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ENGLISH SUMMARY 

This thesis reports on electrospinning of composite materials, in the context of the 

increasing focus on energy-efficient buildings, outlined e.g. in the Danish building 

regulations (Byg2020) and the United Nations world goals 11 (Sustainable cities and 

communities) and 13 (Climate action). These programs all require housing to con-

sume less energy for heating in the future. The building footprint area, however, is 

generally not allowed to increase. Using the traditional insulation materials, the insu-

lated walls are thickened, leading to a loss of net area inside the house. 

When focusing on preserving the size of living area in general the development of 

more efficient insulation materials is vital. These efficient materials require low ther-

mal conductivity, and here vacuum insulation panels dominate the market today. 

Shortcomings have been experienced with vacuum insulation panels though: they are 

difficult to retrofit and come with a risk of leakage causing a concomitant risk of 

reduced insulation properties. Hence, other materials are needed to ensure a versatile 

portfolio of available insulation materials. Aerogel materials could fill this gap, but 

their brittleness, low mechanical strength and wetting behaviour makes them difficult 

to use. 

The aim of this project has been to develop methods to enhance the mechanical prop-

erties of aerogel by embedding aerogel particles in a polymer fibre matrix. Different 

electrospinning variants as a production method for composite insulation materials 

have been developed. The different electrospinning variants have been tested with 

different types of aerogel, and the produced fibre materials have been characterised. 

Various characterisation techniques are used to determine the thermal and mechani-

cal properties of the fibres. The electrospinning variants have also been upscaled by 

going from single needle prototypes to multi-needle electrospinning in the case of 

both melt and solvent electrospinning.  

The results of these experiments are documented in four scientific papers, of which 

three have been published in scientific journals. Three papers address the production 

of electrospun fibres, containing aerogel, through melt and solvent electrospinning, 

while the last paper addresses the link between gas permeability and thermal conduc-

tivity in fibre materials. 

In conclusion, the results presented in this thesis contribute to the scientific 

knowledge of composite material electrospinning, and the understanding of the ther-

mal properties of porous fibre materials. The development of the new production 

methods can aid future research in and production of electrospun materials. 



ELECTROSPINNING OF COMPOSITE MATERIALS 

DANSK RESUME 

Denne afhandling er skrevet med det formål at fortælle om elektrospinning af kom-

positmaterialer i sammenhæng med bygningsisolering og energieffektivitet. Dette ses 

eksempelvis i Det Danske Bygningsreglement, Byg2020, FN’s verdensmål 11 (bæ-

redygtige byer og samfund) og 13 (klima). Der er et krav om mindre udledning af 

kuldioxid, som følge af opvarmning og nedkøling af bygninger, men samtidig må 

bygningens sokkelareal ikke øges. Hvis man vil isolere yderligere med traditionelle 

isoleringsmaterialer, vil sokkelarealet blive tykkere, hvilket vil medføre en uønsket 

nedgang i beboeligt areal. 

Hvis man har fokus på netop at opretholde det beboelige areal, er det derfor vigtigt 

med mere effektive isoleringsmaterialer. Denne type materialer skal først og fremmes 

have en lav varmeledningsevne, og her er det bedste bud i dag vakuumisoleringspa-

neler. Vakuumisoleringspaneler har dog også kendte ulemper; eksempelvis er de 

svære at tilpasse, og de har en indlejret risiko for lækage. Derfor har byggeriet brug 

for alternative materialer, som kan bruges hvor dette udgør et problem. Et bud på et 

sådant materiale, kunne være aerogel, men materialet er for sprødt, har lav mekanisk 

styrke og suger let fugt, hvilket gør det vanskeligt at anvende i byggebranchen.  

Formålet ned dette projekt har været at udvikle en metode, til at forbedre aerogelens 

mekaniske egenskaber. Dette sker ved at indlejre aerogel partikler i en elektrospundet 

fibermåtte. For at opfylde dette formål, er der udviklet elektrospinningsvariationer, 

som er blevet testet med forskellige typer aerogel. De resulterende fibre er blevet 

karakteriseret ved forskellige metoder, og elektrospinningsvarianterne er efterprøvet 

i flernålsopstillinger for både smelte- og opløsningselektrospinning.  

Resultatet af disse eksperimenter er udgivet i fire artikler. Tre artikler er publiceret, 

og én er indsendt til bedømmelse. Af de fire handler de tre om elektrospinningsvari-

ationer med både opløsning og smelte, mens det sidste fortæller om sammenhængen 

mellem luftpermeabilitet og varmeledningsevne for fibermaterialer.  

Resultaterne af dette arbejde bidrager til den samlede viden om kompositelektrospin-

ning, og forståelsen af varmeledning i porøse fibermaterialer. Udviklingen af nye 

elektrospinningsvarianter kan støtte den videre udvikling af nye materialer. 
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FOREWORD 

The project, entitled Electrospinning Novel Composite Materials, aims to investigate 

the possibilities for creating composite materials by combining polymers with silica-

based aerogels through electrospinning. This PhD-thesis has been part of the project, 

sponsered by the Danish Innovation Fund, and is a collaboration between Aalborg 

University, Gabriel A/S and HiCON A/S. The main focus of the project has been to-

wards research relevant for the production of insulation material based on the combi-

nation of aerogel particles and polymers, where the industrial partners have been fo-

cused on the incorporation of these materials into their product portfolio.    

In general terms, this project has aimed to answer the question: Where are the limits 

of aerogel-polymer based composite fibres, and the electrospinning methodology 

for scalable production?   

This question has been answered in four scientific papers. Three are published at the 

time of the handing in of this thesis. Furthermore, this thesis includes a state- of-the-

art review of the electrospinning process, the insulation materials and a chapter cov-

ering relevant theory. This chapter of theory covers the electrohydrodynamic process 

of electrospinning, gas and thermal transport and mechanical properties of composite 

fibre materials.  
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CHAPTER 1. – ELECTROSPINNING 

STATE-OF-THE-ART AND THEORY 

In its most basic form, electrospinning needs a curved liquid surface in an electric 

field (1). As liquid is polarised or charged, a Taylor Cone can emerge (2), and fibres 

start propagating away from the curved surface. The state of the art within the field of 

electrospinning has shown a fast development within recent years, as the well-known 

technique has both been upscaled for industrial applications and developed further 

intensely to produce new fibre types and composite materials.  

In summary, electrospinning can be used to produce varying fibres for different ap-

plications, ranging from medical, pharmaceutical, filtration, and construction applica-

tions. This also includes aerogel/polymer composite fibres. The various electrospin-

ning setups have experienced a considerable evolution during the last decade, where 

high-throughput devices and advanced geometries of fibres have been implemented 

in various processes. But still, the potential for future developments of novel fibre 

types and production methods.  

1.1. TAYLOR CONE FORMATION 

Before the electrospinning starts, a curved liquid surface exists in an electric field. 

The Taylor cone forms when the electrostatic pressure, pes, between a charged liquid 

and a charged electrode surpasses the surface tension pressure or Laplace pressure, pγ. 

Then a thin fibre emerges, and this is the start of the electrospinning. The electrostatic 

pressure is given by  

 𝑝𝑒𝑠 =
𝜖0

2
⋅ 𝐸2, 1.1.1 

where E is the electrostatic field, and ϵ0is the vacuum permeability. The surface ten-

sion pressure is given by   

 𝑝γ = γ ⋅  κ, 1.1.2 

where 𝛾 is the surface tension, and 𝜅 is the curvature of the droplet (3). In the case of 

electrostatics, Taylor did experimental work showing that this equilibrium happens at 

droplet angle of 49.3°(2) compared to the surface, and this is mathematically proven 

in the case of electrostatics by Wilm and Mann (3).  
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1.1.1. ELECTRIC FIELD 

Electrospinning occurs in a static electric field. This electrostatic field depends on two 

variables: the distance between the liquid and the collector, and the applied potential. 

The electrostatic field is defined as 

 𝐸(𝒓) = −∇𝜑(𝒓), 1.1.3 

where 𝜑(𝒓) is the electrostatic potential. As the potential is an experimental parameter 

defined by the researcher, the 1D electrostatic field can be calculated as 

 𝐸(𝑟) = −
𝜑

𝑟
. 1.1.4 

By applying this equation, electrospinning can be achieved both by increasing the 

potential and by decreasing the distance. As the droplet is charged in the field, a force 

acts on a given volume element with the magnitude of  

 𝐹(𝑟) = 𝑞𝐸(𝑟) = −𝑞
𝜑

𝑟
, 1.1.5 

where q is the charge of the volume element.  

The same electrostatic field that makes the fibre emerge from the droplet acts on the 

charged jet. As the jet is composed of liquid material, it experiences a viscous stretch 

(4).  

1.1.2. VISCOSITY OF LIQUID PHASES 

This viscous resistance in an element a, in a liquid, works in the opposite direction of 

the electrostatic force as  

 𝑑𝐹𝑖 = σ𝑖𝑗
′  𝑛𝑗  d𝑎, 1.1.6 

where 𝑑𝐹𝑖 is the viscous force, σ𝑖𝑗
′  is the stress tensor and 𝑛𝑗 is the normal vector of 

the surface element. The stress tensor is defined as 

 σ𝑖𝑗
′ = 𝜂(𝜕𝑗𝑣𝑖 + 𝜕𝑗𝑣𝑖 − 2/3𝛿𝑖𝑗𝜕𝑘𝑣𝑘) + 𝜁𝜕𝑘𝑣𝑘 ,  1.1.7 

where 𝜂 is the dynamic viscosity (friction due to shear stress), 𝜁 is the secondary vis-

cosity (friction due to compression) and v is the velocity field in the i, j and k direc-

tions.  
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This means that the resistance to the movement of an element of fluid, in comparison 

to a neighbouring element, is proportional to the viscosity if no change in density is 

present (incompressible fluids).  

The viscosity is dependent on the temperature of the fluid, as well as the properties of 

the fluid component. The length of polymer chains and solvent concentrations are 

dominant factors for these properties, and hence, the stretch of the fibre depends 

thereon. Literature states that decreasing viscosity leads to decreasing fibre diameters, 

which corresponds to the equations above, stating that the resistance to stretch is in-

creased  upon a viscosity increase (5). The same factors influencing the viscosity are 

also tightly coupled to the surface tension of a solution.  

1.1.3. SURFACE TENSION 

The surface tension of a solution is defined as the Gibbs free energy (G) derived per 

unit of surface area (A) at a fixed pressure and temperature (5): 

 𝛾 =
𝜕𝐺

𝜕𝐴𝑇,𝑝
. 1.1.8 

Hence, the Gibbs free energy is defined as  

 𝐺(𝑝, 𝑇) = 𝑈 + 𝑝𝑉 − 𝑇𝑆, 1.1.9 

where U is the internal energy, p is the pressure, V is the volume, T is the temperature 

and S is the entropy of the system, which is defined as  

 𝑆 = 𝑘𝐵𝑙𝑛(Ω), 1.1.10 

where 𝑘𝐵 is the Boltzmann constant and Ω is the number of available configurations 

of the system (6).  

By combining equations 1.1.9 and 1.1.10, it can be seen from equation 1.1.8 that the 

surface tension decreases with temperature, and increased pressure increases the sur-

face tension.  

1.1.4. CURVATURE 

The curvature of a droplet is inversely proportional to its radius and is defined as 

 κ =
1

rdroplet
. 1.1.11 

The larger the radius, the lower the curvature, and, by extension, the lower the elec-

trostatic pressure. If the droplet is assumed to be an ellipsoid, the smallest radius will 
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be in the centre, and if the electrostatic pressure surpasses the pressure of the surface 

tension a Taylor Cone will emerge from this point (3).  

1.2. ELECTROSPINNING MATERIALS 

The first report on electrospinning of a polymer or glass melt is dating back to 1887 

(1), and was patented in the early 19th hundreds (7). The increased interest in polymer 

based materials (8), glasses (9), food materials (10),  and ceramics (11) has fuelled the 

further development and industrial implementation of the electrospinning process dur-

ing the last decades.  

1.2.1. POLYMER MATERIALS 

Polymer fibres are spun from both melt and solution of most polymer materials. It is 

reported that both linear (12) and crosslinked (13) polymers have been spun under 

various conditions, producing fibres for a wealth of applications. An overview of this 

can be seen in Table 1. 

Table 1 - Electrospun polymer materials and examples of applications. 

Polymer name Abbre-

viation 

Solu-

tion 

Melt Application Reference 

acrylonitrile buta-

diene styrene  

ABS X  Filtration (14,15) 

polyamide  PA X X Filtration, textile, thermoregulation (16–21) 

polyacrylonitrile PAN X  Battery electrode, catalyst  (22–24) 

poly(methyl meth-

acrylate)  

PMMA X X Enzyme immobilisation (12,25–28) 

cellulose acetate  CA X X Biomolecule immobilization, tissue 

engineering, bio-sensing, nutraceuti-

cal delivery, bio separation 

(29–32) 

cellulose acetate 

butyrate  

CAB X  Bio scaffolding (33) 

polyethylene  PE X X Thermoregulation (18,28,34) 

polyethylene ox-

ide  

PEO X  Antibacterial textiles   (35,36) 
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polycarbonate  PC X  Filtration (37–40) 

polytetrafluoro-

ethylene 

PTFE X  Oil-water separation, nanogenera-

tors 

 (19,37,41–

44) 

ethylene vinyl ac-

etate  

EVA X  Filtration (16,45) 

poly(vinyl alco-

hol)  

PVA X  Battery membrane (46–48) 

polybutylene ter-

ephthalate  

PBT X  Extraction  (49–51) 

polycaprolactone  PCL X X Biomedical (52–54) 

poly(ether ether 

ketone)  

PEEK  X Avoid sulfonation (55) 

poly(aryl ether 

sulfone)  

 X  Proton exchange membrane (56) 

polyetherimide  PEI X  Filtration, batteries  (48,57) 

polyethylene ter-

ephthalate  

PET X X Filtration (58,59) 

polyimide  PI X X Battery membrane (28,60,61) 

polylactic acid  PLA X  Filtration (45,62,63) 

polyoxymethylene  POM X   (64) 

polypropylene  PP X X Surgery, biomedical, textile (28,65–68) 

polystyrene  PS X  Distillation, oil-water separation (69,70) 

polyvinylchloride PVC X  Batteries (71,72) 

starch  X  Textile, filtration (73) 

silk  X  Bioscaffold (74) 

gelatine  X  Membranes (75) 
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Thermosets can also be part of the electrospinning process (76). Polymer fibres can 

be spun directly from resin, where the curing is inhibited before or during the collec-

tion process (77,78). The process can also include the co-spinning of a thermoset and 

a thermoplast (79,80). 

1.2.2. FABRICATION OF OTHER FIBRE MATERIALS 

Several other types of fibre materials can be achieved from the electrospinning pro-

cess. The direct electrospinning of glass fibres is referenced by Boys (1), and the pro-

duction of fibres in the nanometre range have been reported for silicon oxide (9,81) 

boron trioxide (28,82) and As3S7 chalcogenide (83).   

Other types of materials have been fabricated by different types of post-processing of 

fibres spun from solutions containing, e.g., metal ions. This post-processing has ena-

bled creation of ceramic nanofibers from ZnO (11,84), SnO2-ZnO (85), CdS-TiO2 

(86), yttria-stabilized zirconia (87,88), NiO (87) and SiC (89).  

1.3. CURVATURE FORMATION AND FEEDING 

The electrospinning process occurs when the Coulomb force surpasses the surface 

tension, and a Taylor Cone emerges from the liquid (2). For this to happen, the liquid 

surface should have a curvature, which can either be a droplet (e.g.) at the end of a 

needle or various needleless setups (28).  

1.3.1. NEEDLE ELECTROSPINNING 

A simple way to perform electrospinning is by placing a droplet of liquid material at 

the end of a needle. This droplet can deplete through the spinning process, and hence, 

a liquid feed can be applied through a syringe pump for a solution or an extruder in 

the case of melt electrospinning (28).  

This simple single-needle setup can be easily modified and upscaled. An additional 

needle can be mounted inside the outer needle (90,91). Such a coaxial setup can pro-

duce several fibre types with one material on the outside and another one on the inside 

(49,90,92). The coaxial setups exist in further variations, where additional inner nee-

dles are added, creating either multilayer fibres, e.g. triaxial fibres (90,92,93). In ad-

dition to this, parallel inner needles can be inserted to create an island-in-the-sea fibre, 

where similar or different core materials form island-like cavities in a polymer sea are 

created (94,95). These different configurations are depicted in Figure 1-1. 
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Several needles can also be added to the process with either the same or different 

polymer materials (96,97). The addition of extra needles to the setup provides a higher 

material throughput and enables the creation of a material consisting not only of a 

single fibre material.  

The needle(-s) and/or collector can furthermore be moved to create a pattern of the 

electrospun fibres (98,99). Especially for near field electrospinning, this can create 

patterns and fibre stacks, e.g. for plasmon contraption (100) or scaffolding (101).  

 

Figure 1-1 - An overview of needle setups for electrospinning: a) side view and b) bottom 
view. 

1.3.2. NEEDLELESS ELECTROSPINNING 

There are also techniques to create a curved surface without creating a droplet at the 

end of a needle. These techniques create a curvature of the liquid, and then the elec-

trospinning can take place as usual. Typically, these techniques are used to produce 

one-phase fibres without cores or side-by-side parts, but on the other hand, it is created 

to yield a high throughput (68,102).  

One method to create a spiked surface is to deposit a thin layer of polymer solution 

on top of a ferrofluid, and then place this on top of a permanent magnet. As the fer-

rofluid creates a pattern of spikes aligned in the magnetic field, several curvatures 

coved in the polymer is created, and fibres can be drawn from these (103). 
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This limitation can be overcome in various ways, e.g. by rotating a drum, disk or gear 

in a polymer melt or solution (68,102,104). The addition of air bobbles into the elec-

trospinning liquid can also create this effect (105). If there is a potential difference 

between the curved liquid surface and the collector, fibres can emerge and create 

higher throughput than achievable by traditional needle electrospinning 

Commercial apparatus for this process can be obtained from several vendors, and, e.g. 

the Elmarco Nanospider technique (106), have been patented (107) and can be ob-

tained from a commercial supplier.  

1.3.3. CENTRIFUGAL ELECTROSPINNING 

Another method to create electrospun fibres is to use a rotating spinning nozzle, and 

a charged collector barrel. By rotating the nozzle at a high angular velocity, and ap-

plying an electrical potential, fibres can be created with the geometrical features of 

side-by-side or coaxial needle electrospinning, while having a production rate in the 

range of needleless electrospinning (108,109). 

The method applies high angular velocities, between 3000 and 12000 RPM, and can 

yield throughputs up to 1000 times higher than conventional needle electrospinning 

for fibre diameters down to 80 nm (108,109). 

1.4. LIQUIDFICATION TECHNIQUES 

For a fibre to emerge a liquid material must be present, and at the same time it must 

solidify into a fibre before it hits the collector. This liquification can happen in several 

ways, including solution, melt, sol-gel and supercritical electrospinning.  

1.4.1. SOLUTION ELECTROSPINNING 

A simple method to produce electrospun fibres is from a solution. This solution can 

be based on different solvents, e.g. water (36), chloroform (110), acetone (110) or 

diethyl ether (110), as well as mixtures between different solvents (110).   

Solution electrospinning can be done from most thermoplastic materials, and depend-

ent on the solvent, different components can be added to the solution; nanoparticles, 

salts and ions, antibiotics, proteins and stem cells (110,111).  

Both needle and needleless electrospinning are compatible with solution electrospin-

ning, where the solution can be pumped into the needle or a container from where the 

needleless apparatus is fed (96,102,108). Commercial equipment can be obtained 



ELECTROSPINNING OF COMPOSITE MATERIALS 

22 

from several vendors for both research purposes and mass production, and products 

based on solution electrospinning have hit the market (108,112).  

Most types of fibres can be spun though solution electrospinning, including the side-

by-side and coaxial fibre types (92,113). The compatibility between the solvents must 

be taken into account, as non-mixing fluids are beneficial for the creation of core-shell 

fibres, while more mixable fluids creates a more interconnected fibre by (e.g.) side by 

side spinning (91).  

In general, solution electrospinning can produce nano-fibres with diameters down to 

50 nm in far-field electrospinning (28). It is also applicable for nearfield electrospin-

ning, where the choice of solvent enables fibres to stack together and form nano- or 

micro-structures (99).  

For industrial purposes, the solvent needs to be recaptured. This is an obstacle for the 

implementation of solvent electrospinning in more extensive industrial settings, as the 

focus of the textile industry on the field have shown during recent years (28,109).  

1.4.2. MELT ELECTROSPINNING 

Melt electrospinning can be performed from thermoplastic polymers as well as glass 

melts. The material should be heated to above melting temperature and drawn into a 

fibre by the applied potential, as with solution electrospinning. As the emerging fibre 

cools down, the viscosity of the raw material drops and the fibre stretches less and 

less as it emerges. This process generally creates fibres with diameters down to 500 

nm (28). 

Different materials can be added to the polymer blend to create a composite in the 

melt electrospinning process. These additives can be strontium-substituted bioactive 

glass into melt-electrospun polycaprolactone fibres (114) and titanium dioxide in a 

polypropylene fabric (115). 

The melting of the polymer can take place in different ways (28). The polymer can be 

supplied by air pressure, through a heated syringe pump, through a screw extruder or 

by a mechanical filament feed. It can be heated by either electric heating elements, 

circulating fluids or a focused laser beam, and, as the case with solution electrospin-

ning, the spinneret can move (28,116).  

Melt electrospinning is well suited for both needle and needleless electrospinning and 

has been of particular interest recently as the process does not involve solvents 
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(28,99). As solvent recapture isn’t necessary in this process, it can be applied with 

fewer environmental concerns (28).  

Melt electrospinning can be used to produce one-phase fibres, as well as core-shell 

fibres with both polymer and other core components. The side-by-side process can 

also be used (28,117). 

1.4.3. OTHER METHODS 

The liquification of the material for electrospinning is dominantly achieved by solvent 

and melt electrospinning, but other methods have also been described in the literature.  

Supercritical CO2  have been used to electrospin polydimethylsiloxane inside a pres-

sure chamber (118). Supercritical CO2 have also been used in combination with sol-

vent electrospinning in order to electrospin (e.g.) hollow nanofibers in a single process 

(119).  

Polymer fibres can also be electrospun by crosslinking resins during the process. This 

process can be used to spin (e.g.) polydimethylsiloxane or hybrid fibres (120,121), 

and can be combined with solvent electrospinning in a coaxial needle setup.  

1.5. ELECTRIC FIELD 

For the Coulomb force to surpass the surface tension and produce a Taylor cone from 

which a fibre can emerge, a significant potential difference must be applied within the 

electrospinning setup. A non-strict distinction between far- and near-field electrospin-

ning can be applied, in order to treat two different domains of electrospinning. He et 

al. suggests a boundary at 50 mm (99), but the characteristics of the two processes 

change gradually.  

1.5.1. NEAR-FIELD ELECTROSPINNING 

Near field electrospinning is a variety of electrospinning defined by the shorter dis-

tance between the collector and the Taylor cone. This shorter distance removes the 

turbulent whipping of the fibre, and hence, the position on which the fibre is collected 

is determinable (99,100,122).  

By using this method, a controlled deposition in patterns can be achieved by way of 

the electrospinning device and the collector. The process takes place at a lower voltage 
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than far-field electrospinning and has a lower production rate. The precise fibre dep-

osition enables the production of small-scale components, e.g. biomedical scaffolds 

(123), optical waveguides (100) or electronic circuits (99,122). 

1.5.2. FAR-FIELD ELECTROSPINNING 

Far-field electrospinning is the electrospinning method, which is most often associ-

ated with the term electrospinning. The fibre propagates from the Taylor cone, and 

travels straight for a distance, after which it starts a more chaotic movement. This 

process requires a high voltage, it produces thin fibres down to 50 nm, and can be 

used for large-scale production. The process can be applied to most materials, with 

both solution, melt and sol-gel electrospinning (116).  

1.5.3. ELECTRIC CONFIGURATIONS OF ELECTROSPINNING SETUPS 

The potential difference required for electrospinning can be introduced in either the 

electrospinning nozzle, the collector or both. This can be done in six different config-

urations as see in Table 2. 

Table 2 - Possible electrode configurations for electrospinning 

Electrode configuration of 

spinneret 

Electrode configuration of 

collector 

Reference 

+ G (75,124) 

+ - (125) 

G + (124) 

G - (124) 

- + (126) 

- G (124) 

 

Nonconducting collectors can also be introduced between the spinneret and an elec-

trode with applied voltage or ground. This can be glass (127), silicon wafers (128), or 

even liquid solvents (1.6.4). 
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1.5.4. ADVANCED GEOMETRIES AND FIELD CONTROL 

These simple electrospinning setups can be altered to gain further control over the 

electrospinning process, where both 3D field control and static field optimisations 

have been investigated (129).  

One technique used to reduce the area in which the fibres were collected has been to 

introduce a ring of controllable electrodes, in order to reduce the loss of fibre material 

when using a fast rotating collector (129). This technique requires AC-voltage to be 

applied in order to overcome the repulsion between the fibres, which otherwise ena-

bles the collection of patterned, looping fibres through far-field electrospinning (129).   

Another advanced technique is the Direct Write Near-field Electrospinning technique, 

where a moveable spinneret and a collector for melt electrospinning enables the for-

mation of advanced fibre patterns. This technique draws on a whipping-free fibre path, 

where the fibre can be expected to land within a certain position with narrow toler-

ances. Due to this precision the technique is used for designable scaffolds. (54,130)   

1.6. COLLECTION TECHNIQUES 

The collection of the electrospun fibres can be performed in many different ways. The 

simplest form of collection is a plate. Various geometries of collectors have been in-

troduced to produce patterned (131), aligned (132), or processed (133) fibres by elec-

trospinning. (28,99)  

These collection technics can be divided into subfields; stationary collectors and mov-

ing collectors. Furthermore, continuous collection systems have been created for in-

dustrial purposes, and non-solid collectors of liquids and gels have also been imple-

mented. (28,99)  

In general, most electrospinning collectors are composed of a metal, as they can serve 

as an electrode at the same time. Different materials can be placed in front of the 

electrode to collect the fibres. (28,99)  

1.6.1. STATIONARY COLLECTORS 

Stationary collectors are the simplest type of collectors. Seen from the tip of the Taylor 

cone, the collector can be a 2D plane (a plate, ring or similar) or a 1D setup (one or 

more line). 
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The 2D collector systems are used to create a nonwoven textile without any degree of 

ordering (14,29). The method is still widely used, as it enables the production of sam-

ples in a fast and efficient manner.  

1D collector systems are consisting of sharp edges pointing towards the Taylor Cone. 

This can be in the shape of two parallel wires, plates or similar, and offer the advantage 

that fibres can be aligned between these elements (28,134). 

1.6.2. MOVING COLLECTORS  

Moving collection systems can be divided into two subcategories: collection systems, 

which move in cartesian coordinates (as in near-field electrospinning), and rotating 

collection systems.  

The movement of the collector in X, Y and Z coordinates can be used to deposit or-

dered patterns of electrospun fibres (98). In near-field electrospinning with small dep-

osition rates, this can be used to create highly aligned and even stacked fibre patterns, 

and hence enables the writing of (e.g.) electronic circuits (99). The control over the z 

coordinate also allows the potential to be controlled during electrospinning of thick 

fibre materials (135). 

The use of rotating collectors for far-

field electrospinning makes it possible 

to align the fibres spun by this turbu-

lent process. If the collector is rotating 

with a speed comparable to the depo-

sition rate of the fibres, the fibres can 

be aligned along the collection direc-

tion. This has been implemented for 

disk (33), drum (31,33) and aligned 

wires￼￼.Figure 2-2￼ shows a ro-

tating  collector collector setup as has 

been used in this project.  

1.6.3. CONTINUOUS COLLECTING SYSTEMS  

For industrial purposes, the two types of collection methods described above must be 

altered in order to produce a continuous supply of electrospun fibres. The continuous 

collection is often vital for an industrial application, and hence, different techniques 

have been proposed.  

Figure 1-2 The rotating drum collector used in 
this project. 
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Yarn from electrospun fibres can be spun in several ways. Funnel electrospinning is 

a method to produce nano-fibre yarn from the electrospinning process. A rotating fun-

nel is used as the collector, and a hook goes into the centre of the funnel to pick up a 

thin thread. The hook takes the non-woven material and directs it towards a rotating 

thread collector on which it is fastened. As the funnel rotates perpendicular to the 

thread collector, the thread is twisted before it is deposited on the new collector (133). 

Another method is to spin it towards a suction apparatus, where the fibres are sucked 

into an airflow and transformed into yarn (68).  

Another method for continuous collection is to spin onto a conveyer belt, which 

transport the electrospun fibres forward for postprocessing (137). This type of setup 

is commercially available (112), and finds various applications within the industry.  

1.6.4. LIQUID COLLECTORS FOR WET SPINNING 

Liquid collection systems can be used to collect fibres in need of further drying or 

curing.  The liquid must not interact with the fibres, since that would dissolve the fibre 

rather than cure it (138,139). This technique can be used for both upscaled setups, 

where the spun fibres can float away from the spinning process and collected contin-

uously, and in smaller experimental setups (138). For sol-gel fibres, in need of curing, 

the process of liquid collection enables them to cure before crosslinking with each 

other creating a mesh (120). 

1.7. MICRO-STRUCTURES 

On the micro-level many different fibre types exist. The simplest among these is the 

single-material fibre, but a large number of composite types with different geometrical 

features exist.  

The introduction of a core material into a fibre has been presented, and methods to 

yield cores with up to five chambers are known (91). Initially, the method required a 

two-step process where a liquid was placed inside the polymer fibre and dried after-

wards (93). Recent developments have shown that a gas jacket can be used to stabilise 

the electrospinning of polymer fibres with an air-core (90).  

Side-by-side fibres have also been produced, and by altering the properties of one side 

these can become helical shaped (98). Fibres covered in a non-spinnable material like 

a thermoset shell can be produced (76), and added different components protein (10) 

or antimicrobial silver nanoparticles (32). This addition of microscopic components, 

smaller than the size of the fibre, have also been performed in combination with core-

shell fibres, where the particles have been located both on the in- and outside of the 
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fibre (140). This can also be done with a ferrofluid, in order to create magnetic nano-

fibers (50,141). 

In the case of particles with diameters higher than the diameter of the fibre, a few 

results have also been reported. The electrospinning of neckless-like structures with 

polystyrene beads embedded in a polymer fibre (142), and also stemcells (101), are 

examples of this.  

1.7.1. AEROGEL COMPOSITE FIBRES 

Aerogel is brittle and degrades into fine dust under mechanical load, and different 

attempts have been proposed to improve the mechanical properties of aerogels, in-

cluding adding different elements to the gel at the molecular level (143–145), as well 

as by forming aerogel/fibre composites (146).  

The addition of polymer fibres to aerogel materials has been performed in order to 

enhance mechanical properties of the brittle aerogel (147,148). This process has been 

improved to a level where the aerogel can be made elastic by applying electrospun 

fibres in a controlled 3D pattern (149), and the same goes for processes where existing 

textiles are coated with aerogel/polymer particles or fibres through electrospraying or 

-spinning (104).  

Another way to produce electrospun aerogel composite fibres is to electrospin aerogel 

fibres containing a precursors, and finally obtain the aerogel fibres by supercritical 

drying (150). However, the direct incorporation into the core of electrospun fibres has 

not been previously reported.  

Near-field electrospinning of highly aligned fibres have been proposed for use in areas 

like small- and large-scale energy collection, wearable devices, small scale electron-

ics, design of microfluidics and light-emitting electrodes (99,100). 

1.8. MECHANICAL PROPERTIES OF COMPOSITE MATERIALS 

The mechanical properties of engineered materials, as insulation materials, is interest-

ing on both the micro and the macro level. The overall material properties averages 

the micro-level mechanics between the matrix material and the inhomogeneities. 

These overall average properties are of interest when the material is applied as (e.g.) 

housing insulation (151,152). 

On the microlevel, inhomogeneities defines an area with different physical properties 

than the surrounding matrix. If the matrix is bound to the inhomogeneity, there is 

continuous strain over the interface linking the inhomogeneity and the matrix, while 
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the stress can differ. As the inhomogeneities have other physical properties than the 

matrix material, and hence other criteria of failure, it can either absorb more or less of 

the load than the matrix (152). 

While these effects take place at the particle level, where distances are small (and can 

be denoted as d), on a larger scale, D, the average properties are more interesting. If 

the features at the micro-level are much smaller than the sizes in which the material 

must be used, it can be considered as a homogeneous construction material. This is 

the case for wood, fibre reinforced polymer and many other materials (153). 

However, the composite can be tested, or the overall properties estimated, from the 

composition to gauge these physical properties. These estimates of (e.g.) failure 

strength (a.k.a. Youngs Modulus) are notoriously hard to predict, but the Voigt and 

Reuss bonds provide a general region for estimation. The Voigt upper bond is given 

by  

 𝐿𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒 = ∑ 𝑐𝑟𝐿𝑟 , 1.8.1 

and the Reuss lower bond by  

 𝐿𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒 = [∑ 𝑐𝑟𝐿𝑟
−1]

−1
, 1.8.2 

where 𝐿𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒 is the effective parameter, e.g. stiffness, 𝑐𝑟 is the composition rate of 

the given component and 𝐿𝑟 is the parameter of the same component (152,153). 

The physical parameters of a mixture of two or more components can be expected to 

be between these two bounds, and hence, this can be used to predict the mechanical 

properties of (e.g.) new insulation materials.  
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CHAPTER 2. STATE-OF-THE-ART – 

THERMAL INSULATION  

The state-of-the-art of insulation materials have recently moved from using a few, 

well-documented materials, towards a more diverse material library with special ap-

plications (154). Application of insulation materials in the building envelope is gov-

erned by a framework of laws covering insulation properties, flame resistance and 

moisture retention thresholds among others (155). These novel materials have to fulfil 

the aforementioned requirements, and nowadays are mainly based on vacuum insula-

tion panels, low-conducting gas containing building elements or nano porous materi-

als, as well as combinations thereof (154). 

Due to the low thermal conductivity and high flame resistance, aerogel materials are 

of interest as insulation materials in buildings. Novel insulation materials have to de-

crease the thermal conductivity of the total building envelope, and hence allows for 

continued use of the same wall- and roof geometries (154). 

2.1. CLASSIFICATION 

Insulation materials must limit conduction, convection, and radiation of thermal en-

ergy to limit the overall heat transfer through (e.g.) a building envelope. The theory 

of thermal transport is expanded in Fejl! Henvisningskilde ikke fundet.. Different 

types of insulation materials limit different types of heat transfer. Insulation materials 

can be divided into reflection insulation and low conductivity/convection insulation 

(156,157). 

2.1.1. REFLECTION INSULATION  

One way to insulate an object is to reflect incoming thermal radiation. This method is 

used for (e.g.) heat shields and aluminium foil insulation in building envelopes. In the 

context of buildings, reflectional insulation limits the heat gain from outside of the 

building envelope or retards the heat loss during the cold season. In the case of a 

radiation barrier, the reflective surface is placed in an open airspace, while reflective 

insulation is placed within a closed airspace, e.g. in front of mass insulation. In the 

ideal case, where full reflection is attained, heat does not enter the reflectional insula-

tion, and hence all radiative heat is kept out of, or inside, the insulated environment 

(156–159). 
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2.1.2. LOW CONDUCTIVITY/CONVECTION INSULATION  

Insulation materials with low conductivity and/or low convection capture heat but 

only let it pass at a low rate. These types of insulation materials enable thermal energy 

to be kept within a building in cold climates, and outside of the buildings in warmer 

climates (157). These types of insulation materials primarily remove the contribution 

from convection and conduction, but also decrease radiative heat transfer. There are 

different methods of achieving this goal, distinguished by the different ways in which 

the contributions are limited; i) thermal mass ii) shape or iii) material composition. 

(156,160) 

2.2. INSULATION MATERIAL THEORY 

Regardless of the above presented categories of insulation materials, different factors 

govern the thermal conductivity. The thermal conductivity, λ, describes the migration 

of thermal energy along a gradient (161), and is the result of several individual con-

tributions (162): 

 λ𝑡𝑜𝑡𝑎𝑙 = ∑ λ𝑖 , 2.2.1 

where solid and gas conduction, convection, radiation and coupling between these are 

the main contributing elements in insulation materials without free liquid (154). These 

contributions are all governed by different equations and are generally dependent on 

temperature.  

2.2.1. CONDUCTION 

The conduction of heat through a solid phase depends on the vibrations within the 

atomic lattice and the movement of the electrons. For metals, the movement of the 

electrons, often denoted as an electron sea, is dominant. The Wiedemann-Franz law 

describes this by 

 λ𝑐𝑜𝑛𝑑𝑢𝑐𝑡𝑖𝑜𝑛,𝑚𝑒𝑡𝑎𝑙 = 𝐿 ∙ 𝜎 ∙ 𝑇, 2.2.2 

where L is the Lorenz number, T is the temperature and 𝜎 is the electric conductivity 

(151). For materials without free electrons, the conduction of the lattice is dominant 

instead, and can be written as  

 λ𝑐𝑜𝑛𝑑𝑢𝑐𝑡𝑖𝑜𝑛,𝑙𝑎𝑡𝑡𝑖𝑐𝑒 = λ1 + λ2, 2.2.3 

where  

 λ1 =
𝑘𝐵

2π2𝑣
(

𝑘𝐵

ℏ
)

3

𝑇3 ∫ τ𝑐
𝑥4𝑒𝑥

(𝑒𝑥−1)2 𝑑𝑥
θ𝐷/𝑇

0
 2.2.4 
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and 

 λ2 =
𝑘𝐵

2𝜋2𝑣
(

𝑘𝐵

ℏ
)

3

𝑇3
(∫

𝜏𝑐
𝜏𝑁

𝑥4𝑒𝑥

(𝑒𝑥−1)2𝑑𝑥
𝜃𝐷/𝑇

0 )
2

∫
𝜏𝑐

𝜏𝑁𝜏𝑞

𝑥4𝑒𝑥

(𝑒𝑥−1)2𝑑𝑥
𝜃𝐷/𝑇

0

. 2.2.5 

𝑘𝐵 is the Boltzman constant, 𝑣 is the phonon velocity, ℏ is the Planck constant, T is 

the absolute temperature, 𝜃𝐷 is the Debye temperature for phonons in the given crys-

tal, 𝜏𝑞 is the phonon scattering relaxation time, 𝜏𝑁 is the relaxation time for the so-

called “normal processes” and 𝜏𝑐 is the combined relaxation time. For materials with 

low purity it applies that 𝜏𝑐 ≈ 𝜏𝑞 , and hence λ1 >> λ2 (162). 

The thermal conductivity for a gas approximates to the ideal gas, and can be described 

as  

 λ𝑐𝑜𝑛𝑑𝑢𝑐𝑡𝑖𝑜𝑛,𝑔𝑎𝑠 = 𝐶 ∙ 𝑣 ∙ 𝑙,  2.2.6 

where C is the heat capacity per unit volume of the gas, v is the average particle ve-

locity and l is the mean free path of the particles (151).  

The lower density drives the convection process due to the expansion of heated liquids 

and gasses. The mass flux is governed by the equation  

 𝜕𝑡𝜌 = −𝜕𝑗(𝜌𝑣), 2.2.7 

where the left side represents the time derivative of the density, and the right is the 

change in mass flux. As the density decreases with increased temperature, this gives 

rise to mass flow (5). Hence, the resistance to flow within the medium is a governing 

factor for convection. Darcy's law governs the transport of a fluid through a porous 

medium: 

 𝑄 =
𝑘𝐴Δ𝑃

μ𝐿
, 2.2.9 

where 𝑄 is the volume flow, 𝑘 is the gas permeability, 𝐴 is the surface area of the flow 

channel, Δ𝑃 is the pressure difference, μ is the fluid viscosity, and 𝐿 is the length of 

the flow channel (5). 

The airflow can either be obtained directly or as flow velocity. It is noted that the flow 

velocity is 𝑣 = 𝑄/𝐴. 

The permeability of a given material matrix can be described as the fluid conductance 

of the given, porous material, where a higher pressure difference leads to a higher 

flowrate. This can be assumed to be linear at low flowrates, but is known to become 

non-linear at higher flowrates, following the equation  
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Δ 𝑃

𝐿
=

μ∙𝑣

𝑘1
+

𝜌∙𝑣2

𝑘2
, 2.2.10 

where 𝑘1 is the Darcian permeability, 𝑘2 is the non-Darcian permeability, and 𝜌 is the 

fluid density (163). It is seen that, at higher viscosities, the impact of the non-Darcian 

viscosity becomes more dominant. Furthermore, it is known from the literature that 

these parameters generally increase with the porosity, going towards the value for 

non-restricted paths (163).   

Thermal radiation follows Stefan's law: 

 λ𝑟𝑎𝑑𝑖𝑎𝑡𝑖𝑜𝑛 =
16

3
η2 σ

𝑘𝑟
𝑇3, 2.2.8 

where η is the refractive index, σ is the Stefan-Boltzmann constant, 𝑘𝑟 is the Rosse-

land mean absorption coefficient and T again is the temperature. The coupling be-

tween different, temperature-dependent, heat transfer characteristics can enhance or 

decrease the thermal conductivity of the bulk material. This can both happen in sig-

nificant amounts within low-density materials like foams and aerogels with radiation 

shields, or in materials with point-contacts between fibres and particles. (164)  

In total, it is seen that several contributions add up to the total thermal conductivity of 

porous insulation material. Hence, it is essential to ensure that a total minimum ther-

mal conductivity is reached, rather than one for a single contribution.  

2.3. CONVENTIONAL INSULATION MATERIALS 

Conventional insulation materials can be found in several forms and combinations 

thereof are available as commercial solutions. The principal of these forms has differ-

ent advantages and disadvantages and are briefly discussed below.  

2.3.1. FOILS 

Thin foils, most often aluminium, can be applied to work as reflectional insulation. 

As the foil has a high thermal conductivity, it does not prevent heat to be conducted 

through the foil. These types of foils are often combined with other types of insulation 

materials, in order to decrease heat conduction through the film (157–159).  

2.3.2. BOARDS 

Insulation boards of (e.g.) expanded polystyrene or polyurethane foams are used as 

low thermal conductivity insulation elements. Their structural stability allows them to 

be placed below layers of concrete without the need of further membranes. These 

insulation materials are used in several types of buildings due to a combination of low 

cost and comparatively high thermal conductivity. However, the poor flame-retardant 
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properties of polymer based materials has to be dealt with. These materials reach ther-

mal conductivities as low as 25 mW/m•K (154,156). 

Several mineral-based materials are available as well (165). They exist in both forms, 

as large boards/slabs, or bricks. They can typically withstand very high temperatures 

(up to 1050 °C), have a thermal conductivity as low as 80 mW/m•K (166), and are 

mainly used in furnaces. 

2.3.3. LOOSE-FILL 

Loose-fill insulation, which can be blown into cavities in the building envelope, is 

another possibility, especially well-suited for energy renovation of building. Existing 

hollow walls can be filled by blowing insulation material in. Furthermore, in new 

buildings with built-in channels funnel the loose-fill insulation throughout the build-

ing envelope, thereby making it a cost-effective insulation material (167). 

On the microlevel, loose-fill insulation can be made from several materials, including 

foamed polymer, cellulose, stone, and glass fibres. These materials are transported 

pneumatically into the building envelope, and offer thermal conductivities as low as 

30 mW/m•K (156,167). 

2.3.4. FIBRES 

Fibre insulation is constructed as mats of varying stiffness, enabling them to be used 

below layers of concrete and for flexible pipe insulations. The fibres can be created 

from inorganic materials like glass and stone, as well as from cellulose and wool. 

These materials can have thermal conductivities as low as 30 mW/m•K  

(154,156,168–172). The application of inorganic fibre materials is often preferred, 

due to the inherent high flame retardation properties. Many inorganic materials have 

low moisture sorption, and are able to dry up efficiently after being soaked 

(168,171,172). 

2.4. NEW MATERIALS  

2.4.1. AEROGEL 

Several nano porous materials have been investigated as insulation material. Most 

notably, aerogels with thermal conductivities below 13 mW/m•K, have been devel-

oped for advanced applications and are increasingly used for both textile and housing 

insulation (173,174). Furthermore, aerogel can be highly transparent, and can be ap-

plied within windows to enhance the thermal insulation of glass facades (175). 

A typical aerogel synthesis is through sol-gel processing followed by supercritical 

drying. The drying process results in no or low shrinkage (144,174,176). Other types 
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of gels, like xerogels, are dried by sublimation (144). The gel can either be synthesized 

in bulk, or 3D-printed by focused laser gelation, resulting in adapted structures down 

to the micron level (177). The micro-porosity of the aerogel enables the Knudsen-

effect, where the air trapped in the material is not able to move by convection. Hence, 

the thermal conductivity is the only conduction in both gaseous and solid phase, lead-

ing to a very low thermal conductivity, and even lower in vacuum (174,178,179).  

Aerogels can be composed of several materials, including silica, metal oxides and 

polymers. They differ in their electric conductivity (180,181), high surface area 

(143,177,180,182) and thermal insulation properties (178,179). Silica aerogel has the 

lowest thermal conductivity of these materials (147,174), but in turn is very brittle 

(143). This makes silica aerogel blocks not well suited for buildings, as vibrations and 

other movements make them crack up and collapse, when used in a hollow wall 

(147,150,183). Furthermore, some types are even moisture sensitive, and hence need 

additional ambient protection (147). Silica aerogel is also available as a powder, but 

the powder is very fine grained and therefore  easily scattered (184). Such a powder 

is shown in Figure 2-1. 

An advantage of polymer aerogels compared to inorganic aerogels are their elastic 

properties (185). This flexibility allows for incorporation into geometric shapes where 

the rigid and brittle types are nonapplicable. Their thermal conductivities are as low 

as 14 mW/m•K. Typical materials are cellulose (150), polyurethane (176) and polyi-

mide (186). 

 

Figure 2-1 – Typical aerogel particles as used during this project, in” Paper 2: Electrospinning 
of nonwoven aerogel-polyethylene terephthalate composite fiber mats by pneumatic transport” 
(59)and the non-published article described in Paper 4: Resume of unpublished paper “Melt 
electrospinning of PET AND PET-aerogel fibres: An experimental and modelling study”. 
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2.4.2. GLASS FOAM  

Another non-flammable type of insulation is foam from recycled glass. As the glass 

is melted under pressure and cast into bricks, it creates a rigid glass foam brick which 

can be used in similar ways as conventional bricks and porous mineral bricks. These 

bricks have been created with thermal conductivities as low as 37 mW/m•K and den-

sities of 131 kg/m3, and they do not only substitute traditional insulation materials but 

can also be used as structural element as well (187–190).  

Different additives, such as MgO2 and fly-ash, integrated into the glass matrix can 

further decrease the thermal conductivity. The least thermal conductivity achievable 

with foamed glass is reached by adding recycled cathode ray tube panel glass. Fur-

thermore, the recycling of glass wastes increases the environmental benefit of this 

type of insulation material. (187–190) 

2.5. COMBINATORIAL MATERIALS 

Most materials offer different advantages and drawbacks. To avoid the drawbacks 

from these materials, combinatorial materials can be created to gain advantages of 

more than one type of material.  

2.5.1. CONCRETE COMPOSITES 

The addition of aerogel to concrete can decrease its thermal conductivity, while main-

taining the structural strength of the material. The thermal conductivity is decreased 

by a factor of six, when the aerogel content reaches 80 %vol. However, the compres-

sive strength is decreased by a factor of 30 at the same time. At 50 %vol aerogel 

content, the thermal conductivity can be decreased by a factor of four, while only 

decreasing the structural strength by a factor of four. This makes the 50%vol compo-

site material applicable for building applications (191).  

2.5.2. REINFORCED DRIED GELS  

Aerogels can be reinforced in several ways, including the embedding of electrospun 

polymer fibres into the aerogel matrix as described above. This reinforcement can be 

done in several other ways, by either using glass wool (183), polysulphone fibres 

(183), nanocrystalline cellulose (192) and also carbon nanofibers (193).  

2.5.3. VACUUM PANELS  

Vacuum insulation panels consist of a fumed silica or aerogel core wrapped in a mul-

tilayer airtight metal-polymer foil bag as reflective insulation. Reduced air pressure is 

applied in order to lower conduction and convection caused by gasses 

(154,178,179,194–197). 
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Vacuum insulation panels can have a thermal conductivity in the low range of 4 

mW/m•K (195), which makes them suitable for building insulation. Furthermore, the 

core material is non-flammable, and hence can be used in places where fire protection 

is vital (154,194,195).  The thermal conductivity however can be easily compromised, 

as puncture, leakage or adsorption of water vapour increases the thermal conductivity 

of the panel. These panels are not easily replaceable, thus life-span is of huge concern 

(178).  

The performance of the core material, being either aerogel or fumed silica, can be 

improved  by the incorporation of materials blocking the adsorption of water vapour 

and gasses (194,195). Along the same line, materials which limits the transparency of 

the core material for IR-radiation will reduce the radiative transport down to 1 

mW/m•K (197). All three types of materials can be added inside the protective enve-

lope. Furthermore, the core material can still be brittle, and hence needs reinforce-

ments (178).  
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CHAPTER 3. RESEARCH PAPERS  

In the following section, the research papers published within this PhD project, all 

with the author of this thesis as primary author and Peter Fojan as senior author, are 

reprinted. The paper “Solution Electrospinning of Particle-Polymer composite fibres” 

is published under the creative commons attribution license, and the latter two are 

licensed by SAGE publishing (198).  

The first paper describes the electrospinning of aerogel-polymer solutions into com-

posite fibres with high aerogel contents (198). The second paper covers the same area, 

but also the introduction of airborne aerogel into the fibre core, and the mechanical 

properties of the resulting fibres (59). Heat flow in fibre materials is examined in the 

third paper, which describes the general thermal transport properties of materials akin 

to those produced in paper one, two and four (199). The fourth paper concerns melt 

electrospinning with aerogel transported into the fibre core by airflow. This paper is 

still under review, and hence included as a resume.  

The first paper offers insights into fibre morphology, and the influence of aerogel 

contents on the fibre morphology. The second paper discusses micromechanical phe-

nomena and ways to evaluate the aerogel content of the composite fibres produced by 

pneumatic aerogel transport. The third paper explores the wettability and gas perme-

ability of meltspun fibres. The fourth paper proposes a model for the polymer viscos-

ity in relation to the melt electrospinning process.  

In total, the common denominator of the scientific output of this PhD project is dif-

ferent production and characterization methods for electrospun polymer-aerogel com-

posite fibres.  
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3.1. PAPER 1: SOLUTION ELECTROSPINNING OF PARTICLE-
POLYMER COMPOSITE FIBRES 
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3.2. PAPER 2: ELECTROSPINNING OF NONWOVEN AEROGEL-
POLYETHYLENE TEREPHTHALATE COMPOSITE FIBER 
MATS BY PNEUMATIC TRANSPORT  
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3.3. PAPER 3: HEAT AND AIR TRANSPORT IN DIFFENTLY COM-
PACTED FIBRE MATERIALS 
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3.4. PAPER 4: RESUME OF UNPUBLISHED PAPER “MELT 
ELECTROSPINNING OF PET AND PET-AEROGEL FIBRES: AN 
EXPERIMENTAL AND MODELLING STUDY” 

The last article, with the title “Melt electrospinning of PET and PET-aerogel fibres: 

An experimental and modelling study”, is in review for publication, and hence a re-

sume is included in the present dissertation. A preprint can be provided from the au-

thor.  

The production of aerogel-polymer composites have been demonstrated by several 

techniques, including electrospinning (59,198), but such techniques can compromise 

the properties of the aerogel by wetting it with solvent. Furthermore, new insights into 

the process can be used to improve the technique even further (200). 

To address these needs, this study investigates the electrospinning of polymer-aerogel 

composite fibres by pneumatic assistance of melt electrospinning. In addition, simu-

lations of the electrospinning process are included in the study. These simulations 

examine the possibilities of using finite element simulation for these types of pro-

cesses. This study presents melt electrospinning of PET and cellulose acetate butyrate 

fibres along with PET-aerogel composite fibres. Furthermore, and based on the ex-

perimental results, the paper proposes a logistic function as a viscosity model for mol-

ten PET polymers.  

The experiments demonstrate that aerogel-PET composite fibres can be electrospun 

by pneumatically assisted electrospinning. This pneumatic assistance leads to an in-

crease in fibre size. Furthermore, the use of finite element methods for simulation of 

the process is demonstrated using the logistic viscosity function and a method of par-

ametric ramping.  

The results prove the concept of pneumatic electrospinning for melt electrospinning 

and can be used to refine the technique further. In combination with the temperature-

dependent finite element knowledge, it offers new insights into the electrospinning of 

polymer-aerogel composite materials.  
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CHAPTER 4. CONCLUSION 

This PhD thesis has generated deeper insights into the electrospinning of composite 

materials. Firstly, novel production methods for aerogel-polymer composite fibres and 

their limits have been tested and described. Secondly, an increased understanding of 

the mechanism of heat transfer in nonwoven fibre materials has been obtained. The 

production methods for aerogel-polymer composite fibres can be divided into two 

main techniques: the solvent-based and the melt-based composite electrospinning. 

Both the solvent- and the melt-based techniques could be performed with airflow con-

veying the aerogel into the fibres. For solution electrospinning, apart from coaxial 

spinning, it was also demonstrated that composite fibres could be obtained from pol-

ymer-aerogel solution mixtures. The heat transfer mechanisms of electrospun fibres 

and reference materials were also investigated. During the investigation, it became 

evident that there were limitations to the use of fibre materials for insulation purposes 

in an atmospheric environment. The results revealed that a change-point occurred 

where the thermal transport shifted from the conductive to the convective regime.  

The added knowledge to the field of electrospinning has also been updated. As elec-

trospinning is evolving rapidly, new electrospinning variants, like presented here, can 

aid future innovation and science. Furthermore, the concept of the change zone de-

scribed in the paper “Heat and air transport in differently compacted fibre materials” 

(199) gives rise to new insights within the field of fibre insulation materials.  

The described techniques within this thesis, can both be upscaled to produce aerogel-

polymer composite fibres on a larger scale, as well as being further developed into 

new materials combining another type of micro-particles into a polymer matrix.   
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