ( 1

10
; 10)). The remaining estimates were considered valid.

3.3 Simulation results

In the general set-up, the simulated datasets contained approximately 15% and 30% observed events in the nonexposed
and exposed groups, respectively. Since the cumulative incidence function is the foundation of the effect measures RD
and RR, we show the simulation results for the CIP estimates only in tables and figures. The corresponding results for
RD and RR are quite similar and can be found in the Supporting Information. We show empirical standard error, bias,
coverage probability, relative efficiency, and relative sample size of CIP estimates for Scenarios (1) to (6) in Tables 1 and 2.
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T A B L E 2 Precision of the cumulative incidence estimates based on 5000 replications in Scenarios (4) to (6)

Nonparametric POs Parametric POs

SD Bias Cov. (%) SD Bias Cov. (%) Relative efficiency
Relative
sample size

Scenario (4) Knots

1 0.023 0.001 95.0 0.021 0.002 94.9 1.09 1.18

2 0.023 0.000 95.2 0.021 −0.001 95.6 1.10 1.21

3 0.023 0.001 95.6 0.021 0.000 95.6 1.09 1.20

4 0.023 −0.001 95.3 0.021 −0.002 95.5 1.09 1.18

5 0.023 0.000 95.7 0.021 −0.001 96.0 1.10 1.20

6 0.023 0.000 95.8 0.021 −0.001 96.0 1.09 1.20

7 0.023 0.000 95.3 0.021 −0.001 95.8 1.08 1.18

8 0.023 0.000 95.2 0.021 0.000 95.6 1.09 1.18

9 0.023 0.000 95.4 0.021 −0.001 95.7 1.07 1.15

Scenario (5) Years

0 0.022 0.000 96.1 0.022 0.000 96.1 1.00 1.00

1 0.022 0.000 96.2 0.021 −0.001 96.2 1.05 1.10

2 0.022 0.000 96.4 0.020 −0.002 96.9 1.11 1.22

3 0.022 0.000 96.2 0.020 −0.002 96.2 1.11 1.24

4 0.023 0.000 95.7 0.020 −0.002 96.1 1.13 1.29

5 0.022 0.001 95.8 0.019 −0.003 96.2 1.15 1.33

6 0.022 −0.001 95.8 0.020 −0.004 95.4 1.14 1.29

7 0.022 −0.001 95.9 0.019 −0.004 96.0 1.16 1.35

8 0.022 0.000 96.1 0.019 −0.003 96.6 1.18 1.39

9 0.022 0.000 96.3 0.019 −0.004 96.1 1.17 1.37

10 0.022 0.000 96.1 0.019 −0.004 96.0 1.16 1.35

Scenario (6) Average risk set (%)

0 0.056 −0.009 92.2 0.037 0.004 95.2 1.51 2.27

4 0.040 −0.001 95.4 0.034 0.003 95.6 1.17 1.37

7 0.035 0.000 95.9 0.032 0.002 96.0 1.10 1.22

10 0.033 0.000 95.2 0.031 0.002 95.0 1.06 1.13

12 0.032 0.000 95.4 0.030 0.001 95.9 1.06 1.13

14 0.030 −0.001 95.8 0.029 0.001 95.8 1.04 1.07

16 0.029 0.001 95.7 0.028 0.002 95.9 1.03 1.07

17 0.028 0.000 96.1 0.028 0.002 96.2 1.02 1.05

19 0.029 −0.001 95.2 0.028 0.000 95.2 1.03 1.05

20 0.028 0.000 95.7 0.027 0.001 95.9 1.02 1.05

21 0.027 0.000 95.8 0.027 0.001 95.6 1.02 1.04

Abbreviations: SD: Empirical standard error, defined as standard deviation of parameter estimates.
Bias: Defined as absolute deviation of median parameter estimates from true parameter values.
Cov.: Coverage, defined as percentage of estimated 95% confidence intervals containing the true parameter values.
Relative efficiency: Defined as standard error of nonparametric divided by standard error of parametric estimates.
Relative sample size: Defined as relative efficiency squared.
HR: Hazard ratio between the competing event and the event of interest.
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F I G U R E 2 Empirical relative efficiency between parametric and nonparametric cumulative incidence estimates in each of the
simulation Scenarios (1) to (6)

T A B L E 3 Empirical bias and relative efficiency of the cumulative incidence estimates based on 5000
replications in Scenario (7)

Nonparametric POs Parametric POs

Dep. cens. Strat. SD Bias Cov. (%) SD Bias Cov. (%)
Relative
efficiency

Relative
sample size

No No 0.024 0.000 95.5 0.022 0.000 95.6 1.09 1.18

No Yes 0.024 −0.001 96.3 0.022 0.000 96.4 1.09 1.18

Yes No 0.024 −0.008 95.2 0.023 −0.007 95.2 1.06 1.13

Yes Yes 0.024 0.000 96.4 0.022 0.001 96.8 1.09 1.19

Abbreviations: Dep. cens.: Covariate-dependent censoring.
Strat.: Pseudo-observations calculated using stratification.
SD: Empirical standard error, defined as standard deviation of parameter estimates.
Bias: Defined as absolute deviation of median parameter estimates from true parameter values.
Cov.: Coverage, defined as percentage of estimated 95% confidence intervals containing the true parameter values.
Relative efficiency: Defined as standard error of nonparametric divided by standard error of parametric estimates.
Relative sample size: Defined as relative efficiency squared.

The relative efficiency of the CIP estimates for Scenarios (1) to (6) are visualized in Figure 2. The results for Scenario (7)
are shown in Table 3.

3.3.1 Empirical standard error

For both the nonparametric and parametric pseudo-observations, the empirical standard error decreases regressively
with increasing sample size. For the different amounts of additional information in Scenario (5), the nonpara-
metric pseudo-observation empirical standard error is completely stable since no additional information is used,
but for the parametric pseudo-observations the empirical standard error decreases slightly at first with increasing
amount of additional information and then seems to level off. In Scenario (6) with varying sizes of the risk set, the
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empirical standard errors of both the nonparametric and the parametric pseudo-observations are increased with small
risk sets, though the nonparametric pseudo-observations show this tendency to a greater extent than the paramet-
ric pseudo-observations. In the other scenarios, the empirical standard errors of the two methods show quite similar
behaviors.

3.3.2 Bias

In general, the biases are very low. The only situations that produced noteworthy biases in our simulations were the
complex time-to-event distributions in Scenario (2) with an inappropriate number of spline knots, the settings with a
very small risk set in Scenario (6) and the settings with covariate-dependent censoring in Scenario (7) when it was not
accounted for in the analyses. In Scenario (2), using too few knots, in this case 3 or less, seemed to induce some bias in
the parametric pseudo-observation approach. In Scenario (7), ignoring a covariate-dependent censoring lead to bias of
similar magnitude in either approach.

3.3.3 Coverage

Coverage probabilities are quite similar for the two modeling approaches and keep within 94% to 96% in almost all cases.
Our simulations showed no systematic deviations in any of the simulation scenarios, the only exceptions being that both
approaches seem to produce a slight overcoverage in Scenario (5).

3.3.4 Relative efficiency

Across the different sample sizes in Scenario (1), the relative efficiency is quite stable at 1.07 to 1.08. With the more com-
plex time-to-event distributions in Scenario (2), we generally observe quite stable larger relative efficiency with slightly
higher values for low numbers of spline knots. The relative efficiency is mitigated when a competing event is introduced
in Scenario (3) depending on the rate of the competing event process. The model misspecification in Scenario (4) does
not seem to influence the relative efficiency regardless of the chosen number of spline knots. Scenario (5) shows that the
relative efficiency increases with increasing amount of additional information used from almost exactly 1 with no addi-
tional information to a level of about 1.15 which is reached after adding 5 years of additional information. In Scenario (6),
we see that the size of the risk set exerts the greatest influence on the relative efficiency when the data is analyzed at the
time when the risk set is depleted. In this setting the relative efficiency reaches a level of approximately 1.5 which then
wears off with larger risk sets.

3.3.5 Nonvalid estimates

We only observed estimates that were not considered valid in some of the most extreme of our simulation settings. Partic-
ularly for a sample size of only n = 50, the nonparametric approach resulted in 15 cases of nonvalid RR estimates of the
5000 replications, whereas the parametric approach resulted in 10 nonvalid RR estimates. When the risk set is completely
depleted at the analysis time point, the nonparametric pseudo-observation approach failed to produce valid estimates of
both CIP, RD, and RR in a few replications (14, 19, and 15, respectively) while the parametric approach always produced
valid estimates.

4 DATA EXAMPLE

We illustrate the use of both the nonparametric and the parametric pseudo-observations by estimating the effect of the
patients' age among the 855 ICU patients in a publicly available simulated dataset.22 In this dataset, there is information
on length of ICU stay and death for each patient. We consider time from ICU admission to both a composite endpoint of
either discharge alive or death as well as discharge alive where death is considered as a competing event. We measure the
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T A B L E 4 Parameter estimates and relative efficiency in the pneumonia dataset calculated at analysis time point t = 120
days using nonparametric and parametric pseudo-observations with three internal knots

Analysis approach RR SE 95% CI Relative efficiency Relative sample size

Composite endpoint

Nonparametric 0.998 0.001 (0.997 to 1.000) – –

Parametric 0.997 0.001 (0.996 to 0.998) 1.50 2.24

Discharge alive

Nonparametric 0.991 0.002 (0.987 to 0.995) – –

Parametric 0.989 0.002 (0.986 to 0.993) 1.11 1.23

Abbreviations: CI, confidence interval; RR, relative risk estimate; SE, robust standard error.

effect of age linearly on the log relative risk scale. The study population is comprised of ICU patients who are followed
from admission to either death or discharge with the longest observed follow-up being 142 days. We evaluate the effect
of age at the time point 120 days. After 120 days, 176 patients had died before being discharged, 641 had been discharged
alive, 35 had been censored and the remaining three patients were still at risk in the study.

Figure 3 shows the cumulative incidence functions for both outcomes estimated nonparametrically and by a flexi-
ble parametric estimator with three internal knots. We then estimated the RR using both nonparametric and parametric
pseudo-observations with three internal knots. We chose three internal knots to allow the hazard functions to show
some variation over follow-up time but still limit the risk of overfitting. To calculate nonparametric pseudo-observations,
we used the Stata packages stpsurv for the composite endpoint and stpci19 for discharge alive with competing
risk. For the parametric pseudo-observations, we used the stpm2 package17 to fit the full-sample and leave-one-out
spline-based estimators of the cumulative incidence functions. The results of the analyses are shown in Table 4. The
RR comparing a 1-year difference in age for the composite endpoint estimated by the nonparametric approach is 0.998
with a robust standard error of 0.001 and the estimate from the parametric approach with three internal knots is
0.997 with a relative efficiency of 1.50. As sensitivity analyses, we examined the influence of varying the number of
internal knots from 1 to 9. The RR estimates for different numbers of internal knots are quite similar and the rel-
ative efficiency range from 1.63 achieved using only one internal spline knot to 1.36 with nine internal knots. The
estimates for discharge alive show similar tendencies also giving larger relative efficiency with fewer internal spline
knots.

In this example, we observe relative efficiencies of the RR estimates without competing events that are comparable to
the results from the setting in Scenario (6) of our simulation study where the risk set is depleted at the analysis time point
while the relative efficiency in the competing risk setting is mitigated which is also in accordance with our simulation
results.
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5 DISCUSSION

We suggest parametric pseudo-observations to improve precision as compared with nonparametric pseudo-observations.
In our simulations, we observed a reduced variability of the parameter estimates using our proposed parametric
pseudo-observations compared with that of the traditional nonparametric pseudo-observations. The reduction in estimate
variability was evident for the estimation of absolute values of the cumulative incidence as well as the effect measures RD
and RR. The reduction in estimate variability depends on both the amount of additional follow-up time after the analysis
time point and the size of the risk set at the analysis time point. When pseudo-observations are calculated at the end of
the potential follow-up, there is a substantial relative efficiency, and it also increases with increasing amount of additional
follow-up beyond the analysis time point. The large relative efficiency at analysis time points where the risk set is small
is primarily explained by an increased variability of the nonparametric pseudo-observations. The observed reduction in
variability in our simulation settings translates to a reduction in required sample size of up to 127% for a specific precision
and this could be a significant gain in interventional studies if gathering data is costfull or time-consuming. However, the
gain is reduced when competing risks are introduced.

In our simulation study, we have identified two mechanisms that contribute to the gain in efficiency of the parametric
pseudo-observations; use of additional information beyond the analysis time point and instability of the nonpara-
metric estimators when the risk set is very small. The gain obtained from using additional information beyond the
analysis time point is caused by the fact that the spline in the parametric approach can be fitted using informa-
tion from events during the entire observed follow-up whereas the nonparametric pseudo-observations based on the
Aalen-Johansen estimator do not take events occurring after the analysis time point into account. When the risk set
is very small, the size of the jumps in the nonparametric estimators at the observed event times depends heavily on
the size of the risk set at that specific time which gives rise to a greater uncertainty in the estimated cumulative
incidence.

In the presence of competing risks, the gain in efficiency decreases with increasing intensity of the competing event.
This might be explained by the lower number of observed events of interest and the larger number of parameters to be
estimated than in the absence of competing risks.

We based most of our simulations on exponential distributions in which the log cumulative hazard function is linear
but supplemented this with two settings with more complex hazard functions. A simulation study by Rutherford et al23

has shown that the flexible parametric approach is well-suited for modeling more complicated shapes provided that an
adequate number of knots are chosen for the splines. Furthermore, we observed that while small nonsystematic biases
were introduced when analyzing a complex setting with few internal knots the relative efficiency was generally higher
than what we observed in the simple setting using exponential distributions at the same sample size of 500. We suspect that
this is because the spline-based approach is best suited to capture the shape more complex hazard functions as compared
with a more trivial setting.

We chose to study small and moderate sample sizes only as we suspected the potential decrease in variability would
be most pronounced for smaller sample sizes. However, our results show quite similar magnitudes of relative efficiency
for our main analysis time point over our range of samples sizes from 50 to 1000.

Another variable factor that can influence the stability of the pseudo-observations is the proportion of observed events
vs censored individuals. In our simulations, we did not vary the intensities of either events or censoring but only studied
a rather common event which was observed in 15% and 30% of the exposed and nonexposed individuals, respectively.
Very rare events or situations with more dominating censoring mechanisms will give rise to greater instability of both the
nonparametric and parametric pseudo-observations but we have no reason to suspect that the relative efficiency should
be influenced by this.

A crucial decision when using a spline-based method is the choice of both the number and positioning of knots.
Royston and Lambert16 recommend using between one and five internal knots with positions which are based on centiles
of the observed event times. In a simulation study that was designed specifically to investigate the impact of knot selection,
Rutherford et al23 similarly concluded that even for complex hazard functions choosing more than two internal knots
adds very little to the accuracy with which a flexible parametric model fits the true hazard function. In our simulations,
both the bias and relative efficiency were quite stable when using three or more knots.

In any specific setting, the choice of knots should of course be made in consideration of the given sample size and the
consequence of alternative choices should always be assessed by sensitivity analyses. Particularly, it would be advisable
to use a larger number of knots when the shape of the hazard function is expected to be complex. On the other hand,
specifying too many knots increases the risk of overfitting.
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Our proposed method is not implemented directly in any software packages but, using the Stata package stpm2 or
corresponding software, the implementation is not very difficult. We have provided an example of Stata syntax in the
Supporting Information that shows how to calculate parametric pseudo-observations and estimate CIP, RD, and RR at a
specific time point.

The need to fit a spline to the log cumulative hazard function for each leave-one-out sample leads to a computationally
rather intensive procedure. However, once the pseudo-observations have been calculated for a given dataset, the param-
eter estimation in different GLM regression models can be performed without need for repeating the time-consuming
task of calculating the parametric pseudo-observations. In our experience, calculating parametric pseudo-observations
in a dataset of reasonable size with a competing risk is usually feasible within a matter of minutes. In the data example
provided, the calculations took about 4 minutes on an ordinary laptop of current standards.

One of the most appealing advantages of the pseudo-observation method is the ability to estimate different effect
measures. Depending on the context, the most relevant effect measure might be the RD or the RR. Furthermore,
pseudo-observations can be formulated to model the restricted mean survival defined as 𝜇t = E(min(T, t)) by defining
the i'th pseudo-observation as the integral of the contribution to the estimated survival function, ∫ t

0 Ŝ(u)du. On this scale,
we can perform GLM regression using the identity link function to estimate difference in restricted mean survival which
is a clinically very intuitive and meaningful effect measure.24 We have not investigated the efficiency of the parametric
pseudo-observations defined on this scale but since they are calculated as an average of the pseudo-observations on the
cumulative incidence or survival scale we expect our results to be transferable to this setting as well.

Similarly to the observation that nonparametric pseudo-observations are unstable when the risk set is diminish-
ing near the end of follow-up, Mortensen et al pointed out that traditional pseudo-observations perform poorly if the
first events occur when the risk set is small due to delayed entry.15 These instabilities are not shared by the paramet-
ric pseudo-observations since the estimation of the log cumulative hazard function is performed considering the entire
follow-up data simultaneously.
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APPENDIX A. RESTRICTED CUBIC SPLINES

A restricted cubic spline with internal knots k1 < · · · < km and boundary knots kmin and kmax is defined as

s(x; 𝜸) = 𝛾0 + 𝛾1x + 𝛾2v1(x) + · · · + 𝛾m+1vm(x),

where the vj's are basis functions defined as

vj(x) =
(

x − kj
)3
+ − 𝛿j (x − kmin)3

+ − (1 − 𝛿j) (x − kmax)3
+ , j = 1,… ,m,

with

𝛿j =
kmax − kj

kmax − kmin
, j = 1,… ,m.
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Parameter SD Bias Cov. (%) SD Bias Cov. (%)
Relative 
efficiency

Relative 
sample size

Scenario (1) n
CIP 50 0,077 -0,002 95,2 0,072 0,000 95,3 1,07 1,16

100 0,054 0,001 95,6 0,050 0,001 96,1 1,08 1,17
250 0,034 0,000 95,9 0,032 0,000 95,8 1,07 1,14
500 0,024 0,000 96,3 0,022 0,000 96,3 1,08 1,17

1000 0,017 0,000 95,3 0,016 0,000 95,7 1,08 1,17
RD 50 0,153 -0,003 94,1 0,140 -0,002 94,2 1,09 1,19

100 0,109 0,001 94,6 0,100 0,000 94,7 1,08 1,18
250 0,069 0,001 93,9 0,065 0,002 94,0 1,07 1,15
500 0,048 0,000 94,9 0,045 0,000 95,3 1,08 1,16

1000 0,034 0,000 95,2 0,032 0,000 95,1 1,07 1,15
ln(RR) 50 0,391 -0,005 96,4 0,364 0,000 96,4 1,08 1,16

100 0,268 0,000 95,1 0,248 -0,002 95,3 1,08 1,17
250 0,166 0,006 94,7 0,157 0,005 94,5 1,06 1,12
500 0,114 -0,001 95,0 0,107 -0,001 95,1 1,07 1,14

1000 0,080 0,000 95,3 0,076 0,001 94,9 1,06 1,13
Scenario (2) Knots

CIP 1 0,021 0,000 95,6 0,017 -0,005 95,3 1,19 1,42
2 0,021 0,000 95,8 0,018 -0,005 95,5 1,15 1,31
3 0,020 0,000 95,7 0,019 0,007 93,8 1,10 1,21
4 0,021 0,000 95,4 0,019 0,002 94,8 1,12 1,24
5 0,021 0,001 95,2 0,019 0,002 95,1 1,13 1,27
6 0,021 0,000 95,3 0,019 0,001 95,3 1,13 1,27
7 0,021 0,000 95,3 0,019 0,002 95,5 1,13 1,27
8 0,021 0,000 95,5 0,019 0,001 95,4 1,11 1,23
9 0,021 0,000 95,1 0,019 0,001 95,7 1,12 1,26

RD 1 0,042 0,000 94,2 0,035 -0,006 93,9 1,19 1,41
2 0,041 -0,001 95,0 0,036 -0,005 94,2 1,14 1,30
3 0,041 0,000 95,0 0,037 0,002 95,1 1,10 1,22
4 0,042 0,001 94,9 0,038 0,000 94,9 1,11 1,23
5 0,041 0,000 95,1 0,036 -0,001 95,0 1,14 1,29
6 0,041 -0,001 94,8 0,037 -0,001 94,8 1,14 1,29
7 0,042 -0,001 94,5 0,037 -0,002 95,2 1,14 1,29
8 0,042 -0,001 95,2 0,037 -0,001 94,9 1,13 1,28
9 0,041 0,001 95,3 0,037 0,000 95,3 1,12 1,25

ln(RR) 1 0,057 0,000 94,4 0,049 -0,006 94,0 1,18 1,38
2 0,056 -0,002 95,1 0,050 -0,005 94,6 1,13 1,28
3 0,056 0,001 95,4 0,051 0,001 95,2 1,11 1,22
4 0,058 0,001 94,8 0,052 -0,001 94,9 1,11 1,23
5 0,057 0,000 94,9 0,050 -0,003 95,3 1,13 1,28
6 0,057 -0,001 94,6 0,050 -0,002 95,0 1,13 1,28
7 0,058 -0,001 94,5 0,051 -0,004 95,3 1,13 1,29
8 0,057 0,000 95,3 0,051 -0,002 95,1 1,13 1,27
9 0,056 0,001 95,6 0,051 -0,001 95,4 1,11 1,23

Scenario (3) HR
CIP 0,5 0,024 -0,001 95,2 0,023 0,000 95,4 1,05 1,10

Non-parametric POs Parametric POs



0,75 0,023 0,000 95,8 0,022 0,000 95,3 1,04 1,09
1 0,023 0,000 95,2 0,023 0,001 94,8 1,03 1,06

1,5 0,022 0,000 94,4 0,022 0,000 94,5 1,02 1,05
2 0,021 -0,001 95,0 0,021 0,000 95,2 1,02 1,05

RD 0,5 0,048 0,000 94,8 0,046 0,001 94,8 1,05 1,11
0,75 0,047 0,001 94,6 0,045 0,001 94,6 1,04 1,09

1 0,046 0,002 94,5 0,044 0,003 94,5 1,03 1,07
1,5 0,045 -0,001 94,2 0,044 0,001 94,1 1,03 1,06
2 0,042 0,000 94,8 0,042 0,002 95,0 1,02 1,04

ln(RR) 0,5 0,127 0,001 95,0 0,120 0,002 95,1 1,06 1,11
0,75 0,131 0,001 95,1 0,125 0,004 94,9 1,05 1,10

1 0,138 0,003 95,0 0,132 0,006 95,0 1,04 1,08
1,5 0,152 -0,001 94,3 0,146 0,004 94,6 1,04 1,08
2 0,159 0,003 95,4 0,154 0,007 95,3 1,03 1,06

Scenario (4) Knots
CIP 1 0,023 0,001 95,0 0,021 0,002 94,9 1,09 1,18

2 0,023 0,000 95,2 0,021 -0,001 95,6 1,10 1,21
3 0,023 0,001 95,6 0,021 0,000 95,6 1,09 1,20
4 0,023 -0,001 95,3 0,021 -0,002 95,5 1,09 1,18
5 0,023 0,000 95,7 0,021 -0,001 96,0 1,10 1,20
6 0,023 0,000 95,8 0,021 -0,001 96,0 1,09 1,20
7 0,023 0,000 95,3 0,021 -0,001 95,8 1,08 1,18
8 0,023 0,000 95,2 0,021 0,000 95,6 1,09 1,18
9 0,023 0,000 95,4 0,021 -0,001 95,7 1,07 1,15

RD 1 0,046 0,001 95,0 0,043 0,003 94,7 1,08 1,17
2 0,045 0,002 95,0 0,042 0,001 95,1 1,09 1,18
3 0,046 0,000 94,7 0,042 0,001 95,0 1,09 1,18
4 0,046 0,000 95,0 0,042 -0,001 95,2 1,09 1,19
5 0,046 0,000 95,1 0,042 0,000 95,2 1,09 1,19
6 0,046 -0,001 95,1 0,042 0,000 95,2 1,10 1,20
7 0,045 0,000 95,4 0,042 0,001 95,4 1,08 1,17
8 0,046 -0,001 95,3 0,042 -0,001 94,8 1,09 1,18
9 0,046 0,000 95,0 0,043 0,001 94,9 1,08 1,16

ln(RR) 1 0,072 0,001 94,9 0,066 0,003 95,1 1,08 1,17
2 0,070 0,002 95,1 0,065 0,003 95,5 1,08 1,17
3 0,071 0,000 95,1 0,065 0,001 94,9 1,08 1,16
4 0,071 0,000 95,0 0,066 0,000 95,5 1,08 1,18
5 0,071 -0,001 95,3 0,065 0,000 95,5 1,09 1,18
6 0,071 -0,001 95,3 0,065 0,001 95,2 1,09 1,19
7 0,070 0,001 95,6 0,065 0,001 95,1 1,08 1,16
8 0,071 -0,003 95,3 0,066 -0,001 95,0 1,08 1,18
9 0,071 -0,001 95,0 0,066 0,001 95,0 1,07 1,15

Scenario (5) Years
CIP 0 0,022 0,000 96,1 0,022 0,000 96,1 1,00 1,00

1 0,022 0,000 96,2 0,021 -0,001 96,2 1,05 1,10
2 0,022 0,000 96,4 0,020 -0,002 96,9 1,11 1,22
3 0,022 0,000 96,2 0,020 -0,002 96,2 1,11 1,24
4 0,023 0,000 95,7 0,020 -0,002 96,1 1,13 1,29
5 0,022 0,001 95,8 0,019 -0,003 96,2 1,15 1,33
6 0,022 -0,001 95,8 0,020 -0,004 95,4 1,14 1,29



7 0,022 -0,001 95,9 0,019 -0,004 96,0 1,16 1,35
8 0,022 0,000 96,1 0,019 -0,003 96,6 1,18 1,39
9 0,022 0,000 96,3 0,019 -0,004 96,1 1,17 1,37

10 0,022 0,000 96,1 0,019 -0,004 96,0 1,16 1,35
RD 0 0,045 0,000 94,8 0,045 0,001 94,7 1,00 1,00

1 0,044 0,002 95,0 0,042 0,002 95,2 1,06 1,11
2 0,044 -0,001 95,2 0,041 -0,001 95,5 1,09 1,19
3 0,044 0,000 95,2 0,039 -0,002 95,1 1,13 1,27
4 0,045 -0,001 95,2 0,039 -0,004 95,5 1,16 1,34
5 0,045 0,001 94,6 0,038 -0,001 94,9 1,17 1,37
6 0,044 0,000 95,0 0,037 -0,004 95,1 1,18 1,40
7 0,044 0,000 95,3 0,037 -0,004 96,3 1,20 1,44
8 0,044 0,001 95,1 0,037 -0,003 95,9 1,20 1,44
9 0,044 0,000 95,1 0,037 -0,005 95,1 1,20 1,45

10 0,045 0,000 94,6 0,037 -0,004 95,1 1,20 1,44
ln(RR) 0 0,107 0,000 94,8 0,107 0,001 94,7 1,00 1,00

1 0,105 0,005 95,4 0,100 0,004 95,5 1,05 1,10
2 0,105 -0,002 95,6 0,098 -0,001 95,5 1,08 1,16
3 0,105 0,002 95,6 0,095 -0,001 95,5 1,11 1,23
4 0,108 -0,003 95,0 0,094 -0,007 95,8 1,14 1,30
5 0,107 0,002 95,0 0,094 0,000 95,1 1,14 1,31
6 0,106 -0,001 95,2 0,091 -0,002 95,3 1,16 1,34
7 0,107 0,001 95,3 0,090 -0,004 95,6 1,18 1,39
8 0,105 0,002 95,5 0,090 -0,002 95,7 1,17 1,37
9 0,106 0,001 95,4 0,090 -0,006 95,7 1,19 1,41

10 0,108 0,001 95,0 0,092 -0,003 94,9 1,17 1,38
Scenario (6) Years

CIP 0 0,056 -0,009 92,2 0,037 0,004 95,2 1,51 2,27
1 0,040 -0,001 95,4 0,034 0,003 95,6 1,17 1,37
2 0,035 0,000 95,9 0,032 0,002 96,0 1,10 1,22
3 0,033 0,000 95,2 0,031 0,002 95,0 1,06 1,13
4 0,032 0,000 95,4 0,030 0,001 95,9 1,06 1,13
5 0,030 -0,001 95,8 0,029 0,001 95,8 1,04 1,07
6 0,029 0,001 95,7 0,028 0,002 95,9 1,03 1,07
7 0,028 0,000 96,1 0,028 0,002 96,2 1,02 1,05
8 0,029 -0,001 95,2 0,028 0,000 95,2 1,03 1,05
9 0,028 0,000 95,7 0,027 0,001 95,9 1,02 1,05

10 0,027 0,000 95,8 0,027 0,001 95,6 1,02 1,04
RD 0 0,111 -0,002 95,8 0,072 0,002 95,2 1,54 2,36

1 0,080 -0,003 95,6 0,066 0,001 95,8 1,21 1,46
2 0,070 -0,001 95,5 0,063 0,001 95,9 1,11 1,23
3 0,065 0,000 95,4 0,061 0,003 95,4 1,07 1,15
4 0,061 0,001 95,4 0,059 0,001 95,5 1,05 1,10
5 0,059 0,002 95,5 0,056 0,003 95,9 1,04 1,08
6 0,059 0,001 95,1 0,057 0,002 94,9 1,04 1,07
7 0,057 0,000 95,0 0,055 0,002 95,3 1,03 1,06
8 0,055 0,001 95,3 0,054 0,003 95,3 1,02 1,04
9 0,055 0,002 95,4 0,054 0,002 95,1 1,02 1,03

10 0,054 0,001 95,1 0,053 0,002 94,9 1,02 1,04
ln(RR) 0 0,248 0,017 95,2 0,169 0,002 95,1 1,47 2,16



1 0,187 -0,002 95,6 0,156 0,001 95,7 1,20 1,43
2 0,166 0,000 95,7 0,150 0,001 95,5 1,11 1,23
3 0,155 0,001 95,3 0,145 0,004 95,3 1,07 1,15
4 0,145 0,003 95,7 0,138 0,001 95,7 1,05 1,10
5 0,140 0,006 95,8 0,134 0,005 95,4 1,04 1,08
6 0,140 0,001 95,2 0,135 0,002 95,2 1,04 1,07
7 0,135 0,003 95,5 0,131 0,002 95,5 1,03 1,06
8 0,132 0,005 95,5 0,129 0,004 95,4 1,02 1,04
9 0,131 0,006 95,1 0,128 0,005 95,3 1,02 1,04

10 0,128 0,002 95,3 0,126 0,004 95,2 1,02 1,04



Parameter
Dependent 
censoring Strat SD Bias Cov. (%) SD Bias Cov. (%)

Relative 
efficiency

Relative 
sample size

CIP 0 0 0,024 0,000 95,5 0,022 0,000 95,6 1,09 1,18
1 0,024 -0,001 96,3 0,022 0,000 96,4 1,09 1,18

1 0 0,024 -0,008 95,2 0,023 -0,007 95,2 1,06 1,13
1 0,024 0,000 96,4 0,022 0,001 96,8 1,09 1,19

RD 0 0 0,048 0,000 95,1 0,044 0,000 95,0 1,07 1,15
1 0,048 0,001 94,6 0,045 0,001 94,8 1,08 1,17

1 0 0,049 -0,002 95,3 0,045 -0,002 94,9 1,07 1,15
1 0,049 0,000 94,9 0,045 0,001 94,6 1,09 1,18

ln(RR) 0 0 0,114 0,001 95,2 0,107 0,001 95,2 1,07 1,14
1 0,115 0,001 95,1 0,107 0,002 95,1 1,07 1,15

1 0 0,118 0,007 95,5 0,110 0,009 95,3 1,07 1,15
1 0,115 0,000 95,0 0,107 0,001 95,0 1,08 1,16

Non-parametric POs Parametric POs
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Description
In this paper, we extend the flexible parametric pseudo-observation method
to a setting with interval censored data. To accomodate the presence of com-
peting risks, we employ an irreversible illness-death model for the event of
interest. We evaluate the empirical properties of the method in a simulation
study and apply the method to a dataset of patients with an implantable
cardioverter-defibrillator who are followed by routine examinations consid-
ering the occurrence of a specific lead failure as the event of interest.
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Abstract

Background: Time-to-event data that is subject to interval censoring is common
in the practice of medical research and versatile statistical methods for estimating
associations in such settings have been limited. For right censored data,
non-parametric pseudo-observations have been proposed as a basis for regression
modeling with the possibility to use different association measures. In this article,
we propose a method for calculating pseudo-observations for interval censored
data.

Methods: We develop an extension of a recently developed set of parametric
pseudo-observations based on a spline-based flexible parametric estimator. The
inherent competing risk issue with an interval censored event of interest
necessitates the use of an illness-death model, and we formulate our method
within this framework. To evaluate the empirical properties of the proposed
method, we perform a simulation study and calculate pseudo-observations based
on our method as well as alternative approaches. We also present an analysis of a
real dataset on patients with implantable cardioverter-defibrillators who are
monitored for the occurrence of a particular type of device failures by routine
follow-up examinations. In this dataset, we have information on exact event times
as well as the interval censored data, so we can compare analyses of
pseudo-observations based on the interval censored data to those obtained using
the non-parametric pseudo-observations for right censored data.

Results: Our simulations show that the proposed method for calculating
pseudo-observations provides unbiased estimates of the cumulative incidence
function as well as associations with exposure variables with appropriate coverage
probabilities. The analysis of the real dataset also suggests that our method
provides estimates which are in agreement with estimates obtained from the right
censored data.

Conclusions: The proposed method for calculating pseudo-observations based on
the flexible parametric approach provides a versatile solution to the specific
challenges that arise with interval censored data. This solution allows regression
modeling using a range of different association measures.

Keywords: pseudo-observations; interval censoring; flexible parametric model

1 Background
In medical research, the outcome is often an event such as death, occurrence of a

disease, or a treatment-related event during a follow-up period. Some individuals

will be event-free throughout follow-up, but the event may occur after the end of

follow-up. This kind of incomplete follow-up is called right censoring and methods
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for dealing with this form of censoring are used very frequently in the medical lit-

erature. Right censored data thus consist of a mixture of exactly observed event

times and censoring times. In other situations, the exact event times are never ob-

served and the event status is only evaluated at certain time points, examination

times, and the data are then said to be interval censored. This phenomenon occurs

frequently when for example a specific group of individuals is monitored by routine

examinations for a medical condition. In such cases, event times are known only

to lie within a time interval from the last examination without the event to the

first examination after the event has occurred. In practice, data can also consist

of a mixture of right and interval censored data, e.g. when data are gathered from

different sources. A standard assumption when analyzing interval censored data

is that the examination times are independent of the event risk. In that case one

can in the analysis ignore the distribution of the examination times, and treat the

examination times as fixed. We will also assume that the examination times are

independent of the event risk.

Interval censoring has posed a challenge to the medical research community that

has proven hard to overcome. Regression models for interval censored data has tra-

ditionally mostly been concerned with basic parametric regression models where

inference can be performed by standard maximum likelihood methods and in which

the estimators converge at a rate of
√
n. Parametric models are easily fitted us-

ing most common statistical software but each distributional family imposes rather

strict assumptions on the shape of the hazard function and it is our impression that

their use in applications has diminished in recent years; most likely due to reluc-

tance to impose such assumptions, although covariate adjustment is straightforward

in parametric models. A parametric approach that can accomodate different dis-

tributional characteristics is the piece-wise exponential proportional hazards model

or equivalently a Poisson log-linear model where the hazard is assumed constant in

some set of intervals of the follow-up time[1]. When events are plentiful the follow-

up intervals can be made small enough to give a reasonable fit to practically any

shape of the hazard function but when the data is more sparse with few events or

the hazard has a more complex shape during follow-up the piece-wise exponential

model has obvious limitations[2].

As an example of an interval censored dataset, we consider a group of patients with

an implantable cardioverter-defibrillator (ICD), which is a kind of pacemaker that

can protect against slow heart rhythm but also fast arrhythmias, which otherwise

can result in hemodynamic compromise with loss of consciousness and cardiac ar-

rest. The fast arrhythmias can be treated by fast pacing or delivery of a high voltage

shock that restores the heart rhythm to normal. The ICD is placed in the subcu-

taneous tissue on the front of the chest below the left collarbone and is connected

to the inside of the heart through a large blood vessel. The ICD lead gives the

ICD the ability to continuously monitor the heart rhythm and if needed deliver the

high voltage shock inside the heart. The ICD lead is the most sensitive part of an

ICD system and is the part with the highest risk of failure either due to insulation

failures or conductor fractures. The particular lead investigated is prone to a rather

unique type of insulation failure because of a design flaw where the inner conduc-

tors over time work their way through the outer insulation. Such outer insulation
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failures, called externalizations, may be electrically silent at normal ICD follow-up

and require dedicated fluoroscopic/X-ray imaging to be detected. The ICD is at risk

of failing from such externalization events throughout follow-up, but patients can

also have their ICD leads removed (extracted) for other reasons during follow-up,

which obviously precludes an externalization event. We consider externalization as

the event of interest and we are interested in estimating the association between the

amount of slack in the lead body inside the heart and the time to externalization,

since more lead slack puts the continuously moving lead body under more physical

stress. In this setting, we have a combined competing risk of death or extraction of

the ICD leads. To assess the association between lead slack and externalization, we

are interested in comparing the cumulative risk of externalization at one or more

time points.

In this application, interest lies in assessing the effect of the exposure on the cu-

mulative risk of developing the outcome in the presence of the competing risks but

existing methods are not well-equipped for this type of situation. However, in the

right censored competing risk setting, pseudo-observations have been proposed[3] as

a modeling approach which enables effect estimation on a number of different scales

other than the hazard scale such as the cumulative incidence scale. This method

is based on a transformation of the potentially censored time-to-event data into a

set of complete data on which regression can be performed using generalized lin-

ear models to estimate the relevant effect parameters. When the aim is to model

some function of the cumulative incidence, the transformation is based on the non-

parametric Aalen-Johansen estimator of the cumulative incidence function.

A non-parametric estimator of the survival function based on interval censored data

has been proposed by both Peto and Turnbull[4, 5]. The resulting Peto-Turnbull

estimator is a piece-wise constant curve with relatively few jumps. A natural way

to apply the pseudo-observation approach to interval censored data therefore seems

to be to perform a transformation of the data based on the Peto-Turnbull estimator

similarly to the pseudo-observation approach based on the Aalen-Johansen estima-

tor. This approach has been investigated by Kim and Kim[6] in a competing risk

setting. However, the asymptotic properties of the resulting pseudo-observations

are unclear since the theory for pseudo-observations has been developed only for

estimators with parametric
√
n convergence rate[7], whereas the Peto-Turnbull es-

timator has slower n1/3 convergence rate[8].

Royston and Parmar[9] have proposed a flexible parametric model which is applica-

ble to both right censored and interval censored data. This is a regression modeling

framework where the log cumulative hazard function is estimated using a restricted

cubic spline in log time. In the most simple form with no covariates this approach

provides a way to model the cumulative incidence function and when covariates

are included the model can be formulated as either a proportional hazards or a

proportional odds model.

As in our example above, the event of interest in interval censored data is often

a non-fatal event, so methods for handling interval censoring should accomodate

death as a competing risk. For the remainder of this article, we consider only com-

peting events for which the event time is exactly observed and refer to competing

events as death for ease of terminology. In a competing risk setting with a right
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censored event of interest, we can model the cause-specific hazard functions sepa-

rately by considering only the time to whatever event occurs first. But when the

event of interest is interval censored, we are only observing the event if there is

an examination after the event has occurred but before the individual is censored

or dies. Hence, there might be some events of interest which are unobserved in the

data. Because of this circumstance, the inference needs to take into account that the

event of interest might or might not have occurred in the interval between the last

examination time without the event of interest and time of death or censoring. To

accomodate this, the data could be considered in an illness-death model[10] where

the risk of death is also modeled after an event of interest has occurred.

Recently, an elegant approach to calculating pseudo-observations for interval cen-

sored data was proposed by Sabathé et al.[11] specifically for an illness-death model.

This approach is based on modeling the three transition intensities using M-splines

and applying a penalized likelihood approach where more roughly shaped intensity

functions are penalized using the second derivatives of the three M-splines squared.

This requires a high number of coefficients for each of the three splines depending on

the order and the number of knots of the spline as well as three penalty parameters

to be chosen by the analyst. Due to this high number of parameters, the authors

do not recommend using their method in place of the traditional non-parametric

pseudo-observation approach for right censored data.

For right censored competing risk data, we have recently shown that in some situa-

tions calculating parametric pseudo-observations based on a marginal flexible para-

metric estimator of the cumulative incidence function can provide less variability in

the effect estimates than that of traditional non-parametric pseudo-observations[12].

In this article, we propose an extension of this approach that applies to the interval

censored setting and is targeted directly at estimating associations between an ex-

posure and the event of interest. In Section 2.1, we describe the proposed method

in more detail and in Section 2.2 we describe a simulation study that compares our

proposed method to the existing methods. We present the results of these simula-

tions in Section 3.1 and present an analysis of the example data in Section 3.2. We

conclude the article with a discussion and conclusion in Sections 4 and 5.

2 Methods
2.1 Proposed method

We now give details on how the parametric pseudo-observation approach can be

extended to cover interval censored settings with competing risks using an illness-

death model.

An illness-death model involves an event of interest and the competing event death

which gives three different states; 0 where neither event has occurred, 1 where only

the event of interest has occurred, and 2 which is death with or without having expe-

rienced the event of interest. In the following, we will assume that all individuals are

initially in state 0 at time t = 0 and we let hkl denote the hazard function describ-

ing transition from one state, k, to another, l and similarly we let Hkl denote the

cumulative hazard function. To estimate the cumulative incidence function of the

event of interest, F01(·), we will use the estimates of the transition-specific hazard
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functions and the relationship between these and the transition-specific cumulative

incidence function,

F01(t) =

∫ t

0

h01(u)S(u)du, (1)

where S(·) is the event-free survival function defined as

S(t) = exp
(
−H01(t)−H02(t)

)
.

We estimate the transition-specific hazard functions by modeling the transition-

specific log cumulative hazard functions using restricted cubic splines in x = ln(t).

According to Royston and Parmar[9], a natural cubic spline with m internal knots,

ξ1, . . . , ξm, and external knots ξmin, ξmax can be expressed as

s(x;γ) = γ0 + γ1x+ γ2v1(x) + · · ·+ γm+1vm(x),

where vj(x) = (x− ξj)3+ − λj(x− ξmin)3+ − (1− λj)(x− ξmax)3+.

Hence, we are assuming the model

ln(Hkl(t)) = skl(x;γkl)

= γkl,0 + γkl,1x+ γkl,2vkl,1(x) + · · ·+ γkl,m+1vkl,m(x),

for going from state k to state l. For simplicity, we assume that the number of

knots is m for all three splines. The model, hence, contains m + 2 spline coeffi-

cients, γkl = γkl,0, . . . , γkl,m+1, for each transistion and corresponding spline knots

ξkl,min, ξkl,1, . . . , ξkl,m, ξkl,max. Based on the spline coefficients, γ01, γ02, and γ12,

we can express the transition-specific hazard function as

hkl(t) =
dskl(x;γkl)

dt
· exp(skl(x;γkl))

=
1

t
· dskl(x;γkl)

dx
· exp(skl(x;γkl)).

The derivative of skl(x;γkl) is

dskl(x;γkl)

dx
= γkl,1 +

m∑

j=2

{
γkl,j ·

(
3(x− ξkl,j)2+

− 3λkl,j(x− ξkl,min)2+ − 3(x− ξkl,max)2+

)}
.

We consider a setting where the time to the event of interest can either be observed

exactly (right censored) or interval censored but the time of death is always ob-

served exactly (right censored). Estimation of the spline coefficients is performed

using maximum likelihood methods and the contributions to the likelihood func-

tion, L(γ01,γ12,γ02), take different forms according to the event trajectory of each

individual. These trajectories are determined by the occurrence and timing of the

event of interest and death as described by Touraine et al.[13]
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2.1.1 Maximum likelihood estimation

The observed trajectory of an individual can be described by the observed event sta-

tus and observation time for both the event of interest, (d1, t1), and death, (d2, t2),

as well as a time of the last examination time without the event of interest if any

such has occurred, l1. This last negative examination time might be at time l1 = 0 if

no negative examinations have occurred. For individuals with an interval censored

event of interest, the event of interest is then known to occur in the interval (l1, t1).

For individuals with an event of interest for which the time is observed exactly, l1

is not defined and for individuals with right censored data but no event of interest,

we let l1 denote the time point at which follow-up ends for that individual. We now

describe the contributions to the likelihood function for each trajectory. For the i’th

individual, we use the following notation.

d1i indicates an observed event of interest (either exactly observed or interval

censored)

l1i is the last known negative time point (potentially at time zero)

t1i is the observation time for the event of interest (either the exact time or the

first positive examination time)

d2i indicates a competing event (exactly observed)

t2i is the observation time for the competing event

For short, we will denote each individual’s contribution to the likelihood function

as Li.

Trajectory 1

If an individual has an exactly observed event of interest at time t1i and is then

right censored at time t2i, the corresponding contribution to the likelihood function

is

Li = S(t1i)h01(t1i)
exp(−H12(t2i))

exp(−H12(t1i))
.

Trajectory 2

If an individual has a negative examination at time l1i and is then right censored

at time t2i, the contribution is

Li = S(t2i) +

∫ t2i

l1i

S(u)h01(u)
exp(−H12(t2i))

exp(−H12(u))
du.

This likelihood contribution also applies to individuals with right censoring of the

event of interest, since this corresponds to the special case where l1i = t2i and the

integral is thus zero.

Trajectory 3

If an individual has an interval censored event of interest occurring between time

l1i and t1i and is then censored at time t2i, the contribution is

Li =

∫ t1i

l1i

S(u)h01(u)
exp(−H12(t2i))

exp(−H12(u))
du.

Trajectory 4

If an individual has an exactly observed event of interest at time t1i and then dies
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at time t2i, the contribution is

Li = S(t1i)h01(t1i)
exp(−H12(t2i))

exp(−H12(t1i))
h12(t2i).

Trajectory 5

If an individual has a negative examination at time l1i and then dies at time t2i,

the contribution is

Li = S(t2i)h02(t2i) +

∫ t2i

l1i

S(u)h01(u)
exp(−H12(t2i))

exp(−H12(u))
h12(t2i)du.

Again, this applies to individuals with right censoring of the event of interest.

Trajectory 6

If an individual has an interval censored event of interest occurring between time

l1i and t1i and then dies at time t2i, the contribution is

Li =

∫ t1i

l1i

S(u)h01(u)
exp(−H12(t2i))

exp(−H12(u))
h12(t2i)du.

If we furthermore use the indicator, d2i, for the competing event (exactly observed),

we can write all likelihood contributions as one of the following three expressions.

Trajectories 1 and 4

For an individual with the event of interest observed at time t1i exactly, followed

by death or censoring at time t2i, the contribution is

Li = S(t1i)h01(t1i)
exp(−H12(t2i))

exp(−H12(t1i))
h12(t2i)

d2i .

Trajectories 2 and 5

For an individual with an examination without the event of interest or right cen-

soring of the event of interest at time l1i followed by death or censoring at time t2i,

the contribution is

Li = S(t2i)h02(t2i)
d2i +

∫ t2i

l1i

S(u)h01(u)
exp(−H12(t2i))

exp(−H12(u))
h12(t2i)

d2idu.

Trajectories 3 and 6

For an individual with an interval censored event of interest occurring between time

l1i and t1i followed by a death or censoring at time t2i, the contribution is

Li =

∫ t1i

l1i

S(u)h01(u)
exp(−H12(t2i))

exp(−H12(u))
h12(t2i)

d2idu.

The likelihood function obtained by multiplying the relevant contributions for each

individual can be maximized numerically by using e.g. the Newton-Raphson algo-

rithm.
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2.1.2 Initial values

For likelihood maximization in practice, it is worth considering how to provide initial

values for the parameter vector (γ01,γ02,γ12) in order to achieve convergence in as

few iterations as possible. We propose the following approach using midpoints for

interval censored events of interest.

Modeling the transition from state 0 to 1 can be done by fitting a flexible parametric

model with the spline knots chosen for this transition and using the midpoints

between l1i and t1i for interval censored events of interest. From this fitted model

we can calculate a predicted survival function to estimate 1 minus the cumulative

incidence of the event of interest. For each individual that has not had an observed

event of interst, we can then estimate the probability that they had an unobserved

event of interest in the interval between their last negative examination time, l1i,

and their end of follow-up time, t2i, as the difference in predicted survival between

these two time points. We can then randomly assign these individuals as having

had or not having had an unobserved event of interst based on their individual

probabilities and then temporarily consider some of them as if they had an event

of interest at the midpoint of the interval from l1i to t2i. This allows us to more

accurately estimate the remaining two transitions.

The transitions from state 0 to 2 and from 1 to 2 can now be modeled, again using

flexible parametric models with the relevant knots, using the updated event and

status variables and imposing delayed entry at the time of the event of interest for

the transition from state 1 to 2.

2.1.3 Parametric pseudo-observations for interval censored data

Once we have obtained estimates, γ̂01, γ̂02, and γ̂12, of the parameters in the

likelihood function described above, we can define a set of parametric pseudo-

observations for interval censored data, θIC1 , . . . , θICn , as

θICi = nθ̂IC − (n− 1)θ̂IC(−i), for i = 1, . . . , n, (2)

where θ̂IC denotes the estimate of the cumulative incidence function and θ̂IC(−i) is

the corresponding leave-one-out estimate based on all observations except the i’th

with the same spline knots as for the full-sample estimate.

The pseudo-observations thus defined can be analyzed using generalized linear

models with a sandwich estimator of the variance in the same way as both non-

parametric and parametric pseudo-observations for right censored data[3, 12].

2.2 Simulation studies

2.2.1 Data generation

We simulated datasets imposing a non-random binary exposure, x, such that half of

the individuals are exposed and the other half is non-exposed and an administrative

censoring at time t = 5.

For the event of interest, we simulated realizations of a random variable T01 ∼
Exp(λ01(x)), where the intensities are λ01(0) = 0.3 and λ01(1) = 0.2. Similarly, we

simulated death from a random variable T02 ∼ Exp(λ02) with intensity λ02 = 0.1.

Based on these variables we define event indicators δ01 and δ02 according to which
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event occurs first if min(T01, T02) < 5. Hence, all individuals enter the study at time

t = 0 in state 0.

For individuals who experience the event of interest, we simulate the transition from

state 1 to state 2 as another random variable T12 ∼ Exp(λ12) with λ12 = 0.4. The

time-to-event for this transition is then T01 + T12 with censoring at t = 5 and the

event indicator is δ12.

To mimic a practical setting with a mixture of right and interval censored data,

we consider the event of interest for some individuals to be interval censored and

for the others to be right censored. This allocation follows a Bernoulli distribution

with probability parameter pic for being interval censored. For individuals with

interval censoring of the event of interest, we simulate examination times with a

mean interval length of ∆ and a random error following a normal distribution with

mean zero and variance σ2. We continue adding examinations until either the event

of interest has occurred or the induvidual has died or has been censored following

an iterative formula for examination times,

ei+1 = ei + δi,

where δi ∼ N(∆, σ2). This gives rise to the variable l1i which is the last known time

with a negative status for the event of interest and the variable t1i which is the first

known positive status. For individuals with an exactly observed event of interest,

we let l1i = t1i be the event time, and for right censored individuals in which we do

not observe an event of interest will have li = t1i = t2i which is the time of death

or censoring.

For the simulations, we performed 1 000 repetitions of datasets of sample size n =

250, where pic = 80% of the events of interest are interval censored, and the mean

time between examinations is ∆ = 1 with σ2 = 0.2.

2.2.2 Data analysis

In each dataset, we calculated five sets of pseudo-observations for the event of

interest based on five different approaches.

θE1 , . . . , θ
E
n Potentially unobservable exact right censored event

times for all individuals. These will serve as a way to

measure the empirically highest achievable precision.

θM1 , . . . , θMn Midpoints of the examination intervals for interval

censored events, exact right censored event times

otherwise.

θR1 , . . . , θ
R
n Right endpoint of the examination intervals for inter-

val censored events, exact right censored event times

otherwise.

θIC1 , . . . , θICn Proposed method for taking interval censoring into

account.

θS1 , . . . , θ
S
n Method for taking interval censoring into account

proposed by Sabathé et al.



Johansen et al. Page 10 of 14

For each set of pseudo-observations we fitted the same generalized linear models

to estimate the risk, risk difference, and relative risk of experiencing the event of

interest before time t = 3. If the estimation of spline coefficients for either the full

sample or one or more leave-one-out subsamples did not converge or if the general-

ized linear regression model gave unreasonable estimates (cumulative incidence not

in (0, 1), risk difference not in (−1, 1), relative risk not in (10−1, 10)), we considered

the results to be unvalid and ignore them in the following. Based on the obtained es-

timates, we then calculated the median bias, the empirical standard error (empSE)

and the confidence interval coverage probability[14]. We also calculated a relative

empSE with the empSE of the θEi s as the reference value to assess the amount of

additional variation that is added by accounting for the interval censored nature of

the data.

We generated data and performed all pseudo-observation calculations except the

θSi s as well as regression modeling using Stata/MP version 16.1. To calculate the

θSi s we used R version 3.6.3 and the packages SmoothHazard and pseudoICD.

3 Results
3.1 Simulation studies

To illustrate the five different estimation approaches, we have shown the full-sample

estimators on which each of the compared approaches are based for a randomly

chosen simulated dataset in Figure 1. It is clear that the Aalen-Johansen estimator

based on either the midpoints (red curve) or the right endpoints (green curve) un-

derestimate the cumulative incidence as estimated by the Aalen-Johansen estimator

on the exact event times (blue curve). Both the penalized likelihood estimator (pur-

ple curve) and the flexible parametric estimator (black curve) follow the estimator

based on the exact event times reasonably well. The results of the simulation study

are shown in Table 1. In the 1 000 datasets, there were on average 146 events of

interst but only 120 that we observe when considering the data as interval censored.

We focus mainly on the estimates of absolute cumulative incidence of the event of

interest. For the estimation of cumulative incidence, 18 of the 1 000 datasets resulted

in an unvalid estimate for the interval censored method, 4 did so when we used the

right endpoints and none did for the other methods. For both the risk difference

and the relative risk, this happened in 13 and 4 of the subsamples for the interval

censored and right endpoint methods respectively.

Using the exactly observed data, the parametric pseudo-observations perform very

well and we obtain unbiased estimation of the true value of the cumulative inci-

dence function at time t = 3, which is 0.460, with an empirical standard error of

0.028 and coverage probability close to the nominal value of 95%. Using the mid-

points with right censored methods, we observe a substantial negative bias due to

the unobserved events. This bias is exacerbated when we use the right endpoints

due to the systematic over-estimation of the observation time. These biases cause

both of the methods to yield useless coverage probabilities. Analysing the interval

censored data using our proposed parametric pseudo-observations, we still get an

unbiased estimator but the empirical error is roughly 50% higher due to the added

uncertainty inherent in the interval censored data. The coverage of this method is

also reasonably close to 95%. In terms of bias and coverage, the method proposed
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by Sabathé et al. performs quite similarly to our proposed method while the em-

pirical standard error of the cumulative incidence estimates is somewhat lower for

the Sabathé et al. method. This might be explained by the additional three penal-

ization parameters which control the smoothness of the fitted M-splines but must

be provided explicitly or determined from the data using an approximate likelihood

technique[13].

Estimating associations with the exposure gives small biases for both the risk dif-

ference and relative risk using either our proposed method and that of Sabathé et

al. and the coverage probabilities are in good agreement with the nominal value.

3.2 Application to ICD data

Our ICD dataset holds data on 377 patients who are followed from the time of

ICD implantation and for a maximum of about 10 years. During follow-up we have

information on our event of interest, externalization status, at each fluoroscopic

examination time and on the date of death or lead extraction if this occurred. The

dataset, hence, consists only of interval censored data for the event of interest and

right censored data for death or lead extraction. We show the trajectory for each

patient in Figure 2 where lines indicate an observation interval colored black for

intervals ending at a positive examination and grey if we do not observe exter-

nalization and black dots indicate death or lead extraction times. We observed 37

externalization events and 106 cases of death or lead extraction during follow-up.

We first estimated the cumulative incidence function for the externalization

event based on a competing risk model using the non-parametric Aalen-Johansen

estimator[15] applied to the midpoints of the intervals. This is illustrated by the

solid step function in Figure 3. The dashed and dotted curves in the figure show

the estimator based on the flexible parametric approach by fitting splines with 3

and 4 knots, respectively, to the interval censored data in an illness-death model.

The three estimators seem to capture roughly the same shape of the cumulative in-

cidence function although the Aalen-Johansen estimator based on midpoints shows

a tendency to place the bulk of the events around 2–3 years due to a high number

of patients having their first examination since implantation after roughly 5 years.

We then calculated parametric pseudo-observations for externalization events based

on splines with 3 knots evaluated at 5 years after ICD implantation and estimated

the cumulative incidence at this time point as well as the risk difference and rel-

ative risk comparing patients with high lead slack to those with low lead slack.

The results of the regression analyses show an estimated cumulative incidence at 5

years of 0.07 with a 95% confidence interval (CI) of (0.04 to 0.10). The risk is quite

different for the two exposure groups with an estimated risk difference of 0.07 (95%

CI: (0.01 to 0.14)) and the estimated relative risk is 2.94 (95% CI: (1.11 to 7.75)).

4 Discussion
With the methods proposed in this article, we have provided a way to calculate

pseudo-observations and hence perform regression modeling in data consisting of

both right and interval censored data on an event of interest which is subject to

competing risks. We have shown by simulations that this method avoids the bias

that occurs when using methods for right censored data on either the midpoints or
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the right endpoints of interval censored data. Our proposed methods also provides

confidence intervals that have coverage probabilities close to the nomimal value.

Our method is a further development of an approach for right censored competing

risks data[12] and compared to the recently proposed method by Sabathé et al.[11]

it requires relatively few parameters and does not require any analyst choices apart

from determining the spline knots.

There are a number of considerations and assumptions for the parametric pseudo-

observations for right censored data that also apply to the interval censored version.

This concerns the assumption of independent censoring as well as the choice of num-

ber and positions of knots for the splines. For the interval censored data, we have

imposed the additional assumption that the examination times are independent of

the risk of the event of interest.

A practical limitation of our method is that it is a very computationally inten-

sive task to estimate the spline coefficients in each leave-one-out subsample of the

dataset. Fortunately, this need only be done once for each study. This is also the

reason for our limited number of repetitions in our simulation study.

Although we allow that the event of interest is either right or interval censored or

a mix of both, we have only considered the case where the time of the competing

event is exactly observed. If this is not the case and the competing event is also

interval censored, the situation is far more complicated. This is unlikely to be the

case when death is the only competing event but it could be relevant if other events

can preclude the event of interest. Our proposed methods do not cover this situation

and are not easily extended to do so.

A special case of interval censored data to which our methods do apply is known

as current status data in which we only have one examination for each individual.

One example of such data is information from a systematic population screening

for a specific condition. For a non-congenital condition, a positive screening would

provide information that the condition has occurred at some point prior to the

screening but nothing more yielding long intervals that reflect the uncertainty of

the exact occurrence time of the condition.

5 Conclusion
In this article, we have shown how the previously proposed parametric pseudo-

observations for right censored data can be extended to cover setting with both

right and interval censored data. Since interval censored data are almost inevitably

subject to the competing risk of death, we have formulated the methods in an

illness-death model that accommodates this circumstance. We have demonstrated

through simulations that the proposed method performs well with no noteworthy

bias and satisfactory coverage probabilities for estimating the cumulative incidence

as well absolute and relative associations with an exposure.

6 Abbreviations
ICD: Implantable cardioverter-defibrillator

CI: Confidence interval

empSE: Empirical standard error
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Figures

Figure 1 Full-sample estimators of the cumulative incidence function in one of the simulated
datasets. Blue curve: Aalen-Johansen estimator on exact event times. Red curve: Aalen-Johansen
estimator on interval midpoints. Green curve: Aalen-Johansen estimator on right endpoints.
Purple curve: Penalized likelihood estimator used in the approach by Sabathé et al. Black curve:
Flexible parametric approach used in our proposed approach.

Figure 2 Visualization of the interval censored real example dataset. A black line indicates an
interval with an observed externalization, a grey line indicates an interval with no observed
externalization, black dots indicate deaths or lead extractions.

Figure 3 Estimated cumulative incidence of externalization. Solid curve: Aalen-Johansen
estimator in a competing risk model. Dashed curve: Flexible parametric estimator with 3 knots
based on an illness-death model fitted on the full sample. Dotted curve: Flexible parametric
estimator with 4 knots based on an illness-death model fitted on the full sample.

Table 1 Results of the simulations in the general set-up based on estimation of cumulative incidence,
risk difference and the logarithm of relative risk.

Method Bias empSE Relative empSE Coverage (95% CI)

Cumulative incidence (true value: 0.460)

Exact 0.000 0.028 1 (ref.) 95.4 (93.9 to 96.5)
Midpoint −0.067 0.033 1.16 35.6 (32.7 to 38.6)
Right endpoint −0.105 0.029 1.02 4.3 (3.2 to 5.8)
IC −0.001 0.043 1.51 94.2 (92.5 to 95.5)
Sabathé et al. 0.001 0.034 1.21 95.7 (94.2 to 96.8)

Risk difference (true value: -0.128)

Exact 0.000 0.057 1 (ref.) 95.0 (93.5 to 96.2)
Midpoint 0.020 0.057 1.00 95.5 (94.0 to 96.6)
Right endpoint 0.025 0.056 0.99 94.0 (92.3 to 95.3)
IC −0.002 0.076 1.33 95.3 (93.8 to 96.5)
Sabathé et al. −0.001 0.070 1.24 95.2 (93.7 to 96.4)

Logarithm of relative risk (true value: -0.281)

Exact −0.001 0.128 1 (ref.) 95.5 (94.0 to 96.6)
Midpoint 0.002 0.149 1.16 95.7 (94.2 to 96.8)
Right endpoint −0.012 0.165 1.29 96.0 (94.6 to 97.0)
IC −0.006 0.168 1.31 94.6 (93.0 to 95.9)
Sabathé et al. −0.004 0.158 1.23 95.3 (93.8 to 96.5)
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Fig. B.2: Figure 2
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Fig. B.3: Figure 3
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Description
This article focuses on the implications of having an interval censored time-
to-event outcome of interest in terms of competing risks and the particular
attention this circumstances require. The method of using flexible parametric
pseudo-observations for both right and interval censored data is explained.
The article aims to describe the methodological challenges and solutions as
seen with the eyes of an applied medical researcher or epidemiologist.
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Abstract

Recent developments in methods for handling right censored time-to-event data have introduced the
pseudo-observation approach, which provides a methodological framework for formulating regression
models. The pseudo-observation method provides the flexibility to measure associations on different scales
such as absolute or relative risk differences while accounting for competing risks. The method enables
researchers to avoid the typical assumption of proportional cause-specific hazards and present results of
regression analyses in terms of association measures with a more simple interpretation. Calculation of
pseudo-observations has traditionally been based on the non-parametric Aalen-Johansen estimator of the
cumulative incidence function for right censored data. When the event status of the outcome of interest
is only known at a finite number of examination times, the data is said to be interval censored, and the
non-parametric pseudo-observation method is not easily extended to cover this situation. Due to a general
lack of commonly applied methods for handling interval censored data, methods for right censored data
have been applied to either the midpoints or the right endpoints of the observed intervals. In this paper,
we argue that the inevitable presence of competing risks in interval censored data necessitates the use of
an illness-death model and show how pseudo-observations for interval censored data can be calculated in
this setting using a recently proposed spline-based parametric method. We illustrate the application of the
methods by analyzing a dataset of 345 patients with pacemakers who are monitored for episodes of atrial
fibrillation at routine check-ups.

I. Introduction

Inference for a non-fatal time-to-event outcome is a common methodological task in both observa-
tional studies and controlled trials. When the subjects under study are living creatures, this type
of data is almost always subject to competing risk from death when the subjects are followed for a
longer period. This has led to a widespread use of methods that can accommodate competing
risks such as the cause-specific proportional hazards model[6] and the Fine & Gray proportional
subdistribution hazards model.[5] An alternative to the proportional hazards models that has
gained popularity in recent years is the use of pseudo-observation methods.[1] These methods are
often applied to estimate associations on the relative risk scale but can also be used to estimate
absolute risk differences, hazard rate ratios, cause-specific life-years lost and other association
measures.

A special situation arises when the time of the event of interest is not observed directly but
the event status is only assessed at a number of examination times. Such data are said to be
interval censored and require special attention and special inferential methods. The most common
methodological solution to this problem has been to impose distributional assumptions for the
data and apply parametric regression models. However, a model that can handle interval censored
data but remains free of distributional assumptions has been proposed by Royston and Parmar.[14]
In a competing risk setting, this model relies on natural cubic splines to estimate the cause-specific
hazard functions.

An example of data with competing risk is the study of patients with pacemakers who are
monitored for episodes of atrial fibrillation. Atrial fibrillation is the most common arrhythmia
in elderly patients and is associated with poor quality of life, stroke, heart failure and increased
mortality. These patients are followed by routine check-ups to ensure the functionality of the
pacemaker. At these check-ups it is also possible to detect whether the patient has experienced any
atrial fibrillation episodes since the last check-up. This gives rise to interval censored information
about the time to first atrial fibrillation episode. However, the device also records the actual time
of atrial fibrillation episodes in continuous time which means that data can also be analyzed using
methods for right censored time-to-event data for comparison. The ongoing Danish multi-centre

1
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study DANPACE-II provides data from a cohort of patients with pacemakers which we will use
for illustration in this paper.

In what follows, we discuss the methodological challenges arising from interval censoring in a
competing risk setting and show some potential solutions using data from our data example. In
Section II, we consider the right censored case, and describe the pseudo-observation approach
in Subsection i. We introduce competing risks in Subsection ii and describe a parametric version
of pseudo-observations in Subsection iii. In Section III we introduce interval censoring and we
discuss the complications that arise with competing risks in Subsection i and describe a special
version of pseudo-observations that accommodates an interval censored setting with competing
risks in Subsection ii. We analyze data from the DANPACE-II study in both a right censored
and an interval censored version in Section IV, and conclude the article with a summary and
discussion in Section V.

II. Right censored time-to-event data

When interest involves a particular event that can occur during a follow-up period, it is very
common to observe right censored data where we know the time of the event for some individuals
but only know that the event has not occurred before end-of-follow-up (censoring) for other
individuals. Methods for dealing with right censored time-to-event data are very widely used in
medical research with the far most commonly applied regression model being the Cox proportional
hazards model[4]. If we let T denote the random variable representing the time to the event, the
hazard function expresses the instantaneous risk of experiencing the event given that it has not
already occurred and can be defined as

h(t) =
P(t ≤ T ≤ t + ∆t|T ≥ t)

∆t
,

for small values of ∆t. The Cox model is based on an assumption of proportionality between
hazard functions for different covariate values as well as the assumption that the individuals being
censored at a given time point should be representative for the population at risk at that time with
the same covariate values, an assumption known as conditional independent censoring. Under these
assumptions, the hazard rate ratio for different values of the exposure of interest is estimated to
assess the association between the exposure and the outcome.

i. Non-parametric pseudo-observations

Regression modeling without assuming proportionality of the hazard functions can be performed
using pseudo-observations[1] which can be considered as a transformation of the censored data
into a dataset of estimated uncensored event times. They can be thought of as the contribution of
the data of each individual to the estimate of the cumulative incidence function,

F(t) = 1− S(t).

In a setting without competing risks, the survival function, S(·), can be estimated by the non-
parametric Kaplan-Meier estimator[9], say Ŝ(·), and an estimate of the cumulative incidence
function can be calculated as F̂(·) = 1− Ŝ(·), say.
The i’th non-parametric pseudo-observation calculated at time t is then defined as

θ̂
np
i (t) = n · F̂(t)− (n− 1) · F̂−i(t), (1)

2
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where F̂−i(·) is one minus the Kaplan-Meier estimator calculated without the i’th individual, called
the leave-one-out or jackknife estimator. These pseudo-observations have mathematical properties
that enable us to use a versatile family of regression models, generalized linear models (GLMs),
to estimate associations in terms of different association measures such as relative risk or risk
difference. Since the pseudo-observations are calculated at one (or multiple) prespecified point(s)
during follow-up, there are no assumptions concerning the shape or proportionality of the hazard
functions. However, there is an important assumption requiring unconditional independent
censoring because the pseudo-observations are calculated from a pooled version of the Kaplan-
Meier estimator. This assumption can be relaxed in several ways to allow covariate-dependent
censoring.[1, 2] A thorough description of pseudo-observations and their properties has been
given in the article by Andersen & Perme[1] and a discussion of assumptions and interpretation
of regression parameter estimates is given by Mortensen et al.[11]

ii. Death as a competing risk

If the event of interest is non-fatal, we may also observe that some patients die during follow-up
and are therefore no longer at risk of experiencing the event of interest. This should not simply be
considered as censoring since they cannot have the event of interest later on.[13] More generally,
the competing risk setting can be formulated as a multi-state model in which subjects enter the
study in an initial state being free of any of the relevant (competing) events and are then at
risk of a number of different events that each preclude the others or otherwise makes further
follow-up irrelevant. We will call the initial state 0, and consider K competing events leading to
states 1, . . . , K. Figure 1 illustrates such a multi-state model. The arrows in this figure represent
the potential transitions from one state to another which can be modeled as cause-specific hazard
functions.
Letting D and T denote the random variables describing the type of the first event to occur for an
individual and the time to this first event, respectively, the cause-specific hazard function for the
transition into state k at time t is defined as

hk(t) =
P(t ≤ T ≤ t + ∆t, D = k|T ≥ t)

∆t
,

for k = 1, . . . , K and small values of ∆t. As we shall see in (2), we can use these to calculate the
cause-specific cumulative incidence functions, F1(·), . . . , FK(·), and they also have the convenient
property that they can be used to calculate the overall survival function, i.e. the probability of not
having experienced any of the K events prior to time t, as

S(t) = exp

(
−

K

∑
k=1

∫ t

0
hk(u)du

)
.

In the special case where we are only considering an event of interest and a single competing
event (death), there are only three states; 0 (alive and event-free), 1 (event of interest has occurred),
and 2 (dead before event of interest).
Non-parametric pseudo-observations can then be calculated using the Aalen-Johansen estimator
of the cause-specific cumulative incidence functions[16] and inference on cause-specific scales can
be obtained using GLM regression methods as in the case without any competing risks.

iii. Parametric pseudo-observations

In a recent article,[7] we have proposed a parametric version of pseudo-observations for competing
risk data which is based on the principles of the flexible parametric model advocated by Royston
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& Parmar.[14] The non-parametric estimators of the cumulative incidence are step functions
with larger and less precise steps when the risk set is small near the end of follow-up period
and the non-parametric pseudo-observations will carry over this imprecision to the regression
modeling. The underlying cumulative incidence function is presumably a smooth function and
by estimating it by means of a smooth spline, we will be able to provide a more stable basis
for pseudo-observations. More technically, the parametric pseudo-observations method uses a
restricted cubic spline to estimate the log cumulative hazard function and then calculate pseudo-
observations based on this parametric estimator. As an extension of the pseudo-observation
approach for right censored data to a competing risk setting, we can base the inference on the
cause-specific hazard functions, h1(·), . . . , hK(·). The cause-specific cumulative incidence function
for event type k can then be obtained from the overall survival function and the cause-specific
hazard function as

Fk(t) =
∫ t

0
S(u) · hk(u)du. (2)

This provides an estimator that is flexible and fully parametric and allows us to define parametric
pseudo-observations as in (1). We will denote the i’th parametric pseudo-observation derived
using this method as θ̂

p
i (t). Similarly to the non-parametric pseudo-observations, we can perform

regression modeling using GLMs to estimate associations on the desired scale. We have shown by
simulations that when pseudo-observations are calculated at time points where the risk set is small
or when there is a large amount of events after the analysis time point, these parametric pseudo-
observations reduce the variability of parameter estimates compared to that of the non-parametric
pseudo-observations.[7]

III. Interval censored data

Considering again the case without competing risks, the special data structure that arises when
the event of interest is interval censored requires methods that are specifically equipped for this
situation. The most common method of estimating parameters is by use of maximum likelihood
estimation where a likelihood function is used to find the estimates that give the maximum
probability for observing the data actually observed. For an individual with an interval censored
event in the semi-closed interval (l, r], the contribution to the likelihood function is simply the
difference in the survival function over the interval, S(l)− S(r).[10] In parametric models, we
have a closed form for the survival function which means that standard maximum likelihood
methods can be applied to obtain parameter estimates in a regression model. However, most
parametric models impose strict distributional assumptions and are confined to a given scale for
measuring assocations. The parametric nature of the flexible parametric model[14] facilitates the
handling of interval censored data without specific distributional assumptions, but it does require
proportionality of either the hazard or the odds function.
In practical applications, it is common to use either the right endpoint, r, or the midpoint, (l + r)/2,
of the interval as the time of event and apply methods for right censored data although these
methods have known shortcomings. Firstly, using the right endpoint as the time of the event will
inevitably cause an underestimation of the cumulative incidence since the right endpoint is the
upper limit of the time to event. The midpoint method is also known to produce results that might
be biased.[12] Both methods will also over-estimate the information in the data, producing too
narrow confidence intervals and too low p-values, resulting in incorrect interpretation of the data.
Using either the right endpoint or the midpoint, we will need to censor at the last examination
time if no event of interest is observed. This means that we will not be making full use of the
information in the data.
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i. Competing risk problems with interval censored data

When an exactly observed (right censored) competing risk occurs for an interval censored event of
interest, the methods for handling competing risks in right censored settings do not generalize
directly for two reasons. First, the contribution to the likelihood function for an interval censored
event of interest is no longer just the difference in the survival function at each interval endpoint
but should instead be calculated as an integral over the interval in which the event is known to
occur, (l, r]. Second, the inference we described in Section II for competing risk settings is based
on the transition out of the initial state, 0, which can be characterized by the time of the first
event, T, and the event type indicator, D. In the interval censored setting, this characterization
is not possible because we do not know whether the event of interest has occurred if there is no
later examination time. This is illustrated in Figure 2. If an individual enters the study at time 0,
subsequently has a negative examination at time l, and then dies at time t, the event of interest may
have occurred in the interval (l, t] and the transition into state 2 can be from either state 0 or 1. This
uncertainty has to be taken into account when we estimate the cumulative incidence of the event
of interest. This can be accommodated in the likelihood function by computing the probability
that the event of interest has occurred between l and t. A similar approach can accommodate
the situation where the individual is censored at time t after having a negative examination at
time l to take into account that the event may have occurred between l and t. A multi-state
model that represents the situation with an event of interest and a competing risk and takes the
transition from the event of interest to death into account is often called an irreversible illness-death
model. Figure 3 illustrates this multi-state model. In an illness-death model all possible transitions
between the three states are modeled separately and can be expressed as the transition-specific
hazard functions h01(·), h02(·), and h12(·) and regression modeling can be performed on all or some
of these transitions.

ii. Pseudo-observations for interval censored data with competing risks

The parametric pseudo-observation approach can be extended to cover the interval censored
competing risk setting by using an illness-death model in which each transition-specific hazard
function is modeled in the same way as the cause-specific hazard functions for right censored
data. Calculation of the pseudo-observations is still based on the full-sample as well as the
jackknife estimates of the cumulative incidence function as in (1). If we restrict our interest to
the transition from state 0 to state 1, we still need to model the other two transitions using cubic
splines to calculate the pseudo-observations. This means that we must fit separate splines (without
covariates) to each of the three log cumulative hazard functions. But once these are fitted to the
data, we can define parametric pseudo-observations for the interval censored event of interest in
the same way as in the right censored setting as

θic
i (t) = n · F̂01(t)− (n− 1) · F̂−i

01 (t), (3)

where F̂−i
01 (t) is the jackknife estimator of the cumulative incidence of the event of interest. Once

we have obtained the pseudo-observations, estimation of the association between an exposure
variable and the event of interest can be obtained from a GLM regression model.

The assumption of unconditional independent censoring that applies to non-parametric pseudo-
observations also applies to these parametric pseudo-observations for interval censored data. Since
we are using splines to model each of the transitions, we must define a set of knots for each spline.
The number of knots determines the smoothness of a spline and these should be chosen carefully.
The precise positions of the knots is usually of less importance and standard methods based on
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fractiles of the distribution of event times will generally suffice. The jackknife estimators should
be based on the same spline knot points as the full-sample estimators.

IV. Analysis of the DANPACE-II data

We now consider the DANPACE-II dataset which consists of data from 345 individuals who
had a pacemaker implantation between May 2014 and December 2018 and are followed until the
data extraction was performed at 20 March 2019 to illustrate the use of the pseudo-observation
methods. The study is an ongoing trial registered at clinicaltrials.gov as Study NCT02034526
performed as a follow-up to the original DANPACE study.[3] During follow-up, 156 of the patients
experienced the outcome of interest which is defined as an atrial fibrillation episode lasting for
at least 6 minutes. Furthermore, 10 individuals died during follow-up and among these 6 had
not experienced the outcome of interest. For each individual with the outcome of interest, we
have the exact date of the outcome, and all individuals are scheduled to have their pacemaker
checked at 3, 12, and 24 months after implantation. Since we do not have information on the actual
examination dates, we have simulated individual examination dates by adding a random variation
to the scheduled examinations following a normal distribution with mean 0 and a variance of 10
days. This enables us to perform analyses on this dataset based on either the right censored data
of exact outcome times or the interval censored data arising from only assessing the event status
at the examination times. Since the patients in our dataset are no longer monitored after 2 years,
we consider the individuals to be censored after 2 years of follow-up.

For the purpose of this analysis, we only have additional information on the sex and age at
implantation of the study individuals. We will be estimating the overall cumulative incidence
proportion at both 9 and 18 months after implantation as well as the association with sex and
age as a binary and a continuous exposure, respectively. Figure 4 shows the individual patient
trajectories in terms of both exact event times (black crosses) and examination intervals (black
line for an observed event and grey line for no observed event) as well as death times (black
dots). We can see that there is a bulk of events of interest occurring early in the follow-up period.
Figure 5 shows the cumulative incidence function for atrial fibrillation episodes estimated by the
non-parametric Aalen-Johansen estimator for a competing risk model based on the right censored
event times (solid black curve), the interval midpoints (solid blue curve), the right endpoints
(solid red curve) and the corresponding full-sample estimator in (3), F̂01, with one internal knot
based on the interval censored data (dashed black curve). The estimated curve based on the exact
event times increases most in the very early follow-up as a result of the high number of early
events which none of the other methods are able to capture due to the limited information in the
interval censored data. The curves based on interval midpoints or right endpoints both increase
steeply at the imputed event times in remain constant in between reflecting the homogeneity of
the examination patterns in this dataset. The spline-based estimated curve, on the other hand,
estimates the cumulative incidence in reasonable accordance with the non-parametric estimator
based on exact event times most of the time, though it also fails to capture the initial steep increase.

We then calculated four sets of pseudo-observations based on 1) the right censored exact event
times, 2) right censoring using midpoints, 3) right censoring using right endpoints, and 4) interval
censored event times. For the three right censored approaches, we calculated pseudo-observations
in a competing risk model using the Aalen-Johansen estimator, whereas the interval censored
approach is based on the flexible parametric pseudo-observations defined in (3). We used these
pseudo-observations to fit generalized linear models in order to estimate the relevant parameters.
The estimates of cumulative incidence proportion (CIP) at 9 and 18 months, the risk difference of
experiencing an atrial fibrillation episode for males as compared to females (RDsex) and the risk
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difference associated with age using 10 years as the unit of comparison (RDage) are shown in Table
1. The estimates confirm that the right endpoints can underestimate the CIP notably and that both
interval midpoints and right endpoints somewhat underestimate the CIP at long-term follow-up.
The associations with sex and age are rather consistently estimated by the four methods despite
the differences in the overall CIP estimates indicating that in this dataset the biases more or less
cancel out in the comparisons between patient groups.

V. Discussion

Traditionally, the available analytical tools to perform regression modeling on interval censored
data have been parametric models based on distributional assumptions. However, they have only
seen limited use in the medical literature whereas simplified approaches such as applying methods
for right censored data to either the midpoints or the right endpoints have been more commonly
applied. Since the outcome of interest in an interval censored setting is almost always subject
to the competing risk of death, we have argued that the theoretically most justified approach
to such modeling tasks is through an illness-death model. In this article, we have also shown
one possible way to implement such a model through an extension of the flexible parametric
pseudo-observation approach which was originally developed for a right censored competing risk
setting.

Other possible ways to implement an illness-death model for interval censored data include
the Royston & Parmar flexible parametric regression model,[14] a penalized likelihood approach
based on M-splines[8] as well as a pseudo-observation approach based on this penalized likelihood
method.[15] The cubic spline based method has the advantage that it facilitates the use of a wide
range of association measures such as risk differences, relative risks or cause-specific life-years
lost while it remains free of assumptions about the underlying hazard functions.

Since the calculation of pseudo-observations relies on jackknife estimators, the parametric
pseudo-observations require quite intensive computing and can be lengthy or even infeasible for
very large datasets. When we calculated pseudo-observations using the interval censored data in
the DANPACE-II dataset using a single CPU core on a standard desktop PC, the calculations took
about 1 h 50 m. Once the pseudo-observations have been calculated, however, different regression
models can be fitted using standard regression procedures very fast on any standard computer.

The results of estimating the absolute cumulative incidence in our example dataset show the
importance of account for the interval censored nature of the data. Analyzing the data in an
illness-death model using an approach that correctly handles the interval censoring provides a
way to make use of all relevant information in the data and ensure reasonable estimates of the
relevant parameters. We acknowledge that the correct handling of an interval censored event of
interest in the presence of competing risks might seem a little overwhelming for some applied
researchers, and we encourage the collaboration between researchers with different professional
competencies, e.g. medical doctors, epidemiologists, statisticians, and statistical programmers.
The Stata syntax that we have used in this paper is available upon request.
As we have seen, there are different benefits and drawbacks related to using either of the
methodological approaches to analyzing a dataset with an interval censored event of interest and
competing risks. We have summarized these in Table 2. The steps required to calculate parametric
pseudo-observations evaluated at time t for interval censored data can be summarized as follows.
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1. Organize the data such that the relevant time variables and event indicators are defined for each
subject.

2. Fit the illness-death model to the full sample and save the estimated value of the CIP at time t,
F̂01(t).

3. For each subject, i, fit the illness-death model to the jackknife sample leaving out the i’th subject
and save the estimated value of the CIP at time t, F̂−i

01 (t).

4. Generate the pseudo-observations defined in (3).

5. Use GLM regression on the pseudo-observations with the relevant link function and covariates.

In our implementation, we have used the ml command in Stata/MP version 16.1 to maximize the
likelihood function of the illness-death model.
The main drawbacks of using the parametric pseudo-observations for interval censored data
are that it requires rather advanced programming and intensive computing power which might
even call for the use of more powerful computers than general-purpose desktops. Although
the methods yield no directly conflicting results in our example, we strongly recommend using
appropriate handling of interval censored data whenever possible.
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VI. Tables

Analysis time Method Overall CIP (95% CI) RDsex (95% CI) RDage (95% CI)

9 months Exact 41.4 (36.1 to 46.6) -10.5 (-21.0 to 0.1) 6.6 (2.0 to 11.1)
Midpoint 43.8 (38.4 to 49.2) -14.8 (-25.7 to -4.0) 5.7 (0.9 to 10.5)
Right endpoint 38.0 (32.7 to 43.3) -9.3 (-20.0 to 1.4) 6.2 (1.6 to 10.8)
Interval censored 44.3 (38.8 to 49.9) -12.9 (-24.2 to -1.6) 6.7 (1.6 to 11.9)

18 months Exact 47.0 (41.5 to 52.4) -15.2 (-26.1 to -4.3) 6.4 (1.5 to 11.2)
Midpoint 46.6 (40.6 to 52.7) -15.6 (-27.8 to -3.4) 6.5 (1.4 to 11.5)
Right endpoint 50.2 (43.8 to 56.6) -16.0 (-28.7 to -3.3) 7.7 (1.8 to 13.7)
Interval censored 46.9 (41.1 to 52.6) -13.1 (-24.8 to -1.3) 7.0 (1.7 to 12.3)

CIP: Cumulative incidence proportion (in percentage)
RD: Risk difference (of percentages)

Table 1: Results of GLM regression analyses based on pseudo-observations.

Method Benefits Drawbacks

Right censored
interval midpoints

Fast computation
Easy implementation

Downward bias in CIP esti-
mation

Right censored
right endpoints

Fast computation
Even easier implementation

Further downward bias in
CIP estimation

Interval censored
data

Unbiased estimation of CIP Slow computation
Complicated implementa-
tion

Table 2: Benefits and drawbacks of using different methods for handling interval censored datasets.
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VII. Figures

Figure 1: A general competing risks multi-state model.

Figure 2: The two potential trajectories for an individual who enters the study at time 0, has a negative examination at
time l and then dies at time t.

Figure 3: The irreversible illness-death model.

Figure 4: Individual trajectories for the 345 patients with pacemakers. Black lines indicate an interval censored event of
interest, grey lines indicate an interval without the event of interest, black crosses indicate the exact event
times for the event of interest, and black dots indicate death times.

Figure 5: Estimated cumulative incidence functions based on the non-parametric Aalen-Johansen estimator using
exact event times (solid black), interval midpoints (solid blue), right endpoints (solid red) and spline-based
estimated curved based on interval censored data (dashed black). Vertical reference lines indicate the analysis
time points.
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Fig. C.4: Figure 4
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