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Abstract

The sewerage infrastructure is a critical infrastructure of modern society, which requires
regular inspections. However, due to the large extent of the infrastructure it is infeasible
to inspect all parts regularly through manual inspections. This Ph.D. thesis addresses
the topic of computer vision aided automation of sewer inspections through two input
modalities: images and point clouds.

Within image-based automation of sewer inspection, we investigated the funda-
mental historic hindrances of the research field, and how the field can be advanced.
Through a survey covering nearly three decades, we found that the research field was
lagging behind the general computer vision field by several years and pinpointed three
major hindrances: A lack of public data, open-source code, and a common evaluation
protocol. Using data from three Danish water utility companies, we released the world’s
first publicly available sewer multi-label defect classification dataset: Sewer-ML. Using
Sewer-ML we benchmarked 12 state-of-the-art algorithms implemented in an open-
source codebase, evaluated using two domain-influenced evaluation metrics. Through
this analysis, we documented the need for further research in the field.

We advanced the image-based automation of sewer inspections field by first con-
sidering the equally important tasks of water level, pipe material, and pipe shape
classification. An initial investigation using a subset of Sewer-ML and common com-
puter vision models found that the water level in sewer pipes is better classified when
using water level labels based on visual appearances compared to exact quantities.
Building upon this result, we demonstrated the effectiveness of a multi-task classifica-
tion approach for classifying all four tasks at once and presented a method to improve
performance by incorporating known relationships between classes across tasks. We
also extended the recent Hybrid Vision Transformer with multi-scale features and a
clustering-based tokenizer in order to capture the spatial semantics of sewer defects,
achieving significant improvements within sewer defect classification.

Within the point cloud-based automation of sewer inspections field we presented a
synthetic sewer point cloud generator to circumvent the lack of real life data. Using
the synthetic data generator and data recorded from a laboratory setup, we released the
world’s first point cloud-based dataset for sewer defect classification and compared
performance of the PoitnNet and DGCNN models. Through this analysis, we verified
the usefulness of synthetic point clouds for training sewer defect classification models.
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Resumé

Vand- og spildevandsinfrastrukturen er en kritisk infrastruktur i moderne samfund som
kræver regelmæssige inspektioner. Det er dog umuligt at inspicere hele infrastrukturen
regelmæssigt grundet infrastrukturens store omfang. Denne Ph.D.-afhandling omhan-
dler brugen af computer vision til at automatisere kloakinspektioner ved brug af to
input modaliteter: billeder og punktskyer.

Inden for billede-baseret automatisering af kloakinspektioner undersøgte vi de
fundamentale historiske forhindringer i forskningsområdet samt hvordan forskning-
sområdet kan avanceres. Ved at undersøge de seneste tre årtier fandt vi ud af at forskn-
ingsfeltet oplever en flerårig forsinkelse i forhold til det generelle computer vision-felt
og herfra udpeger vi tre store hindringer: En mangel på offentligt data, open-source
kode, og en fælles evalueringsprotokol. Ved brug af data fra tre danske vandforsyninger
udgav vi verdens første offentlige kloakfejl klassificerings datasæt: Sewer-ML. Vi sam-
menlignede 12 state-of-the-art algoritmer implementeret i en open-source kodebase,
som vi evaluerede ved brug af to domæne-inspirerede evalueringsmetrikker. Via denne
analyse dokumenterede vi behovet for videre forskning i feltet.

Vi fremmede forskningsfeltet inden for billede-baseret automatisering af kloakin-
spektioner ved først at undersøge klassificering af vandniveau, rørmateriale, og rørform.
I en indledende undersøgelse der brugte dele af Sewer-ML datasættet og almindelige
computer vision modeller fandt vi at vandniveauet i et kloakrør er bedre klassificeret
når annoteringer er baseret på visuel udseende end den procentvise vandstand. Derefter
demonstrerede vi effektiviteten af en multi-task klassificeringstilgang på de fire opgaver
samtidigt og præsenterede en metode til at forbedre præstationen ved at gøre brug
af kendte forhold mellem klasserne i de fire opgaver. Vi forbedrede klassificering af
kloakfejl ved at tilføje multi-scale features og en clustering-baseret tokenizer til Hybrid
Vision Transformer modellen for at udnytte de rumlige relationer mellem kloakfejl.

Inden for forskningsfeltet omhandlende punktsky-baseret automatisering af kloakin-
spektioner præsenterede vi en syntetisk kloak punktsky-generator til at omgå manglen
på data fra det virkelige liv. Ved brug af den syntetiske data generator og data optaget i
et laboratorieopsætning udgav vi verdens første punktsky-baserede datasæt til klassifi-
cering af kloakfejl og sammenlignede præstationen af PointNet og DGCNN modellerne.
Gennem denne analyse verificerede vi brugbarheden af syntetiske punktskyer til at
træne modeller der kan klassificere kloakfejl.
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Overview of the Work
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Chapter 1

Introduction

A long standing goal of computer science has been to build a system which can act and
behave similar to humans at any task, an Artificial General Intelligence (AGI). While the
AGI is currently purely hypothetical and may never be realizable, the approximation of
human traits has rooted itself in several research disciplines. One such trait, the human
perception, has been a major driver of the Computer Vision research field, where the
goal is to develop machines capable of extracting high-level information from optical
sensors. Through the use of statistical and machine learning-based methods and large
amount of data from the increasingly digital world, the computer vision field has
grown exponentially within the last decade, and been applied in numerous real life
applications such as in autonomous vehicles and for fingerprint and face verification
on smartphone. However, the computer vision field has also had a major impact in
the industrial sector by enabling automatic quality inspection processes in factories,
as well as automating the inspection of critical infrastructure in society, such as the
sewerage and transportation infrastructures, in order to assist professional inspectors.

This thesis is part of a larger research project called Automated Sewer Inspection
Robot (ASIR), focused on the automation of the entire sewer inspection process using
autonomous robots “living” in the sewers. The project is funded by the Innovation Fund
Denmark (grant number: 8055-00015A). Currently, sewer inspections are performed
by certified inspectors maneuvering a remote-controlled robot with a steerable camera
through the sewer pipes. The sewerage infrastructure has to be regularly inspected for
faulty pipes, which can have major environmental and health-wise risks if sewage was
to e.g. exfiltrate into the groundwater or overflow into the streets. However, due to
the large extent of the sewerage infrastructure, it is impossible to regularly inspect all
sewer pipes. This leads to pipes being replaced 15-25 years before initially projected in
order to reduce the risk of breakdowns in the critical sewerage infrastructure, resulting
in an increased financial cost [1]. It is estimated that if the lifetime of the sewer pipes
in Denmark can be extended by just 10%, the water utility companies in Denmark can
collectively expect a cost saving of more than 100 million Danish kroner per year as
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Chapter 1. Introduction

Fig. 1.1: Illustration of the ASIR project. An overview of the different areas the Automated Sewer
Inspection Robot research project touches upon and how they all relate. This thesis is focused on the
Annotation of Video/Sensor Data part of the illustrated pipeline. Copyright by Aalborg University and
reproduced with permission.

a results of the improved asset management [1]. This is the aim of the ASIR project,
to increase the inspection rate of the sewer pipes using autonomous sewer inspection
robots and in turn use the more densely sampled data to improve the asset management
of the sewerage infrastructure, as illustrated in Figure 1.1.

By deploying autonomous robots in the sewers continuously, it is possible to cover a
larger part of the infrastructure simultaneously, while also obtaining a denser sampling
of the sewerage infrastructure deterioration status. This enables a more fine-grained
asset management of the infrastructure and thereby better allocation of the utility
companies’ budgets. However, the development of such autonomous robots are non-
trivial as custom hardware platforms, navigation systems, and inspection algorithms
have to be developed. Several attempts to construct such robots have been made [2–8],
with only few designs making it to the commercial market [9]. Even then, the current
commercial products are not fully autonomous robots as they still depend on aspects
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such as manual deployment and do not automatically determine the sewer state.
In the context of the ASIR project, the work in this PhD focuses on the development

of algorithms that can automate the sewer inspection process using computer vision.
Specifically, the work focuses on the study of using the currently available image data
and point cloud data from a time-of-flight sensor selected as a part of the ASIR project
for algorithm development. Through these studies we shed light on the current status
of the automatic sewer inspection field uncovering systematic problems, which we
analyze in depth and propose concrete solutions to improve and further advance he
field.

1 Image-based Automation of Sewer Inspections
The main sensor used for sewer inspections is a monocular camera observing the visible
spectrum, an approach called Closed-Circuit Television (CCTV). This approach lends
itself well to inspections, as the data is easy to interpret on-site by the inspector and
can be stored for later verification off-site. Image-based automation approaches have,
therefore, been the primary focus of the research field for nearly 30 years due to the
ease of access to data compared to other sensors [10]. However, due to commercial
interests data and code have rarely been publicly available, limiting the advances within
the field and enforcing a high-barrier of entrance.

This has limited the ability to develop generalized solutions, and instead directed
the field to focus on developing solutions for specific utility companies, sometimes
further limited to small sections in cities. While these case studies may be “solved”
they are not guaranteed to generalize across city, country, or continental borders as the
sewerage infrastructures differs due to differences in construction of the sewerage in-
frastructure and low number of data samples. Nonetheless, there are several companies
developing more generalized solutions in collaboration with utility companies [11–14].
Furthermore, current solutions primarily focus on the classification and detection of
defects, neglecting other parts of the sewer inspection process such as identifying the
pipe properties (material, shape, and diameter) needed to accurately determine the level
of deterioration in the pipe.

This thesis presents work on quantifying the effect of recent advances, democratiz-
ing the access to sewer inspection data and novel approaches to enabling image-based
automation of sewer inspections are presented.

2 Point Cloud-based Automation of Sewer Inspections
Alternative sensing options have long been of great interest for automation of sewer
inspections [15, 16]. The primary focus of this research branch has been on the
gathering and processing of 3D information, be it through laser scanners, stereo
cameras, or depth cameras, while the use of ultrasound, sonar, and thermal sensors
has been experimented with as well. These alternative modalities can provide valuable
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Fig. 1.2: Overview of scientific work. An overview of how the scientific work within this thesis relates to
each other. Each paper is represented by a box colored according to the corresponding thesis part, with the
capital letter referring to the corresponding appendix.

information that is unclear or unavailable from standard CCTV sensing, allowing easier
identification of e.g. structural defects through depth information, water infiltrating into
the pipe through the use of thermal information, and 3D reconstructions of the pipes.
However, the use of these alternative sensing approaches has so far been largely limited
during manual inspections due to the output being hard to interpret. As the sensors
are not used in the manual inspections there is currently significantly less data from
alternative sensors compared to the CCTV sensor, thereby hindering the feasibility of
developing generalized automation solutions. Therefore, solutions have been primarily
restricted to case studies based on data gathered using custom designed hardware,
resulting in a data collection procedure that is even more restricted than the one used in
the research on image-based automation of sewer inspections.

This thesis presents work on synthetically generating sewer point clouds to ease the
data collection process, as well as a proof-of-concept validation of using a combination
of synthetic and real data for point cloud-based automation of sewer inspections.
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3 Thesis Structure
This thesis is divided into four main parts. In the following chapters, we will introduce
different ways of inspecting sewer pipes. First, the current manual sewer inspection
process is described and discussed in detail in Chapter 2. This chapter is included to
provide the reader with the context regarding how sewer inspections are performed,
and does not include any new scientific contributions.

With the context of sewer inspections established, Chapter 3-5 provide introductions
to image-based and point cloud-based automation of sewer inspection, respectively,
where the state-of-the-art and our conducted research is presented and discussed. Each
chapter is summarized by a set of sub-conclusions and contributions, and contains
separate bibliographies. Two chapters are dedicated to the image-based automation of
sewer inspection field: Chapter 3 is focused on determining and overcoming funda-
mental historic hindrances in the field, whereas Chapter 4 is centered on the study of
advancing the state of the image-based automation field. Chapter 5 is focused on the
promising research direction of using depth based data, specifically point clouds, to
automating the sewer inspection process and the related challenges. Lastly, Chapter 6
summarizes the work done and discusses future directions in the automated sewer
inspections research field.

This is followed by Part II-IV, which are appendices containing the published papers
related to image-based and point cloud-based automation of sewer pipe inspections.
The relation between the papers are shown in Figure 1.2. All papers were written
during the PhD study.
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Chapter 2

Manual Sewer Inspections

This chapter provides an introduction to how manual sewer inspections are currently
performed using CCTV sensors and remote-controlled vehicles, the most commonly
used inspection standards for sewer inspections, and a deeper look at the Danish
inspection standard, the “Fotomanual”.

1 CCTV Sewer Inspections
The sewerage infrastructure is predominantly inspected using a method called a TV or
CCTV inspection. This approach uses a remote-controlled vehicle, called a tracktor,
controlled by the inspector above ground in the inspection van, see Figure 2.1a. The
tracktor is inserted into the main1 pipes through sewer wells, from where both main and
lateral2 sewer pipes are inspected. The inspection is performed by the inspector maneu-
vering the tracktor through the pipes, while simultaneously observing and logging any
observed defects. This processes can be complicated by factors such as haze or mist in
the sewer limiting the visibility in the sewer, poor lightning conditions in the sewer due
to reflections or hardware limitations, or obstructions in the pipe requiring the inspector
to extract the tracktor and processed from a well longer up the pipe. The video feed
is saved and stored with all information (pipe properties, distance, time, pipe number,
etc.) overlaid onto the screen. Lastly, the inspection of a sewer pipe is summarized into
a single deterioration score, used by utility companies for asset management, based on
the amount of defects as well as their type, severity, and frequencies.

The tracktor is highly modifiable in order to accommodate different sized and
shaped sewer pipes, see Figure 2.1b. The tracktor is tethered to the inspection van
through a power cable, which doubles as a distance meter by keeping track of the
amount of cable pulled along. A CCTV sensor on the front of the tracktor capa-
ble of rotating in a hemisphere allows the inspector to adjust the viewing angle and

1The pipes which collect wastewater from buildings and transports it to the wastewater treatment plant.
2The pipes which connect buildings to a main pipe.
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(a) Inside of a sewer inspection van.

(b) Example of a sewer inspection tracktor.

Fig. 2.1: Sewer inspection equipment. Example of sewer inspection van and tracktor used by FKSSlamson
in Denmark. Images taken during the ASIR kick-off meeting.

closer inspect regions of interest. The camera is surrounded by light sources ensur-
ing the pipe is illuminated. As the tracktors can rarely move into lateral pipes, the
camera can be pushed forward into the lateral pipes using a “push rod“. In some
cases there may also be extra sensors such as a camera oriented backwards, which can
help classify defects that may otherwise be obscured from the forward-pointing camera.
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2. Sewer Inspection Standards

In Denmark, the inspectors are professionally trained to follow the standard set
forth by the Danish Water and Wastewater Association (DANVA) and the Danish
TV-Inspection Assessment System (DTVK). A central theme of the Danish inspection
approach is that everything observed in the pipe has to be documented, to ensure a com-
plete documentation of the infrastructure. Furthermore, the quality of the inspections
are regularly evaluated (1.5-3 months) through random sampling of the inspector’s
completed inspections [1]. Without a license from DTVK it is practically impossible to
perform inspections for water utility companies or construction work, due to the large
amount of trust put in the quality control work by DTVK.

2 Sewer Inspection Standards
A key part of the sewer inspection process, is the inspection standard which defines
what and how the inspector should conduct the sewer inspection. While the underlying
defects and other noteworthy observations are fundamentally the same, there are
different approaches to how the defects are categorized and described.

The primarily used inspection standards are the Manual of Sewer Condition Classi-
fication (MSCC) from the British Water Research Center (WRc), the Pipeline Assess-
ment Certification Program (PACP) from the American National Association of Sewer
Service Companies (NASSCO), and the European standard EN 13508-2 [2]. PACP is
an adaption of the MSCC used across North and South America, whereas the European
standard is an amalgamation of the different standards in the European countries.

Specifically, the European standard was initially based on the Dutch standard,
but was expanded to cover all standards used in Europe [3]. This led to a more
complex inspection standard, due to an increase in defect classes, including at times
two different description of the same class, and several ways of describing how defects
can be measured. Furthermore, each country is allowed to create a national annex
detailing which defect classes and descriptions are used, while retaining compatibility
with the European standard, further complicating the inspection process [3].

Dirksen et al. [3] conducted an analysis of six case studies on the quality of
the inspection process from four countries (The Netherlands, Germany, France, and
Austria) covering three scenarios: results of a sewer inspection exam, interpretation
of the same inspection reports, and day to day sewer inspections. Based on these case
studies it was determined that when using the European standard defects were not
detected 25-50% of the time, while defects were incorrectly detected only around 4% of
the times. These findings were echoed by Van der Steen et al. [4], who compared using
the old Dutch national standard with the Dutch annex of the European standard. Van der
Steen et al. found that using the more complex European standard led to a significant
increase in missed defects for several defect classes. This was attributed to overly
specific descriptions in the European standard causing the inspectors to instead choose
other more broad and vague defect classes. In order to improve the sewer inspection
process, both Dirksen et al. and Van der Steen et al. recommend that future standards
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reduce the complexity of the defect descriptions as well as include photographs of the
defect classes for visual reference.

Both of these recommendations are adhered to in the Danish national annex, the
“Fotomanual”, while also adhering to the guideline of keeping the defect descriptions
as objective as possible. This is realized by not requiring the inspectors to estimate e.g.
length or width of cracks or breaks, in contrast to the European standard.

In the ASIR project the focus has been primarily on the Danish sewerage infras-
tructure, and all available sewer inspection data has been conducted using the Danish
standard. Therefore, the Fotomanual will be described in more detail.

3 The Fotomanual
Sewer inspections made in Denmark are all conducted according to the Danish stan-
dards described in the Fotomanual. In this document the entire tv-inspection process is
described specifying aspects such as the defect descriptions and characterizations (with
both text and images), how to log all observations, and how to convert the inspection
logs to the European standard.

When conducting a sewer inspection in Denmark, the Fotomanual dictates specifi-
cally what, how, and when observation should be logged. Before an inspection starts
all the metadata of the inspection is logged. This metadata includes information such
as:

• When was the inspection conducted.

• The unique report number and pipe ID number.

• The weather condition during the inspection.

• The equipment used for the inspection.

• Whether it is a lateral or main pipe.

• How the pipe is integrated into the sewerage infrastructure (is it e.g. a combined
or storm flood pipe).

• Whether the inspection was performed up- or downstream.

• Whether the pipe was high pressure flushed before the inspection.

Using this metadata as a prior it is possible to understand the conditions of the
inspections and if there are any biases present. For example, if the pipe was conducted
downstream it may be hard to assess the condition of a pipe joint, as the joint is
constructed such that water cannot escape when flowing downstream. Similarly, if the
pipe has been flushed beforehand it is difficult to assess whether roots are a problem,
since the high pressure flushing process is commonly combined with a root cutting
process.

During the inspection of the actual pipe, the inspector has to log the condition of
the pipe. Specifically, there are four aspects of the pipe which the inspector has to
consider: Defects, and the pipe properties (pipe material, shape, and diameter).
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Table 2.1: Overview of the hierarchical structure of the 6th edition Fotomanual defect categories [5].
The defects are split into four super categories, each containing a set of defect categories with an associated
two letter code. Each defect category is accompanied by a set of severity levels and a set of type indicators.
#Severity Levels and #Types denote the number of severity levels and type indicators per defect category,
respectively. Adapted from the Fotomanual [5]

Code Defect Category #Severity Levels #Types

Water Level

VA Water Level (in percentages) 11 -

Physical Condition of the Pipe

RB Cracks, breaks, and collapses 4 5
OB Surface damage 4 -
PF Production error 4 10
DE Deformation 4 4
FS Displaced joint 4 3
IS Intruding sealing material 4 2

Operational Condition

RØ/RO Roots 4 3
IN Infiltration 4 2
AF Settled deposits 4 5
BE Attached deposits 4 6
FO Obstacle 4 7

Special Constructions

GR Branch pipe 2 4
PH Chiseled connection 4 4
PB Drilled connection 4 4
OS Lateral reinstatement cuts 4 4
OP Connection with transition profile 4 5
OK Connection with construction changes 5 4

3.1 Defects
An essential part of the sewer inception process is logging any defect which are
encountered throughout the inspection. In the Fotomanual the defects are structured in
a hierarchical manner with four super categories, 18 defect categories, as well as defect
category specific severity levels and type indicators. An overview of this structure
based on the 6th edition of the Fotomanual [5] is shown in Table 2.1.

The four super categories cluster the defect categories based on how the defect
originates. The Physical Condition of the Pipe super category contains defect categories
where the defect affects the pipe itself, such as a crack in the pipe wall (RB) or the
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(a) Cracks, breaks, and collapses (RB) (b) Surface damage (OB) (c) Production error (PF)

(d) Deformation (DE) (e) Displaced joint (FS) (f) Intruding sealing material (IS)

Fig. 2.2: Physical Condition of the Pipe. Examples of the defect categories in the Physical Condition of
the Pipe supercategory. Images from the Sewer-ML dataset [6].

(a) Roots (RO) (b) Infiltration (IN) (c) Settled deposits (AF)

(d) Attached deposits (BE) (e) Obstacle (FO)

Fig. 2.3: Operational Condition. Examples of the defect categories in the Operational Condition supercat-
egory. Images from the Sewer-ML dataset [6].
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(a) Branch pipe (GR) (b) Chiseled connection (PH) (c) Drilled connection (PB)

(d) Lateral reinstatement cuts (OS) (e) Connection with transition profile
(OP)

(f) Connection with construction
changes (OK)

Fig. 2.4: Special Construction. Examples of the defect categories in the Special Construction supercategory.
Images from the Sewer-ML dataset [6].

sealing material from a joint hanging into the pipe (IS). In contrast the defect categories
in the Operational Condition super category describe defects where objects or material
affects the pipe, such as intruding roots (RO) or any foreign object in the pipe (FO).
The Special Constructions super category covers all defect categories that are related to
the construction of the pipes, such as when there is a change in material/shape/diameter
(OK). The Special Constructions super category is special in that the defect categories
are not necessarily defects, but may also be correctly made connections and transitions,
which are still required to be logged. Lastly, the Water Level super category covers
the task of determining the amount of water in the pipe in terms how large a ratio of
the pipe is under water. This is achieved by reporting the water level in steps of 10%
from 0 to 100, with an uncertainty of ±5%. Unlike other defect observations that are
annotated at specific occurrences, the water level (VA) is logged at the start and the end
of the inspection, as well as when it transitions between severity levels, meaning the
water level is known throughout the inspection. This is critical information during the
inspection, as it gives an estimate of how much of the pipe is visible serving as a proxy
uncertainty estimate for the inspection. Examples of each class in the supercategories
are shown in Figure 2.2-2.5. More examples of the defect categories can be found in
the supplementary materials of Paper B and examples of the water level can be found
in Paper C.
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(a) 0% (b) 20% (c) 40%

(d) 60% (e) 80% (f) 100%

Fig. 2.5: Water level severity. Examples of the water level category at a subset of the different severity
levels. Images from the Sewer-ML dataset [6].

As mentioned earlier, each defect category has a set of predefined severity levels
that the category can occur at, in order of increasing severity. An example of this can
be seen in Figure 2.6, where the four severity levels of the root defect category are
shown. Similarly, each category can have a set of types that can be used to further
describe how the defect category has manifested itself inside the pipe. An example is
shown for the infiltration category (IN) in Figure 2.7.

Between the 6th and 7th edition of the Fotomanual [5, 7], the two most recent
editions, little has changed in these descriptions. The most noticeable difference
is the change from categorizing the water level in steps of 10% and instead simply
use four severity levels describing intervals ([0%-5%), [5%-15%), [15%-30%), and
[30%-100%]) which are easier for the inspector to discriminate between.

Furthermore, for each observation there is a suite of extra metadata that should be
logged. First, all observed defect categories has to be logged with exact timestamp
as well as the distance traveled within the pipe. Secondly, each observation should
be accompanied with a reference to where on the pipe wall the defect category is
observed. This is achieved using a “clock reference”, where the pipe is split into 12
segments, denoted hours, each covering 30 degrees compared to the pipe centerline.
These clock references can be used to describe point and interval observations. An
illustration of the clock reference system is shown in Figure 2.8. Thirdly, if there
are several occurrences of the same defect category present within a pipe segment (1
meter), only the occurrence with the highest severity has to be logged. Lastly, the
Danish standard dictates that a defect observation is denoted as “continuous” if it
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(a) RO1 (b) RO2

(c) RO3 (d) RO4

Fig. 2.6: Root (RO) severity levels. Example of different severity levels for the same defect category, in
this case the Roots defect category (RO), which contains four severity levels. Images from the Sewer-ML
dataset [6].

stretches over more than one meter. Normally, the Danish standard requires that each
observation is logged as separate instances, except for the water level (VA) which is
uniquely always continuous. However, this is not the case for continuous defects where
only the start and end is required to be logged, as long as 80% of the occurrences of
the defect category is at the originally observed severity level. If an occurrence of the
same defect category but with different type indicators or a higher severity level, these
have to be denoted separately in the document. While this notion of continuous defect
can ease the job of the inspector and reduce tedious logging, it also introduces some
uncertainty, as it is no longer known exactly where all defect occurrences are.
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(a) IN3 Type R (b) IN4 Type S

Fig. 2.7: Infiltration type indicators. Example of different type indicators for the same defect category.
We highlight this with the infiltration defect category, which has two type indicators: R - the infiltration
comes through the pipe wall, and S - the infiltration comes through a pipe joint. Images from the Sewer-ML
dataset [6].

(a) Clock reference: 12 (b) Clock reference: 3-9 (c) Clock reference: 9-3

Fig. 2.8: Description of clock references. Examples of how the clock reference can be used to denote the
extent of a defect.

3.2 Pipe Properties
An equally essential part of the sewer inspection process is the logging of the pipe
properties i.e. the material, shape, and diameter of the pipe. While it may not seem
obvious the pipe properties directly affects how the defect categories are characterized
and their severity classification. Specific for all pipe properties is the requirement of
denoting how the property was determined. This can be by e.g. visually judging the
properties or through consulting a construction plan.

The pipe material can be one of eight types, split into three overall categories, see
Table 2.2. The two primary categories, Rigid and Flexible pipes, can be characterized
by how the material reacts when deformed: Rigid pipes will have a set of cracks along
the pipe wall, whereas Flexible pipes will simply deform. Extraordinarily, the iron
material can be both rigid and flexible, depending on the specifics of the construction.
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Table 2.2: Overview of the material classes in the Fotomanual. Three classes of materials are described
in the Fotomanual: Rigid, Flexible, and Ambiguous. The pipe material has a direct influence on how defect
categories are described and how severity levels manifest themselves.

Rigid Flexible Ambiguous

Concrete Plastic Iron
Vitrified Clay Lining Other

Brickwork Unknown

(a) Concrete (b) Vitrified Clay (c) Brickwork

(d) Plastic (e) Lining

(f) Iron (g) Other (h) Unknown

Fig. 2.9: Sewer pipe materials. Examples of the different sewer pipe materials according to the Fotomanual.
Images from the Sewer-ML dataset [6].

Examples of all materials are shown in Figure 2.9 with more examples shown in the
supplementary materials of Paper D.
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(a) RB4 - Rigid pipe (b) RB4 - Flexible pipe

(c) RB4 - Rigid pipe (d) RB4 - Flexible pipe

Fig. 2.10: Effect of pipe material on severity level. Examples of how the defect severity level can be
affected by the pipe material here highlighed using the crack, breaks, and collapses (RB) defect category at
severity level 4. There is a clear difference in the visual presentation of the defect depending on the pipe
material. Images from the Sewer-ML dataset [6].

Knowing the pipe material is essential in determining a subset of the defect cate-
gories and severity levels. This is best illustrated by the cracks, breaks and collapses
(RB) defect category, where a RB4 (highest severity) can be a total collapse of the pipe
if the material is rigid, whereas a single crack is enough when the material is flexible.
This is illustrated with examples in Figure 2.10. Similarly, the deformation (DE)
category is only used for flexible pipes, as a deformation of a rigid pipe automatically
entails the presence of cracks and therefore instead classified as a RB3 or RB4.

Likewise, the pipe shape and diameter can affect how the defect category sever-
ity levels are characterized. For example, the displaced joint class (FS) the severity
levels are based on the thickness of the pipe wall for rigid pipes, whereas for flexible
pipes the severity levels are based on the pipe diameter. How the pipe diameter is
determined is based on what kind of shape the pipe has out of six possible shapes:
Circular, Conical, Egg, Eye, Rectangular, and Other. It is defined by the Fotoman-
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ual that the circular pipes are measured by the internal diameter, the conical pipes
by the internal horizontal diameter, and all other shapes by the internal vertical diameter.

After a sewer inspection has been completed a single deterioration score can be
calculated for the pipe ranging from perfect (0) to critical (10) condition [8]. This score
is based on the overall metadata, the observed defect categories, their severity level,
type indicators, and frequency.
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Chapter 3

Foundations for Image-based
Automation of Sewer
Inspections

The sewerage infrastructure is a classic example of a part of modern society which
laypersons neither thinks about unless it is malfunctioning, nor truly understand the
sheer size of the infrastructure. For example, it is estimated that there is currently
more than 1.28 million kilometers of public sewerage infrastructure and 800 thousand
kilometers of private lateral connections in the United States (US) servicing nearly
240 million citizens, with an additional 56 million citizens expected to be connected
by 2032 [1]. Meanwhile, the American Society of Civil Engineers (ASCE) gave the
American sewerage infrastructure a D+ grade in 2017, signifying that major expansions
and improvements are needed to properly deal with not just the current problems (e.g.
an estimated 23000 – 75000 sewer overflow events a year) but also future demands of
the infrastructure [1].

While the infrastructure can be expanded and improved, this is just a short term
solution. The sewerage infrastructure is also dependent on regular inspections in order
to ensure the structural and operational integrity of the sewerage system. This is im-
possible as the sewer inspections require professionally trained inspectors following
inspection standards with a high level of complexity, as previously discussed in Chap-
ter 2. This means that parts of the sewerage infrastructure may go for long time periods
without being inspected, due to the lack of qualified personal.

To alleviate this problem, the field of image-based automation of sewer inspections
is of great interest and importance. The aim of this research field is the development
of computer vision-based algorithms which can fully or partially automate the sewer
inspection process, such as classifying and detecting defects. This line of research
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is made viable by the large amount of annotated video data saved from historical
inspections, and the great economic impact the increased inspection effectiveness
brings. Herein lies the origins of a three decades old niche research branch of the
computer vision field, with a potentially major societal, environmental, and sustainable
impact.

These algorithms may be deployed in an assistive fashion when performing a sewer
inspection, where the predictions are used to inform the sewer inspector about potential
defects. This would help reduce some of the possible subjectiveness of the inspections
that can occur when the inspector experiences fatigue. The algorithms may also be
deployed on a robotic platform designed to inspect the pipes autonomously, enabling
the parallel inspection of different sectors of the sewerage infrastructure on a large scale.
However, these applications of automated sewer inspections focus on the on-site sewer
inspections, while it is also viable to deploy the algorithms off-site. Automation of the
off-site inspections enables faster inspections, as sewer inspectors can be instructed to
simply not annotate any observations or limit the annotations to the most economical
impactful defects. Instead, the sewer inspections would be performed off-site with the
videos processed by the developed algorithms, allowing for efficient parallelization
and decentralization of the inspection process. Similarly, a valuable application would
be the analysis and re-analysis of historical sewer inspection videos. This would be
needed if the annotation files are somehow lost and the inspection has to be repeated,
or if an inspection is suspected to be incomplete.

In the following, we describe the evolution of the image-based automation of sewer
inspection field in order to determine the fundamental underlying aspects and trends
of the field, and how this has previously and currently affected the state and research
direction of the field.

1 State-of-the-Art
Since the early 1990’s computer vision has been used to recognize sewer defects from
videos and images, in order to help automate the sewer inspection process [2]. Through
the years there have been several clear trends in how the defect recognition problem
has been approached.

While the CCTV sensors have been the dominating sensor throughout all three
decades of the field, other sensors have been utilized. Specifically, sensors providing
fish-eye views such as the IBAK PANORAMO tracktor [3] and the Sewer Scanner
and Evaluation Technology (SSET) [4] sensor which combined fish-eye and standard
CCTV video feeds to capture the entire pipe wall. However, these sensors have not
managed to become a stable component of the sewer inspectors’ equipment.

In the mid- to late-90’s basic image processing methods were used to extract
hand-crafted geometrical and intensity features such as connected edges and fitted
ellipses from images (which were often binarized or converted to grayscale) and in turn
used to classify, detect, and segment the defects [5–16]. These types of hand-crafted
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features were the predominantly used features for nearly three decades, with only few
attempts to use statistical or frequency based features through method such as the
discrete Haar wavelet transform, Gray-Level Co-Occurrence matrices, and statistical
moments [7, 17–22], designed feature descriptors such as Scale-Invariant Feature
Transform (SIFT), Local Binary Pattern (LBP), Histogram of Oriented Gradients
(HOG), and GIST [23–29], and most recently learned features [30–45].

On the contrary, the recognition methodology of choice has changed several times
through the last three decades. Through the 90’s the predominant recognition method
was heuristic rules which were carefully designed based on a priori knowledge [5–
8, 11, 13, 18, 46–53]. However, in the early and mid 00’s these heuristic rules met
competition as the data-driven shallow Neural Network (NN) methods became popular
[9, 10, 15, 16, 30, 31, 39, 54–58]. These methods were primarily trained to classify
potential defects based on the hand-crafted features [9, 10, 15], and only in few cases
the full image [31, 39, 57]. This was the dominating recognition methodology until
the late 10’s, where other machine learning methods such as Support Vector Machine
(SVM) and Random Forest (RF) based approaches were also adopted [17, 19–23,
25–28]. Interestingly, morphology-based recognition approaches were developed in
parallel through this time period, which applied morphological operations together with
heuristic rules such as ideal morphologies or size based classification [5, 9, 46, 59–61].

In 2018 the first large scale Convolutional Neural Networks (CNNs) were utilized
for sewer defect recognition [37, 40, 43–45], signifying a paradigm shift within the
field. Deep learning based approaches such as CNNs have since then been the most
commonly used defect recognition methodology as well as feature description method
[32–38, 40–42]. However, this has highlighted critical aspects in the field: the clear
lack of open-source data and code, and a commonly agreed upon evaluation protocol.

Through the history of the field, everyone have used their own proprietary datasets
of varying sizes, recorded in differing location, annotated according to different stan-
dards and using different subsets of classes, and evaluated using different metrics [2].
Combined with a culture of keeping software proprietary and not re-implementing
others algorithms, these hindrances have resulted in it being near impossible to fairly
compare algorithms across scientific work. This has forced the field to focus on
case studies, where datasets are collected from a limited region and not expected to
generalize across state or country borders. This is in stark contrast to the general
computer vision field, where progress has been fostered by openly sharing code and
data, as well as by deploying public leader boards where algorithms are evaluated
identically [62, 63].

However, in recent years there have been attempts to break with the traditions of
the field, and more fairly compare the scientific work. In 2021, a large scale multi-label
sewer defect classification dataset called Sewer-ML was publicly released, consisting
of 1.3 million annotated images [64]. Sewer-ML compared 12 state-of-the-art algo-
rithms from the image-based sewer inspection and general multi-label classification
fields using an evaluation protocol grounded in domain knowledge, highlighting clear
shortcomings of the current algorithms. To further encourage research in the field,
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the dataset was publicly released together with all code, model weights, and a pub-
licly available leader board. While there are no public datasets for the detection and
segmentation tasks, there have still been observed a shift in how models are evaluated.

These recent advances indicate the beginning of a shift within the image-based
automation of sewer inspection field towards a more open and fair research field, as
limiting barriers such as access to data and code are removed.

2 Contributed Scientific Work
The work in this Ph.D. thesis has been focused on identifying and attempting to remove
the main hindrances in the image-based automation of sewer inspections field. This has
resulted in two papers published in both computer vision focused and inter-disciplinary
research outlets, see appendix A–B.

In Paper A we conducted the first survey dedicated to better understanding how
image-based automation was used for sewer inspections. In total 113 papers published
between 1994 and the start of 2020 were included in the survey. In Figure 3.1 we
have updated key figures from Paper A with 39 papers released since the survey, to
demonstrate the current state of the field3, showing a clear continuation of the adaption
of deep learning based approaches. Note that in Figure 3.1b – 3.1c datasets and methods
developed over a series of papers are only represented by a single point, similar to the
analysis conducted in Paper A.

The survey documented the entire image processing pipeline, comparing how the
investigated methods addressed each step of the pipeline and how different method-
ologies came in and out of fashion. Through this analysis, it became clear that the
image-based automation field was consistently lagging behind the computer vision
field, while also developing specialized approaches using morphology-based classifiers.
Similarly, the datasets and evaluation protocols were compared between all papers.
Here it was made clear that there at the time was no consensus on what underlying data
or inspection standard should be used, nor what kind of metric the model performance
should be measured with. This directly meant that in principle the research findings are
not directly comparable, due to significant differences in experimental design. All of
these observations were found to be rooted in a prevalent tradition of not open-sourcing
any parts of the research, leading to three major hindrances for the field:

• A lack of open-source code for easy reproduction and further development.

• A lack of a commonly agreed upon evaluation protocol.

• A lack of public datasets, readily available for all researchers.

In Paper B we aimed at breaking down the three hindrances which Paper A found
were limiting the field. This was achieved by introducing the world’s first publicly

3As of April 1, 2022
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(a) Amount of papers published per year in journals and conferences.
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(b) Evolution of the general pipeline methodologies.
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(c) Evolution of the used feature description methods.

Fig. 3.1: The distribution of the papers published within the image-based automation of sewer inspection
field, as well as the primary recognition methodology, and feature description methodology. Adapted from [2],
and updated with recent published works.
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Table 3.1: A comparison of datasets used for sewer defect classification. The following aspect are
reported: Is the dataset publicly available (P), are the annotations multi-label (ML), the number of images
with defects (DI), the number of images with normal pipes (NI), annotated classes (C), and the Class
Imbalance (CI) for each dataset rounded to the nearest integer. Datasets are sorted by the number of images
with defects. Adapted from [64], and updated with data from recent published works.

Dataset Year P ML DI NI C CI

Gu et al. [65] 2021 965 8026 5 77
Ye et al. [66] 2019 1,045 0 7 13
Myrans et al. [27] 2018 2,260 0 13 102
Chen et al. [45] 2018 8,000 10,000 5 5
Li et al. [33] 2019 8,455 9,878 7 19
Kumar et al. [40] 2018 11,000 1,000 3 4
Ma et al. [67] 2021 14,451 0 4 2
Meijer et al. [35] 2019 X 17,663 2,184,919 12 12,732
Situ et al. [68] 2021 20,290 0 4 2
Xie et al. [32] 2019 22,800 20,000 7 8
Hassan et al. [34] 2019 24,137 0 6 3
Dang et al. [69] 2021 24,452 13,934 8 6
Sewer-ML [64] 2021 X X 609,479 690,722 17 123

available image-based sewer inspection dataset, Sewer-ML, based on 75,618 sewer
inspection videos produced by professional sewer inspectors spanning over a 9 year
period by the three largest Danish water utility companies and ASIR partners: HOFOR,
VandCenter Syd, and Aarhus Vand. Even though all the data followed the same
standard, it took nearly 5 months of work “cleaning” the data by e.g. fixing typos
in the report files, tracking down missing or incorrectly named files, and correcting
missing entries (such as a missing end annotation of a continuous defect observation).
Furthermore, in order to extract the correct frame for an annotated defect, the timestamp
in the inspection reports and the timestamp in the videos had to be synchronizes. This
was achieved by annotating the on-screen timestamp at a predetermined frame in each
video, which enabled us to synchronize the inspection videos and reports to ±1 second.

Using a set of heuristic rules grounded in the Danish sewer inspection process a
total of 1,300,201 images were extracted with multi-label ground truth annotations.
Examples of such heuristics were determining whether the inspection tracktor moved
faster than the maximum allowed 0.25 m/s and exclude those periods from the extraction
process, and only extracting “normal” images (i.e. images with no annotated defect
categories) when the inspection tracktor is moving forward in the pipe. The on-screen
information on all images were redacted through the use of a Faster-RCNN text detector,
trained to detect text by using 23,044 images with manually annotated text boxes for
training and validation. While all the information described in the Fotomanual was
available for all images, it was decided to focus on the classification of the presence
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Table 3.2: Benchmark results on Sewer-ML. Comparison of state-of-the-art methods from the sewer and
general multi-label image classification domains. The metrics are presented as percentages, and the highest
score in each column is denoted in bold. The “Sewer” and “General” identifiers indicate whether the method
is from the sewer defect or multi-label classification domains, respectively. Adapted from [64].

Model Validation Test

F2CIW F1Normal F2CIW F1Normal

Se
w

er

Xie [32] 48.57 91.08 48.34 90.62
Chen [45] 42.03 3.96 41.74 3.59

Hassan [34] 13.14 0.00 12.94 0.00
Myrans [27] 4.01 26.03 4.11 27.48

G
en

er
al

ResNet-101 [70] 53.26 79.55 53.21 78.57
KSSNet [71] 54.42 80.60 54.55 79.29

TResNet-M [72] 53.83 81.23 53.79 79.91
TResNet-L [72] 54.63 81.22 54.75 79.88

TResNet-XL [72] 54.42 81.81 54.24 80.42

Benchmark [64] 55.36 91.32 55.11 90.94

of the different defects. Therefore, only the defect categories, excluding the water
level defect category, were considered, resulting in 17 explicit classes and the implicit
normal class. Uniquely this made Sewer-ML one of the largest datasets used across the
image-based automation of sewer inspections field, while also truthfully representing
the real-life class imbalance as no over- or under-sampling was performed. This is
shown in Table 3.1. The Sewer-ML dataset enabled the fair comparison state-of-the-art
algorithms from both the sewer inspection and multi-label classification domains. Six
representative algorithms were chosen from each of the domains, implemented in the
same open-source codebase, and trained from scratch. From the sewer domain this
included an ensemble of binary classifiers [40], two-stage classifiers consisting of a
small binary classifier and larger multi-label classifier [27, 32, 45], and end-to-end
classifiers [34, 35]. In contrast, the general multi-label image classification domain
only consisted of end-to-end classifiers. Two state-of-the-art graph-based methods,
MLGCN [73] and KSSNet [71]. were chosen, as well as the common ResNet-101
backbone [70] and recent TResNet backbones [72].

The model performances were measured using the F1-score for the implicit normal
class, F1Normal (Eq. 3.1), and a weighted F2-score, F2CIW (Eq. 3.2), where each class is
weighted by their class importance weight (CIW), which is based on the weighting used
in the Danish standard to determine the pipe deterioration score [74]. The F2-score
was chosen for evaluating defect categories as the F2-score weights the recall of the
classifier higher than the precision of the classifier. This directly reflects that missing a
defect can result in a higher economic impact as a faulty pipe goes unnoticed, whereas
falsely predicting a defect can quickly be corrected by humans verifying the detected
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defects before initiating a restoration project.

F1Normal = 2
PrcNormal ·RcllNormal

PrcNormal +RcllNormal
(3.1) F2CIW =

∑
C
c=1 F2c ·CIWc

∑
C
c=1 CIWc

, (3.2)

where PrcNormal and RcllNormal are the precision and recall scores for the normal class,
CIWc and F2c are the CIW and F2-score for class c, respectively, and C is the number
of annotated classes.

Through this analysis, we found that none of the current state-of-the-art methods
could achieve a F1Normal score higher than 90.62% or F2CIW score higher than 54.75%,
see Table 3.2, and that three of the tested methods diverged during training. By creating
a two-stage approach by combining the first stage of the two-stage classifier of Xie
et al. [32] and the TResNet-L multi-label classifier [72], denoted as the Benchmark
algorithm, a state-of-the-art performance F1Normal score of 90.94% and F2CIW score of
55.11% was achieved. When looking at the per-class performance of the Benchmark
algorithm, it became clear that the classes with a high F2-score displayed low intra-
class variance and high inter-class variance, while the opposite was true for classes
with low F2-scores. This strongly shows that the sewer defect classification task is far
from solved as some have previously claimed, and that further attention to the task is
needed. In order to enable this change, a public online leader board was established4.

3 Contributions
We have investigated and highlighted the fundamental trends and hindrances of the
image-based automation of sewer inspections field by surveying the last three decades
of published work. In an attempt to remove some of these hindrances, we have released
the world’s first public sewer defect classification dataset, benchmarked 12 relevant
algorithms using domain influenced metrics, and found that the defect classification
task is far from solved. Our main contributions within the fundamentals aspects of the
image-based automation of sewer inspections field are thus:

• A systematic overview of the field, documenting research trends through three
decades. This led to the identification of three major hindrances in the field: (1)
the lack of publicly available datasets, (2) the lack of a commonly agreed upon
evaluation protocol, and (3) the lack of open-sourced code.

• The Sewer-ML dataset, the world’s first publicly available image-based sewer in-
spection dataset framed as a multi-label classification task, containing 1.3 million
images from real sewer inspections annotated according to the Fotomanual.

• Two evaluation metrics, F1Normal and F2CIW, which directly incorporates domain
knowledge into the evaluation protocol by considering the economic consequence
of defect categories and sensitivity of the classifier.

4https://competitions.codalab.org/competitions/32705
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• A comprehensive comparison of twelve state-of-the-art methods from the image-
based sewer inspection domain and the multi-label classification label, and a
proposed two-stage benchmark algorithm achieving a F1Normal score of 90.94%
and F2CIW score of 55.11%.

• A conscientious effort to open-source all code in order to facilitate scientific
reproduction and act as a stepping stone for future work, in the hope of spear-
heading a more transparent research culture in the automated sewer inspection
field.
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Chapter 4

Advancing Image-based
Automation of Sewer
Inspections

As described in Chapter 3, the image-based automation of sewer inspection field has a
three decades old history in parallel with the general computer vision domain. However,
the trends and advances made within the general computer vision domain have not
always transferred over to this niche research branch due to culture differences between
the computer science and civil engineering area and major commercial interests. This
has caused the automated sewer inspection field to continuously lag behind the general
compute vision field by approximately five years.

However, with the adoption of deep learning based approaches and general guide-
lines for fair comparison of algorithms, the field has begun advancing at a faster pace
than previously experienced. This has led to advances across all areas of defect recogni-
tion and advances towards automatically completing larger parts of the sewer inspection
process.

1 State-of-the-Art
With the image-based automation field shifting from the classical methodologies to
fully embracing deep learning methods [1], the main focus of the field has been
on developing and investigating the usability of the data-driven neural networks for
classification, detection, and segmentation.

Within the sewer defect detection area this has been achieved by applying networks
from the general computer vision field on domain specific data from the image-based
sewer inspection field. This has led to the widespread adoption of object detectors
such as Faster R-CNN, Single Shot Detector (SSD), and different variations of the
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You Only Look Once network (YOLO) [2–8]. Most recently, there has been attempts
to use more modern computer vision techniques. Siu et al. [9] proposed a synthetic
data generator for defect detection, where textured 3D pipe segment models with
randomly chosen defects (initially restricted to cracks), water level, and pipe material.
In order to reduce the domain gap between real and synthetic data, a style transfer
network was used to transfer the style of the real sewer inspection images onto the
synthetic data. A Faster-RCNN was used to benchmark the effect of the synthetic
data, with the addition of a contrastive loss to the output of the region-of-interest
pooling step in the Faster-RCNN architecture. Dang et al. proposed adapting the
transformer-based DETR architecture [10] to the sewer domain, in a model denoted
DefecTR [11]. DefecTR works by adjusting the training process of DETR with a
new loss and smaller adjustments, using a Sewer-ML [12] pre-trained backbone, and
preprocessing the images to reduce haze and enhance the contrast of the images, using
the Gated Context Aggregation Network (GCANet) [13] and Dynamic Histogram
Equalization (DHE) [14], respectively. Using the area of the averaged attention maps,
DefecTR can determine the Zone of Influence (ZoI) of a defect, which in combination
with the predicted class made DefecTR able to predict the severity of the class according
to the North American PACP standard.

Similarly, within the sewer defect segmentation area progress has been made by
applying and adapting general segmentation approaches to the sewer inspection domain.
For semantic segmentation this is demonstrated by the PipeUNet [15], which adds an
attention based shortcut to the common U-Net architecture, and the DialSeg-CRF [16],
which adds a Conditional Random Field (CRF) formulated as a Recurrent Neural
Network (RNN) to the backbone network. For instance segmentation, the Pipe-SOLO
network [17] has been introduced where the SOLOv2 architecture [18] is modified by
replacing the common Feature Pyramid Network (FPN) [19] head with an enhanced
bi-directional feature pyramid (EBiFPN) head, while also dehazing the images using
the GCANet.

Common for both the detection and segmentation areas is the increased attention
to fair comparison between models. In recent studies, comparisons between different
architectures have been thoroughly studied on the utilized datasets, to demonstrate the
effectiveness of the proposed methods.

In contrast the sewer defect classification area has seen comparatively less progress.
Except for the recent Multi-Scale Hybrid Vision Transformer (MSHViT) [20] that
achieves state-of-the-art on Sewer-ML by building upon the Hybrid Vision Transformer
(HViT) [21] concept of combining CNN and Vision Transformers (ViTs), none of the
newer classification networks such as EfficientNet [22] or ViTs have been adopted by
the field. Instead, the image-based sewer defect classification field has focused on the
development and deployment of CNNs on embedded devices [23, 24], and producing
possible solutions to the data collection problem. One such approach utilized a subset of
the Sewer-ML dataset for the weakly supervised object detection problem based on an
attention-based mechanism, allowing for efficient use of the Sewer-ML dataset without
expensive manual localization labeling [25]. Dang et al. [26] similarly investigated the

38



1. State-of-the-Art

localization capability of classifier networks using explainable AI techniques such as
Class Activation Maps (CAM) [27] and layer activation visualization, while classifying
imbalanced data with an ensemble of a VGG-19 network [28] and gradient boosting
techniques with VGG-19 features.

Alternatively, a possible solution to the data collection problem has focused on
using variations of the StyleGANv2 network [29] to generate synthetic high-quality
data for the classification problem [30, 31]. These works have focused on using small
datasets on which a pre-trained StyleGANV2 is fine-tuned, and thereafter fine-tuning
classification networks using just synthetic data [30] or a combination of real and
synthetic data [31]. Through this approach it was demonstrated that it is possible
to achieve a high classification performance while utilizing synthetic sewer data. A
common theme for these GAN based approaches has been the use of very small datasets
with very few defect categories.

Recently, the field has also started moving towards developing approaches where
the entire sewer inspection process is taken into consideration, and not just the defect
recognition task.

This has led to the first application of neural networks for sewer defect tracking [4],
where the defects are first detected using a Faster-RCNN, and the detected defect
area is passed through a network trained in a metric learning fashion in order to
produce distinct features per defect. In order to associate detection with tracks, an
association cost is calculated for each combination of tracks and detected defect, based
on appearance, motion, and defect class distance. The association cost between all
defects and tracks is then minimized using the Hungarian algorithm.

In parallel, the image-based automation field has also started investigating how
to classify the sewer pipe properties, and not just the sewer defects. Ji et al. [32, 33]
proposed a segmentation based approach for determining the water level and pipe
elevation in a sewer pipe, by using a pretrained DeepLabv3 network and leveraging
that the shape of the pipe is known. This approach was verified in a case study where
data from a single pipe was collected with a few hundred images annotated, and found
to work at a human level as well as beat a classical image processing method.

Similarly, the Sewer-ML has been used to investigate classification of water level
according to the Fotomanual standard. First a study was conducted by Haurum et
al. [34] on a subset of the Sewer-ML dataset, in order to determine the effectiveness
of decision tree-based and CNN-based methods that have been shown to work well
on sewer defect classification. Through this analysis it was verified that the revised
clustered severity levels introduced in the 7th edition of the Fotomanual leads to a
better classification rate than the previously used severity levels in the 6th edition
Fotomanual. Rius et al. [35] continued work on this task using the full Sewer-ML
dataset, investigating the effect of self-supervised learning with an array of Variational
Autoencoders (VAEs) [36], and training an MLP classifier or regressor on the latent
embeddings. Using the original labels they did not outperform the initial baseline from
the prior work, however, after revising the labels the proposed methodology showed
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significant improvements.
This line of water level classification was continued in the first application of multi-

task classification (MTC) in the sewer domain for simultaneously predicting sewer
defect classes as well as water level, pipe shape, and pipe material [37]. Using the
Sewer-ML dataset it was shown that the general MTC approach where the tasks share a
common encoder and separate class decoders improved performance considerably for
all tasks, with the shape and material tasks improving by 35 and 15 percentage points,
respectively. Haurum et al. [37] proposed the Cross-Task Graph Neural Network
(CT-GNN) to further improve this performance by encoding co-occurrence information
of the classes within and between tasks into a graph, which the CT-GNN utilizes to
refine class specific features across all tasks in the decoder stage of the MTC network.
By including the cross-task information, the performance increased further while
introducing 50 times fewer parameters compared to prior MTC approaches. This work
shows the advantages of using the MTC paradigm for training a single network that is
multi-purpose, perfect for online inspections where predictions need to occur rapidly.

Similarly, Wang et al. [5] proposed a framework to classify Operation and Mainte-
nance (O&M) defects and the severity following the North American PACP standard5.
First, the pipe cross section is estimated by fitting an ellipse to the pipe joint, with the
implicit assumption that the pipe is circular. This is achieved using an traditional image
processing approach, where the image is converted to grayscale and edges are extracted
using the Canny edge detector. As images often contain text, these text regions are
detected using the Maximal Stable Extremal Regions (MSER) method [38]. MSER has
been used previously to help auto-generate inspection reports for offline processing of
videos, by detecting and analyzing the text in the video frames [26, 39–41]. However,
in this case MSER is used to detect text regions such that the text can be subtracted
from the edge map produced by the Canny edge detector. Lastly, an ellipse is fitted to
the remaining edges using a least squares approach. The defects are extracted using
a Faster R-CNN object detector, and if an O&M defect is detected, the DilaSeg-CRF
semantic segmentation model is applied in order to get pixel level localization of the
defect. This builds upon their previous work within the field [2, 16]. With the defect
segmented it is possible to determine the area of the defect, and thereby the ratio of
the defect compared to the cross section of the pipe. Using this ratio it is possible to
determine the severity of the O&M defects. Together with the DefecTR paper, these
studies are interesting initial investigations into determining not just the defect category
but also the severity levels. This has already led to follow up work by Zhou et al. [42],
who compare several semantic segmentation networks and simply compares the defect
area with the image area, and not the area of the cross section used by Wang et al.
While this increased interest in defect severity classification is welcome, the current
approaches do suffer in different ways. Both the Wang et al. and Zhou et al. studies are
hampered by relatively small dataset sizes, whereas the DefecTR approach produces a

5O&M defects are equivalent to defects in the Operational Condition super category when following the
Danish Fotomanual
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cruder approximation of the severity level using ZoI, which is only inspired by and not
based on the PACP standard. Furthermore, all three studies only work on a small set
of classes from the sewer inspection standard, such as tree roots, cracks, deposits, and
displaced joints.

2 Contributed Scientific Work
The work in this Ph.D. thesis has been focused on building on top of the fundamental
contributions documented in Chapter 3 and further advance the state-of-the-art in the
field of image-based automation of sewer inspection. This has resulted in three papers
published in both computer vision focused and inter-disciplinary research outlets, see
appendix C–E.

In Paper C a subset of 5511 inspection videos from the Sewer-ML dataset was
used to investigate the effectiveness of using computer vision to infer the water level
in images from real sewer inspection. Up to 1200 images were sampled for all 11
severity levels, annotated as per the 6th edition Fotomanual [43], and split into training,
validation and test splits. As the automated sewer inspection domain had shown very
little interest in the water level task previously, there were no obvious methods to
compare with. Therefore, we compared the Random Forest [44] and Extra Trees [45]
decision tree-based approaches with the AlexNet [46] and ResNet-{18, 34, 50} [47]
CNN-based approaches commonly used in the defect classification task. We perform a
thorough hyperparameter search for the tree-based approaches, investigating the effect
of the number of trees used, the maximum depth of the trees, and number of features
used in each decision point. For the CNN approaches we compared the performance
when either training from scratch or fine-tuning an ImageNet pretrained model. Fur-
thermore, we investigated the effect of how the data was labeled and how the task was
presented, through three different label settings: An 11-way classification task, trained
either as a classification task or regression task, denoted Class10 and Ref2Class10,
respectively, and a 4-way classification task, denoted Class15, transforming the labels
into the equivalent labels from the 7th edition of the Fotomanual. All models were
evaluated using the micro-F1 and macro-F1 scores, see Eq. 4.3-4.4, as the dataset
was not perfectly balanced. The micro-F1 score was chosen in order to capture the
global performance where the specific class performance is not considered, leading to
a higher sensitivity to majority classes. In contrast, the macro-F1 score is computed
as the arithmetic mean of per-class F1-scores, causing the macro-F1 score to be more
sensitive to minority classes, as all classes are weighted equally.

micro-Prc =
∑

C
c=1 TPc

∑
C
c=1 TPc +FPc

(4.1) micro-Rcll =
∑

C
c=1 TPc

∑
C
c=1 TPc +FNc

(4.2)
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Table 4.1: Water level classification under varying label settings. Comparison of results when the water
level classification task is posed as a 11-way classification following the 6th edition Fotomanual from
2010 (Class10), a regression problem following the 6th edition Fotomanual (Reg2Class10), or a 4-way
classification problem following the 7th edition Fotomanual from 2015 (Class15). AlexNet and the ResNets
were pretrained on ImageNet [48] and finetuned on the Sewer-ML subset. Best performance per column is
denoted in bold. Adapted from [34].

Method
Class10 Reg2Class10 Class15

micro-F1 ´macro-F1 micro-F1 macro-F1 micro-F1 macro-F1

Random Forest [44] 27.17 23.19 14.63 11.01 68.18 51.47
Extra Trees [45] 29.49 26.39 14.33 10.72 64.34 50.19
AlexNet [46] 30.10 26.96 30.10 28.81 69.59 20.54
ResNet-18 [47] 39.19 37.41 30.61 30.00 73.03 60.93
ResNet-34 [47] 37.37 35.54 28.69 28.00 76.36 61.88
ResNet-50 [47] 39.70 36.50 27.07 26.27 79.29 62.88

micro-F1 = 2
micro-Prc ·micro-Rcll

micro-Prc+micro-Rcll
(4.3) macro-F1 =

1
C

C

∑
c=1

Fc (4.4)

where TPc, FPc, FNc, and Fc are the true positive, false positive, false negative, and the
F1-score for class c, and C is the number of annotated classes.

Through this study we found that the performance improved dramatically across
all models for the micro-F1 score and macro-F1 scores when following the Class15
setting, indicating a clear benefit in posing the water level classification task as the
simpler 4-way classification task, see Table 4.1. Specifically, the two extremes of
the scale ([0%-5%) and [30%-100%]) were found to be the easiest to classify, with
the intermediate levels being harder to distinguish. We also observed a clear trend
of CNNs outperforming the tree-based approaches, even with the small dataset size
used, as long as the CNNs were pretrained on ImageNet [48]. Lastly, we saw that
training the models in a regression-based fashion did not improve results compared
to an 11-way classification-based approach. This was attributed partly to the ordinal
nature of the ground truth labels. The study concluded that using data-driven computer
vision models is viable for predicting the water level in sewer pipes, as long as the
labels are clustered based on visual appearance as per the 7th edition of the Fotomanual.

Building on the knowledge acquired in the previous papers, we set out to investigate
the feasibility of not only classifying the sewer defect categories but also the water
level and pipe material and shape, i.e. all of the classification tasks in the Fotomanual.
Specifically, in Paper D we investigated the usefulness of a Multi-Task Classification
(MTC) approach, where a single network makes predictions for all four tasks at once.
This was the first attempt of using Multi-Task Learning (MTL) in the automated sewer
inspection domain as well as classifying the sewer pipe material and shape, which
had previously been neglected. Furthermore, we propose a novel MTC approach, the
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Cross-Task Graph Neural Network (CT-GNN) Decoder, which leverages the unique
fact of the sewer inspection data that all tasks are related, occur concurrently, and a mix
of multi-label and multi-class classification tasks.

In order to enable this MTC approach we used the Sewer-ML dataset and augmented
with extra labels from the inspection reports. This allowed us to have concurrent labels
for the sewer defect, water level, pipe material, pipe shape classification tasks. The
labels for the water level classification tasks were converted from the quantity based
approach in the 6th edition of the Fotomanual [43] to the visual appearance based
approach of the 7th edition of the Fotomanual [49], following the findings of Paper C.
Performance on the sewer defect classification task was measured using the F1Normal
and F2CIW metrics, whereas all other tasks were evaluated using the micro-F1 and
macro-F1 metrics. Furthermore, in order to have a single metric for the overall metric
performance achieved using the MTC approaches compared to single-task learning
(STL) approaches, we used the ∆MTL proposed by Maninis et al. [50]. The ∆MTL
metric measures the average per-task performance increase for a multi-task model with
respect to the STL baselines of the same base architecture:

∆MTL =
1
T

T

∑
t=1

(Mm,t −Mb,t)

Mb,t
, (4.5)

where Mm,t and Mb,t are the MLT and STL metric performance for task t, receptively.
MTL and MTC methods often follow an encoder-decoder model structure, where

the encoder produces global or per-task feature representation, which the decoder utilize
to produce per-task predictions. The CT-GNN decoder is based on the decoder-focused
MTL research direction where model parameters are not just shared in the encoder but
also in the decoder. This was achieved by producing per-class features for all tasks and
refining these features using a Graph Neural Network (GNN) across all classes in all
tasks. The underlying weighted directed graph of the Cross-Task GNN was build such
that each node represents a class, and the graph weights were determined by either
dynamically inferring it at run-time using attention, or an a priori calculated adjacency
matrix based on the conditional probability of all pair of classes. This way the network
can have a priori known rules encoded directly into its refinement process, such as the
deformation (DE) defect only occurring with flexible pipe materials, or intruding roots
(RO) and infiltration (IN) often co-occurring with displaced joint (FS). An overview of
the CT-GNN approach is shown in Figure 4.1

Two variations of the CT-GNN was tested, CT-GCN and CT-GAT, differing in the
GNN used. CT-GCN utilized the seminal Graph Convolutional Network (GCN) [51]
building upon an a priori determined adjacency matrix. The adjacency matrix was
based on the conditional probability between all classes, with additional processing
steps to remove spurious edges and weight the incoming edges. In contrast, CT-GAT
utilized the Graph Attention Network (GAT) [52] where the edges are dynamically
inferred per example through a self-attention step. However, it was found that limiting
the possible edges using a priroi known relations led to a performance increase.
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Table 4.2: Evaluation of the CT-GNN Decoder, compared to STL and MTL networks. Two version of
CT-GNN,using Graph Convolutional Networks (GCN) [51] and Graph Attention Networks (GAT) [52],
denoted CT-GCN and CT-GAT respectively, were compared with a hard-shared ResNet-50 encoder (R50-
MTL), and the soft-shared MTAN encoder with a ResNet-50 backbone. The performance of the water,
shape, and material tasks were measured using the micro-F1 (mF1) and macro-F1 (MF1) metrics. The
average per-task improvement with respect to the STL baselines is denoted ∆MTL. #P indicates the number
of parameters in millions. * indicates that the method was tested on a subset of the Sewer-ML dataset. Best
performance in each column is denoted in bold. Adapted from [37], with the mF1 metrics excluded for
brevity.

Model Overall Defect Water Shape Material

Model #P ∆MTL F2CIW F1Normal MF1 MF1 MF1

V
al

id
at

io
n

Sp
lit

Benchmark [12] 62.8 - 55.36 91.32 - - -
R50-FT* [34] 23.5 - - - 62.53 - -

STL 94.0 +0.00 58.42 92.42 69.11 46.55 65.99
R50-MTL 23.5 +10.36 59.73 91.87 70.51 71.64 80.28
MTAN [53] 48.2 +10.40 61.21 92.10 70.06 68.34 83.48

CT-GCN 25.2 +12.39 61.35 91.84 70.57 76.17 82.63
CT-GAT 24.0 +12.81 61.70 91.94 70.57 74.53 86.63

Te
st

Sp
lit

Benchmark [12] 62.8 - 55.11 90.94 - - -
R50-FT* [34] 23.5 - - - 62.88 - -

STL 94.0 +0.00 57.48 92.16 69.87 56.15 69.02
R50-MTL 23.5 +7.39 58.29 91.57 71.17 79.48 76.35
MTAN [53] 48.2 +6.83 59.91 91.72 70.61 78.50 72.73

CT-GCN 25.2 +7.64 60.07 91.60 70.69 80.32 75.13
CT-GAT 24.0 +7.84 60.57 91.61 71.30 81.10 73.95

In general, the proposed CT-GNN decoder led to better performance than the state-
of-the-art performance on the defect and water level classification tasks, as well as
outperforming or matching the STL baselines, and the encoder-focused MTC models,
see Table 4.2. Specifically, the F2CIW, pipe shape macro-F1, and pipe material macro-
F1 scores were improved by 6.34, 29.62, and 21.64 percentage points, respectively.
Additionally, the CT-GNN introduces 50 times fewer parameters than the encoder-based
Multi-Task Attention Network (MTAN) [53] while achieving a greater performance
across all tasks, showing the efficiency of the decoder-based approach.

This work demonstrated the clear benefit of processing and refining the sewer
inspection classification tasks simultaneously. Not only did the performance increase
across all tasks when using MTC approaches, the CT-GNN also allowed encoding
heuristic rules about the relationship between the classes and tasks into the model.
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(a) Defects: cracks, breaks, and collapses (RB), dis-
placed joint (FS), and branch pipe (GR).

(b) Defects: surface damage (OB), displaced joint (FS),
and connection with construction changes (OK).

Fig. 4.3: Example of how defects can be at multiple places and span over long ranges in image space, leading
to non-local interactions across multiple scales. Images from the Sewer-ML dataset [12].

Lastly, we shifted our focus back to the defect category classification task. Paper E
builds upon the observation that non-local spatial semantics are critical for capturing
relationships between scales and defects in a classification setting. As a motivating
example, see Figure 4.3 where two sewer images are shown. In Figure 4.3a there are
cracks along the pipe wall and a displaced joint, both stretching over a large part of
the image space at multiple places. Similarly, in Figure 4.3b the surface damage and
displaced joint are not constrained to a single local area of the image, instead showing
long range dependencies.

We incorporated this information into our models by building upon the recently
proposed Hybrid Vision Transformer (HViT) [21]. Instead of applying a Transformer
directly onto the image, HViT applies the Transformer onto the last feature map from a
CNN, effectively forming a fully-connected graph with dynamic weights between the
tokens (i.e. feature vectors). This way the strong spatial inductive bias of the CNN is
leveraged while allowing for non-local interaction through the Transformer architec-
ture. First, we proposed the Multi-Scale Hybrid Vision Transformer (MSHVIT), which
considers multi-scale information such as cracks running along the pipe wall, by aggre-
gating features from different stages of a CNN, and propagating tokens progressively
across scales. Secondly, we hypothesized that tokens from the same region encode
similar information, leading to redundant token representation. We circumvented this
by introducing the Sinkhorn Tokenizer, a clustering-based tokenization method where
the feature vectors are clustered using the Sinkhorn-Knopp algorithm [54]. The full
proposed architecture is illustrated in Figure 4.2.

Using the Sewer-ML defect classification dataset we demonstrated that the MSHVIT
and Sinkhorn tokenizer achieves a significant performance improvement when com-
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Table 4.3: Comparison of MSHViT to baseline models and HViT-like models. Comparison of using
MSHViT with different backbones, as well as difference in performance to previous published results on
Sewer-ML [12, 37], and HViT-like models [21, 55, 56]. Best performance per column is denoted in bold.
Adapted from [20].

Model Validation Split Test Split

Model MSHViT F2CIW F1Normal F2CIW F1Normal

Benchmark [12] - 55.36 91.32 55.11 90.94
CT-GAT [37] - 61.70 91.94 60.57 91.61

ResNet-50-HViT-Patch [21] - 59.87 92.41 57.58 91.99
ResNet-50-HViT-Sinkhorn [21] - 60.42 92.41 58.74 92.07
BotNet-50-S1 [55] - 61.62 92.92 59.69 92.49
CoAtNet-0 [56] - 57.82 92.28 56.53 91.94
CoAtNet-1 [56] - 59.37 92.50 57.42 91.11

ResNet-18 [47]
7 58.60 92.34 56.62 91.88
3 59.87 92.42 58.18 92.12

ResNet-34 [47]
7 60.98 92.72 59.18 92.30
3 61.65 92.76 59.91 92.30

ResNet-50 [47]
7 59.28 92.44 57.58 92.03
3 61.68 92.44 60.11 92.11

ResNet-101 [47]
7 60.06 92.48 58.01 92.13
3 61.25 92.50 59.93 92.19

TResNet-M [57]
7 58.04 92.22 56.08 91.90
3 58.68 92.25 56.93 91.84

TResNet-L [57]
7 59.17 92.36 56.97 92.00
3 59.19 92.27 57.16 91.87

pared to the CNN baseline as well as other HViT inspired models, see Table 4.3. We
observe clear improvements on the ResNet and TResNet backbones [47, 57], while
outperforming the conventional HViT model, as well as newer HViT-like models such
as BoTNet-50-S1 [55] and CoAtNets [56]. Using the ResNet-50 backbone we saw that
the F2CIW score improved by 2.53 percentage points under equal training conditions,
and matches the performance of the CT-GAT without using information from other con-
current classification tasks. We qualitatively verified that the Sinkhorn tokenizer was
capable of capturing non-local spatial semantics, and found that the Sinkhorn tokenizer
resulted in an increased efficiency compared to the conventional non-overlapping patch
tokenizer when measuring training and inference throughput.

48



3. Contributions

3 Contributions
We have furthered the image-based automation of sewer inspections field by improving
performance on not only the sewer defect classification task, but also on the previously
ignored water level, pipe material, and pipe shape tasks. This progress has been
achieved by using the multi-task classification framework within the sewer inspection
field for the first time, developing a novel multi-task classification decoder head where
domain knowledge and heuristic rules can be directly incorporated to refine features
across tasks, and extending the hybrid vision transformer with multi-scale information
and a novel clustering-based tokenizer which achieving competitive results on Sewer-
ML with a F2CIW score of 60.11%. Our main contributions within the advancement of
the image-based automation of sewer inspections field are thus:

• An empirical investigation to determine how to encode water level information,
showing the effectiveness of appearance based labels, rather than exact quantities,
as used in the 7th edition Fotomanual.

• The first use of the multi-class classification framework for sewer classification
tasks, demonstrating significant improvements over single task networks on the
sewer pipe shape and material classification tasks.

• The novel Cross-Task Graph Neural Network (CT-GNN) decoder for multi-
task classification, enabling efficient information sharing and incorporation of
heuristic rules and domain knowledge.

• The novel Multi-Scale Hybrid Vision Transformer (MSHViT) architecture for
sewer defect classification, extending the hybrid vision transformer with cross-
scale information and a clustering-based Sinkhorn tokenizer.

• State-of-the-Art sewer defect classification with a F2CIW score of 60.57% using
CT-GNN and competitive F1Normal score of 92.30% using MSHViT.

• State-of-the-Art water level classification with a macro-F1 score of 71.30%.

• State-of-the-Art pipe shape classification with a macro-F1 score of 81.10%.

• A competitive performance on the pipe material classification task, with a macro-
F1 score of 73.95%.
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Chapter 5

Point Cloud-based Automation
of Sewer Inspections

The CCTV sensor has been the primary sensor for sewer inspections throughout the
years, as it is easily interpretable for humans, and cheap due to mass production.
However, this is not equivalent to it being the best sensor for automated sewer inspec-
tions. Throughout the years, several alternative sensors have been investigated, such as
thermal imaging to detect infiltration through the pipe walls, ultrasound through the
pipe material to determine structural defects, or ground penetrating radar to determine
the state of the soil surrounding the pipes [1, 2]. All of these alternative modalities
provide information that is otherwise not available when simply using a CCTV sensor.
However, the sensors are rarely easily interpretable for human inspectors, limiting their
use in current sewer inspections.

Alternative sensing methodologies have, however, been included in nearly all
modern robotic sewer inspection solutions [3–9]. Specifically, the depth modality is
often utilized as it provides valuable information about the structure of the sewer pipe,
which is not immediately obvious using a CCTV sensor. Furthermore, the depth sensor
is more versatile and less vulnerable to environmental factors than thermal or acoustic
based sensors, while being more easy to interpret. Specifically, the depth data can
typically be presented as a 2D depth map, or a 3D point cloud. If the 3D data is further
fused with RGB information, the sewer inspectors can comfortably navigate the extra
modality information. Lastly, the depth data is not only usable for defect detection, but
can also be integrated into the navigation and localization algorithms of the robot as
well as used to generate reconstructions of the pipes, which can be valuable for off-site
analysis.

In the following, we give a short introduction into how deep learning has been used
to work with depth data, as well as how depth data has been used within the automated
sewer inspection domain.
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1 State-of-the-Art
Wile other methods have been applied on 3D data in the sewer context, these methods
have been developed in the context of the chosen sensors. As deep learning-based
methods have recently been used, we focus on reviewing the deep learning-based
approaches from the general computer vision field.

The first investigations into using deep learning with point cloud data were divided
into two main branches: Volumetric CNN where 3D convolutions were used in CNNs,
requiring the continuous space to be discretized into a voxel based structure [10–
16], and multi-view CNNs, where several views of the point cloud or model mesh
were provided and a shared CNN produces a feature vector per view, which were
lastly pooled and processed with an MLP [15, 17, 18]. These methods are, however,
hampered by intrinsic limitations. Volumetric based approaches tend to lead to overly
dense and sparse areas, as the scenes are voxelized without considering the density of
different regions. Multi-view CNNs are in contrast limited by the need for processing
several renderings of the object in order to make a prediction, as occlusions become
prevalent when forcing the projecting of the 3D point cloud or mesh into a 2D image.
Furthermore, the viewpoints are typically predetermined even if this does not lead to
the best performance. However, recent work has proposed a differentiable rendering
approach where a neural network determines the camera attributes based on the input
point cloud [18].

Meanwhile, the research branch of Geometric Deep Learning (GDL) has emerged,
focused on studying the effect of symmetries in neural networks and how to generalize
to non-Euclidean domains such as graphs, manifolds, sets, etc. [19, 20]. Specifically,
GDL can be said to be the study of incorporating the relevant geometric priors of the
data structure into the network using appropriate equivariant and invariant functions,
and generalizing concepts such as convolutions to non-Euclidean domains [21–24].
For sets and graphs this could be the permutation invariance of the elements, while
for data structures such as images and point clouds (i.e. an unordered set) it could be
the equivariance to the rotation groups SO(2) and SO(3), respectively [25, 26]. The
first NN to directly process a point cloud was PointNet [27], where a shared MLP
processes each point separately (with only the 3D position and optionally normal vector
as input) and enforced permutation invariance using global pooling layers. However,
by construction PointNet only considered local information, as each point is processed
independently. Subsequent work such as PointNet++ [28] included global information
by a hierarchical set abstraction where the points are sequentially sampled, grouped,
and processed, or as in the Dynamic Graph CNN (DGCNN) [29] where for each point
a local directed graph consisting of k nodes is constructed using k-Nearest Neighbors
(kNN) in feature space and node features aggregated with a symmetric function. This
has spawned a large amount of work [25, 30–33], with the most recent methods utilizing
the Transformer architecture to incorporate global information through a self-attention
based dynamic graph [34–37].
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As previously mentioned, depth sensors have commonly been used within the sewer
inspection domain in order to obtain extra information which is either impossible or
hard to obtain with a CCTV sensor. The depth sensor has been commonly used in the
sensor suite of many researched robotic platforms for sewer inspections, from stereo IR
sensors and laser scanner on the KANTARO robot [7], to RGBD sensors on the ARSI
and SIAR robots [5, 8], and most recently the Time-of-Flight (ToF) as well as active
and passive stereo cameras in the ASIR research project [6]. The primary use of these
sensors have for a long time been navigation and control of the robot [5, 8, 38, 39] as
well as reconstruction of the pipe [6, 8, 40]. In contrast, the use of the depth data for
classifying defect categories has for the longest time been relegated to a niche interest.

Duran et al. [41–43] presented one of the first uses of laser scanners detecting
defects, where a laser diode project a ring of light onto the sewer pipe wall in an
non-illuminated pipe, and registered with a CCD sensor to obtain an intensity map.
When combined with positional data from a robot the intensity map can provide 3D
data of the pipe geometry. Using an image processing based pipeline the intensity
values along the projected ring are extracted. Using an MLP these intensity signatures
were shown to be useful for both binary and multi-class defect classification, with
different severity levels included. Tezerjani et al. [44] similarly use these intensity
maps, but instead fits a B-spline to the extracted boundaries and designating outliers
from this spline to be defects. In parallel, Lepot et al. [45] constructed a thorough
overview of the feasibility of using laser scanners to extract the different defects in
the European inspection standard in comparison to image-based defect classification.
Through this study they found that the laser scanner can be used to quantify a majority
of the defects, and accurately determine the diameter, shape, and roughness of the pipe.
Alejo et al. [46, 47] used the RGBD sensor in the SIAR robot to help with localization
in the poorly illuminated and GPS-denied sewer pipes, by classifying manholes using
a lightweight CNN trained on depth images. Merino et al. [48] further developed a
segmentation network for the SIAR robot, where the RGBD data was converted to
a point cloud, and segmented by aligning the recorded 3D data with a bank of 3D
models of known types of pipe sections using the Iterative Closest Point algorithm [49].
As the 3D models are annotated beforehand, this allows for easy segmentation of the
pipe walls into distinct structural features such as left/right wall, roof, gutter etc. This
approach also allows for detecting structural defects through the alignment error, as a
high alignment error indicates significant difference between the observed sewer and
the known pipe section types. A major downside of the approaches applied to laser
scanning and RGBD data is that except for the segmentation method by Merino et
al. [48], all other applied approaches do not utilize the geometry of the observed scene
which is encoded in the 3D data, instead nearly always opting to use 2D projections of
the data.

However, Haurum et al. [50] who worked directly on point cloud data, and com-
pared the PointNet and DGCNN methods on a four-way multi-class classification
dataset, which was made publicly available. This dataset was constructed by combining
a small amount of manually recorded point clouds from a laboratory setting, together

57



Chapter 5. Point Cloud-based Automation of Sewer Inspections

with several thousand point clouds from a modified synthetic sewer point cloud gen-
erator first proposed by Henriksen et al. [51]. Through this data it was demonstrated
that pre-training on the synthetic data followed by fine-tuning on the real data leads
to a decent results (an F1-score of 23.58%), similar to the observations made in the
image-based sewer inspection field [52]. The work was further built upon by Zhou et
al. [37], who proposed a Transformer based architecture for point cloud classification,
denoted TransPCNet, based on a kNN feature embedding similar to DGCNN and
stacked self-attention layers. Combined with a weighted and label-smoothed cross-
entropy loss, TransPCNet dramatically outperforms both PointNet and DGCNN by
achieving an F1-score of 60.58%. This not only shows the power of the TransPCNet,
but also the need for future dataset development within the point cloud-based sewer
inspection field. The currently used dataset, while a good stepping stone, is recorded
in idealistic conditions with heavily reduced complexity, as all pipes are dry plastic
pipes with one defect at a time. However, the largest hurdle within this area of sewer
inspection automation is the collection of data. Unlike the image-based automation
field, there are rarely any depth sensors mounted on the sewer inspection tracktors and
therefore a lack of historic annotated data.

2 Contributed Scientific Work
As a part of the ASIR research project investigation on using the depth sensing modality,
this Ph.D. thesis has focused on how to utilize synthetic point cloud data in order to
circumvent the lack of data in the point cloud-based automation of sewer inspections
field. This has resulted in two papers published in computer vision conferences, see
appendix F – G.

In paper F, we conduct an initial investigation into how a synthetic sewer pipe data
can be constructed in a systematic manner.

An open-source framework was built in Unity based on the principle of Structured
Domain Randomization (SDR) [53], originally proposed for constructing plausible
synthetic data from a vehicular view point. This allowed placing predefined objects
(i.e. pipes and defects) along a randomly generated spline, by sampling the objects
according to a probability distribution conditioned on the global and local context.
For example, the intruding sealing material (IS) defect can only plausibly occur at
joints, which should be reflected by the simulation. The Camboard Pico Flexx [54]
Time-of-Flight (ToF) sensor chosen for the ASIR project was simulated in order to
ensure compatibility between the real and synthetic data. This was achieved using
an approximate simulation using ray-tracing, with camera parameters and precision
uncertainty based on the available sensor datasheet. Similarly, the framework was
restricted to dry clean plastic pipes in order to simplify the interaction between camera
rays and the pipe material and environment.

The constructed framework was validated by constructing two controlled pipe
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(a) Physical setup. (b) Virtual setup.

Fig. 5.1: Images of the laboratory test site and the virtual twin, used to determine the quality of the simulated
ToF sensor. Note that the branch pipe was not replicated in the virtual setup, as the camera was moved
through the long straight pipe seen further away, and recording stopped before the branch pipe was in view.
Reproduced from [51].

setups in a laboratory with and without a displaced joint, and manually modeling the
setups in Unity. One of the pipe setups are shown in Figure 5.1. Data was collected by
moving the sensor (virtual and physical) through the pipes, capturing point clouds at
different time steps. It was evaluated that the absolute difference between the synthetic
and real point clouds were 5.78±8.92 mm and 7.58±8.68 mm for each of the two
test scenarios. As the pipe diameter was 376 mm, this indicates that the simulated
data is within a tolerable margin of error. Similarly, it was found that the measured
diameter of the synthetic point clouds tended to be closer to the real pipe diameter,
whereas the diameter of the real point clouds overestimate the diameter of the pipe.
This is hypothesized to be due to factors such as surface imperfections, roughness, and
reflections interfering with the ToF sensor. This work demonstrated the feasibility of
simulating synthetic point cloud data under reasonable constraints in scene variability.

In Paper G, we investigated usefulness of the synthetic data generator for boot-
strapping the training process of models for point cloud-based automation of sewer
inspections.

We compared two commonly used geometric deep learning models, PointNet [27]
and DGCNN [29], trained under four different data scenarios: (1) only using synthetic
data, (2) only using real data, (3) training on synthetic and real data, and (4) training on
synthetic data and fine-tune on real data. A hyperparameter grid search was employed
for each data scenario in order to determine the best performing learning rate and
weight decay for each model.

To facilitate these tests a multi-class classification dataset with 17,027 point clouds
and four classes (normal non-defective pipes, and pipes with either displaced joint
(FS), intruding sealing materials (IS), or obstacles/bricks (FO)) were created. The
previously developed synthetic data generator was expanded upon in order to generate
these classes, and similarly a real life dataset was collected in a laboratory environment.
An example of the used point clouds can be observed in Figure 5.2 with visual example
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(a) Normal (b) FO (c) FS (d) IS

(e) Real normal point cloud. (f) Real FO point cloud. (g) Real FS point cloud. (h) Real IS point cloud.

(i) Synth. normal point cloud. (j) Synth. FO point cloud. (k) Synth. FS point cloud. (l) Synth. IS point cloud.

Fig. 5.2: Examples of pipes with no defects (normal), an obstacle (FO), a displaced joint (FS), and intruding
sealing material (IS) from actual sewer inspections, as well as point clouds for each class either recorded in
a laboratory in dry plastic pipes or synthetically. Defects in the point clouds are annotated in red. Images
from [50] and the Sewer-ML dataset [55].

of each considered class from real sewer inspections. The dataset was constructed
such that the 485 of the 827 real point clouds were placed in the test split, in order to
investigate the effectiveness of predominantly using synthetic training data.

Through our experiments we found that the DGCNN network regularly outper-
formed the PointNet network, across all data scenarios, see Table 5.1. This is not
immediately obvious from the F1-scores, however, when investigating the per-class
performance we see that the PointNet models always ignores one or more classes in its
predictions. Similar behavior is found for the DGCNN-S2 model. Similarly, we found
that the synthetic data was best utilized when the models were initially trained only
on the synthetic data and then fine-tuned on real data. However, while the DGCNN
performs best in our tests it still only achieves a class-weighted F1-score of 23.58% on
the real point clouds in the test split, indicating a clear need for further development
within this field. To facilitate this research direction the dataset was made publicly
available.

60



3. Contributions

Table 5.1: Benchmarking point-cloud based sewer defect classification networks. Performance of the
PointNet and DGCNN networks on the real data test split, and the combined test split, for all four data
scenarios. All metrics are the weighted average across all classes. Adapted from [50].

Model-Scenario Real Data Synthetic & Real Data

Precision Recall F1 Precision Recall F1

PointNet-S1 3.58 15.88 5.25 8.00 17.21 6.70
DGCNN-S1 29.02 20.62 17.65 57.57 56.73 57.09

PointNet-S2 2.72 16.49 4.67 2.77 16.64 4.75
DGCNN-S2 25.31 50.31 33.68 25.05 50.05 33.39

PointNet-S3 28.61 32.16 30.23 34.36 32.40 31.65
DGCNN-S3 34.55 22.27 16.66 58.72 57.52 58.67

PointNet-S4 23.17 27.42 24.24 28.37 36.11 30.98
DGCNN-S4 39.69 26.19 23.58 50.37 36.61 35.25

3 Contributions
We have investigated the usefulness of synthetic data for point cloud-based sewer defect
classification, as point cloud data from real sewer pipes is scarce. Using a synthetic
point cloud generator and small amount of real point cloud data from a laboratory
setup, we found that synthetic point cloud data is a viable option for bootstrapping
the training procedure as long a some real data is available for fine-tuning. Our main
contributions within the field of point cloud-based automation of sewer inspections are
thus:

• The development of an open-source synthetic data generator based on the Struc-
tured Domain Randomization principle, allowing for easy sampling of varied
synthetic sewer point clouds.

• The world’s first publicly available point cloud-based sewer inspection dataset
framed as a four-way multi-class classification task, containing a total of 17,027
real and synthetic sewer point clouds.

• The comparison of two commonly used geometric deep learning models, Point-
Net and DGCNN, trained under a set of different data scenarios. The DGCNN
model trained on synthetic data and fine-tuned on real data achieved an F1-score
of 23.58% on real sewer point clouds. This serves as a baseline for future
research in the field.
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Chapter 6

Conclusion

This Ph.D. covers work conducted from 2019 to 2022, focused on the automation of
sewer inspection using image and point cloud data. The PhD was conducted as a part
of the Automated Sewer Inspection Robot research project, focused on developing an
autonomous robot for continuous sewer inspection.

The field of automated sewer inspections is a prime example of an inter-disciplinary
and applied use of computer vision, and may not be the most well known application,
but can have a major effect on society if developed sufficiently. While the methods
applied in this field are not as advanced as in the general computer vision field, the
methodologies are catching up to the historical lag, with more cutting edge algorithms
being utilized and developed. This is partly because of a shift in how the task is
approached, adopting the evaluation protocols used in the general computer vision
field, but also due to the object recognition subfield of computer vision slowing down
over the years after seeing massive progress over a short time period.

Within the field of image-based automation of sewer inspection we have investigated
and detailed the history of the research field, documenting fundamental trends in
algorithmic methodologies and evaluation protocols. Through this study we found
that the image-based automation of the sewer inspection field consistently lagged
behind the general computer vision field by years, and that there were three major
hindrances causing this lag: a lack of open source code and data, and a lack of a
common evaluation protocol. To this end, we proposed the world’s first publicly
available sewer defect classification dataset, Sewer-ML, consisting of 1.3 million
images from Danish sewer inspections, annotated by professional sewer inspectors.
Using this dataset we conducted an extensive benchmarking of state-of-the-art multi-
label algorithms, finding that the claim of the sewer defect classification task being
solved to be false. With the Sewer-ML dataset we further advanced the sewer defect
classification task by introducing a novel multi-scale extension to the Hybrid Vision
Transformer together with a clustering-based Sinkhorn tokenizer, improving upon the
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original benchmark algorithm by 6.32 and 5.00 percentage points on the validation
and test splits, respectively. The Sewer-ML dataset also enabled the study of how well
modern computer vision methods could be utilized to determine the water level in
sewer pipes. Through this we validated the effectiveness of using the newest water
level severity labels [1]. Lastly, A multi-task classification network was developed to
not just predict sewer defects, but also infer the equally important sewer pipe properties
and water level, leading to a performance increase of up to 6.34, 29.62, and 21.64
percentage points on the sewer defect, pipe shape, and pipe material classification
tasks, respectively. This was achieved using a novel Cross-Task Graph Neural Network,
which utilized the conditional probabilities across all the different classes. Through
these developed methods we showed the effectiveness of drawing on and advancing the
cutting edge research from the general computer vision and machine learning fields,
while infusing the models with domain-based knowledge.

In the point cloud-based automation of sewer inspection field, we developed the
world’s first synthetic data generator for the sewer pipe domain. The synthetic data
was empirically validated by comparison to real life data, and found to be a truthful
representation. Using an updated version of the developed synthetic data generator,
we constructed the world’s first sewer point cloud dataset, consisting of both synthetic
and real laboratory point clouds, and released it publicly. Using this dataset we bench-
marked two commonly used geometric deep learning algorithms under different data
scenarios, verifying the effectiveness of using synthetic point clouds to bootstrap the
training process in the lack of historic data from sewer inspections.

The main contributions of this Ph.D. thesis can be summarized as follows:

• A detailed survey of the image-based automation of sewer inspections domains
covering the last three decades. This survey uncovered the three main hindrances
limiting progress in the field.

• The development of the Sewer-ML dataset, the world’s first image-based sewer
defect multi-label classification dataset, consisting of 1.3 million images from
more than 75 thousand Danish sewer inspections. Sewer-ML was made publicly
available, to help democratize the field.

• The development of two domain influenced evaluation metrics for sewer defect
classification, F1Normal and F2CIW, which directly incorporate the economic
impact of the sewer defect categories into the model evaluation.

• The development of a Structured Domain Randomization based synthetic sewer
point cloud generator, and the world’s first point cloud-based multi-class clas-
sification dataset, containing over 17 thousand synthetic and real point clouds
from sewer pipes. The synthetic data generator and dataset were made publicly
available to help grow the point cloud based automation field.
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• Benchmarking of commonly used computer vision algorithms on the tasks of
image and point cloud based sewer defect classification, and image-based water
level classification.

• A novel Multi-Task Classification network for simultaneously predicting sewer
defect categories, water level, pipe shape, and pipe material. The developed
method was based on the underlying conditional probabilities of different classes
occurring together, estimated empirically, and allowed for incorporating heuristic
rules.

• The development of a novel multi-scale Hybrid Vision Transformer for the sewer
defect classification problem. The model was tested on the Sewer-ML, and
shown to improve performance and improve efficiency of the model.

• State-of-the-Art on the Sewer-ML sewer defect classification with a F2CIW score
of 60.57% using CT-GNN and competitive F1Normal score of 92.30% using
MSHViT.

• State-of-the-Art on the Sewer-ML water level and classification tasks with a
macro-F1 score of 71.30% and 81.10%, respectively, using CT-GNN.

• A competitive performance on the Sewer-ML pipe material classification task,
with a macro-F1 score of 73.95% using CT-GNN.

In the future, there are several promising directions from within the general com-
puter vision field which could have an immediate effect in the field of automation of
sewer inspections. This especially concerns the task of obtaining more detailed and
complete sewer inspections through automatic measures, and areas of data generation
and labeling.

The automated sewer inspection field has historically, and currently, focused on
automatically determining the defect category and location of the defect, ignoring
the equally important aspects of defect severity level and type indicators, and the
sewer pipe properties. While this has begun to change with recent works showing
clear advances within water level and pipe property classification [2–6], it is clear that
there is still progress to be made in order to generate a more complete and detailed
sewer inspection. Specifically, the area of defect severity level and type indicators
classification has been neglected, except for few very recent advances that attempt
predicting the severity level for a subset of classes [7–9]. This is due to the increased
fine-grainedness, long-tailed nature, and hierarchical structure of the data when these
aspects of data has to be considered. However, many of these aspects has been the focus
of the Fine-Grained Visual Categorization (FGVC) community for the last decade [10],
resulting in a large set of methodologies that have been developed for exactly these
scenarios. Therefore, a clear future research direction would be to apply the FGVC
methods and adapt them with the relevant domain knowledge. This would be realizable
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by expanding the Sewer-ML dataset with the remaining labels from the original sewer
inspections, as well as extending the current methods to use the vastness of metadata
available to the water utility companies, such as the topology of the sewer network, the
age of the pipes, the condition of neighbor pipes, and the geographic location, some of
which are currently used to model sewer deterioration [11, 12].

As discussed throughout this thesis, a major hurdle with the automated sewer
inspection field is the lack of publicly available annotated data. While we have reduced
this hurdle for image classification task with the Sewer-ML dataset, the problem
persists when investigating more semantically rich tasks such as defect detection
and segmentation. Simultaneously, it is unrealistic to assume an immediate influx
of publicly available sewer datasets, as this would require a complete shift in the
traditions and culture of the research field, where commercial interests limits the
possibility of freely sharing data. Therefore, there are three directions from the general
computer vision field that could be used with great effect to advance the automated
sewer inspection field.

Firstly, the use of synthetic data has been shown to be a viable way to not just get a
large amount of diverse data but also superhuman level annotations [13, 14]. These
approaches have led to advances such as dense facial landmark localization [14], large
scale dataset generation for the multi-object tracking (MOT) [15] and autonomous
vehicle domains [16, 17], and an increase of training data within niche areas such
as fish farming [18] and wildlife monitoring [19]. Initial investigations into using
synthetic data in the sewer domain have also shown to be promising [20–24]. The
drawback of the synthetic data approach is the need of a sufficiently sophisticated data
generator, which can capture the underlying complexities and variability of the domain.
The general computer vision domain has had the luxury of leveraging the fact that
many assets from the game and movie industry have been reusable for the relevant
tasks. However, this is not the case for the sewer domain, where all assets have to be
man-made through scanning techniques or manual modeling.

Secondly, one could begin annotating the Sewer-ML dataset such that it can be used
for the defect detection and segmentation tasks. This is, however, an immensely time
consuming and expensive endeavor to begin as not only is the annotation process often
tedious, but the sewer inspection domain is highly specialized requiring the annotators
to be trained to ensure that the defect categories are correctly annotated. These concerns
are not confined to the automated sewer inspection field, but can be found across the
entire computer vision and machine learning fields in general. Therefore, tools and
procedures have been developed to help partially automate the labeling process. One
such approach would be to manually label a small subset of the data, fine-tune a
pretrained network on the annotated subset, and then use the predicted labels for a
subset of the remaining data as a starting point. These annotations can then be refined
to correct for errors made by the network, and the network can be fine-tuned anew,
repeating this cycle until the entire dataset has been annotated. This was demonstrated
in the creation of the MOTS dataset [25], where the bounding box annotations from
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the MOT datasets were lifted to instance segmentation annotations.
Thirdly, it may not be worth annotating all of the data. The machine learning fields

focusing of alternative learning paradigms such as weakly-, semi-, and self-supervised
learning have grown immensely within recent years, reaching impressive performances
using little to no annotated data [26–33]. This is possible, as these approaches cir-
cumvent the need for large amount of annotated data, instead building on concepts
such as contrastive learning [29, 30, 32, 34, 35], where heavily augmented versions
of the same input are forced to have similar latent embeddings and dissimilar embed-
dings when the inputs are not identical, through the use of pseudo labels to enforce
consistency between classification prediction of two augmented views of the same
input [31, 36–41] , or by leveraging less semantically rich information such as only
having the desired class for an object detection or segmentation task [29, 42–45]. These
learning paradigms would be ideal for the automated sewer inspection domains with
coarse level expert annotations, and a large amount of data which only grows larger
each day. Some of these methodologies have also already been demonstrated for sewer
defect detection [24, 46] and water level classification [4].

To conclude, within the last few years there have been made major strides within
the field of automation of sewer inspections. We hope that in the future there will be
an influx of computer vision scientists who will recognize the unique challenges of
the field, and help advance this field by developing novel computer vision algorithms
leveraging the domain knowledge. With these advances we are getting closer to
automating parts of the inspection process. By increasing the inspection rate and
enabling better asset management, we will build an even stronger and more robust
infrastructure, with significant positive economical impacts in our modern society, as
well as environmental and health-wise impacts by enabling earlier detection of faulty
pipes.
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1. Introduction

Abstract
This survey presents an in-depth overview of the last 25 years of research within the field
of image-based automation of Closed-Circuit Television (CCTV) and Sewer Scanner
and Evaluation Technology (SSET) sewer inspection. The survey investigates both the
algorithmic pipeline, and the datasets and corresponding evaluation protocols. As
a result of the in-depth survey, several trends within the research field are revealed,
discussed, and future research directions are proposed. Based on the conducted survey,
we put forth a set of three recommendations, which we believe will further improve
and open the research field, as well as make the future research more reproducible: 1)
The introduction of free and public benchmark datasets, 2) Standardized evaluation
metrics, and 3) Open-sourcing the associated code.

1 Introduction
The sewers are often referred to as the “hidden infrastructure”, as it is typically out of
sight and often hard to get to even though it is one of the most important elements in our
modern societies. Without proper sewerage infrastructure society would be exposed to
both environmental and health issues. There is therefore a large responsibility laid upon
the maintenance and development of proper sewerage infrastructure worldwide, in both
developed and developing countries. For instance, in the United States (US), there is
currently more than 1.28 million km of public sewers and more than 800 million km
of private lateral connections servicing approximately 240 million Americans. The
sewerage infrastructure is expected to be further expanded by 2032, as an additional 56
million users will need to be connected, requiring a 271 billion dollar investment [1].
Comparatively, approximately 500 million km of public sewerage infrastructure served
444 million Chinese citizens living in urban areas of China as of 2014 [2]. This corre-
sponds to approximately 5 m of public sewer per US citizen, but only 1 m of sewer
per Chinese citizen. In order to accommodate the growing middle class and continuing
urbanization in China, there is a clear need of expanding the sewerage infrastructure so
the relative size of the infrastructure at least matches that of the American sewerage
infrastructure.

However, it is currently difficult to meet increasing demands and ensure the quality
of the sewers as defects go unnoticed. This is reflected by the 2017 American Society
of Civil Engineers (ASCE) infrastructure report card [1]. In this report the ASCE gave
a “D+” to the US wastewater infrastructure, citing the need of expanding the exist-
ing infrastructure, as the United States Environmental Protection Agency (US EPA)
estimate 23,000-75,000 unintentional overflows in sewer systems a year. In China,
there are currently several major problems such as the sewer pipes suffering from high
infiltration and corrosion rate due to poor quality of the sewer construction. This is
especially worrying, as 75% of the sewerage infrastructure is less than 15 years old.
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Furthermore, the awareness and utilization of trenchless rehabilitation options is very
poor, due to a lack of properly trained professionals [2]. This is problematic as inability
to meet demands and poor maintenance of the infrastructure can lead to potential
hazards such as environmental pollution, sinkholes, and an increase in transmission of
diseases. There is therefore a clear global need of improving the construction quality,
rehabilitation, and capability of the sewerage infrastructure.

As demands on the sewerage infrastructure continue to increase, so do the demands
with regard to its inspection. Dirksen et al. [3] and Van der Steen et al. [4] have investi-
gated the quality of human inspections, based on data from Germany, the Netherlands,
France, and Austria. Dirksen et al. found that human inspectors do not identify defects
25% of the time while Van der Steen et al. found that the highly detailed EU standard
(EN 13508-2) has led to an increase in incorrectly described features in the sewers.
Automating the sewer inspection process is therefore of great interest in order to enable
speeding up inspection times, reducing monetary costs, and removing potential human
biases.

Automated sewer inspection encompasses a wide variety of technical fields; con-
sequently, a lot of research has been conducted, resulting in a plethora of research
papers. In order to keep track of the progress, several reviews and surveys have been
conducted over the years. This includes studies into different kind of inspection tech-
nologies [5–10], robotic platforms for in-pipe inspections [11], automated inspection
for concrete based infrastructure (including concrete pipes) [12], and the quality of
human inspections [3, 4]. There has, however, not been a comprehensive review of
image-based automated sewer inspection methods, except by Moradi et al. [13], who
conducted a review of general trends in the field throughout the last 20 years. The
Moradi et al. review does, however, not provide a detailed overview of the actual
methodologies applied or evaluation protocols employed throughout the history of the
literature. We believe a thorough overview and review of these methods and evaluation
protocols is beneficial, as the research field has matured over the years. Specifically,
methods working solely with images are of great interest, as sewer inspections are
traditionally performed using a single camera.

Furthermore, the research area has been quite opaque throughout the years as every-
one utilizes their own datasets and rarely publicly share code or data. This is often due
to the ownership of the data belonging to a third party such as water utility companies,
or that the research is conducted in collaboration with industry partners. This makes it
hard to directly compare the performance of different methods, and readily advance
the field, as seen in the other computer vision fields like image classification, object
detection, and object segmentation fields where public data and shared code have been
drivers.

The contributions of this article are as follows. We have created a thorough overview
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of image-based algorithms employed for classification, detection, and/or segmentation
of defects in sewers based solely on image or video data. We have similarly investi-
gated and created an overview of the utilized datasets and evaluation protocols of each
methodology. Based on these overviews, we analyze the trends and tendencies through-
out the literature and history of the field. Lastly we provide a set of recommendations
on how to improve the evaluation protocols, as to better foster the research field of
image-based automated sewer inspections.

The rest of the paper is organized as follows: Section 2 provides an overview
of different sewer inspection technologies. Section 3 describes the methodology
used in the survey. Section 4 provides a comprehensive overview of image-based
defect detection, segmentation, and classification algorithms. Section 5 describes the
datasets and evaluation protocols employed throughout the literature. Conclusions and
recommendations for future research within this field are presented in Section 6.

2 Sewer Inspection Technologies
Most sewer inspections are conducted using a single camera. This technique is denoted
Closed-Circuit Television (CCTV) and has been used for more than 40 years [14].
The camera is either mounted on a remotely controlled tractor, a manually pushed
rod, or placed on the edge of the sewer opening with a zoom lens. In either case, an
operator controls the camera/tractor and either inspects the sewer on site or back at
the office. In some cases, one or more fish-eye lenses are used to capture the full area
around the tractor. A commonly used system that utilize fish-eye lenses is the IBAK
PANORAMO [15]. While the tractor-based approach is often utilized for large pipes,
resulting in relative smooth motions and centered footage, the push rod approach is
most often used when expecting laterals and small pipes, where the tractor cannot gain
access. The footage obtained with push rod cameras is, however, not centered and
contains erratic camera motion, which directly detracts from the quality of the obtained
data.

The Sewer Scanner and Evaluation Technology (SSET) was commercialized in
2001 [16]. The SSET device contains a suite of sensors including both a standard and
a fish-eye CCTV feed combined with inclinometers to determine the inclination of
the device. SSET automatically pre-processes the fish-eye data in order to provide a
single image containing the entire pipe wall, which is used as the main output. Similar
techniques have been used with the PANORAMO.

Other visual methods include thermal imagery and laser profiling, which are used
to detect thermal anomalies and generate 3D profiles of pipes, respectively. Non-visual
methods have also been used such as electromagnetic, acoustic, and ultrasound based
methods.
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Fig. A.1: Bar plot of the amount of papers investigated research databases with more than one relevant paper.

For an in-depth description and comparison of these methodologies, we refer to
Duran et al. [7] and Liu and Kleiner [10].

Lastly, there has been a long term research interest in developing autonomous
robots for pipe inspections, such as the MAKRO [17], PIRAT [18], KANTARO [19],
and SIAR [20] robots. These robots are typically fitted with a large suite of different
sensors, allowing for different kinds of analysis. For an in-depth survey on different
pipe inspection robots, we refer to the survey by Tur and Garthwaite [11].

3 Survey Methodology
This survey is based on a thorough investigation of the academic work that has been
applied to CCTV and SSET based sewer inspections. We have investigated papers
from 1994 to 2020 which exclusively use image data and not technologies such as laser
profiling or ultrasound. Only papers that are focused specifically on defect recognition
and sewer inspection have been included. Therefore, works such as the image quality
estimation of Yang et al. [21, 22] and the estimation of extrinsic camera parameters
of Cooper et al. [23–25] are not included. Similarly, commercial applications such as
the “Deep Learning Sewer Defects Detection” cloud service from InLoc Robotics or
the robot solutions offered by RedZone Robotics are only included if peer-reviewed
papers are available. The papers have been selected by searching several large research
databases (IEEE Xplore, Springer Link, ScienceDirect, ASCE Library, IWA Publishing,
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Fig. A.3: Illustration of the generalized pipeline.

Scopus, and Web of Science), and by recursively goings through previous referenced
work. Figure A.1 shows the distribution of papers across research databases with more
than one relevant paper. Conference proceedings and journals in English have been
considered. If a paper was not immediately accessible, we have made efforts in order
to retrieve the paper through official university channels. In total, 113 papers were
investigated, 54 from conference proceedings and 59 from journals. In Figure A.2,
the distribution of conference and journal papers from 1994 until 2020 is shown. All
surveyed papers are listed in Table A.3 in A.A.
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4 Image-based Automated Inspection
To provide a framework for analyzing the different investigated methods, we shall use
a general computer vision pipeline, illustrated in Figure A.3 consisting of the following
steps: Acquisition, Pre-processing, Detection and Segmentation, Feature Descrip-
tion, Classification, and Temporal Filtering. This is not to say that all systems use
all these steps, but the framework provides a concise and unified way of describing and
comparing different systems. In the following, each step of the generalized pipeline
will be surveyed.

Table A.1 contains an overview of the methods described throughout the survey.
As several of the methods have been developed over a series of papers, only the most
representative paper is included in the table. In case an author group has produced
several different methods, each method is shown in the table, and the author group
affiliation is indicated. In cases where e.g. several classifiers are tested, only the best
performing method is shown.

4.1 Acquisition
Data acquisition has been achieved through two general inspection technologies: CCTV
[21, 26–91] and SSET [16, 92–114]. It should be noted that Wu et al. [114] actually
use the front camera of the SSET device unlike the other mentioned papers, which use
the unwrapped pipe wall images. In a few cases, CCTV footage has been recorded
with a fish-eye lens that has either been unwrapped in order to obtain an image of the
entire pipe wall, similar to SSET [115–123], or simply used the original wide-angle
images [45, 124–135]. A zoom CCTV camera has also been utilized [136].

4.2 Pre-processing
The pre-processing methodologies vary widely depending on the applied algorithm.
However, some methods, which are not simple rescaling or normalization, reoccur in
several papers. We do not consider data augmentation to be a pre-processing step but
rather a dataset related procedure.

Color Space

All modern inspection systems record video in color; but, many algorithms do not
operate directly in the RGB color space. Several systems convert the RGB images
to grayscale by averaging the color channels [33, 58, 59, 63, 64, 67–74, 92, 94, 95,
117, 124]. Weighted averages such as the NTSC standard [135], brightness [126, 127],
luminance [62, 114], based on the pipe material [116], or a linear transformation based
on Fischer’s linear discriminant classifier [96, 100, 102, 105, 109, 110] have also been
utilized when emphasis on specific color combinations was necessary. Color conversion
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has also been used in conjunction with image enhancement [111–113]. In several
cases, grayscale images are used, but it is not stated whether or how the conversion is
performed (though an equally weighted average is assumed) [16, 21, 26–32, 34–53,
55, 57, 65, 66, 75, 76, 93, 97–99, 101, 103, 104, 106–108, 115, 125, 128, 129, 133].
The YCbCr [122], HSV [56, 84, 88, 90], HSB [117, 118], and RGB color spaces
[54, 60, 61, 76–83, 85–87, 89, 91, 118–121, 123, 130–132, 134, 136] are also utilized.

Noise Removal

A general pre-processing step in image processing, is the use of noise removal filtering
in order to remove spurious or high frequency noise. This has typically been through
mean [42, 56, 57, 122], median [31, 36, 52, 53, 57, 59, 61, 111–113, 119, 120, 122, 135],
or Gaussian filtering [75, 76, 121, 126, 127, 132]. In some cases, special noise removal
approaches are applied. Kirstein et al. [116] utilize an anisotropic Gaussian filter
to remove directional noise while Müller and Fischer [115] use an FFT based noise
removal and Fourier amplitude modulation approach. In some works unspecified noise
removal is applied [64, 131].

Image Stitching, Mosaicking, and Unwrapping

In most cases, when an unwrapped wide angle CCTV image is used, the unwrapping is
performed directly within the recording device. In a few cases, the unwrapping has,
however, been part of the algorithmic design, where it has been improved [32, 122, 123,
126, 127]. In these cases, the images are often also mosaicked and stitched together
using custom made approaches. Künzel et al. [122] stitch the unfolded images by
minimizing the absolute difference between the two image regions, while penalizing
non-optimal transitions between consecutive images, in order to obtain the optimal
seam. The obtained seams are blended using Poisson Blending, in order to smooth
any inaccuracies, while maintaining the gradient information. Piciarelli et al. [123]
construct a mosaick using an iterative methodology, where a set of features are extracted
from the current mosaick and the unwrapped image, and matched after outliers have
been removed. The remaining features are used to construct a homography between
the mosaick and unwrapped image, resulting in an updated mosaick.

Image Enhancement

Lastly, before further processing, enhancement methods are applied in several papers.
Simple approaches utilize histogram equalization [31, 55, 56, 130, 131], contrast
stretching [55, 90, 122], and (Laplacian) sharpening [55, 64, 130].

McKim and Sinha propose a local enhancement method in order to enforce constant
background illumination [96, 98], while Iyer and Sinha propose an enhancement
method to increase contrast between dark pixels and a computed “median background
image” [111–113]. Ruiz-del-Solar and Köppen [32] applies a contrast enhancement
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approach where areas with high contrast are amplified while low contrast areas are
attenuated.

4.3 Detection and Segmentation
Detection and segmentation of regions of interests are a very broad topic with widely
different approaches on how to arrive at intended result. We have identified a se-
ries of reoccurring elements, which have been analyzed. Some papers also utilize a
more advanced combination of algorithms. We denote these algorithms as compound
approaches.

Edge Detection

Edge detection is a key element in the detection of change in the image such as the
transition between a defect on the pipe wall and the normal appearance of the pipe
wall. Several approaches have been employed: the basic Sobel operator [51–53, 58,
65, 66, 126, 127], the Laplacian [36], the Laplacian of Gaussians (LoG) [111–113],
and the Canny edge detector [26–28, 30, 31, 121, 125, 129]. The Canny edge detector
is utilized in different ways such as only considering horizontal or vertical edges in
a sliding window approach [115], introducing an extra filtering step based on size
and shape [116], and using multiple threshold settings to adaptively find the “core
edges” [132]. In some cases, an undefined operator is used [33, 37, 39, 55, 92].

Fieguth and Sinha [95–106] introduced a special edge detector for crack segmen-
tation which combined two different edge detectors based on local patches and two
neighboring patches. The detectors utilized the ratio of the patch means and cross-
correlation of the patches, and the responses were combined using an associative
symmetrical sum. This was repeated over several orientations of the patches. The
crack segments were linked by assuming local linearity and combined using the Hough
transform. This approach was expanded on by Sinha and Fieguth [107] using 3 different
sized windows in the comparison step, only testing for cracks in four directions (0, 45,
90, 135 °), and using a nearest neighbor based linking process.

Thresholding

Thresholding is in general a simple but key step in determining the regions of inter-
est in an image. The operation can be as simple as using a predetermined thresh-
old [99, 100, 102, 104, 107, 111–113, 129, 135] or in a single case using two values
for hysteresis thresholding [135].

Predetermined thresholds, however, requires setting a single static value based on
prior knowledge of the problem. This is problematic in dynamic environments: conse-
quently, Otsu’s method is widely used [21, 33, 48, 49, 57, 59, 61, 63, 64, 97, 109, 110].
Iterative approaches are employed in order to handle the dynamic challenges [34, 35,
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55, 56, 90]. K-means with 2 clusters has similarly been used as a non-parametric
operation [62].

Alternative approaches utilize prior knowledge by assuming two peaks in the
histogram, and setting the threshold point at the minimum [37] or median [36] in
between the peaks. Lastly, several papers utilize thresholding without stating any
specific threshold, though in most cases, a predetermined global threshold can be
assumed [39, 40, 51–53, 92, 95, 96, 98, 101–103, 105, 106, 130].

Morphology

Grayscale morphology has been extensively utilized throughout the literature [39, 40,
48, 51–53, 90, 96–98, 100–103, 105, 107–113, 135]. The approach was introduced in
the automated sewer inspection domain by Sinha et al., who proposed an hierarchical
approach utilizing grayscale opening, where a series of structuring elements (SEs)
with increasing size were applied in order to segment out different defects in an SSET
image [96, 98, 102, 105, 107–110]. The amount and size of the SEs were chosen
based on a discriminative analysis. Yang and Su applied these approaches to CCTV
videos [48] and compared the segmentation to a set of “ideal morphologies” as well
as using the grayscale opening top-hat and closing bottom-hat operations [51–53].
Iyer and Sinha [111–113] have also utilized an ensemble of grayscale morphology
operations for crack segmentation in conjunction with geodesic reconstruction and
Laplacian curvature estimation.

Binary morphology is a commonplace methodology that is used for removing
noise and holes in binary images [56, 57, 59, 61, 63–66, 90, 129, 135]. It has, however,
also been employed as a core algorithmic step for defect detection and segmentation.
Yang and Su proposed a morphological algorithm called Morphological Segmentation
based on Edge Detection (MSED), which at times outperforms the grayscale morpho-
logical operations for defect segmentation [51–53]. Mashford et al. [118] proposed
a generalization of the erosion operation, called α-erosion, in order to combat noise
in the defect segmentation step. Halfawy and Hengmeechai [58] utilized a series of
differently oriented SEs to extract cracks from all orientations.

Geometric Fitting

In several cases, the geometric knowledge of the sewer pipes and defects can be lever-
aged.

Least squares estimation is a commonly used approach to estimate the best fitting
ellipse of a circular pipe. The extracted ellipse can be used to determine whether the
pipe is broken or deformed, by fitting pixels [135], pixel groups [27], and in combina-
tion with frequency analysis [33].

89



Paper A.

Hough transformation has been utilized in similar ways as least squares estima-
tion. The circular Hough transform was applied in order to extract laterals [33, 36, 97]
and joints [26, 27]. The line Hough transform has been used for flow line detec-
tion [116], shape description [62], crack segment linking [97, 99, 103], and removal of
text boxes in an edge image [58].

Several geometric approaches have been employed for estimating 3D properties.
Kolesnik and Baratoff [36] utilized least squares estimation to construct a 3D under-
standing of inlets and the main pipe. Broadhurst et al. [28–30] utilized a method
called Reflective Photometric Stereo based on reflected illumination instead of direct
illumination to detect laterals and describe its 3D position and orientation. Swarnalatha
et al. [55] estimated the depth of detected cracks utilizing angles of incidence and a
priori knowledge of the pipe.

Camera Movement

The camera movement is utilized to detect time periods with potential defects, in
order to reevaluate previous sewer inspections. This has been done by using optical
flow [60, 61], or through constructing a time series of the mean absolute difference
between consecutive frames and looking for time spans with low differences [57]. Chen
et al. [86] utilized a bi-directional optical flow approach to filter out abnormal frames
in the video sequences, which were caused by erratic camera movement and not by
defects in the pipe.

Compound Approaches

Guo et al. applies a combination of an adaptive multi-resolution analysis step and
expectation maximization based clustering [128], as well as K-means [130] to segment
an input image. Similarly, Xue-Fei and Hua [56] test a clustering method called Quick
Fuzzy C-Means (QFCM) for defect segmentation. The K-means and QFCM methods,
however, suffer from requiring the number of clusters k to be set before processing.

Ruiz-del-Solar and Köppen [32] employs an approach called Simplified Bound-
ary Contour System (SBCS). SBCS is stated to be a simplified approximation to the
mammalian visual pathway. The approach is based on a set of Gabor filters and a set
of “competitive” and “cooperative” stages in order to find a good segmentation of the
image.

Taylor et al. [31] detect laterals by utilizing reflected illumination and the Canny
edge detector. The laterals are detected by trying to fit circles to each edge based on the
approach of Cooper et al. [25] and using a priori assumption of the curvature of the edge.

Paletta et al. [34, 35] extract a “support map” based on a priori knowledge of
where pipe inlets are typically located. This is done by detecting the vanishing point
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of the sewer by iteratively thresholding the image until a certain amount of pixels are
segmented. Based on the detected vanishing point, regions with high probability of
inlets are found. This is based on the assumptions of inlets being to the left and right of
the vanishing point within an angle of ±30°.

Moselhi and Shehab [37, 39, 40] use a combination of simple transformations such
as complement, background subtraction, and gradient estimation. These transforma-
tions are combined based on which defects were to be extracted.

Browne et al. [41, 42] detect cracks by subdividing the image into smaller sections.
This is achieved by dividing the outer edge of the image into 14 64×64 regions [42]
or by dividing the entire image into 16×16 regions [41] before further analysis.

Ahrary et al. [126, 127] utilize sequential horizontal and vertical sliding windows
where the patches are compared with an averaged normal prototype image through
auto-correlation. This results in a similarity score for each patch, and used to determine
the state of the patch.

Guo et al. [130, 131] propose a simple segmentation method based on thresholding
the difference between an image of interest with a reference image of a normal pipe,
which requires registering the images as a pre-processing step. Guo et al. [132] also
propose a segmentation approach based on region growing using edges as guides to
select the seed points.

Huynh et al. [65, 66] propose a crack segmentation method based on the skele-
tonization of an edge extracted image and scanning for linear or horizontal segments in
the binary image.

Halfawy et al. [57, 61] segment a standard CCTV image into three components:
pipe wall, water flow, and the end of sewer (EOS). The EOS is found based on row
and column histogram data, and assuming a pre-defined radius of the center. The pipe
wall and water flow are segmented by investigating the intensity along horizontal lines
below the EOS, and drawing vertical line where it transitions from high to low intensity
and back. The intersecting points result in lines sloping towards the center of the EOS.
A set of sanity checks are used to verify that the two lines meet near the EOS and forms
a valid triangle in which the water flow is contained. Defects can be detected by using
Otsu’s method and morphology to obtain a binary image where pixels are assigned to
the pipe wall or water flow. If any pipe wall pixels are within the pre-defined water
flow area, the pixels are extracted for further classification.

Hawari et al. [135] utilize a set of defect dependent segmentation algorithms.
Sediments are segmented by utilizing Gabor filters and active contour segmentation,
while least squares estimation is utilized to estimate pipe deformation. Displaced joints
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are segmented using the distance transform and a set of heuristic rules, and cracks were
found through a combination of grayscale morphology and heuristic rules.

4.4 Feature Description
We split the investigated feature descriptors into three categories: Hand-crafted, semi
hand-crafted, and designed descriptors. This is based on whether the exact features
were either hand selected, a selection of statistics and mathematical properties, or
more complex algorithmic designs, respectively. A fourth category also exists, where
the features are learned directly through the applied classification method, but is not
discussed in this section.

Hand-crafted

The hand-crafted descriptors consist of geometrical and intensity attributes that are
interpretable and describe the object of interest.

Typical geometrical features of an object are area [65, 66, 109–113], length and
width [55, 56, 90], or a variety of attributes based on shape, position, eccentricity, pixel
intensities, etc. [31, 33, 37–40, 48, 49, 58, 62–64, 95–97, 100, 103–106, 108, 125, 135].
In several cases, several initial features are selected but then reduced through Principal
Component Analysis (PCA) [48, 49] or other discriminative analysis [95–97, 100, 103].
Paletta et al. [34, 35] simply vectorize the input image and applied PCA.

Semi Hand-crafted

The majority of semi hand-crafted features build upon frequency domain analysis.
Mashford et al. [119, 120] applied the discrete Haar wavelet transform to each color
channel and represented each pixel by the concatenation of each color channel response
in a 8×8 window. Similarly Browne et al. [42] utilized the Shannon Entropy of the
normalized Haar wavelet coefficients of several scales, and Haar-like features have
been used by Halfawy et al. [57, 61]. Browne et al. [41] similarly investigated using
wavelet transforms to create a “space-frequency energy signature” based on the em-
pirical cumulative distribution function of wavelet coefficients, which were further
dimensionality reduced using PCA.

Yang and Su [46, 47, 50] have utilized the discrete wavelet transform that divides
the image into a low-frequency and three high-frequency subimages. For each of the
high-frequency subimages, four Gray-Level Co-occurrence Matrices (GLCMs) with
a distance of 1 pixel in four directions (0, 45, 90, 135 °) are calculated. For each
GLCM; the entropy, correlation, and cluster frequency of the matrix are calculated and
averaged. The three GLCM features were decided upon through a thorough discrim-
inant analysis of seven different GLCM features [46, 50]. Wu et al. [114] applied a
similar approach using the Contourlet transform. This produces eight high-frequency
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subimages and one low-frequency subimage. The low-frequency subimage was filtered
with the Maximum Response (MR) filter bank resulting in eight responses. For each
image, a 64-dimensional feature vector was constructed consisting of the mean, stan-
dard deviation, skewness, and kurtosis of each of the 16 subimages. Wu et al. also
conducted a thorough comparison on different feature vectors, however, all performed
worse than the statistical features.

Statistical features have also been used by Ganegedara [121] and Ye et al. [88]. Ye
et al. applied the “lateral Fourier transform” and the Daubechies wavelet transform
(Db4). From these transforms, a set of statistics are calculated and concatenated with
the first seven Hu invariant moments and other image statistics. Statistical features are
similarly used on color information [117, 132].

Designed Descriptors

Histogram of Oriented Gradients (HOG) is applied by Halfawy and Hengmeechai [59]
in order to detect root intrusion by analyzing segmented areas. The Scale Invariant
Feature Transform (SIFT) has been applied by Guo et al. [133] to detect change
between two frames and, thereby, detect defects. Moradi and Zayed extracted a spatio-
temporal version of HOG [137] where the volume of frames is densely sampled in an
overlapping cuboid grid, each of which are split into 2×2×2 subregions. For each
subregion, a normalized histogram of oriented gradients is extracted, and stored as a
series [138]. Moradi et al. [76] has also looked into using histograms of SIFT features.
The GIST feature descriptor has been utilized by Myrans et al. [67–74], who found that
for their pipeline it performed better or equal to HOG and SIFT. Piciarelli et al. [123]
calculated the Local Binary Patterns (LBP) of a large unwrapped CCTV image by
utilizing a patch based approach.

4.5 Classification
The classification task can be split into three sub-tasks: binary (defect/no defect),
multi-class, and multi-label classification. The different classification sub-tasks are
demonstrated in Figure A.4. Two types of methods are applied to tackle these different
tasks: classifiers based on predetermined heuristic rules, and data-driven classifiers that
have learned a set of rules based on the supplied training data.

Heuristic Rules

Heuristic rules have been used in a large amount of papers often through thresh-
olding based on geometrical attributes of segmented elements such as area [58, 65,
66, 102, 109–113], length and width [55, 56, 90], or a variety of different geomet-
rical attributes [26–31, 61, 118, 135]. The features do, however, not have to be
geometrical in nature for thresholding to be utilized. Other thresholded features in-
clude auto-correlation between two patches [125–127], L2 distance between color
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Binary

Multi-class

Multi-label

Defect

Displaced

Displaced and Broken

Task Prediction

Fig. A.4: Example of different levels of generalization of the classification task. A pipe with two defects,
displacement and broken pipe wall, is shown, and below the predictions per generalization level are shown.
Binary classification predicts whether there are any defects in the image. Multi-class classification predicts
the most prominent defect. Multi-label classification predicts all defects present in the image.

histograms [132], the amount of SIFT keypoints matched using nearest neighbor as-
signment [133], entropy of a GLCM matrix [61], and the difference between two
images [131]. Müller and Fischer [115] use a distance threshold based on multi-scale
analysis and height of edges to classify connections and sockets in unwrapped CCTV
images. Kirstein et al. [116] find the flow line in an image by optimizing a graph of
line segments using Dijkstra’s shortest path algorithm. Furthermore, areas of interest
are identified based on time series data on mean absolute differences [57], optical flow
information [60, 61, 86], and analysis of text on the video frame [84].

Machine Learning

Multi-Layer Perceptrons (MLPs) have been used extensively since the turn of the
century. Standard MLPs have been utilized for the multi-class classification prob-
lem [38–40, 47, 96], and crack classification combined with finite element analysis
to determine structural integrity [54]. MLPs have also been combined with fuzzy
logic [92–96, 100, 103–106, 108], and a special MLP variation called Kohonen Self-
Organizing Maps (SOM) has been employed for clustering different defects [121] and
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to detect sockets in pre-segmented image [32]. Browne et al. [41, 42] utilized logistic
regression and compared it to using an MLP [41].

Radial Basis Function Networks (RBNs) are a special kind of MLP where the
activation functions are radial basis functions, which have been used extensively by
Yang et al. [21, 47–49] for multi-class classification. Paletta et al. [34, 35] utilize RBNs
for inlet detections where the predictions are combined with a multi-resolution pyramid
framework. For each resolution, the predicted probability of each investigated region
from the RBN are fused in a Bayesian framework generating a “posterior map”.

Convolutional Neural Networks (CNNs) have seen a spike in popularity in recent
years as datasets and compute resources have increased. This has allowed end-to-end
learning of a variety of powerful classifiers.

The first use of CNNs was by Browne et al. [43, 45, 124] in 2003, where they were
applied on crack segmentation and the multi-class classification task of detecting the
presence of sewer landmarks (joints and laterals). In 2004, Ouellette et al. [44] trained
a CNN for the task of per-pixel classification in a crack segmentation context. The
authors used a Genetic Algorithm (GA) for optimizing the weights of the network.
Künzel et al. [122] applied a CNN for per-pixel classification of eight classes in a
semantic segmentation context utilizing an adapted version of the Full-Resolution
Residual Network (FRRN) architecture. Similarly, Wang and Cheng [82] applied a
custom CNN utilizing multi-scale dilated convolutions [81] and dense Conditional
Random Fields (CRFs) formulated as recurrent neural network layers, allowing for
end-to-end learning. A VGG-16 model pre-trained on ImageNet [139] is used as the
backbone of the CNN.

Cheng and Wang utilized a fine-tuned Faster R-CNN model with ZFNet as the
backbone for detecting sewer defects [79, 80]. Kumar and Abraham [78] proposed
using a two stage methodology, by first classifying images in a multi-class manner
using a small CNN inspired by Kumar et al. [77], and subsequently a defect specific
YOLOv3 model, if a defect was classified by the small CNN. Kumar et al. [83] further
compared the Faster-RCNN model, first used by Cheng and Wang [79, 80], with the
YOLOv3 and the Single-Shot Multibox Detector (SSD) models. Yin et al. [91] simi-
larly applied the YOLOv3 model to detect defects in sewer networks.

However, the majority of CNNs have been employed for the general classification
of an image, where one or more labels are associated with the image. Kumar et al. [77]
proposed using an ensemble of binary CNNs for detecting three different defects in
an image. The ensemble is trained in a one vs. all manner, which enables multi-label
classification. This method was extended by Meijer et al. [134] using a single CNN for
the task, instead of an ensemble.
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Hassan et al. [85], Li et al. [89], Xie et al. [136], Tennakoon et al. [87], and Chen
et al. [86] have utilized CNNs. Hassan et al. fine-tune the AlexNet architecture that
is pre-trained on ImageNet in order to classify the pipe as one of six defects. The
results were combined with the optical character recognition method of Dang et al. [84]
in order to provide full inspection reports. Li et al. train a modified Residual CNN
(ResNet) with 18 layers, where the conditional probability of each defect type, and
the probability of the image containing no defects, are determined. This is done by
internally computing the probability for the binary defect problem, and a probability
for each defect (assuming a defect is present). The probability vectors are subsequently
combined into a single probability output vector. Xie et al. utilize a two stage hi-
erarchical approach by first using a small CNN trained for the binary classification
problem. If a defect is detected, the image is passed through a second fine-tuned CNN
in order to determine the defect type. Tennakoon et al. test a custom made CNN and a
fine-tuned version of a ResNet with 50 residual layers (ResNet50) that was initially
trained on ImageNet. Chen et al. utilize an approach similar to Xie et al. where a small,
but fast, SqueezeNet is used to detect any abnormal frames, and a larger, but slower,
InceptionV3 is used to classify the type of defect.

Moradi et al. [76] proposed a two stage hierarchical approach for crack detection.
First, a Hidden Markov Model (HMM) is trained exclusively on images of normal
pipes in order to detect anomalies. This has been tested using spatio-temporal HOG
like features [75] or histograms of SIFT features [76]. For each identified defect image,
a CNN is applied in order to determine whether it is a crack defect or not.

Fuzzy Classifiers are applied in various ways for defect classification. Several
Neuro-Fuzzy (NF) methods are proposed where the input and/or output of an MLP
are fuzzified. Sinha et al. [95, 96, 100, 103–105, 108] utilized an NF approach where
continuous input features are fuzzified by the use of three membership functions. These
membership functions convert the feature value into three linguistic representation
ranging from Small, Medium and Large. The NF approach was also compared with,
and outperformed, a fuzzy K-NN classifier, and a normal K-NN classifier. Chae et
al. [16, 92–94] used an ensemble of MLPs to determine attributes of cracks, joints, and
laterals in an image and applied a set of fuzzy rules to consolidate these rules into a
condition rating for the pipe segment.

Chaki et al. [62] performed crack segmentation, by utilizing fuzzy multi-factorial
analysis, and fuzzy logic is used to determine the severity of segmented cracks [63, 64]
and to distinguish corrosion and pipe connections [119].

Support Vector Machines (SVMs) are used for several tasks. Mashford et
al. [117–120] have utilized SVMs for binary per-pixel classification defect segmenta-
tion task. Myrans et al. [67, 73] use an SVM for the binary classification task. Halfawy
and Hengmeechai similarly used an SVM for detecting intruding roots [59] as well
as classifying the type of frame (looking forward, into pipe wall, info screen, or tilted
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view) using the SVMmulticlass library [61]. SVMs are also applied for multi-class defect
classification by using an ensemble of SVMs by Yang and Su [47] and Ye et al. [88].
The ensemble is constructed based on the one vs. all paradigm [47], or the one vs. one
paradigm [88].

A special case of one-class SVMs (OCSVMs) have likewise been investigated.
OCSVMs are typically used for anomaly detection where normal data is abundant, but
data with defects can be lacking. The OCSVM is trained using only the normal pipe
data forcing all data points to be within a hypersphere. Myrans et al. [71] compared the
performance of the OCSVM against a SVM and random forest binary classifier. Picia-
relli et al. [123] utilized a OCSVM to generate a “heatmap” on an unwrapped CCTV
image to indicate anomalous areas by processing the image in a sliding window manner.

Random Forests (RFs) have been utilized extensively by Myrans et al. in recent
years for both the binary [68, 69, 72, 73] and multi-class classification tasks [70, 74].
Through their work, it was found that the Extremely Randomized Trees algorithm
performed better than traditional RFs and SVMs. Binary detection was further im-
proved by stacking the RF and SVM classifiers using an SVM stacking classifier.
The multi-class classification problem was approached using a hierarchical structure,
where first the binary RF classified whether images contained defects. If so, the im-
ages were analyzed by a specialized defect classification RF. Myrans et al. found
that using an ensemble of binary RFs trained in a one vs. all manner performed better
than a single multi-class RF or an ensemble of RFs trained in a one vs. one manner [74].

Boosting has so far been utilized sparingly for sewer defect detection. Sarshar et
al. [57] employed AdaBoost to classify the frame type. Wu et al. [114] compared
the performance of several ensemble methods and found that the RotBoost algorithm
performed the best. RotBoost is a combination of the Rotation Forest, which in itself is
an extension of the RF algorithm, and AdaBoost algorithms.

4.6 Temporal Filtering
Efforts have been towards temporally filtering the classification outputs in order to
reduce the effect of noise and camera movement. Myrans et al. [69, 72, 74] used a
HMM and Order Oblivious Filtering (OOF) for modeling the transition from normal
to defective pipe segments. The approach can be used online and offline based on
whether a backwards pass is performed through the predictions. The OOF further
smooths the classification by assigning the state with a majority of occurrences over
a symmetrical window. Pan et al. [26, 27] smoothed their tracking of pipe joints
by using a simple criteria for the center and radius of the tracked circle, and the
amount the parameters may vary in two consecutive frames. Paletta and Rome [35]
consider different temporal smoothing approaches such as Bayesian fusion of the
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Fig. A.5: Distribution of the feature description methods used throughout the years. Based on the papers in
Table A.1.

predictions or correlation based tracking of the detected inlets. A Q-learning based
reinforcement learning approach is, however, used in order to actively fuse sensorimotor
measurements and plan appropriate operations. Khalifa et al. [64] utilize temporal
filtering methods to model the development of cracks over several months through a
Markovian prediction framework.

4.7 Discussion and Future Directions
In the previous, subsection the different stages of the automated inspection pipeline
have been presented. It is clear from the investigated literature that there have been
several significant algorithmic trends in the last 25 years.

In the acquisition, stage there has been a clear trend of primarily using standard
CCTV images, whereas SSET and unwrapped CCTV images have only been utilized
by a few author groups. This makes a great deal of sense as CCTV have traditionally
been the primary sensor for sewer inspections, while SSET and systems such as the
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Fig. A.6: Distribution of the general pipeline methodologies used throughout the years. Based on the papers
in Table A.1.

IBAK PANORAMO in general have been attempts at gaining a market foothold with
potentially more advanced, but also more expensive, systems, which have not been
widely adopted. While the IBAK PANORAMO is still utilized, research utilizing SSET
images has stagnated, after prominent usage by some author groups in the early and
mid-00’s.

In the algorithmic stages there have been several trends throughout the years. In
the mid 90’s and early 00’s, there were clear tendencies on utilizing pipelines based on
simple edge based and geometric approaches of grayscale images, which were used
over color images due to better contrast. The resulting augmentations were analyzed
with heuristic rule-based decision systems in order to detect and segment defects. These
methods were subsequently supplemented by the application of MLPs and other artifi-
cial neural network approaches based on hand-picked geometric and intensity features.
Around the turn of the century, morphological approaches became increasingly popular
for both segmentation and classification of regions of interests. This branch of segmen-
tation and classification together with research into edge detectors designed specifically
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Classifier #1 Defect #1 OR Not Defect #1

Classifier #2 Defect #2 OR Not Defect #2

Classifier #3 Defect #3 OR Not Defect #3Input Image

Classifier #N Defect #N OR Not Defect #N

(a) An ensemble of one vs. all classifiers, voting for whether each of the N defects are present.

Input image Multi-class 
Classifier Class i

(b) The single classifier that predicts between all possible N defects, as well as just a normal pipe.

Input image Binary Classifier
Defect

Normal

Multi-class 
Classifier Class i

(c) The two stage hierarchical pipeline

Fig. A.7: Illustration of the three different classification pipelines, shown for the multi-class classification
problem when considering N defects. Dashed boxes shows output of the classifiers.

to detect cracks, led to a branch of research in the field, which is still active. However,
these morphology and crack detector based approaches are hindered by the fact that
the methods are designed for specific defects or environments, and therefore do not
necessarily generalize well. There has therefore simultaneously been a push towards
machine learning based approaches combined with semi hand-crafted and designed
feature descriptions. These feature descriptions are often based on underlying patterns
in the frequency or spatial domains of the entire image that may not be immediately
obvious for humans. By analyzing a feature representation of the entire image, the
problem at hand is generally shifted from designing hand-crafted pipelines for detec-
tion, segmentation, and classification, into choosing representative feature descriptors
and machine learning algorithms. This branch of the field was first investigated in
2003 and has been widely applied since 2008, and as of 2018 the advances of deep
learning and CNNs have been utilized. Simultaneously, color images are more utilized,
as methods are now more capable of incorporating the extra information. Lastly, there
have been very few efforts made with regard to making predictions temporally coherent.
Only Myrans et al. [72] have evaluated how temporal filtering affects the consistency
of the defect predictions of modern classification systems. The feature description and
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general pipeline methodologies over the years are shown in Figure A.5 - A.6, based on
the methods in Table A.1.

Within the machine learning branch there has been three clear trends with regard
to primarily the multi-class and multi-label classification tasks. The systems clas-
sify images using either an ensemble of binary classifiers, a two stage hierarchical
approach consisting of a binary and multi-class detector, or a single multi-class/label
classifier. These methodologies are illustrated in Figure A.7. Each of these methods
have strengths and weaknesses which should be considered. An ensemble of binary
classifiers breaks the complex problem at hand into several smaller and potentially
easier problems, which may be solved using simpler models. This approach leads
to a multi-label approach for free, as several labels can be assigned if each model
outputs a prediction score above a set threshold [77, 135]. However, the ensemble
approach also leads to a more expensive system at the inference stage. The two stage
hierarchical approaches similarly divide the complex problem into its constituents,
primarily for the purpose of speed at the inference stage. A smaller model filters out all
non-defective images, and only run the more complex multi-class/label system when
a defect is present. Lastly, using a single multi-class/label model, allows the model
to draw knowledge from the different classes and develop interconnected hierarchical
rules. This is, however, at the cost of needing more data and resulting in a potentially
more complex decision surface. The ensemble and two stage methods have been widely
used due to the lower complexity of the model and need for less labeled data. It has,
however, also meant that primarily smaller CNN models have been utilized and the
potential of the advances within deep learning have not been fully explored within the
field.

Based on the current and previous trends in the field, we believe that future advances
and breakthroughs will be achieved by the continued adoption of state-of-the-art
computer vision techniques. Specifically, the continued adoption of deep learning based
techniques is required. This is based on the proven success of deep learning techniques
within the image classification, localization, detection and segmentation tasks in the
computer vision field. It seems as if the future trend is to move away from hand-
designed methods, and that the focus of the field is now on employing more advanced
machine learning based approaches, as seen within the last few years [82, 89, 134, 136].
In order to retain transparency in the decision making process, it may be beneficial to
incorporate research from the emerging field of explainable artificial intelligence [140].
Similarly, if the intention is to deploy the developed systems in real world scenarios,
further investigation of the temporal consistency of the produced algorithms are of
high priority and deserves more interest and focus. It may also be beneficial to depart
from developing a system which tries to classify defects in all scenarios, but instead
develop specialized subsystems focusing on classifying defects for specific pipe types
and materials, similar to the ensemble approach of classifying different defects.
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5 Dataset and Evaluation
The evaluation of an algorithm consists of two main elements: the dataset and the
evaluation metric. The dataset is of immense importance when testing an algorithm.
If the dataset is not representative of the type of environment the algorithm should be
used in or simply not large enough to represent the inherent variability of each defect
class, it becomes impossible to state whether the algorithm can generalize. Equally
important is the evaluation metric. If a poor metric is used, it is impossible to state
whether an algorithm generalizes well.

We have investigated the characteristics of the datasets of the papers presented in
Table A.1 and the utilized evaluation metrics in these papers. This is represented in
Table A.2 and described in the following sections. The performance of each method
is not reported due to difference in task, metrics, and datasets, meaning the methods
are not directly comparable. We report information as it is explicitly written in the
papers and do not intend on extrapolating hidden information. Furthermore, to make
the data comparable, we try to report the top level information. This means that e.g.
when predetermined regions are used for training, we only report the amount of regions
of interest, if and only if, the amount of images used for the evaluation process is
not stated; otherwise, we state the amount of images. We have investigated how the
datasets are constructed, in respect to the algorithmic and environmental considerations,
as well as the metrics used for evaluating the performance of the methods.

5.1 Algorithmic Considerations
The datasets are designed for widely different tasks. Some work with the image classi-
fication task either on a binary, multi-class, or multi-label level, which is increasingly
harder. The classification task can be further generalized into the defect detection and
the defect segmentation tasks. Defect detection consists of localizing and classifying
areas with defects, while the defect segmentation task consists of assigning a label to
each individual pixel in the image.

The segmentation tasks have been in focus for many years as part of crack detection
and segmentation. On top of these systems, researchers have built systems to perform
the multi-class and multi-label tasks such as classifying the type of cracks. In some
cases, the terms anomaly detection/segmentation are used to indicate that the class is
not specified but that a defect is detected or segmented [123, 127].

The evaluation protocol of the datasets has been investigated. The most common
approach for evaluation is to utilize a predetermined train, validation, and test split. The
validation set should be used as a test set while training in order to gauge the perfor-
mance, whereas the test set should ideally only be evaluated once when the final model
has been chosen based on the validation score. However, k-fold cross validation (CV)
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is often used when there is not enough data to make the representative data splits. In
these cases, the average of the resulting metric for each fold is reported. This has been
done in different ways. Kumar et al. [77, 83] used 5-fold CV to generate different train,
validation, and test data splits while Meijer et al. [134] used a variation of a 30-fold CV
dubbed leave-two-inspections-out where 2 out of 30 inspections in the dataset were
excluded and saved for validation and testing. Halfawy and Hengmeechai [59] and
Mashford et al. [120] used CV on the training split in order to determine the parameters
of the used SVM. The traditional application of CV where the data is split into training
and testing splits has also been utilized by several authors, with varying amount of
folds [35, 42, 44, 74, 88, 114]. Unfortunately, several papers do not explicitly state
what is in the dataset or how it is evaluated.

5.2 Environment Considerations
With all the previous algorithmic considerations, it is also important to consider the
actual environments represented by the datasets. These considerations are, however,
not always explicitly reported in the literature.

There are three main components when considering the investigated physical pipes:
the material, the shape, and the size of the pipes. Likewise, the inspection guide used
to label the defects and the country where the data is recorded is also of great interest,
as this will effect what defines the different classes of defects, and potentially the rate
of defects, respectively.

Rigid pipe materials have been investigated extensively, specifically: concrete
[30, 31, 34–36, 38, 40, 55, 58, 59, 65, 72, 74, 75, 77, 78, 83, 88, 89, 107, 108,
110, 113, 116, 118, 120, 122, 123, 132, 134], clay [38, 40, 65, 91, 94] and vitrified
clay [33, 52, 58, 59, 72, 74, 77, 78, 83, 115, 132, 135], brick [72, 74], iron [77],
and stoneware [116, 122]. Flexible pipe materials have been less investigated, with
primarily PVC pipes [78, 83, 88, 89] being used, with instances of HDPE [88, 89] and
generic plastic pipes [116].

Similarly, datasets has primarily consisted of circular pipes [33–36, 58, 59, 72,
74, 75, 78, 89, 122, 123], with instance of rectangular [89], egg [72, 74], and horse-
shoe [72, 74] shapes also being included in the datasets. The size of the pipes has
primarily been below 1000 mm diameter. In some cases, larger pipes with a diameter
up to 3100 mm, known as “tunnels” have also been investigated.

Geographically, the investigated datasets originates from North America [58, 59, 77,
78, 80, 82, 83, 91, 94, 107, 108, 110, 113, 131, 132], China [88, 89], Taiwan [47, 52],
Japan [41, 127], South Korea [85, 90], Australia [65, 120], the Netherlands [134], the
United Kingdom [72, 74], Germany [34–36, 115], and Qatar [135]. Currently, four
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standards have been explicitly stated as being followed when labeling data: the Manual
of Sewer Condition Classification (MSCC) from the British Water Research Center
(WRc), the Pipeline Assessment Certification Program (PACP) from the American
National Association of Sewer Service Companies (NASSCO), the European standard
EN 13508-2, and an unnamed standard from the Japan Sewage Works Association
(JSWA) followed by Ahrary et al. [127]. The PACP guide is an adaption of the MSCC
guide made in collaboration with WRc.

5.3 Metrics
Results can be deceptive, without a good metric. There are, however, no set consensus
on which metrics to use and how to report the results.

For the classification tasks, the most common metric used is accuracy [47, 72,
74, 76–78, 85, 86, 88, 94, 108, 114, 115, 135, 136]. Additionally, auxiliary bi-
nary metrics have also been utilized: precision [77, 86, 87, 89, 135, 136], recall
[77, 86, 87, 89, 134–136], F1-score [86, 89, 136], and the confusion matrix [72, 74, 77,
85, 87, 89, 108, 114, 135]. These metrics are further summarized by using the Receiver
Operator Curve (ROC) [72, 86, 87, 89, 134] and the Precision-Recall (PR) curve [134],
together with the area under the curves, AUROC [72, 87, 89, 134] and AUPR [134].
Similarly, Meijer et al. proposed using conditional metrics when working with a large
imbalanced dataset, namely investigating the specificity and precision at variable recall
values. Myrans et al. [74] proposed reporting the accuracy when the ground truth was
allowed to be within the top-k predictions, for k = {1,2,3,4}, similar in style to how
ImageNet [139] is evaluated. Ganegarada et al. manually inspected how the different
features were clustered [121].

A different set of metric is used for the detection task. Cheng and Wang [80] mea-
sured performance based on the per-class Average Precision (AP), the mean Average
Precision (mAP), and the per-class PR curves and missing rate curves. Kumar and Abra-
ham [78] and Kumar et al. [83] similarly report the AP. Accuracy is reported by several
authors [27, 35, 41, 42, 75, 131], as well as the True Positive Rate (TPR) [35, 127] and
False Positive Rate (FPR) [127, 131], and the confusion matrix [75, 131]. Kirstein et
al. [116] used the F1-score, Paletta and Rome [35] additionally report the amount of
false positives, Moradi and Zayed [75] report recall and precision, and Guo et al. [131]
also report the “true accuracy”, which is equal to the accuracy metric but without false
positives counted. Yin et al. [91] report the mAP, precision, recall, F1-score, and the
confusion matrix. In several cases, no numerical evaluation was reported [30–33, 36].

Similar to the object detection task, the segmentation task is evaluated using
a third set of metrics building upon the classification metrics. Accuracy [39, 40,
59, 120, 122, 132] and the confusion matrix [59, 110, 120, 123, 132] are reported
alongside the recall [59, 123, 132] and precision [59, 123]. Künzel et al. [122] and
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Wang and Cheng [82] report the mean Intersection over Union (mIoU) metric often
used for instance and semantic segmentation tasks. Wang and Cheng also report the
pixel accuracy per class, the mean pixel accuracy, and the frequency-weighted mIoU.
Mashford et al. [120] report the Overall Success Rate (OSR), which is the percentage
of true predictions in the whole image, Guo et al. [132] report the FPR, and Halfawy
and Hengmeechai [59] report the ROC and AUROC. Swarnalatha et al., and Xue-Fei
and Hua did not report any numerical evaluation [55, 56].

For the subfield of crack segmentation, accuracy [44, 45, 58, 62, 63], the confusion
matrix [58, 107] or parts of it [90, 113], precision [54, 58], and recall [58] are still
reported. Halfawy and Hengmeechai [58] also report the FPR. These metrics are,
however, also supplemented by metrics trying to quantify aspects such as the quality,
correctness, completeness, and redundancy of the segmentation [52, 107, 113]. In
many cases, the evaluation is conducted using a “buffer” method where the detections
and ground truth images are morphological dilated and compared in different ways
[110, 113, 120].

5.4 Discussion and Future Directions
In the following, we will discuss the transparency, the datasets, and the used metrics of
the investigated literature.

Transparency

From this survey, it is clear that very few papers openly share data and code imple-
mentation. Throughout all papers investigated in this survey, only Myrans et al. [72]
and Xie et al. [136] state that data can be acquired by request, and only Xie et al.
share their code in a public repository. Heo et al. [90] directly describe the used
MATLAB functions, while Chae share the utilized MATLAB scripts in their doctoral
dissertation [141]. Lastly, Su et al. [51–53] share the MATLAB code for the MSED
algorithm directly in the papers.

This means that all researches utilize local dataset, design their algorithms towards
the specific dataset statistics, and rarely compare with previous methods in order to
determine whether the proposed algorithm improves on the state-of-the-art methods.

Datasets

Within recent years’ data-driven methods have been favored, which has led to a focus on
the classification tasks with few general defect detection and segmentation algorithms.
Concurrently, it is clear that the usage of machine learning and data-driven algorithms
has led to a surge in the amount of the data used. For many papers in the early to
mid-00’s, only a few hundred or thousand images were used. Comparatively, the recent
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papers using CNNs have used between 18,000 and 2,200,000 images for the classifica-
tion task [77, 78, 85–87, 89, 134, 136], and in the case of semantic segmentation, 8.5
billion pixels were labeled [122]. The datasets are further extended through the use of
data augmentations, that might increase the dataset size by a factor of 1000 [77]. The
increase in dataset sizes and focus on classification tasks is shown in Figure A.8.

Additionally, the size of dataset is connected with the complexity of the task. The
complexity increases with the number of classes to detect and classify, necessitating a
larger dataset in order to capture the inherent variance and key elements of the classes.
This has, however, not been consistent as some researches have focused on classifying
a single defect, such as cracks, while others try classifying 13 different classes [74].
Similarly, the ratio of defects and balance of class data has an equally important impact.
If the dataset is imbalanced by containing a majority of images from a single class e.g.
normal pipes the algorithm can be biased towards this class and ultimately be unusable
for the classification task. There is, however, not a clear consensus in the literature
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on how to handle this. Meijer et al. [134] argue that since the vast majority of sewer
stretches do not contain defects, this should be represented in the dataset. Their dataset
consisting of more than 2.2 million images, therefore, only contain approximately
18,000 images with defects, which corresponds to a defect ratio of 0.8%. In order to
counteract this imbalance when training, Meijer et al, Li et al. [89], and Tennakoon et
al. [87] oversample the defective images while Yang and Su [47] compare sampling
with equal and class based prior probabilities. Other attempts consists of grouping
classes with few samples together in an “else” class [89], grouping images with several
classes into a “multiple” class [74], and using data from other classes, which are not in
the classes when evaluating [77, 136].

When looking at the contents of the datasets, there are clear tendencies towards
rigid, specifically concrete, circular non-man-entry pipes. This makes sense from a
historic perspective as these materials are commonly used. However, pipe materials
such as PVC and HDPE have only been investigated in the literature as of 2012. There
is thus a lack of research applied to inspection of flexible pipes that not only look
different, but also have defects manifesting themselves in different ways compared to
rigid pipes. Even more noticeable is the lack of datasets investigating pipes restored
by having a lining applied. Similarly, the focus has been primarily on small circular
pipes. While by far the prominent pipes shape and size used, small circular pipes not
be the sole focus when considering pipe shapes and sizes. Information regarding the
condition during the inspections such as whether the pipe was flushed beforehand or
whether it is the main or lateral pipes is also often not stated.

There have also been tendencies in the literature to not explicitly state where the
data is recorded or how it was labeled. When the inspection guide used for labeling
defects is not explicitly stated, it becomes impossible to know what a classified defect
truly encompasses and represents. Furthermore, based on the results presented by
Dirksen et al. [3], the quality of the human annotations is not perfect, resulting in
up to 25% false negatives, when using the EU standard. This is problematic, as it
directly affects the quality of the data, and thereby the trained algorithms. A potential
solution could be to have a group of inspectors each review all, or a subset, of the
data, and determine the uncertainty for each defect class based on the variability of the
inspectors annotations. This is, however, cumbersome and expensive, and therefore
unrealistic for large amount of data. The problem may also be handled by considering
algorithmic approaches, looking into research areas such as robust algorithm and noisy
label training [143]. Similarly, assuming a large enough dataset is provided, where the
majority of each class is correctly labeled, a probabilistic approach may be adopted in
order to quantify the uncertainty of the classification.

There is currently no clear consensus on what datasets should consist of, how many
images and the kind of images should be included, the kind of pipes investigated, or
how the data is labeled. All of these makes it immensely difficult to actually compare
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any reported results, and determine whether the methods and the selected parameters
actually generalize across different sewer networks.

Additionally, there are currently differing opinions on whether the datasets should
be balanced according to the amount of classes in the dataset, or represent the actual
distribution of defects. We believe that using datasets that are heavily skewed towards
one class is not the ideal approach, even if it matches the real life distribution. The ma-
jority of data in the skewed dataset would be practically unusable, as it will potentially
lead to overfitting for that single class, and not properly learn to solve the classification
tasks. Similarly, the dataset should on the other hand not consists of a large amount
of defects following a long tailed distribution, as some classes will simply not have
enough samples to be properly learned by the currently employed methods. This is,
however, problematic as the most severe defects are also often the rarest. We therefore
believe that the dataset should contain a balanced amount of normal and defective
images, where the defective images contain the different defect class of interests with
a suitable amount of samples. In order to still classify the rarest and arguably most
important defects, we suggest excluding these defects from the general classification
task, and instead employ methodologies specifically designed to classify these rare and
sparser cases.

Metrics

There is currently no definitive metric within the field of automated sewer inspection.
The most common classification metric is accuracy, which is only a good metric on
balanced datasets. In order to account for this, some authors have also used precision,
recall, the F1-score, and the confusion matrix. These are, however, by no means
consistently reported. Furthermore, these are binary metrics that need to be averaged
in some way across all classes. This is accounted for by reporting the ROC and PR
curves, which are further summarized using the AUROC and AUPR. The ROC curve
is, however, similarly to accuracy, not a good metric when working with imbalanced
datasets [144].

The division in used metrics becomes even more apparent for the detection and
segmentation tasks. There are currently no clear tendencies in which metric to use. The
closest to a common metric is the accuracy metric, which is as earlier mentioned not a
reliable metric for imbalanced datasets.

Based on the conducted survey, we are proposing the following set of recommenda-
tions that we believe will streamline the research conducted within this field, and in
general improve the field as a whole.

1. We believe that in order to properly foster transparent and fair research, public
and freely available datasets are needed as benchmark tasks. When looking at
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the impact that the ImageNet [139] and the COCO [145] datasets and challenges
have had within the computer vision field as a whole, it is clear that many of
the advances from the last 10 years would not have been possible otherwise.
Furthermore, public and free datasets will lead to a lower bar of entry into the
field and easier collaboration on research ideas, which is expected to further
improve research within this field.

2. A standardized set of metrics has to be adopted within the field. For the detection
and segmentation tasks, the mAP and mIoU metrics used by the COCO chal-
lenges are obvious choices. For the classification tasks, it is less clear cut, other
than it is clear that the commonly used accuracy metric should not be used for
imbalanced datasets. We believe that averaged precision, recall, and F1-scores
are good choices as auxiliary metrics, in conjunction with the confusion matrix
and PR curve. As for the main metric, a top-k accuracy metric as calculated in
the ImageNet classification challenge may be fitting.

3. We strongly believe that in order to make this research field more transparent, fair,
and reproducible, it is important that the code used for publications is publicly
available. This is common practice in several other computer vision fields by
both industry and academic researchers.
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6. Conclusion

6 Conclusion
This survey paper has provided a thorough overview of research within image-based
automated CCTV and SSET sewer inspection over the last 25 years. The automated
inspection pipeline was split into acquisition, pre-processing, detection and segmen-
tation, feature description, classification, and temporal filtering, which were each
investigated in depth. From this dive into the literature several trends throughout
the years were uncovered showing the rise and fall of geometric and hand-crafted
algorithm approaches, the increase in morphological based methods, and the current
trend of utilizing more designed features and the usage of data-driven machine learning
algorithms, specifically CNNs. Similarly, the utilized datasets and evaluation protocols
were investigated in-depth, revealing tendencies to focus on rigid circular pipes, the
usage of widely differently constructed datasets, and the lack of standardized evaluation
metrics. Based on the conducted survey, we recommend that one or more free and
publicly available datasets are created, with pre-defined standardized metrics, which
will act as benchmarks for the research community. We also recommend the adoption
of open-source code for each publication, in order to promote an open and reproducible
research environment.
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1. Introduction

Abstract
Perhaps surprisingly sewerage infrastructure is one of the most costly infrastructures
in modern society. Sewer pipes are manually inspected to determine whether the pipes
are defective. However, this process is limited by the number of qualified inspectors
and the time it takes to inspect a pipe. Automatization of this process is therefore
of high interest. So far, the success of computer vision approaches for sewer defect
classification has been limited when compared to the success in other fields mainly
due to the lack of public datasets. To this end, in this work we present a large novel
and publicly available multi-label classification dataset for image-based sewer defect
classification called Sewer-ML.

The Sewer-ML dataset consists of 1.3 million images annotated by professional
sewer inspectors from three different utility companies across nine years. Together with
the dataset, we also present a benchmark algorithm and a novel metric for assessing
performance. The benchmark algorithm is a result of evaluating 12 state-of-the-art
algorithms, six from the sewer defect classification domain and six from the multi-label
classification domain, and combining the best performing algorithms. The novel metric
is a class-importance weighted F2 score, F2CIW, reflecting the economic impact of
each class, used together with the normal pipe F1 score, F1Normal. The benchmark
algorithm achieves an F2CIW score of 55.11% and F1Normal score of 90.94%, leaving
ample room for improvement on the Sewer-ML dataset. The code, models, and dataset
are available at the project page http://vap.aau.dk/sewer-ml

1 Introduction
The sewerage infrastructure is an important but often unnoticed infrastructure. 240
million US citizens are serviced by 1.28 million kilometers of public sewer pipes and
800,000 kilometers of privately owned pipes [1]. In order to maintain public health and
sanitation, and avoid e.g. unintentional sewer overflows, a 271 billion dollar investment
is needed within the next 10 years in order to service an additional 56 million US
citizens [1]. Additionally, all of these sewer pipes have to be regularly inspected to
avoid sudden pipe collapse or reduced sewer capabilities.

Sewer inspections are currently performed on location by a professional inspector,
who simultaneously maneuvers a remote controlled vehicle with a movable camera
through the sewer pipe. This is hard and tiresome work, as the inspectors must look at a
video feed for a prolonged amount of time. This can lead to flawed inspections, which
in the worst case can result in damage to the sewerage infrastructure. Furthermore,
the variance in visual appearance within sewer pipes further complicates the task, see
Figure B.1.

Therefore, the field of automated sewer inspection has been researched by industry
and academia for the last three decades, through the development of different robot
platforms and specialized algorithms [2]. However, there are at the moment no means
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(a) DE, PF (b) RO, FS, AF

(c) PH, RB (d) Normal pipe

Fig. B.1: Sewer-ML data examples. Images showcasing a subset of the classes and the visual variation in
the dataset. The class codes below each image are described in Table B.1.

to determine which method is the best. Haurum and Moeslund [2] found that there are
no open-source benchmark datasets, little to no open-source code, and no agreed upon
metrics or evaluation protocol. Instead, many researchers utilize their own datasets
from different countries and follow different inspection guides. This leads to stagnation
in the field when compared to other computer vision fields and a lack of reproducibility
in the automated sewer inspection field.

For these reasons, we present the open-source Sewer-ML multi-label defect dataset,
containing 1.3 million images annotated by professional sewer inspectors. The dataset
is collected from three different Danish water utility companies over a period of nine
years. Our contributions are fourfold:

• A publicly available multi-label sewer inspection dataset with 1.3 million anno-
tated images.

• An open-source comparison of state-of-the-art methods using the new dataset.

• A novel, class-importance weighted F2 metric, F2CIW.
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• A benchmark algorithm combining knowledge from sewer defect and multi-label
classification domains.

The paper is structured as follows. In Section 2, we review the related works within
the multi-label image classification and automated sewer inspection fields. In Section 3,
the proposed dataset is introduced and described in detail. In Section 4, we introduce
our novel metric, test several state-of-the-art methods on the new dataset, and conduct
an ablation study on the obtained results leading to our benchmark algorithm. Finally,
in Section 5, we summarize our findings and conclude the paper.

2 Related Works
Multi-label Image Classification. Through the years, the field of multi-label classifi-
cation has experienced several different trends. Classically, the naive way to approach
the problem has been to use an ensemble of binary classifiers and ignore label cor-
relations [3]. This approach has been replaced by methods consisting of a single
model incorporating the label correlations into the method itself. These trends have
included ranking the label predictions [4–6], utilizing object localization techniques
and attention mechanisms [7–16], or incorporating a recurrent sub-network to encode
label dependencies [10, 12, 17–20].

Current state-of-the-art networks focus on utilizing the inherent graph nature of
the multi-label problem [21–27], by using the co-occurrence matrix between labels
in combination with graph convolutional networks (GCNs) [28]. Chen et al. [23]
proposed the ML-GCN method, which combines the output of a two-layer GCN
with the last feature map of a ResNet-101 [29] network to achieve a well performing
multi-label classifier. Wang et al. [26] built upon this idea in their KSSNet model.
KSSNet improves the performance over ML-GCN by fusing features from a GCN
into the final feature map of each residual block in a ResNet-101 model, using a novel
lateral connection module. Furthermore, the GCN adjacency matrix is created by
combining the label correlation matrix with a label knowledge graph. Lastly, it is also
possible to simply take a network which has been proven to work well on a multi-class
classification task and instead train it with a relevant loss objective, often the binary
cross-entropy loss. This is the case with the recent work of Wu et al. [30] who utilized
the ResNet-101 architecture and Ridnik et al. [31] who proposed a modified variation
of the ResNet architecture, called TResNet. The TResNet network has outperformed
several models designed for the multi-label task.

The multi-label image classification field has classically worked on smaller datasets
such as PASCAL VOC [32], NUS-WIDE [33], and COCO [34], each containing
between 5 to 80 thousand training images and 20-80 classes. Therefore, the applied
methods have often relied on pre-training the backbone network on ImageNet [35].
However, recently the Tencent-ML [30] and Open Images datasets [36], each containing
between approximately 6 and 12 million training images and 11 to 20 thousand classes,
have been proposed. These datasets allow for training methods directly on the multi-
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label task and not pretraining on ImageNet. All of these datasets focus on natural
scene images with “common” objects. Furthermore, these datasets are often severely
imbalanced, as e.g. the class “person” occurs more frequently than the class “sheep”.
Therefore, there have been attempts to counteract the data imbalance through weighting
the loss objective. This has classically been achieved by utilizing some variant of the
inverse class frequency, though custom loss objectives have been proposed specifically
for the imbalanced data problem [37–40].

Automated Sewer Inspection. For several decades there has been an increasing
industrial and academic interest in automating the sewer inspection process. This line
of research builds heavily upon the general computer vision field, though the current
state-of-the-art does not fully utilize the recent advances within computer vision.

Several different types of sensors [41, 42], such as acoustic sensors [43–45], laser
scanners [46, 47], and depth sensors [48–51], have all been utilized for sewer pipe
reconstruction and detecting specific defects but have not seen widespread usage in
more generalized tasks. Conversely, image and video based approaches have been
utilized to detect, segment, and classify a wide variety of sewer defects. Traditionally,
hand-crafted features and small, model based classifiers or heuristic decision rules have
been utilized [52–54]. However, in recent years deep learning based methods have
gained traction within the field. This has led to advances within video processing [55–
58], water level estimation [59, 60], defect detection [61–63], segmentation [64–66],
and classification in multi-class and multi-label settings [52, 67–72]. For a full review
of the field we refer to Haurum and Moeslund [2].

Within sewer defect classification there has been a recent increase in interest,
focused on three different system settings: a single end-to-end classifier, a two-stage
approach consisting of a binary classifier and a multi-class/label classifier, and an
ensemble of binary classifiers. Kumar et al. [69] utilized an ensemble of binary
classifiers to categorize four types of defects using a small, two-layer CNN trained
in a one vs. all manner. Hassan et al. [68] used AlexNet [73] and Li et al. [70] a
modified ResNet-18 network [29], trained in an end-to-end manner. Similarly, Meijer
et al. [71] built upon the work of Kumar et al. using a small, three-layer CNN for
multi-label defect classification, trained end-to-end. Lastly, Xie et al. [72], Chen et
al. [67], and Myrans et al. [52] all used two-stage approaches. Xie et al. trained two
small, three-layer CNNs, where the first CNN determines whether a defect is present,
while the second CNN, a fine-tuned version of the first, classifies the defects. Chen
et al., on the other hand, use the lightweight SqueezeNet [74] network for the initial
binary defect classification and the deeper InceptionV3 [75] network for predicting
the defect class. Myrans et al. differ from the other recent methods by using the GIST
feature descriptor [76] and two Extra Trees [77] classifiers in sequence.

All prior methods utilize separate private dataset with different classes and class
distributions, due to the inherent commercial interest involved in the field [2]. The
datasets are typically either balanced such that the number of observations per class is
balanced, the number of normal and defect observations are balanced, or the dataset is
not balanced but inherently skewed. For example, Meijer et al. [71] utilized a dataset
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consisting of 2.2 million images, but only 17,663 of those images contain defects. In
order to counteract this large imbalance, Meijer et al. increased the number of defective
observations by a factor of five through oversampling. Additionally, there are no
common metric nor evaluation protocol, making fair comparison between methods
impossible [2]. All of these factors severely hinder the reproducibility and progress
within the field.

3 The Sewer-ML Dataset
In this section, we present how the data was collected (Section 3.1), how the multi-label
ground truth annotations are obtained (Section 3.2), how the dataset is constructed (Sec-
tion 3.3), and how we redact information which is present in the images (Section 3.4).
Further dataset insights are presented in the supplementary materials.

3.1 Data Collection
A total of 75,618 annotated sewer inspection videos were obtained from three different
Danish water utility companies from the period 2011–2019. All videos were annotated
by licensed sewer inspectors following a common Danish standard [78] containing 18
specific classes listed in Table B.1. According to the inspection standard, each class
is given a point score representing the economic consequence of the class, which is
determined by professionals involved in the sewer inspection field [79]. We normalize
the point scores to the interval [0,1] by dividing all point scores by the largest one,
denoting the new values as the class-importance weight (CIW). The collected data
span a large variety of materials, shapes, and dimensions from both main and lateral
pipes. This leads to a large variety in the available data, reflecting the natural variance
observed during actual sewer inspections.

3.2 Multi-Label Ground Truth
The dataset is constructed by extracting a single frame at each class annotation in a
sewer inspection video. Each annotation corresponds to a ground truth annotation of
a single class at a specific second in the video, with an associated location within the
pipe. We obtain the multi-label representation by combining annotations close to each
other in the pipe. This is a noisy approach as the camera can rotate in a hemisphere
and does not guarantee that all annotations will be visible. For each annotation in an
inspection video, we aggregate the annotated class with all other annotated classes
which are up to 0.3 meters earlier in the pipe or 1.0 meters ahead in the pipe. These
values have been decided through manual inspection as the position measurement can
be noisy. This is necessary in order to include nearby and upcoming, visible classes.
Lastly, some entries are noted as continuous, which means the class occurs frequently
within a specified stretch of the pipe, but are not explicitly annotated at each occurrence.
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Table B.1: Sewer inspection classes. Overview and short description of each annotation class [78] and the
class-importance weights (CIW) [79].

Code Description CIW
VA Water Level (in percentages) 0.0310
RB Cracks, breaks, and collapses 1.0000
OB Surface damage 0.5518
PF Production error 0.2896
DE Deformation 0.1622
FS Displaced joint 0.6419
IS Intruding sealing material 0.1847
RO Roots 0.3559
IN Infiltration 0.3131
AF Settled deposits 0.0811
BE Attached deposits 0.2275
FO Obstacle 0.2477
GR Branch pipe 0.0901
PH Chiseled connection 0.4167
PB Drilled connection 0.4167
OS Lateral reinstatement cuts 0.9009
OP Connection with transition profile 0.3829
OK Connection with construction changes 0.4396

Table B.2: Split between defective and normal observations. Number of images containing normal and
defective observations in the three dataset splits.

Type Training Validation Test Total
Normal 552,820 68,681 69,221 690,722
Defective 487,309 61,365 60,805 609,479
Total 1,040,129 130,046 130,026 1,300,201

We handle this edge case by adding the continuous class to all other annotated class
occurrences within the defined pipe stretch.

The 18 classes are not all instances of pipe defects but can also indicate important
information such as a change in pipe shape or material, occurrence of a branch pipe
or pipe connections. The VA class is a special class, as it is annotated at the start and
end of an inspection video, as well as when the water level changes within a 10% step
interval. This means all annotations have an associated water level.

Additionally, we obtain observations of cases with no annotated classes, denoted
non-defective (ND), using a set of heuristic rules. First, we apply a one meter buffer
zone around each annotated class, such that there is at least two meters between
annotated classes before ND images can be extracted. If there are any active continuous
class between the annotated classes, no ND images are extracted. Furthermore, we
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Table B.3: Sewer dataset comparison. A comparison of datasets used for sewer defect classification and
the proposed Sewer-ML dataset. We report whether the dataset is publicly available (P), the annotations are
multi-label (ML), the number of images with defects (DI), images with normal pipes (NI), annotated classes
(C), and the Class Imbalance (CI) for each dataset rounded to the nearest integer.

Dataset P ML DI NI C CI
Ye et al. [54] 1,045 0 7 13
Myrans et al. [52] 2,260 0 13 102
Chen et al. [67] 8,000 10,000 5 5
Li et al. [70] 8,455 9,878 7 19
Kumar et al. [69] 11,000 1,000 3 4
Meijer et al. [71] X 17,663 2,184,919 12 12,732
Xie et al. [72] 22,800 20,000 7 8
Hassan et al. [68] 24,137 0 6 3
Sewer-ML X X 609,479 690,722 17 123

enforce that the inspection vehicle may at maximum move 0.25 m/s, calculated based
on the time and distance difference between the two classes. This restriction is based on
the maximum speed the inspectors are allowed to move the inspection vehicle during an
inspection. Lastly, ND images are only extracted when the inspection vehicle is moving
forward through the pipe. This condition is checked using the distance information
associated with each annotation. If these conditions are met we can extract ND images.
In order to avoid duplicate images of the same pipe area, we extract one ND image per
meter uniformly sampled between the two annotated classes. The video timestamps of
the ND images are calculated using a constant velocity assumption. Examples from
the dataset are shown in Figure B.1 and the supplementary materials.

Moreover, the VA class is special, as it is a continuous entity throughout the video.
The VA annotations are grouped together with the ND class if there are no other co-
occurring labels. This leads to a total of 690,722 images of “normal” pipes with no
annotated classes and 609,479 images with one or more annotated classes which we
call “defective”, resulting in a total of 1,300,201 images. Lastly, we pose the multi-label
classification problem as predicting the class labels in Table B.1, except for the VA
class. This means a normal pipe with no class annotations is the absence of any classes.
Therefore, it is an implicit class.

3.3 Dataset Construction
We construct the dataset by first splitting the data into three splits: training, validation
and test. We randomly select videos until 80% of all annotations are in the training
split and the remaining 20% equally split between the validation and test splits. This
leads to 60,356 videos for training, 7,692 videos for validation, and 7,570 videos for
testing. This way it is ensured that no images from the same pipe are present between
splits. These splits lead to a near even split of normal and defective observations, see
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Table B.2.
Looking at the distribution of the class occurrences, as shown in Figure B.2, the

occurrences are evenly represented in each split, suggesting a similar class distribution
in each of the splits. Moreover, it is evident that the constructed dataset is skewed
towards a few major classes, such as the “Normal” and “FS” classes. This visually
shows the large imbalance in the dataset, representative of the real life distribution
of the classes. Unlike prior sewer inspection datasets, we do not manually balance
the classes. We quantify the class imbalance (CI) in the dataset by calculating the
ratio between the largest and smallest class and compare with the previously used
sewer datasets, see Table B.3. Meijer et al. have a large CI due to sampling every
five centimeters, resulting in a large number of normal images. Uniquely, Sewer-ML
contains a large number of defect images, which are needed to train discriminative
classifiers.

Similarly, it is interesting to see how often several classes are present at the same
time. For each split, we plot the distribution of the number of labels in the observations
in Figure B.2. In this plot we count the normal observations as having zero labels as it
is an implicit label. We see that there is an equal number of observations with one or
two classes and the number of observations reducing as more classes are present. We
quantify this using the label cardinality (LC) using Equation B.1 [80] for each split.
For these measures, we count the normal pipe observations as having one label.

LC =
1
N

N

∑
i=1

C+1

∑
c=1

y(i)c (B.1)

where N is the number of observations in the split, C is the number of annotated classes,
and y(i)c is the ground truth value for class c in observation i.

We find that across splits, the LC is 1.49-1.50, indicating that on average there
are 1.5 labels per observation. We cannot compare this with the LC of the datasets in
Table B.3, as the datasets and ground truth data are not public.

3.4 Data Anonymization
The raw data provided by the water utility companies have all been post-processed
by the inspection software to include metadata and annotation text information on the
video itself. In order to avoid including ground truth information in the images and
any potential privacy issues, the text has been redacted as shown in Figure B.3. Since
the overlaid information is not static through the inspection video, due to e.g. class
codes appearing on screen or pipe material changing, a single redacting mask cannot
be used. This leads to a large annotation task, which would be long and tiresome to
do manually. Instead, inspired by Borisyuk et al. [81], we train a Faster-RCNN [82]
model on examples from the overlaid text data. 23,044 videos are used, with one
frame extracted per video. The data is split into a training split of 20,739 images and
a validation split of 2,305 images. All text information is manually annotated with
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Fig. B.2: Dataset label statistics. The frequencies of the annotated classes and the normal class are shown
in the top plot in descending order. The frequencies of the number of labeled classes per split are shown in
the bottom plot, where “Normal” pipes have zero labeled classes. Note that the y-axes are log-scaled.
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(a) Before text redaction. (b) After text redaction.

Fig. B.3: Effect of the data anonymization process. By applying our text redaction pipeline the system is
capable of detecting and blurring all text information on the images.

bounding boxes. The Faster-RCNN backbone is a ResNet-50 FPN [83] pre-trained
on ImageNet [35]. We fine-tune the last three residual blocks. As the text data is
distinctly different from the data present in the COCO dataset, we use custom anchor
boxes. We choose to use three anchor box ratios and five scales, based on the bounding
box ratio and area information from the training split. Full details are available in the
supplementary materials.

Using the COCO metrics [34], we achieve an mAP@[0.75] of 96.39% and
mAP@[0.5:0.95] of 89.10%. The Faster-RCNN model is applied on all 1.3 mil-
lion images in the dataset, and the detected text is removed by applying a Gaussian
blur kernel with a radius of 51 pixels. While this is not a perfect metric score, looking
at the detections tells another story. We find that the model detects strings of text,
annotated with several bounding boxes, as a single bounding box. An example of this
is the “Ø 200” in Figure B.3. Similarly, text annotated with a single bounding box, are
at times detected with several boxes. This leads to a lower metric score even though
the redactions are correct. Therefore, we conclude that data leakage is not an issue in
the dataset.

4 Benchmark
In this section, we present an approach that can be used as benchmarking for future
work on the dataset. To this end, we first select (Section 4.1), train (Section 4.2), and test
current state-of-the-art algorithms from the sewer defect classification and the general
multi-label classification domains in order to see how they perform on the dataset
(Section 4.4), using our novel class-importance weighted F2 metric (Section 4.3).
Finally, we conduct an ablation study leading to our benchmark algorithm (Section 4.5),
and discuss the per-class performance (Section 4.6).
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4.1 Methods
From the sewer inspection domain we compare the methods proposed by Kumar et
al. [69], Meijer et al. [71], Xie et al. [72], Chen et al. [67], Hassan et al. [68], and
Myrans et al. [52]. These six methods are chosen to represent the recent advances
within sewer defect classification [2]. For the ensemble of binary classifiers and the end-
to-end methods, we train using the full dataset. However, for the two-stage classification
approach, the first stage is trained on the full dataset to predict the presence of any
annotated class, while the second stage is trained to predict the classes from a subset of
the data containing annotated classes.

From the general multi-label classification domain, we choose four of the current
best performing methods on the COCO and VOC datasets [37]. We choose two state-
of-the-art graph-based methods, ML-GCN by Chen et al. [23] and KSSNet by Wang
et al. [26], each utilizing a ResNet-101 [29] backbone. Furthermore, we also test the
vanilla ResNet-101 model, as used by Wu et al. [30], and the TResNet architectures
from Ridnik et al. [31], where we compare the medium, large, and extra-large versions
of the model. All models are trained using an end-to-end approach.

While the normal/defect classification task is intrinsically related to the anomaly
detection task, we do not compare with the state-of-the-art anomaly detection methods
[84]. This is due to the sewer pipe owners requiring the defect classes in order to
correctly manage their assets.

4.2 Training Procedure
Hyperparameters. In order to ensure comparability, we train all networks from
scratch using the exact same training procedures. We base our training procedure
on the methodology proposed by Goyal et al. [85] for efficiently training models on
ImageNet. We train each network for 90 epochs, with a batch size of 256 using SGD
with momentum. We utilize a learning rate of 0.1, momentum of 0.9, weight decay of
0.0001, and multiply the learning rate by 0.1 at epochs 30, 60, and 80. The ML-GCN
and KSSNet networks utilize re-weighted correlation matrices in the GCN subnet,
where the hyperparameters stated by the original authors are used. We do not construct
a knowledge graph for KSSNet, as the class labels are abbreviations containing little
semantic information. We use a one-hot encoding for the initial input to the GCN.
For the Myrans et al. [52] system, the standard GIST hyperparameters are used and
the first and second stage classifiers use 100 and 250 trees, respectively, a maximum
depth of 10, and log2(d) features when splitting nodes, where d is the dimensionality
of the GIST feature vector. We find the hyperparameters through a small grid search,
described in the supplementary materials.

Data augmentation. The training data are pre-processed by resizing the images to
224×224, horizontally flipping with a 50% chance, jittering the brightness, contrast,
saturation, and hue by ±10% of the original values, and normalizing the data using
the training split channel mean and standard deviation. During inference the images
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are simply resized to 224×224 and normalized. For the InceptionV3 network used by
Chen et al., the images are resized to 299×299 [75]. For the GIST features the images
are converted to grayscale and resized to 128×128 [52].

Loss objective. We train using the standard binary cross-entropy loss, see Equa-
tion B.2, which is commonly used in the multi-label image classification domain.

L(x,y) =
1
C

C

∑
c
−[wcyc log(σ(xc))+ (1− yc) log(1−σ(xc))] (B.2)

where C is the number of annotated classes in the dataset, yc denotes whether class c
is present in the current image, xc is the raw output of the model for class c, σ is the
sigmoid function, and wc is the weight for class c if it is present in the current image.

As the dataset is imbalanced, we weight each positive class observation by the
negative-to-positive class observation ratio, wc, calculated using Equation B.3. This
way the loss of minority classes are weighted higher when present in the images, while
the loss of majority classes are weighted lower when present. For the InceptionV3
network, a lower weighted loss from the auxiliary classifier is added.

wc =
N−Nc

Nc
(B.3)

where N is the number of images in the training split, and Nc is the number of images
in the split containing class c.

4.3 Metrics
Currently, there is no consensus on how sewer defect classification methods should
be evaluated [2]. Commonly, the accuracy is used, but this is a poor metric when
working with skewed datasets. Moreover, the metrics do not include domain knowledge.
Therefore, we evaluate the model performance using two metrics incorporating domain
knowledge, based on the Fβ metric [86],

Fβ = (1+β
2)

Prc ·Rcll
β2Prc+Rcll

(B.4)

where Prc and Rcll are the precision and recall of the classifier, respectively, and β is a
weighting of recall, such that the recall β times more important than precision.

When performing sewer inspections, false negatives have a larger economic impact
than false positives. This is due to false negatives possibly leading to faulty pipes
going unnoticed, whereas a human will verify the predicted classes before a renovation
decision is made. Therefore, it is more important to have a high recall than high
precision, if both cannot be achieved. To incorporate this domain knowledge into the
evaluation, we set β = 2 when evaluating the annotated classes. This is similar to
previous tasks where recall is weighted higher than precision [87–89]. The per-class
F2-scores are averaged using a novel, class-importance weighted F2-score, F2CIW. The
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classes are weighted by the associated CIW, see Table B.1, as classes with a high CIW
will be of larger importance for the pipe owners. F2CIW is calculated as shown in
Equation B.5.

F2CIW =
∑

C
c=1 F2c ·CIWc

∑
C
c=1 CIWc

(B.5)

where CIWc and F2c are the CIW and F2-score for class c, respectively, and C is the
number of annotated classes.

However, the normal pipes are not included in the F2CIW computation, as normal
pipes do not have a CIW. In order to quantify whether the tested methods can handle
the absence of classes, and not simply maximize the F2CIW score by predicting one or
more classes at all times, we use the F1-score for the normal pipes, F1Normal.

4.4 Model Performances
We report the validation and test split results of each model in Table B.4. Unless
otherwise noted, a threshold of 0.5 is used to binarize the predictions. For the two-stage
approaches, the prediction score from the first stage is used for all classes if the binary
classifier detects no classes, and otherwise, the score of the second stage network is
used. The results are obtained using the model weights from the epoch with the lowest
validation loss. In most cases, the lowest validation loss is obtained after 30-40 epochs,
whereafter the networks start overfitting. This indicates that while we utilize a dataset
nearly the size of ImageNet, it might not be necessary to train for as long, due to all
images being from the same visual domain. We also see that the small CNNs from
Kumar et al. and Meijer et al. immediately diverge during training. This is possibly
due to only applying two or three pooling layers before connecting to dense layers,
leading to a parameter count of 269 and 135 million, respectively. Comparatively, the
small CNN used by Xie et al., uses three pooling layers as well as a pixel stride of
two in the last two convolutional layers, leading to a parameter count of nine million
parameters. Similarly, we observe that the ML-GCN method also diverges immediately,
whereas the KSSNet method manages to train. We hypothesize that this is due to the
lateral connections in the KSSNet adding stability during training. The loss curves
are reported in the supplementary materials. We observe that the methods from the
multi-label classification domain are better at classifying the specific classes, with
TResNet-L achieving a F2CIW test score of 54.75%. However, the simple two-stage
approach by Xie et al. achieves the highest F1Normal score of 90.62%. This indicates
that the approach by Xie et al. excels at distinguishing whether there are any classes,
but not which one. The results are not solely due to the two-stage approach. Chen et al.
also utilize a two-stage approach, but this produces significantly worse results. It is
observed that the first stage simply predicts a “defect” in all images, which the later
stage cannot properly handle. This is reflected by a low F1Normal score. Therefore, it
appears there is value in using a small CNN for the first stage.
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Table B.4: Performance metrics for each method. We present the different metrics for each method.
The metrics are presented as percentages, and the highest score in each column is denoted in bold. The
Kumar [69], Meijer [71] and ML-GCN [23] methods are not shown as they diverged during training. The
“Sewer” and “General” identifiers indicate whether the method is from the sewer defect or multi-label
classification domains, respectively. The classic multi-label metrics [24] are reported in the supplementary
materials.

Model Validation Test
F2CIW ↑ F1Normal ↑ F2CIW ↑ F1Normal ↑

Se
w

er

Xie [72] 48.57 91.08 48.34 90.62
Chen [67] 42.03 3.96 41.74 3.59

Hassan [68] 13.14 0.00 12.94 0.00
Myrans [52] 4.01 26.03 4.11 27.48

G
en

er
al

ResNet-101 [29] 53.26 79.55 53.21 78.57
KSSNet [26] 54.42 80.60 54.55 79.29

TResNet-M [31] 53.83 81.23 53.79 79.91
TResNet-L [31] 54.63 81.22 54.75 79.88

TResNet-XL [31] 54.42 81.81 54.24 80.42

4.5 Ablation Studies and Benchmark Algorithm
Looking at the results in Table B.4, there is merit to both the end-to-end and two-stage
approaches. We investigate whether the results can be improved further by combining
end-to-end and two-stage methods. In the supplementary materials we report two
additional ablation studies focused on getting a better understanding of the two-stage
results.

Effect of different second stage classifiers. Based on our results in Table B.4,
we look into whether combining the general multi-label methods with two-stage
approaches would lead to state-of-the-art performance. Specifically, we combine the
first stage of Xie et al. with each of the multi-label classifiers in Table B.4. The results
are shown in Table B.5. We observe that by utilizing the first stage of Xie et al. both the
F2CIW and F1Normal scores are improved when compared to the best results in Table B.4.
Moreover, the performance is improved for all tested methods. Specifically, by using
the first stage to filter out normal pipes, all general multi-label methods increase their
F2CIW scores by approximately 0.5-1 percentage points, and the F1Normal by up to 10-
12 percentage points. For the sewer domain methods their F2CIW scores are increased
by 5-13 percentage points, and the F1Normal by 65-90 percentage points. From these
results we can conclude that using a two-stage approach with the binary classifier
from Xie et al. [72] and the TResNet-L model [31] is the Benchmark algorithm on
Sewer-ML, with an F2CIW score of 55.11% and F1Normal score of 90.94%.
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Table B.5: Two-stage classifier permutations. We evaluate each of the tested multi-label classifiers in a
two-stage setup together with the first stage used by Xie et al. [72].

Second
Stage

Validation Test
F2CIW ↑ F1Normal ↑ F2CIW ↑ F1Normal ↑

Se
w

er Chen [67] 48.67 91.06 48.19 90.60
Hassan [68] 18.08 91.08 17.89 90.62
Myrans [52] 27.87 91.08 27.83 90.62

G
en

er
al

ResNet-101 [29] 54.45 91.28 54.01 90.88
KSSNet [26] 55.37 91.30 55.09 90.95

TResNet-M [31] 54.58 91.33 54.32 90.93
TResNet-L [31] 55.36 91.32 55.11 90.94

TResNet-XL [31] 54.97 91.37 54.51 90.95

4.6 Per-Class Performance
To gain a better understanding of the difficulty of detecting the different defects
compared to their economical impact, we compare the F2 score for each defect with
the corresponding CIW scores, see Figure B.4. We find that each of the classes with
a high F2 score exhibit low intra-class and high inter-class variance, as well as more
frequently occurring in the dataset. The displaced joint class FS exhibits limited intra-
class variance due to limitations in where the defect can occur within the pipe, while
being distinct from the other classes. Similarly, the surface damage class OB occurs
frequently in the dataset and exhibits high inter-class variance due to the distinct visual
appearance of the class.

Contrarily, the lower scoring defect classes exhibit a larger intra-class variance,
lower inter-class variance, and are less frequently occurring. The obstacle class FO
consists of a wide span of objects, e.g. a soda can, a leftover hammer, or another pipe
which goes through the main pipe. The RB class exhibits large intra-class variance, due
to the class encompassing cracks, breaks, and collapses, and low inter-class variance,
due to the similarity in appearance between e.g. cracks and the fine roots in the RO
class.

We observe that most of the lower scoring defects do not have a large economic
impact. However, the two defects with the highest economic impact, OS and RB, are
among the lowest scoring classes. Therefore, in order to improve the performance of
the classification system, the detection rate on these two classes should be the main
priority.

5 Conclusion
Sewerage infrastructure is a fundamental part of modern society and is continuously
expanded. However, current manual inspections are tedious and slow when compared
to the immense number of pipes that have to be inspected. Therefore, automated
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Fig. B.4: Per-class performance. Per-class F2 scores of the Benchmark algorithm (TResNet-L + Xie et
al.), plotted against the corresponding CIW values.

sewer inspection technologies are crucial to ensuring the quality of our sewerage
infrastructure. However, current state-of-the-art sewer defect classification methods
have not yet adopted recent advances within computer vision. In order to facilitate this
transition, we present the first public, multi-label sewer defect classification dataset
called Sewer-ML.

Sewer-ML consists of 1.3 million images of a large variety of sewer pipes annotated
by professional sewer inspectors. The data is acquired from 75,618 inspection videos
conducted over nine years. 12 methods from the sewer defect classification and multi-
label classification domains are compared on Sewer-ML. Methods are evaluated using
a novel, class-importance weighted F2 score, F2CIW, which incorporates the economic
impact of each class, and the F1 score for pipes with no annotated classes, F1Normal.
We present a benchmark algorithm by combining the best two-stage approach from
the sewer domain with the best classifier from the multi-label domain, achieving a
state-of-the-art performance with an F2CIW of 55.11% and F1Normal of 90.94%. The
code, data, and trained models are open-sourced in order to lower the barrier of entry
and encourage further development within sewer defect classification.

Acknowledgments. This research was funded by Innovation Fund Denmark [grant
number 8055-00015A] and is part of the Automated Sewer Inspection Robot (ASIR)
project.
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B.A Supplementary Materials Content
In these supplementary materials we describe in further detail aspects of the dataset and
the training process and performance of the tested methods. Specifically, the following
will be described:

• Additional examples from the Sewer-ML dataset (Section B.B).

• Further insights into the Sewer-ML dataset (Section B.C).

• Full training details and metric performance for the Faster-RCNN text detector
(Section B.D).

• Full details on the Extra Trees hyperparameter grid search (Section B.E).

• The loss curves of the trained multi-label classification methods (Section B.F).

• Ablation study of the two-stage methods (Section B.G).

• Results when evaluating using the common multi-label performance metrics
(Section B.H).

B.B Sewer-ML Dataset Examples
In this section we present more examples of the images in the Sewer-ML dataset. All
images are annotated using the Danish inspection standard containing 18 classes [78],
listed in Table B.1. In Figure B.5 we present examples of different cases with several
co-occurring classes. In Figure B.6 we present five examples of each class, where only
the mentioned class is present.
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(a) FO, FS (b) DE, AF, FO, OP (c) IN, OB, BE

(d) GR, OB, FS, OK (e) PB, RB, OB, FS (f) PH, RO, OB

(g) IS, OK (h) OS, PF (i) OP, OK, FS, OB

Fig. B.5: Sewer-ML data examples with co-occurring classes. A subset of the images in the Sewer-ML
showcasing images with multiple classes co-occurring and all annotated classes represented. The class codes
are described in Table B.1.
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Figure B.6: Sewer-ML data examples. A subset of the images in the Sewer-ML showcasing five images
from each of the annotated classes as well as normal pipes in each row. The class codes are described in
Table B.1.
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Figure B.6: Continued from previous page
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B.C. Sewer-ML Dataset Insights

Table B.6: Class occurrences per split. The number of occurrences for each class per dataset split.

Split RB OB PF DE FS IS RO IN AF
Training 45,821 184,379 16,254 19,084 283,983 6,271 22,637 23,782 74,856
Validation 5,538 23,624 2,021 2,038 36,218 881 2,917 2,812 9,059
Test 5,501 23,264 1,949 2,307 35,781 924 2,684 3,235 9,182
Total 56,860 231,267 20,224 23,429 355,982 8,076 28,238 29,829 93,097

Split BE FO GR PH PB OS OP OK Normal
Training 66,499 5,010 53,986 23,685 6,746 4,625 5,325 154,624 552,820
Validation 7,929 597 6,889 3,432 765 457 612 19,655 68,681
Test 8,720 649 6,726 2,962 833 530 533 19,420 69,221
Total 83,148 6,256 67,601 30,079 8,344 5,612 6,470 193,699 690,722

B.C Sewer-ML Dataset Insights
In this section, we describe the available information in the Sewer-ML dataset in more
detail. First, we report the number of occurrences for each class in the dataset splits,
see Table B.6, where it is observed that the distribution of the classes is similar across
the different splits.

Moreover, we look into the pipe properties associated with each image. Each image
contains information on the pipe shape, material, dimension, and water level.

In Figure B.7 we plot the distribution of the eight different pipe material types
for the images in each split. We find that the concrete, vitrified clay, plastic, and
lining materials are the most common materials in the Sewer-ML dataset. We also
observe that all material types are equally represented across the splits, except for
the “Brickwork” and “Unknown” material types. The reason these material types are
skewed for the validation and test sets, is due to these materials being rarely used
anymore, and therefore rarely occur in the sewer inspection videos. Therefore, the
images containing these material types are from a small subset of pipes, which were
not evenly spread out across the splits.

In Figure B.8 we plot the distribution of the six different pipe shapes for the
images in each of the dataset splits. We find that the circular type is by far the most
common pipe shape, followed secondly by conical pipes, whereas the remaining pipe
shapes only appear a few thousand times each. As with the pipe material, we see
that distribution of pipe shapes are similar between dataset splits, except for the “Eye
shaped”, “Rectangular”, and “Other” pipe shapes. This is again due to these pipe
shapes occurring in a limited set of sewer inspections, and have therefore not been
evenly divided across the splits.

In Figure B.9 we plot the occurrences of the pipe dimensions associated with each
image. The dimension is denoted in millimeters, as per the industry standard. We see
that the majority of images are from pipes with a diameter of 100–1,000 millimeters,
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Fig. B.7: Distribution of the pipe materials. We
plot the occurrence frequencies for each of the eight
pipe materials in the dataset, for each dataset split.
Note that the y-axis is log-scaled.
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Fig. B.8: Distribution of the pipe shapes. We plot
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Fig. B.9: Distribution of the pipe dimensions.
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mension, for each dataset split. Note that both axes
are log-scaled.
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Fig. B.10: Distribution of the water level. We plot
the occurrence frequencies for each of the water level
classes, for each dataset split. Note that the y-axis is
log-scaled.

with a skew towards 100 millimeters. We observe that the distribution of the pipe
dimension for the training, validation, and test splits appears to be similar in shape, as
expected.

In Figure B.10 we plot the distribution of the different water level classes for
each data split. We find that the distribution of the water level classes is similar
across the three dataset splits We also observe that the majority of the images have
an associated water level in the range 0–30 %, while the remaining classes occur less
often, and not as evenly split between the classes. This can be explained by the fact
that when the majority of a pipe is filled with water, the inspections may at times be
postponed for a later time and it becomes difficult to accurately access how much water
it actually contains. Furthermore, the inspection vehicle will at times be partially or
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Fig. B.11: Distribution of video resolution. We
present the distribution of the different resolutions for
the videos in each dataset split. Note the y-axis is
log-scaled.
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Fig. B.12: Distribution of image resolution. We
present the distribution of the different resolutions for
the images in each dataset split. Note the y-axis is
log-scaled.

fully submerged in the water, resulting in the inspector losing key reference points used
for estimating the water level, such as the pipe wall.

Lastly, in Figure B.11 we plot the resolution of the sewer inspection videos in each
split. The resolution is denoted as width by height. It should be noted that the video
resolutions reported are not the resolutions observed by the inspector. The videos are
encoded in such a way that the video data is stored in the resolution reported in this
work, but when presented using a media player the width is multiplied by a “sample
aspect ratio”. We decide not to apply this resizing, in order to not introduce artifacts in
the image data. We find that across the videos in each dataset split, the resolutions are
evenly distributed. This is also true when looking at the resolution for all the images in
the dataset splits, see Figure B.12.

B.D Faster-RCNN Training and Metric Details
In this section we detail the hyperparameters and training settings for the Faster-
RCNN [82] model we use to redact overlaid text information on the images. We also
present the full COCO [34] metric suite performance, to show how well the network
performs. A training split of 20,739 images and a validation split of 2,305 images are
used, wherein all text information is manually annotated with bounding boxes.

Hyperarameters. The Faster-RCNN model is trained for 26 epochs with a batch
size of 16 batches. An SGD optimizer with momentum is used, with a learning rate of
0.02, momentum of 0.9 and weight decay of 0.0001. The learning rate is multiplied by
0.1 at epoch 16 and 22, respectively. We employ linear warm up of the learning rate
during the first 1,000 mini batches of the first epoch, increasing the learning rate from
10−3 to 0.02. The backbone is a ResNet-50 FPN [29, 83] pre-trained on ImageNet [35],
of which we fine-tune the last three residual blocks. Custom anchor boxes are used,
with a bounding box ratios (height over width) of 1:8, 1:4 and 1:2, and bounding box
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Fig. B.13: Training split bounding box information. The training split bounding box annotations are
plotted with the bounding box area against the bounding box ratio.

Table B.7: Full COCO metric suite. The performance of the trained Faster-RCNN model on the validation
set, for different Average Precision (AP) and Average Recall (AR) settings.

AP, IoU: AP@[0.5:0.95], Area: AR@[0.5:0.95], #Dets: AR@[0.5:0.95], Area:
0.5:0.95 0.5 0.75 S M L 1 10 100 S M L

89.10 98.89 96.39 88.08 89.96 95.63 10.06 88.31 92.25 91.72 92.71 96.28

scales with areas of 322, 642, 1282, 2562, and 5122. These values are determined based
on the bounding box information in the training split, see Figure B.13. All images
are normalized using the ImageNet per channel mean and standard deviation, and
horizontal flipping with a 50% chance is used during training. The images are rescaled
such that the shortest side is 800 pixels, while enforcing that the largest side is no larger
than 1,333 pixels. The training loss and mAP[0.5:0.95] on the validation set are plotted
in Figure B.14.

Metrics. In order to determine the effect of the Faster-RCNN model, we compute
the full COCO metrics suite on the validation set, as shown in Table B.7. As shown in
the metrics, we have a high precision and recall, though the recall indicates that not all
of the text objects have been detected. This is partially due to some text information
being annotated with a single bounding box but detected as several boxes, and vice
versa. To verify the annotations we manually inspect a set of randomly selected
samples.
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Fig. B.14: Faster-RCNN loss and metric curves. The training loss and validation metrics for the trained
Faster-RCNN model. mAP@[0.5:0.95] is denoted as mAP.
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Fig. B.15: Extra Trees grid search results. Results of the grid search of the Extra Trees classifiers for:
Binary classifier trained on full dataset, multi-label classifier trained on a subset of the dataset, and multi-label
classifier trained on the full dataset.

B.E Extra Trees Hyperparameter Grid Search
For the system proposed by Myrans et al. [52, 53], two Extra Trees classifiers are used
in sequence. However, the hyperparameters of the trees are not specified. Therefore,
we conduct a small grid search across three hyperparameters: The amount of trees in
the ensemble, the maximum depth of the trees, and the maximum amount of features
used when splitting an internal node. The investigated parameters are reported in
Table B.8. We train the Extra Trees classifier in three settings. First, we train under
a binary setting determining whether there is any class in the image. Thereafter, we
train a multi-label setting, first on a subset of the dataset only containing images with
annotated classes, and secondly on the full dataset. The resulting validation losses of
the hyperparameter search is shown in Figure B.15. From this we conclude that for the
binary Extra Trees classifier 100 trees, with a maximum depth of 10 and using log2(d)
features when splitting, should be used. Similarly, we find that for the multi-label Extra
Trees classifiers 250 trees, with a maximum depth of 10 and using log2(d) features
when splitting, should be used.

B.F CNN Loss Curves
We present the loss curves for all the tested convolutional neural networks (CNNs)
tested, see Figure B.16. All networks are trained using the weighted binary cross-
entropy loss, and using hyperparameters set based on the guidelines from Goyal et
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Table B.8: Extra Trees grid search intervals. Hyperparameter search intervals for the Extra Trees classi-
fiers. d denotes the dimensionality of the GIST descriptor.

Parameter Values
Number of Trees [10, 100, 250]
Max Depth [10, 20, 30]
Max Features [

√
d, log2(d), d/3]

0 10 20 30 40 50 60 70 80 90
Epoch

0.0

0.5

1.0

1.5

2.0

2.5

Lo
ss

Training Split

0 10 20 30 40 50 60 70 80 90
Epoch

Validation Split
Xie - 1st Stage
Xie - 2nd Stage
Xie - E2E
Chen - 1st Stage
Chen - 2nd Stage
Chen - E2E
ResNet-101 - E2E
KSSNet - E2E
TResNet-M - E2E
TResNet-L - E2E
TResNet-XL - E2E

Fig. B.16: Multi-label CNN loss curves. The training and validation loss curves for all tested networks.
“1st Stage” indicates a binary classifier, “2nd Stage” indicates a multi-label classifier trained on a subset of
the dataset, and “E2E” indicates a multi-label classifier trained in an end-to-end manner with the full dataset.

al. [85]. Further training details are presented in the main manuscript.
From the loss plots we observe that the validation loss of the majority of the tested

networks start diverging after approximately 30-40 epochs, a clear sign of overfitting.
The method by Xie et al. [72] is an exception, with the first and second stage methods
stagnating after 60–70 epochs. We also observe that the first stage of Chen et al. [67],
the SqueezeNet [74], has a constant loss value for both the training and validation loss.
Similarly, the second stage of Xie et al. settles on a constant loss after the initial 10
epochs when trained on the full dataset.

B.G Two-Stage Ablation Study
We conduct two ablation studies on the two-stage classifiers, to determine the effect of
the different stages and training methodology.

What is the effect of the binary classifier? We compare the effect on performance
of using both stages or only the second stage. These results are presented in Table B.9,
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Table B.9: Effect of binary stage in two-stage classifiers. We present the metric performance for the
two-stage methods, comparing the effect of the full pipeline and using only the multi-label classifier. TS
denotes that both stages are used, otherwise only the second stage is used.

Model TS Validation Test
F2CIW ↑ F1Normal ↑ F2CIW ↑ F1Normal ↑

Xie [72]
X 48.57 91.08 48.34 90.62

37.65 0.52 37.83 0.68

Chen [67]
X 42.03 3.96 41.74 3.59

42.03 3.96 41.74 3.59

Myrans [52]
X 4.01 26.03 4.11 27.48

19.25 0.00 19.19 0.00

Table B.10: Effect of training second stage on full dataset. The metric performance for the two-stage
methods, when training both stages on the full dataset. TS denotes that both stages are used, otherwise only
the second stage is used.

Model TS Validation Test
F2CIW ↑ F1Normal ↑ F2CIW ↑ F1Normal ↑

Xie [72]
X 31.98 88.23 31.82 87.95

28.12 59.98 27.96 59.99

Chen [67]
X 43.45 76.73 43.14 75.68

43.45 76.73 43.14 75.68

Myrans [52]
X 2.58 25.98 2.61 27.48

7.48 0.00 7.37 0.00

and indicate that the first stage is crucial. Performance for Xie et al. [72] degrades for
both metrics when the first stage is missing, whereas for Chen et al. [67] there is no
difference as the first stage never predicts a normal pipe. For Myrans et al. [52] the
first stage inaccurately classifies images with classes as normal pipes, causing a lower
F2CIW score. This is improved when using only the second stage, but at the cost of an
inability to recognize any normal pipes.

Training the second stage on the full dataset. Classically within the sewer
classification domain, the second stage is only trained on data which contains some
kind of class. We investigate whether performance improves by training on the full
dataset, such that the second stage also sees normal pipes. The results are shown in
Table B.10. For Myrans et al. the performance is reduced substantially in both tested
settings, and the second stage is still unable to classify normal pipes. For Xie et al.
both metrics are lower when comparing to Table B.9, except for the large increase in
FNormal score when only using the second stage. The only performance improvement is
achieved by Chen et al. through the use of the deeper InceptionV3 network.
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B.H Multi-Label Metrics and Results
When evaluating multi-label tasks, a large suite of metrics are commonly used, in order
to uncover different aspects of the tested methods. Commonly, the F1-score is used
in different variations, depending on how the F1-score is calculated or averaged. An
overview of the different metrics is provided in Table B.11. Each of the metrics are in
the range [0,1], and for all a high score is better. As a reference on how to compute
the metrics, we refer to the supplementary materials of the work by Durand et al. [24].
We present the classic performance metrics for each of the tested methods on both the
validation and test splits, as well as the per-class F1, F2, Recall, Precision, and Average
Precision (AP). It should be noted, that AP cannot be calculated for the normal class.
This is due to the normal class being an implicit class, and therefore not possible to
rank as it does not have a single associated probability. The Kumar et al. [69], Meijer
et al. [71] and ML-GCN [23] methods are not shown in the metric tables as the models
diverged during training. The benchmark algorithm consisting of the first stage from
Xie et al. [72] and the TResNet-L multi-label classifier [31] is reported as “Benchmark”.
The metrics for the validation split are presented in Table B.12-B.17 and the metrics
for the test split are presented in Table B.18-B.23.
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B.H. Multi-Label Metrics and Results
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B.H. Multi-Label Metrics and Results

Ta
bl

e
B

.2
0:

Pe
r-

cl
as

sF
2

sc
or

e
-T

es
tS

pl
it.

T
he

m
et

ri
cs

ar
e

pr
es

en
te

d
as

pe
rc

en
ta

ge
s,

an
d

th
e

hi
gh

es
ts

co
re

in
ea

ch
co

lu
m

n
is

de
no

te
d

in
bo

ld
.

M
od

el
R

B
O

B
PF

D
E

FS
IS

R
O

IN
A

F
B

E
FO

G
R

PH
PB

O
S

O
P

O
K

N
or

m
al

SewerX
ie

et
al

.[
72

]
39

.7
7

77
.8

8
51

.4
9

37
.5

3
79

.9
0

20
.4

2
30

.1
9

49
.2

8
53

.1
6

54
.6

7
13

.5
0

59
.4

0
53

.7
4

39
.5

7
26

.3
0

45
.2

4
76

.6
3

89
.7

7
C

he
n

et
al

.[
67

]
38

.9
1

66
.5

2
29

.9
0

23
.3

3
73

.0
8

12
.9

4
42

.1
1

35
.5

0
41

.7
2

44
.0

1
12

.1
1

42
.6

3
50

.5
3

18
.7

3
21

.8
7

48
.3

7
65

.9
2

2.
28

H
as

sa
n

et
al

.[
68

]
0.

00
52

.1
4

7.
07

8.
28

65
.5

0
3.

45
9.

53
0.

00
27

.5
3

0.
00

0.
00

21
.4

3
10

.4
4

0.
00

0.
00

0.
00

0.
00

0.
0

M
yr

an
s

et
al

.[
52

]
3.

27
7.

70
3.

89
2.

47
9.

75
0.

87
1.

33
2.

22
7.

27
5.

35
0.

51
6.

11
1.

80
2.

15
0.

77
0.

38
13

.5
1

27
.3

5

GeneralR
es

N
et

-1
01

[2
9]

42
.9

5
83

.9
2

48
.2

5
37

.0
6

87
.2

2
21

.1
1

35
.8

7
50

.0
6

58
.2

3
60

.3
7

11
.1

8
64

.8
1

58
.8

3
47

.1
2

35
.2

4
51

.7
6

82
.6

3
70

.4
1

K
SS

N
et

[2
6]

44
.7

9
84

.5
2

49
.6

8
36

.9
3

87
.3

6
22

.4
2

36
.9

6
51

.4
5

59
.5

4
61

.5
5

11
.9

6
66

.9
9

61
.5

7
46

.3
5

37
.9

2
54

.5
9

83
.0

0
71

.3
2

T
R

es
N

et
-M

[3
1]

43
.3

9
84

.3
6

48
.9

9
38

.8
4

87
.4

8
22

.7
0

35
.1

2
51

.0
9

59
.1

3
60

.2
7

11
.2

7
65

.4
1

60
.9

9
44

.7
1

35
.0

4
56

.5
5

83
.7

2
72

.0
8

T
R

es
N

et
-L

[3
1]

43
.5

0
84

.4
2

48
.5

5
38

.3
9

87
.4

5
24

.4
5

34
.6

7
52

.2
7

59
.5

5
61

.1
3

11
.7

0
66

.3
7

63
.5

4
48

.5
8

36
.6

9
60

.4
2

83
.5

0
72

.0
3

T
R

es
N

et
-X

L
[3

1]
43

.3
9

84
.2

2
50

.1
4

39
.4

2
87

.4
3

22
.0

0
34

.8
9

51
.3

9
59

.1
5

60
.6

4
11

.7
4

65
.4

7
61

.8
3

47
.4

5
36

.3
1

56
.7

6
83

.5
2

72
.7

4
B

en
ch

m
ar

k
43

.3
5

83
.8

2
52

.9
4

39
.6

9
86

.7
6

24
.7

0
34

.9
6

53
.4

1
59

.4
5

61
.0

5
11

.9
4

66
.0

5
64

.0
0

47
.3

9
36

.7
9

65
.4

1
82

.7
2

90
.3

5

Ta
bl

e
B

.2
1:

Pe
r-

cl
as

sP
re

ci
si

on
sc

or
e

-T
es

tS
pl

it.
T

he
m

et
ri

cs
ar

e
pr

es
en

te
d

as
pe

rc
en

ta
ge

s,
an

d
th

e
hi

gh
es

ts
co

re
in

ea
ch

co
lu

m
n

is
de

no
te

d
in

bo
ld

.

M
od

el
R

B
O

B
PF

D
E

FS
IS

R
O

IN
A

F
B

E
FO

G
R

PH
PB

O
S

O
P

O
K

N
or

m
al

SewerX
ie

et
al

.[
72

]
13

.9
5

62
.1

4
22

.4
0

14
.4

9
73

.2
0

5.
40

9.
09

19
.5

0
27

.7
7

27
.5

4
3.

33
38

.2
8

21
.7

2
14

.5
8

8.
10

16
.2

0
60

.8
7

92
.0

9
C

he
n

et
al

.[
67

]
15

.1
9

46
.4

3
9.

75
6.

35
59

.8
2

3.
24

20
.2

7
14

.5
2

16
.4

5
30

.3
8

2.
97

14
.6

5
19

.3
8

4.
51

6.
02

17
.9

6
45

.5
7

91
.3

5
H

as
sa

n
et

al
.[

68
]

0.
00

17
.8

9
1.

50
1.

77
27

.5
2

0.
71

2.
06

0.
00

7.
06

0.
00

0.
00

5.
17

2.
28

0.
00

0.
00

0.
00

0.
00

0.
00

M
yr

an
s

et
al

.[
52

]
0.

89
3.

86
0.

88
0.

87
6.

46
0.

18
0.

31
0.

54
2.

32
1.

67
0.

11
1.

75
0.

43
0.

45
0.

16
0.

08
6.

09
27

.7
0

GeneralR
es

N
et

-1
01

[2
9]

14
.2

0
59

.1
4

17
.0

6
11

.1
0

68
.7

2
5.

31
10

.7
1

18
.1

1
25

.0
8

28
.0

4
2.

51
33

.1
2

23
.6

9
15

.6
5

10
.3

7
18

.1
4

61
.6

5
97

.3
7

K
SS

N
et

[2
6]

15
.3

6
60

.1
0

17
.9

6
11

.0
3

71
.3

1
5.

82
11

.2
0

19
.1

1
26

.5
2

29
.2

2
2.

71
36

.3
3

26
.0

5
15

.3
6

11
.6

6
19

.7
3

63
.3

9
97

.4
6

T
R

es
N

et
-M

[3
1]

14
.4

5
58

.8
1

17
.2

1
11

.8
6

69
.7

6
5.

83
10

.3
6

18
.8

6
25

.5
8

27
.1

9
2.

52
33

.2
1

25
.5

4
14

.4
0

10
.2

3
21

.0
9

61
.8

1
97

.5
9

T
R

es
N

et
-L

[3
1]

14
.4

3
59

.4
4

17
.0

5
11

.6
4

69
.2

3
6.

50
10

.1
5

19
.7

3
26

.3
3

28
.2

6
2.

64
35

.4
0

28
.3

2
16

.5
3

10
.8

9
24

.1
8

61
.1

0
97

.6
2

T
R

es
N

et
-X

L
[3

1]
14

.4
3

59
.1

2
18

.2
0

12
.2

2
69

.4
8

5.
58

10
.2

3
19

.1
6

25
.5

2
27

.7
0

2.
65

33
.6

4
26

.4
8

15
.8

3
10

.8
0

21
.4

5
62

.9
6

97
.5

8
B

en
ch

m
ar

k
14

.7
6

62
.6

6
23

.0
1

15
.4

7
71

.8
7

6.
66

10
.4

4
21

.4
4

28
.1

1
30

.2
2

2.
72

37
.3

6
30

.2
2

20
.3

2
13

.3
7

34
.7

9
64

.9
9

91
.9

4

175



Paper B.

Ta
bl

e
B

.2
2:

Pe
r-

cl
as

sR
ec

al
ls

co
re

-T
es

tS
pl

it.
T

he
m

et
ri

cs
ar

e
pr

es
en

te
d

as
pe

rc
en

ta
ge

s,
an

d
th

e
hi

gh
es

ts
co

re
in

ea
ch

co
lu

m
n

is
de

no
te

d
in

bo
ld

.

M
od

el
R

B
O

B
PF

D
E

FS
IS

R
O

IN
A

F
B

E
FO

G
R

PH
PB

O
S

O
P

O
K

N
or

m
al

SewerX
ie

et
al

.[
72

]
74

.0
2

83
.1

5
76

.2
4

62
.2

9
81

.7
7

66
.9

9
71

.9
8

79
.7

2
68

.9
1

72
.5

3
57

.1
6

68
.9

0
85

.1
1

69
.2

7
60

.0
0

81
.9

9
81

.9
3

89
.2

1
C

he
n

et
al

.[
67

]
63

.8
1

74
.5

9
61

.8
3

70
.3

5
77

.3
7

51
.4

1
57

.6
4

55
.5

5
67

.7
4

49
.5

6
52

.3
9

81
.5

6
84

.4
7

88
.4

8
63

.9
6

83
.8

6
74

.2
1

1.
83

H
as

sa
n

et
al

.[
68

]
0.

00
10

0.
00

10
0.

00
10

0.
00

10
0.

00
10

0.
00

10
0.

00
0.

00
10

0.
00

0.
00

0.
00

10
0.

00
10

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

M
yr

an
s

et
al

.[
52

]
9.

96
10

.2
6

26
.3

7
4.

55
11

.1
7

12
.3

4
7.

19
10

.2
6

15
.6

2
11

.8
7

8.
63

16
.1

3
8.

98
33

.6
1

18
.4

9
7.

69
19

.4
2

27
.2

6

GeneralR
es

N
et

-1
01

[2
9]

86
.9

1
93

.7
3

88
.9

2
89

.1
6

93
.5

2
82

.4
7

86
.8

5
89

.5
5

86
.9

6
84

.8
2

81
.6

6
85

.1
9

93
.5

2
94

.7
2

87
.9

2
96

.4
4

90
.3

1
65

.8
5

K
SS

N
et

[2
6]

85
.9

8
94

.0
7

88
.9

2
89

.3
4

92
.5

8
78

.2
5

87
.0

7
89

.2
1

86
.4

6
85

.0
9

81
.6

6
84

.9
1

93
.4

2
93

.5
2

86
.7

9
97

.7
5

89
.9

6
66

.8
3

T
R

es
N

et
-M

[3
1]

86
.9

5
94

.6
4

91
.0

2
90

.0
3

93
.4

2
82

.0
3

87
.2

2
89

.2
1

87
.9

5
86

.6
2

84
.7

5
86

.3
4

93
.3

8
94

.3
6

89
.0

6
97

.5
6

91
.8

5
67

.6
6

T
R

es
N

et
-L

[3
1]

87
.6

4
94

.3
4

90
.2

0
90

.1
6

93
.6

1
79

.0
0

87
.4

8
88

.9
3

86
.9

9
86

.1
9

82
.7

4
84

.9
4

92
.2

0
94

.2
4

90
.0

0
96

.6
2

91
.9

3
67

.6
0

T
R

es
N

et
-X

L
[3

1]
87

.0
4

94
.2

2
89

.3
3

88
.8

6
93

.4
7

83
.2

3
87

.8
9

88
.7

2
88

.2
2

86
.2

7
83

.0
5

85
.7

4
92

.8
1

94
.8

4
88

.6
8

96
.4

4
90

.9
4

68
.3

9
B

en
ch

m
ar

k
84

.0
4

91
.5

4
78

.4
5

65
.1

9
91

.5
0

76
.5

2
84

.7
2

85
.1

6
82

.4
2

81
.9

5
77

.8
1

81
.7

4
88

.8
3

71
.0

7
65

.4
7

83
.8

6
88

.7
8

89
.9

6

Ta
bl

e
B

.2
3:

Pe
r-

cl
as

sA
P

sc
or

e
-T

es
tS

pl
it.

T
he

m
et

ri
cs

ar
e

pr
es

en
te

d
as

pe
rc

en
ta

ge
s,

an
d

th
e

hi
gh

es
ts

co
re

in
ea

ch
co

lu
m

n
is

de
no

te
d

in
bo

ld
.

M
od

el
R

B
O

B
PF

D
E

FS
IS

R
O

IN
A

F
B

E
FO

G
R

PH
PB

O
S

O
P

O
K

SewerX
ie

et
al

.[
72

]
35

.0
7

83
.4

8
85

.8
6

62
.9

7
87

.3
0

36
.6

4
59

.0
4

58
.5

2
58

.1
5

62
.4

4
36

.2
6

82
.1

1
80

.0
2

65
.4

9
53

.7
0

77
.4

7
85

.8
5

C
he

n
et

al
.[

67
]

48
.4

9
74

.0
8

48
.0

9
47

.4
3

81
.7

6
57

.9
5

74
.7

0
48

.7
7

60
.8

6
65

.3
0

31
.5

6
74

.9
1

80
.5

8
43

.3
7

49
.8

7
49

.8
6

80
.6

1
H

as
sa

n
et

al
.[

68
]

6.
16

26
.7

9
0.

33
3.

60
35

.1
0

1.
17

1.
25

3.
16

5.
62

5.
14

0.
44

9.
23

4.
17

0.
00

1.
57

2.
52

18
.6

9
M

yr
an

s
et

al
.[

52
]

0.
11

0.
69

0.
00

0.
63

2.
91

0.
00

0.
09

0.
16

1.
80

0.
43

0.
18

0.
69

0.
00

0.
00

0.
00

0.
24

2.
09

GeneralR
es

N
et

-1
01

[2
9]

55
.2

5
90

.2
0

88
.0

4
71

.9
6

93
.3

2
65

.6
3

78
.9

8
65

.6
9

71
.4

0
77

.7
8

47
.3

3
90

.7
2

88
.0

5
65

.3
4

52
.5

5
79

.3
3

93
.3

2
K

SS
N

et
[2

6]
58

.4
3

90
.5

9
86

.8
0

71
.9

9
93

.6
8

69
.9

7
80

.7
5

68
.2

8
72

.5
7

78
.9

2
44

.0
3

91
.1

1
88

.4
6

62
.3

1
55

.8
6

79
.2

6
93

.8
3

T
R

es
N

et
-M

[3
1]

55
.6

1
90

.1
6

89
.8

2
76

.0
0

93
.6

5
65

.8
5

78
.5

8
69

.7
1

73
.4

5
79

.8
2

50
.4

4
91

.0
3

89
.4

1
67

.5
7

57
.7

9
78

.1
1

94
.3

2
T

R
es

N
et

-L
[3

1]
56

.9
5

90
.3

8
89

.2
8

75
.0

3
93

.6
4

68
.6

1
80

.0
4

70
.0

9
73

.5
9

79
.4

3
48

.7
4

91
.3

6
88

.7
7

67
.2

9
59

.3
8

79
.0

0
94

.4
0

T
R

es
N

et
-X

L
[3

1]
56

.6
4

90
.0

0
89

.1
7

75
.6

6
93

.6
8

63
.8

7
79

.7
0

68
.9

0
73

.6
2

79
.8

0
48

.1
4

91
.3

3
88

.8
3

69
.5

1
59

.3
8

79
.9

6
94

.1
7

B
en

ch
m

ar
k

56
.9

9
90

.4
6

89
.8

9
75

.0
9

93
.7

0
70

.7
4

80
.2

0
70

.8
1

73
.9

9
79

.9
6

48
.2

1
92

.2
1

89
.0

8
72

.7
0

62
.5

7
81

.3
3

94
.5

5

176



References

References
[1] American Society of Civil Engineers, “2017 infrastructure report

card - wastewater,” 2017, accessed: 08-11-2020. [Online]. Avail-
able: https://www.infrastructurereportcard.org/wp-content/uploads/2017/01/
Wastewater-Final.pdf

[2] J. B. Haurum and T. B. Moeslund, “A survey on image-based automation of cctv
and sset sewer inspections,” Automation in Construction, vol. 111, p. 103061,
2020.

[3] M.-L. Zhang and Z.-H. Zhou, “A review on multi-label learning algorithms,” IEEE
Transactions on Knowledge and Data Engineering, vol. 26, no. 8, pp. 1819–1837,
2014.

[4] Y. Gong, Y. Jia, T. Leung, A. Toshev, and S. Ioffe, “Deep convolutional ranking
for multilabel image annotation,” arXiv:1312.4894, 2013.

[5] A. Kanehira and T. Harada, “Multi-label ranking from positive and unlabeled
data,” in 2016 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2016, pp. 5138–5146.

[6] Y. Li, Y. Song, and J. Luo, “Improving pairwise ranking for multi-label im-
age classification,” in 2017 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2017, pp. 1837–1845.

[7] B.-B. Gao and H.-Y. Zhou, “Multi-label recognition with multi-class attentional
regions,” arXiv:2007.01755, 2020.

[8] W. Ge, S. Yang, and Y. Yu, “Multi-evidence filtering and fusion for multi-label
classification, object detection and semantic segmentation based on weakly super-
vised learning,” in 2018 IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2018, pp. 1277–1286.

[9] H. Guo, K. Zhang, X. Fan, H. Yu, and S. Wang, “Visual attention consistency
under image transforms for multi-label image classification,” in 2019 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), 2019, pp.
729–739.

[10] P. Li, P. Chen, Y. Xie, and D. Zhang, “Bi-modal learning with channel-wise
attention for multi-label image classification,” IEEE Access, vol. 8, pp. 9965–
9977, 2020.

[11] Y. Liu, L. Sheng, J. Shao, J. Yan, S. Xiang, and C. Pan, “Multi-label image
classification via knowledge distillation from weakly-supervised detection,” in
ACM International Conference on Multimedia, 2018, pp. 700–708.

177

https://www.infrastructurereportcard.org/wp-content/uploads/2017/01/Wastewater-Final.pdf
https://www.infrastructurereportcard.org/wp-content/uploads/2017/01/Wastewater-Final.pdf


References

[12] Z. Wang, T. Chen, G. Li, R. Xu, and L. Lin, “Multi-label image recognition by re-
currently discovering attentional regions,” in 2017 IEEE International Conference
on Computer Vision (ICCV), 2017, pp. 464–472.

[13] Y. Wei, W. Xia, M. Lin, J. Huang, B. Ni, J. Dong, Y. Zhao, and S. Yan, “Hcp: A
flexible cnn framework for multi-label image classification,” IEEE Transactions
on Pattern Analysis and Machine Intelligence, vol. 38, no. 9, pp. 1901–1907,
2016.

[14] H. Yang, J. T. Zhou, Y. Zhang, B.-B. Gao, J. Wu, and J. Cai, “Exploit bounding
box annotations for multi-label object recognition,” in 2016 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2016, pp. 280–288.

[15] J. Zhang, Q. Wu, C. Shen, J. Zhang, and J. Lu, “Multilabel image classification
with regional latent semantic dependencies,” IEEE Transactions on Multimedia,
vol. 20, no. 10, pp. 2801–2813, 2018.

[16] F. Zhu, H. Li, W. Ouyang, N. Yu, and X. Wang, “Learning spatial regularization
with image-level supervisions for multi-label image classification,” in 2017 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), 2017, pp.
2027–2036.

[17] S.-F. Chen, Y.-C. Chen, C.-K. Yeh, and Y.-C. F. Wang, “Order-free rnn with visual
attention for multi-label classification,” Proceedings of the AAAI Conference on
Artificial Intelligence, 2018.

[18] T. Chen, Z. Wang, G. Li, and L. Lin, “Recurrent attentional reinforcement learning
for multi-label image recognition,” Proceedings of the AAAI Conference on
Artificial Intelligence, 2018.

[19] J. Wang, Y. Yang, J. Mao, Z. Huang, C. Huang, and W. Xu, “Cnn-rnn: A unified
framework for multi-label image classification,” in 2016 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2016, pp. 2285–2294.

[20] V. O. Yazici, A. Gonzalez-Garcia, A. Ramisa, B. Twardowski, and J. van de Weijer,
“Orderless recurrent models for multi-label classification,” in 2020 IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), 2020, pp.
13 437–13 446.

[21] T. Chen, M. Xu, X. Hui, H. Wu, and L. Lin, “Learning semantic-specific graph
representation for multi-label image recognition,” in 2019 IEEE/CVF Interna-
tional Conference on Computer Vision (ICCV), 2019, pp. 522–531.

[22] Z.-M. Chen, X.-S. Wei, X. Jin, and Y. Guo, “Multi-label image recognition
with joint class-aware map disentangling and label correlation embedding,” in
2019 IEEE International Conference on Multimedia and Expo (ICME), 2019, pp.
622–627.

178



References

[23] Z.-M. Chen, X.-S. Wei, P. Wang, and Y. Guo, “Multi-label image recognition
with graph convolutional networks,” in 2019 IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), 2019, pp. 5172–5181.

[24] T. Durand, N. Mehrasa, and G. Mori, “Learning a deep convnet for multi-label
classification with partial labels,” in 2019 IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), 2019, pp. 647–657.

[25] C.-W. Lee, W. Fang, C.-K. Yeh, and Y.-C. F. Wang, “Multi-label zero-shot
learning with structured knowledge graphs,” in 2018 IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 2018, pp. 1576–1585.

[26] Y. Wang, D. He, F. Li, X. Long, Z. Zhou, J. Ma, and S. Wen, “Multi-label classifi-
cation with label graph superimposing,” Proceedings of the AAAI Conference on
Artificial Intelligence, vol. 34, no. 07, pp. 12 265–12 272, Apr. 2020.

[27] R. You, Z. Guo, L. Cui, X. Long, Y. Bao, and S. Wen, “Cross-modality attention
with semantic graph embedding for multi-label classification,” Proceedings of the
AAAI Conference on Artificial Intelligence, vol. 34, no. 07, pp. 12 709–12 716,
Apr. 2020.

[28] T. N. Kipf and M. Welling, “Semi-supervised classification with graph convo-
lutional networks,” in International Conference on Learning Representations
(ICLR), 2017.

[29] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recog-
nition,” in 2016 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), Jun 2016, pp. 770–778.

[30] B. Wu, W. Chen, Y. Fan, Y. Zhang, J. Hou, J. Liu, and T. Zhang, “Tencent
ml-images: A large-scale multi-label image database for visual representation
learning,” IEEE Access, vol. 7, pp. 172 683–172 693, 2019.

[31] T. Ridnik, H. Lawen, A. Noy, and I. Friedman, “Tresnet: High performance
gpu-dedicated architecture,” arXiv:2003.13630, 2020.

[32] M. Everingham, L. V. Gool, C. K. I. Williams, J. Winn, and A. Zisserman, “The
pascal visual object classes (VOC) challenge,” International Journal of Computer
Vision, vol. 88, no. 2, pp. 303–338, Sep. 2009.

[33] T.-S. Chua, J. Tang, R. Hong, H. Li, Z. Luo, and Y.-T. Zheng, “Nus-wide: A
real-world web image database from national university of singapore,” in Proc.
of ACM Conf. on Image and Video Retrieval (CIVR’09), Santorini, Greece., July
8-10, 2009.

[34] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár, and
C. L. Zitnick, “Microsoft coco: Common objects in context,” in Computer Vision

179



References

– ECCV 2014, D. Fleet, T. Pajdla, B. Schiele, and T. Tuytelaars, Eds. Cham:
Springer International Publishing, 2014, pp. 740–755.

[35] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang,
A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-Fei, “ImageNet
Large Scale Visual Recognition Challenge,” International Journal of Computer
Vision (IJCV), vol. 115, no. 3, pp. 211–252, 2015.

[36] A. Kuznetsova, H. Rom, N. Alldrin, J. Uijlings, I. Krasin, J. Pont-Tuset, S. Kamali,
S. Popov, M. Malloci, A. Kolesnikov, T. Duerig, and V. Ferrari, “The open images
dataset v4,” International Journal of Computer Vision, vol. 128, no. 7, pp. 1956–
1981, Mar. 2020.

[37] E. Ben-Baruch, T. Ridnik, N. Zamir, A. Noy, I. Friedman, M. Prot-
ter, and L. Zelnik-Manor, “Asymmetric loss for multi-label classification,”
arXiv:2009.14119, 2020.

[38] Y. Cui, M. Jia, T.-Y. Lin, Y. Song, and S. Belongie, “Class-balanced loss based
on effective number of samples,” in 2019 IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), 2019, pp. 9260–9269.

[39] T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollár, “Focal loss for dense object
detection,” in 2017 IEEE International Conference on Computer Vision (ICCV),
2017, pp. 2999–3007.

[40] T. Wu, Q. Huang, Z. Liu, Y. Wang, and D. Lin, “Distribution-balanced loss for
multi-label classification in long-tailed datasets,” in European Conference on
Computer Vision (ECCV), 2020.

[41] O. Duran, K. Althoefer, and L. D. Seneviratne, “State of the art in sensor tech-
nologies for sewer inspection,” IEEE Sensors Journal, vol. 2, no. 2, pp. 73–81,
Apr 2002.

[42] Z. Liu and Y. Kleiner, “State of the art review of inspection technologies for
condition assessment of water pipes,” Measurement, vol. 46, no. 1, pp. 1 – 15,
2013.

[43] S. Iyer, S. K. Sinha, M. K. Pedrick, and B. R. Tittmann, “Evaluation of ultrasonic
inspection and imaging systems for concrete pipes,” Automation in Construction,
vol. 22, pp. 149 – 164, 2012, planning Future Cities-Selected papers from the
2010 eCAADe Conference.

[44] M. S. Khan and R. Patil, “Acoustic characterization of pvc sewer pipes for crack
detection using frequency domain analysis,” in 2018 IEEE International Smart
Cities Conference (ISC2), 2018, pp. 1–5.

[45] ——, “Statistical analysis of acoustic response of pvc pipes for crack detection,”
in SoutheastCon 2018, 2018, pp. 1–5.

180



References
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1. Introduction

Abstract
Sewer pipe inspections are currently conducted by professionals who remotely control
a robot from above ground. This expensive and slow approach is prone to human
mistakes. Therefore, there is both an economic and scientific interest in automating
the inspection process by creating systems able to recognize sewer defects. However,
the extent of research put into automatic water level estimation in sewers has been
limited despite being a prerequisite for further analysis of the pipe as only sections
above the water level can be visually inspected. In this work, we utilize a dataset
of still images obtained from over 5000 inspections carried out for three different
Danish water utilities companies. This dataset is used for training and testing decision
tree methods and convolutional neural networks (CNNs) for automatic water level
estimation. We pose the estimation problem as a classification and regression problem,
and compare the results of both approaches. Furthermore, we compare the effect
of using different inspection standards for labeling the ground truth water level. By
treating the problem as a classification task and using the 2015 Danish sewer inspection
standard, where water levels are clustered based on visual appearance, we achieve
an averaged F1 score of 79.29% using a fine-tuned ResNet-50 CNN. This shows the
potential of using CNNs for water level estimation. We believe including temporal and
contextual information will improve the results further.

1 Introduction
Sewer networks are a critical piece of infrastructure that allow safe transportation of
wastewater from households to specialized treatment plants. Sewer pipes are built for
transporting either rain water, waste water, or a combination of both. In Germany,
there are nearly 600,000 kilometers of public sewer pipes [1]. In the US, it has been es-
timated that the length of public net of sewers extends to over 1.2 million kilometers [2].
Because the sewer pipes are buried beneath roads and streets, their presence is easy
to forget—until they break down. Replacement of an entire sewer pipe is costly and
can require a large excavation work that entails disruptions to the road traffic. A more
economical option is to refurbish the pipes before they break down [3], but this requires
knowledge of the condition of the pipes. However, sewer pipes are difficult to inspect
as most pipes are not accessible by human inspectors due to their small diameters.
For large diameter pipes, the presence of toxic gases and the general contents of the
sewage water renders the inspection a safety and health risk to human workers. The
most common method for estimating the condition of a sewer pipe is to use tethered
robots that are inserted into the pipe from the nearest accessible well. The inspection
robot is typically equipped with a Closed-Circuit Television camera (CCTV) and a
light source. A human operator controls the robot from a specially designed van and
manually assesses the incoming video data. The overall inspection procedure is slow
and prone to human errors. Therefore, there is a large research and industrial interest
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(a) Tilted viewpoint. (b) Reflections. (c) Mist. (d) Infiltration.

Fig. C.1: Examples of adverse conditions from Closed-Circuit Television camera (CCTV) footage of sewer
pipes which can complicate the water level classification task; (a) the camera is tilted such that the entire
view is placed above the water line; (b) the water surface reflects the surroundings; (c) gases in the sewer
impair the visibility in the same way as mist and haze; (d) infiltrating water.

in automating the inspection process through the use of computer vision and machine
learning [4].

Accessibility of the sewer for inspection by a robotic platform is one of the most
fundamental problems the inspection has to address. The accessibility is linked to
the amount of water present in the pipe. In order to detect and classify defects in the
pipe, substantial portions of the pipe must be visible above the water level. In short,
the water level is a key indicator of how much of a pipe can be inspected. According to
the European sewer inspection standards (EN 13508-2) [5], estimating the water level
of the sewer pipe is therefore of paramount importance to human inspectors. Sample
footage from inspection data is shown in Figure C.1. At first sight, estimating the water
level from sewer pipes might appear to be a straightforward task for a computer vision
algorithm to solve. The sewer is a confined space with few interruptions from the
outside. However, the nature of the pipes and their contents renders a range of problems.
The only source of light comes from the inspection vehicle, and some portions of the
pipe might therefore not be sufficiently lit. Toxic gases are commonplace and renders
as mist or fumes, resulting in a hazy image with reduced information. The presence of
water entails different levels of reflection and might even flood the entire view. As a
result, dust and sewage might stick to the lens and severely impair the visibility.

While there has been a lot of prior work on sewer defect classification and detection,
as surveyed by Haurum and Moeslund [4], few researchers have worked specifically
with water level estimation. Prior work utilizes classical computer vision techniques
and modern deep learning-based methods. Classic computer vision methods have
been used to detect key features of the sewer pipe which can be used to detect the
water line [6, 7]. Recently, Convolutional Neural Network (CNN)-based methods
have gained interest in automated defect classification [7–9], wherein some researchers
have included water stagnation [8] and “high water levels” [9]. Most importantly,
a recent paper [10] proposed training a deep learning-based segmentation model which
segments the water in the image and infers the water lines. The researchers collected
1440 high-resolution RGB images, of which 167 were used for human evaluation and
80 images were used for training. The authors claim to achieve a perfect segmentation
of the water level, beating manual and traditional computer vision annotation methods,
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and being able to calculate the flow rates and velocities by applying Manning’s equation.
However, their dataset only consists of recordings from a single pipe acquired over a
24-h period. This does not nearly capture the amount of variability encountered when
inspecting real sewers. Furthermore, the high image resolution is not representative for
sewer inspection CCTV videos which rarely exceeds full HD.

Several vision-based approaches for water level estimation have been proposed
within the wastewater flow estimation field. A common technique is to measure the
depth from a stationary staff gauge [11–15]. Nguyen et al. [11] and Jeanbourqin et
al. [12] proposed to use an infrared camera to locate the water–air intersection line
on the staff gauge using computer vision techniques. Handheld devices [15] and
calibrated cameras [13, 14] have also been used for automated staff gauge readings.
Alternatively, Sirazitdinova et al. [16] determined the water level using a stereo camera
setup, while Khorchani and Blanpain [17] used a single calibrated camera. A common
characteristic among these methods is the need for a stationary object, being either the
camera setup or the staff gauge.

On the contrary, we investigate the feasibility of estimating the water levels in
realistic and unseen sewer inspection videos by the use of a single input image at a time,
from a moving uncalibrated camera. We compare both decision tree methods and deep
learning-based methods in order to determine whether the extra complexity introduced
with the neural networks is justified. Furthermore, as shown from the examples of
Figure C.1, the inspection imagery is distinct from commonplace computer vision
datasets such as ImageNet [18] or COCO [19]. Therefore, we investigate the effect
of ImageNet pre-training compared to training from scratch on the available data.
Our contributions are the following.

• We show that it is possible to reliably estimate the water level in unseen sewer
pipes using a classification-based CNN.

• We show the evaluation performance impact of how the water levels are catego-
rized, using the Danish sewer inspection standards as a use case.

• We show that CNN-based methods outperform traditional decision tree-based
methods for water level estimation.

• We open source our model and analysis code (https://bitbucket.org/aauvap/
waterlevelestimation).

The remainder of the article is structured as follows. In Section 2, we introduce our
dataset. In Section 3, we describe the proposed methods, loss functions, and the training
procedure. In Section 4, we detail the evaluation metrics and present the experimental
results. In Section 5, we analyze and discuss the presented results. Finally, in Section 6
we summarize our findings and possible future directions.
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2 Dataset
As made clear in [4], there are currently no publicly available sewer datasets. Therefore,
we utilize our own dataset consisting of CCTV recordings from actual sewer inspections
conducted for three different water utility companies across Denmark.

2.1 Dataset Construction
Professional sewer inspectors have assessed the data in real-time and provided manual
annotations of the water level based on expert assessments. The data have been
annotated following the 2010 Danish sewer inspection standards [20], where the water
level is annotated in discrete steps of 10 in the interval [0, 100]. For example, if a sewer
is annotated as having a water level of 40%, then the actual water level is somewhere
between 35% and 45%, as illustrated in Figure C.2.

Water level

+ 5% margin

Fig. C.2: Illustration of the 5% point uncertainty margin allowed in the annotations. The gray horizontal
lines in the left side of the pipe indicate the discrete steps from 0% to 100%. A water level of 40% is present
in the given example.

The dataset used in this research is constructed from 5511 different CCTV videos
where one or more images are extracted from each video, resulting in a total of 11,558
images. The large amount of videos is necessary to represent the variability of real-
world sewer pipes. Even for skilled sewer inspectors it can be extremely difficult to
estimate the water level. From our study of the recorded data, and from conversations
with the water utility companies, we have found that there are often variations in the
water level within the recordings. Therefore, noise is expected in the annotations.

We split the dataset into three parts: training, validation, and test. The dataset
has been carefully constructed such that each annotation level is equally represented.
Therefore, we sample 1000 images per class for the training split and 100 images for
each of the validation and testing splits. However, there are not 1200 occurrences
across the available data for the water levels between 70% and 100%. In these cases,
we use the available data and note that the dataset is imbalanced for those classes. The
distribution of images with respect to the splits can be seen in Table C.1. The data in the
training, validation, and test splits all come from unique sewer pipes and inspections.

While the data are originally annotated using the 2010 Danish sewer inspection
standards, the standards have been updated in 2015 [21]. In the newer inspection
standards, the annotation protocol for water levels has been changed such that it focuses
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Table C.1: Overview of the dataset and the three splits. The data are annotated following the 2010 Danish
sewer inspection standards.

Water Level
Training Validation Test Total

Images Videos Images Videos Images Videos Images Videos

0% 1000 966 100 98 100 96 1200 1160
10% 1000 972 100 97 100 98 1200 1167
20% 1000 841 100 88 100 90 1200 1019
30% 1000 696 100 66 100 83 1200 845
40% 1000 574 100 55 100 59 1200 688
50% 1000 494 100 58 100 50 1200 602
60% 1000 361 100 33 100 43 1200 437
70% 531 181 97 31 31 17 659 229
80% 718 211 85 28 64 28 867 267
90% 257 79 80 12 100 11 437 102
100% 1000 199 100 22 95 23 1195 244

Total 9506 4529 1062 492 990 490 11,558 5511

on a coarse grouping of water levels instead of fine-grained intervals. Specifically,
the water level is annotated into four classes: less than 5%, between 5% and 15%,
between 15% and 30%, and above 30%. These groupings better correspond to the
visual appearance of the water level, as it can be hard to distinguish the classes of more
than 30% due to the inspection camera being partially or fully submerged under water.
In these cases, the inspectors have previously used contextual and temporal information
in order to complete their annotations.

It is possible to make a near perfect one-to-one mapping between the two standards
with the exception being the 2015 class with≥30% water level. As the 2010 annotations
have a±5% point uncertainty margin, the 30% class may contain data from water levels
as low as 26%. We choose to accept the risk of this and acknowledge it as a source of
extra noise. With this mapping, the dataset presented in Table C.1, annotated following
the 2010 Danish sewer inspection standards, can be re-labeled into a dataset following
the 2015 Danish sewer inspection standards as shown in Table C.2. Furthermore,
by converting the data to the 2015 standards, the dataset becomes much more skewed
towards the ≥30% class. This causes the dataset to be heavily imbalanced, compared
to the dataset following the 2010 standards. However, we do not resample the data to
be balanced for the 2015 standards as it will cause the experiments to be incomparable
due to different training sets.

2.2 Data Quality
As the data are from real-life sewer inspections, the video resolution and quality
vary depending on the utilized recording equipment. All the data have, however,
been recorded with 25 frames per second. Furthermore, all of the videos have a text
layer applied with inspection metadata, annotations, and more. This information has
been blurred in order to ensure that the CNN-based methods learn by observing the
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Table C.2: Overview of the dataset and the three splits. The data is annotated following the 2015 Danish
sewer inspection standard.

Water Level Intervals
Training Validation Test Total

Images Videos Images Videos Images Videos Images Videos

WL < 5% 1000 966 100 98 100 96 1200 1160
5%≤WL < 15% 1000 972 100 97 100 98 1200 1167

15%≤WL < 30% 1000 841 100 88 100 90 1200 1019
30%≤WL 6506 1750 762 209 690 206 7958 2165

Total 9506 4529 1062 492 990 490 11,558 5511

water in the sewer pipe and not by reading the textual metadata. A range of examples
from the dataset are shown in Figure C.3.

3 Methodology
We investigate the performance of multiple machine learning methods using both the
2010 and 2015 Danish annotation guidelines. First, we train the proposed models using
the annotations following the 2010 standard in a classification approach where each
level is a discrete class. Second, we train the models in a regression setting where the
water level percentage is predicted as a continuous quantity. Last, we train the models
in a classification setting and convert the annotations to the 2015 standard classes where
the different classes are grouped as mentioned in Section 2. These settings are referred
to as Class10, Reg2Class10, and Class15, respectively.

3.1 Features and Models
We investigate the performance of two CNNs—AlexNet and ResNet—to determine
whether deep learning is feasible for estimating the water level in sewers from sin-
gle images. Furthermore, by measuring the performance of ResNet-18, ResNet-34,
and ResNet-50, we can evaluate the effect of higher abstraction levels provided by an
increased network depth.

AlexNet [22] is considered to be the deep neural network that sparked the interest
for deep learning almost ten years ago, and it is often used as a baseline for classification
tasks. A neural network is considered deep when there is more than a single layer
between the input and output layers, and AlexNet has eight such layers. Generally
speaking, the feature abstraction level increases with the depth of the network which,
in theory, means that a deeper network can handle more complex tasks. However,
as the amount of parameters increases, so does the processing time and the likelihood
of overfitting the model to the training data. It has even been shown that for some
architectures it can harm the performance if the depth is overly increased due to the
degradation problem [23].

ResNet [24] is a family of CNN models developed with the aim of being able
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(a) WL: 0% (b) WL: 10% (c) WL: 20%

(d) WL: 30% (e) WL: 40% (f) WL: 50%

(g) WL: 60% (h) WL: 70% (i) WL: 80%

(j) WL: 90% (k) WL: 100%

Fig. C.3: Images from the dataset that show the inter-class variation. WL is the annotated water level.

to utilize the increased abstraction level offered by deeper layers without suffering
from the degradation problem. The models consist of stacks of relatively small layers
connected by identity shortcuts that forces the network to learn the residual function
between the stacks. These shortcuts allow the networks to cheaply reduce the influence
of certain layers if they do not enhance the output performance. This type of architecture
has proven to be very powerful and ResNets are still widely used; especially for cases
where depth is expected to improve the performance.

Two decision tree methods—Random Forest [25] and Extra Trees [26]—are also
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investigated in order to provide a baseline performance. The tree-based methods are
trained using GIST features [27] computed from the images as Myrans et al. The authors
of [28] have shown this to be an effective combination for sewer defect classification.
The GIST feature descriptor [27] applies a series of 2D Gabor filters, each with a
different scale and orientation, resulting in a feature map per scale and orientation
permutation. The feature maps are divided into a predefined grid where the feature
values within each grid element are averaged. The averaged feature values are then
concatenated per feature map into a feature vector, and all of the resulting feature
vectors are concatenated to give the final GIST feature vector.

3.2 Loss Functions
The classification models are all evaluated using the standard categorical cross-entropy
(CE) loss with the option of including class specific weights, wc. The cross entropy
loss is defined as

fCE = −
C

∑
c=1

wcyc log(pc) (C.1)

where yc is the ground truth label, 1 if the correct class, and 0 otherwise, and pc is the
predicted probability of class c. For the standard CE loss, wc is set to 1 for all classes.

However, for the regression networks there is not a single standard loss. A large set
of methods utilizes the Mean Absolute Error (MAE) or Mean Square Error (MSE) loss
functions, also known as the `1 and `2 loss functions, respectively. MAE and MSE are
defined as

fMAE(x) = |x| (C.2)

fMSE(x) = x2 (C.3)

where x is the residual, the result after subtracting the predicted value from the ground
truth value.

The MAE loss function is robust to outliers but suffers from derivatives that are
not continuous. MSE is more stable during training due to continuous derivatives, but
more sensitive to outliers due to the squared residual term. Due to the built-in ±5%
uncertainty around each annotation in the 2010 standards, we choose to train with the
MSE loss as the quadratic residual term allows automatically increasing the weighing
the further away the prediction is from the ground truth.

3.3 Training Procedure
The CNNs are all trained using the hyperparameters stated in Table C.3. The Adam
optimizer [29] is chosen as it continuously adapts the learning rate for each parameter
based on the first- and second-order moments of the gradients. The initial learning rate
is set to 0.01 for models learned from scratch whereas a reduced learning rate of 0.001
is used for fine-tuning networks pretrained on the ImageNet dataset. When fine-tuning
the ResNet models, we freeze the first two residual blocks in order to retain low-level
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Table C.3: Hyperparameters for each of the Convolutional Neural Network (CNN) models.

Parameter From Scratch Fine-Tuned

Learning Rate 0.01 0.001
Weight Decay 0.0001
Optimizer Adam
Batch Size 64
Epochs 50

Table C.4: Hyperparameter search intervals for the Random Forest and Extra Trees algorithms. d denotes
the dimensionality of the input features for GIST.

Parameter Values

Number of Trees [10, 100, 250]
Maximum Depth [10, 20, 30]
Maximum Features [

√
d, log2(d), d/3, d]

feature knowledge. A weight decay of 0.0001 is used for all models to help regularize
the weight parameters and avoid overfitting. All models are trained for 50 epochs with
a batch size of 64 to make them comparable. During training, the input images are
augmented by horizontally flipping the image with a 50% chance. All images during
both training and evaluation are normalized.

We conduct a small hyperparameter search in order to find the best set of parameters
for the tree-based methods. The investigated hyperparameters and the possible values
are shown in Table C.4, where d is the amount of features in the GIST feature descriptor.
For the classification models, the minimum number of samples required to be at a leaf
node is set to 1, whereas for the regression models it is set to 5, as per the original
Random Forest paper [25]. The GIST feature descriptor is computed using a 4× 4
grid with filters using 4 scales and 8 orientations. The input image is downscaled to
128×128 pixels and converted to grayscale as described in [28], which results in a
512 dimensional GIST feature vector.

All classification models are trained by minimizing a weighted CE loss where the
class weights are calculated as

wc =
max(Ni)

Nc
, i ∀ [1,2, ...,C], (C.4)

where Ni is the number of training samples for class i and wc is the weight for class c,
out of the total C classes.

The regression models are trained by minimizing the MSE loss. The best per-
forming model is determined by selecting the model with the lowest validation loss.
For the CNNs, the validation loss is computed after each epoch. The best performing
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Table C.5: Hyperparameters for each of the best performing Random Forest and Extra Trees models on
each task.

Parameter\Model
Random Forest Extra Trees

Class10 Reg2Class10 Class15 Class10 Reg2Class10 Class15

Number of Trees 250 250 250 250 250 250
Maximum Depth 10 20 10 10 20 10
Maximum Features

√
d d

√
d d d d

tree-based models are found from the model with the lowest validation loss among the
models in the aforementioned hyperparameter search, see Table C.5.

All of the CNN architectures are implemented using the PyTorch framework [30],
utilizing the publicly available implementations as well as the provided network weights
for the ImageNet pretrained models. The models were trained on a single RTX 2080
TI graphics card. For the tree-based models, we utilize the Scikit-Learn library [31]
while the GIST features are extracted using an open source Python wrapping of the
original C implementation [32].

4 Experimental Results
We observe that in general the fine-tuned CNNs outperforms the CNNs trained from
scratch, indicating that while the ImageNet dataset is visually quite far from the sewer
image data the learned information is still valuable. This aligns with prior experience
within the transfer learning domain where ImageNet pretraining is the norm. Therefore,
we only show the performance of the fine-tuned CNNs in Tables C.6–C.9. The results
of the CNNs trained from scratch can be found in Appendix C.A.

Performance Metrics
The tasks are evaluated using the F1-metric which is calculated as the harmonic mean
of the Precision, P, and the Recall, R, of the predictions, as shown in Equations (C.5)–
(C.7). TP, FP, and FN denote the true positive, false positive, and false negative
predictions, respectively.

P =
TP

TP+FP
(C.5)

R =
TP

TP+FN
(C.6)

F1 =
2 P R
P+R

(C.7)

As the task at hand is a multi-class classification problem, we generalize the binary
F1-metric by calculating the average of the F1-metric for each class. This is done by
calculating the micro- and macro-averaged F1-metrics. These F1-metrics are chosen
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as the normal accuracy metric is not representative for imbalanced data. Furthermore,
the two F1-metrics incorporate an implicit weighting for minority and majority classes
such that different trends for the imbalanced dataset are highlighted.

The micro-F1 metric is calculated by treating all observations equally, resulting in
a metric sensitive to the majority classes. Micro-F1 is calculated based on the micro-
averaged precision and recall, as shown in Equations (C.8)–(C.10), where C denotes
the amount of classes. TPc, FPc, and FNc are the binary metrics for class c, obtained
by approaching the evaluation as a one vs. all binary task for class c. Specifically,
this means that the precision, recall, and F1-metric are calculated by globally counting
all true positive, false positive, and false negative predictions.

micro-P =
∑

C
c=1 TPc

∑
C
c=1 TPc +FPc

(C.8)

micro-R =
∑

C
c=1 TPc

∑
C
c=1 TPc +FNc

(C.9)

micro-F1 =
2 micro-P micro-R
micro-P+micro-R

(C.10)

The Macro-F1 metric is calculated as the arithmetic mean of the per-class F1-
metrics as shown in Equation (C.11). This results in an equal weighting for each class,
thereby causing the Macro-F1 metric to be more sensitive to the rare classes.

Macro-F1 =
1
C

C

∑
c=1

F1c (C.11)

In order to compare the regression models with the classification models, we convert
the regression output to classification outputs for training setting Reg2Class10. This is
achieved by utilizing the fact that each class represents a ±5% point interval around
the center value. The regression predictions are therefore converted by first clamping
the values to the interval [0,100] and subsequently assigning the regression prediction
to the closest ground truth value. For instance, a regression output of 74.5% water
level will be assigned to the 70% level class. The regression outputs are not converted
to the Class15 labels, as the conversion cannot be performed without uncertainty
near the 30% water level area. The results for all methods are shown in Table C.6
and the F1 score for each class under the different training variations are shown in
Tables C.7–C.9 and Tables C.10–C.13. Models trained from scratch are indicated with
a “S” suffix, while fine-tuned models have a “FT” suffix. The per-class performance is
also visualized in Figure C.4.
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Table C.6: Results for each tested method for the different training settings.

Method
Class10 Reg2Class10 Class15

micro-F1 Macro-F1 micro-F1 Macro-F1 micro-F1 Macro-F1

Random Forest 27.17 23.19 14.63 11.01 68.18 51.47
Extra Trees 29.49 26.39 14.33 10.72 64.34 50.19
AlexNet-FT 30.10 26.96 30.10 28.81 69.59 20.54
ResNet18-FT 39.19 37.41 30.61 30.00 73.03 60.93
ResNet34-FT 37.37 35.54 28.69 28.00 76.36 61.88
ResNet50-FT 39.70 36.50 27.07 26.27 79.29 62.88

Table C.7: Per-class F1 score for each method—Class10 training setting.

Method\Water Level 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Random Forest 48.25 32.58 29.38 19.32 22.11 21.52 17.89 3.45 16.13 9.43 35.02
Extra Trees 45.05 36.65 33.79 19.88 27.84 26.09 20.32 6.35 13.14 28.33 32.85
AlexNet-FT 49.38 41.75 28.05 31.54 15.60 25.32 14.77 10.77 17.27 49.61 12.50
ResNet18-FT 71.72 55.67 32.05 16.67 34.10 31.43 24.62 10.89 26.23 66.94 41.18
ResNet34-FT 68.38 57.65 39.52 34.38 26.29 15.04 23.79 11.90 21.36 59.72 32.91
ResNet50-FT 63.32 47.49 38.20 23.96 31.30 13.11 29.63 13.86 14.74 66.08 59.77

Table C.8: Per-class F1 score for each method—Reg2Class10 training setting.

Method\Water Level 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Random Forest 0.00 20.55 14.71 20.14 26.51 19.53 13.20 1.41 5.13 0.00 0.00
Extra Trees 0.00 15.83 13.59 20.00 25.57 20.97 12.24 0.00 9.71 0.00 0.00
AlexNet-FT 53.89 41.79 33.65 30.05 25.11 24.56 23.81 9.02 16.51 56.79 1.69
ResNet18-FT 50.35 49.04 34.00 26.54 26.36 25.31 26.73 11.94 16.55 49.06 14.16
ResNet34-FT 54.09 40.84 34.55 23.66 23.70 30.08 26.84 11.68 23.13 34.90 4.55
ResNet50-FT 44.59 35.68 28.14 23.65 26.96 17.56 27.59 12.58 15.91 56.32 0.00

Table C.9: Per-class F1 score for each method—Class15 training setting.

Method\Water Level WL < 5% 5% ≤WL < 15% 15% ≤WL < 30% 30% ≤WL

Random Forest 50.61 40.68 32.08 82.52
Extra Trees 47.15 39.18 35.16 79.28
AlexNet-FT 0.00 0.00 0.00 82.14
ResNet18-FT 70.75 48.62 38.41 85.94
ResNet34-FT 69.06 43.59 46.36 88.53
ResNet50-FT 65.38 53.39 41.24 91.51
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Fig. C.4: Per-class F1-metric for all methods under the different training settings.

5 Discussion
From the results presented in Table C.6 it is possible to see several trends. We observe
that utilizing the 2015 classification scheme leads to a direct increase in performance
compared to the 2010 standard. Specifically, we see that for all models, except AlexNet-
FT, the F1-metrics have been improved dramatically. This corresponds with prior
research by Van der Steen et al. [33], who found that the more detailed a sewer
inspection standard is, the more mistakes inspectors make.

When looking into the training settings, we see that the classification approaches
consequently match or outperform the methods trained with a regression approach.
This indicates that the strict discrete class membership enforced by the classification
approaches leads to better generalization than the soft continuous class membership
enforced by the regression approaches. This may be a direct consequence of all the
ground truth labels being discrete values with a known uncertainty margin, leading
to the values actually representing a span of values. The regression approaches may,
however, perform better if the ground truth labels were provided by a continuous
measurement such as data from a flow meter.

When looking into the class-specific performance of the Class10 and Reg2Class10
training settings in Tables C.8 and C.9, we observe that the models have a high F1-
metric for the first few classes where the water level is still visually distinguishable.
However, as the water level increases, the F1 metric performance decreases until an
increase in performance for the 90% and 100% water level classes. We see that for
the tree-based methods in the Reg2Class10 setting, there are several classes with an
F1-metric of 0% while other classes have an F1 metric of up to 26%. Similarly,
we observe that the AlexNet-S model simply focuses on a single class in its predictions
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as also shown by the Macro-F1 score, while the AlexNet-FT model is capable of
producing more meaningful predictions. We also see that the depth of the networks
does not seem to correspond with an increase in performance of the F1-metric.

It is observed that the tree-based methods do not match the micro-F1 score of the
ResNets and AlexNet for the Class15 training setting. However, when comparing the
Macro-F1 metric, it is obvious that the tree-based methods outperform the AlexNet on
some classes. By looking into the results in Table C.9 we see that the tree-based models
perform well on the two extreme classes, <5% and ≥30%, but are not as capable at
classifying the two intermediate classes where the inter-class variance may be more
subtle. Moreover, we see that the AlexNets do not generalize at all, instead simply
collapsing to predict only the majority class. This is in contrast with how the AlexNets
performed in the Class10 and Reg2Class10 training settings, where only AlexNet-S
failed to produce meaningful predictions.

These results show that by framing the water level estimation task as a clustering
of perceptible amount of water, as in the 2015 Danish standards, better facilitates
machine learning-based methods than using a direct mapping such as in the 2010
Danish standards. However, the results are not perfect, as there are still some classes
with a low classification rate. This could potential be improved by including temporal
information in the models, such that transitions between water levels can be detected and
spurious classification be ignored. Such an approach has been applied by the authors
of [28], who applied a Hidden Markov Model and window filtering to sewer defect
classifications. Geometric information, such as the size and shape of the pipe, may also
prove useful as these are closely linked with the water level. Last, information about
defects would also help guide the models toward the correct water level classification.
Defects such as pipe collapse or large roots could lead to abnormally high water levels.

6 Conclusions
Estimating the water level in sewers during inspection is important as it indicates the
portion of the pipe that cannot be visually inspected. Currently, it is a subjective and
difficult task of the inspector to estimate the water level through CCTV recordings and
only limited research has been conducted on automating this process. A professionally
annotated dataset with 11,558 CCTV sewer images provided by three Danish utility
companies is used as the foundation for an investigation on the feasibility of using
deep neural networks for automating water level estimation. The problem is studied
through two classification tasks following the 2010 and 2015 Danish Sewer Inspec-
tion Standards. Four deep neural network models (AlexNet, ResNet-18, ResNet-34,
and ResNet-50) and two traditional decision tree methods (Random Forest and Extra
Trees) are compared against each other.

The deep learning methods generally outperform the decision trees, but the net-
works do not seem to benefit from the abstraction levels of the very deep layers. The
best results are provided by ResNet with micro-F1 scores of 39.70% and 79.29%
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following the 2010 and 2015 standards, respectively. These are promising results given
that the data are noisy and the classifications are based on single images. Utilizing
temporal, contextual, and geometric information could improve the classification rate
and should be considered for future work.
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C.A Results for CNNs Trained From Scratch

Table C.10: Results for the CNNs trained from scratch, for each of the different training settings.

Method
Class10 Reg2Class10 Class15

micro-F1 Macro-F1 micro-F1 Macro-F1 micro-F1 Macro-F1

AlexNet-S 10.05 1.67 10.05 1.67 69.59 20.54
ResNet18-S 25.96 23.59 18.79 17.79 70.81 54.41
ResNet34-S 29.90 25.72 20.71 19.80 72.02 53.35
ResNet50-S 29.29 26.20 19.79 18.92 68.18 48.31

Table C.11: Per-class F1 score for the CNNs trained from scratch—Class10 training setting.

Method\Water Level 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

AlexNet-S 0.00 0.00 18.35 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
ResNet18-S 55.45 41.67 18.18 8.20 27.07 20.83 8.00 16.04 10.53 16.20 37.31
ResNet34-S 51.68 38.64 30.59 20.00 16.54 24.18 11.76 11.49 8.85 22.62 46.62
ResNet50-S 43.22 32.00 28.24 10.37 24.51 14.93 17.89 6.11 13.89 56.00 40.99

Table C.12: Per-class F1 score for the CNNs trained from scratch—Reg2Class10 training setting.

Method\Water Level 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

AlexNet-S 0.00 0.00 0.00 0.00 0.00 18.35 0.00 0.00 0.00 0.00 0.00
ResNet18-S 33.33 37.56 18.10 20.87 17.92 23.04 16.43 11.01 11.37 3.97 2.04
ResNet34-S 20.69 36.84 28.18 20.72 12.67 21.05 13.98 16.42 12.97 32.22 2.04
ResNet50-S 18.64 26.83 19.81 23.85 16.55 22.86 17.02 7.75 2.68 52.11 0.00
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Table C.13: Per-class F1 score for the CNNs trained from scratch—Class15 training setting.

Method\Water Level WL < 5% 5% ≤WL < 15% 15% ≤WL < 30% 30% ≤WL

AlexNet-S 0.00 0.00 0.00 82.14
ResNet18-S 53.08 45.57 33.49 85.49
ResNet34-S 52.78 38.92 34.78 86.92
ResNet50-S 50.49 25.00 33.90 83.87
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1. Introduction

Abstract
The sewerage infrastructure is one of the most important and expensive infrastructures
in modern society. In order to efficiently manage the sewerage infrastructure, automated
sewer inspection has to be utilized. However, while sewer defect classification has
been investigated for decades, little attention has been given to classifying sewer pipe
properties such as water level, pipe material, and pipe shape, which are needed to
evaluate the level of sewer pipe deterioration.

In this work we classify sewer pipe defects and properties concurrently and present
a novel decoder-focused multi-task classification architecture Cross-Task Graph Neural
Network (CT-GNN), which refines the disjointed per-task predictions using cross-task
information. The CT-GNN architecture extends the traditional disjointed task-heads
decoder, by utilizing a cross-task graph and unique class node embeddings. The cross-
task graph can either be determined a priori based on the conditional probability
between the task classes or determined dynamically using self-attention. CT-GNN can
be added to any backbone and trained end-to-end at a small increase in the parameter
count. We achieve state-of-the-art performance on all four classification tasks in
the Sewer-ML dataset, improving defect classification and water level classification
by 5.3 and 8.0 percentage points, respectively. We also outperform the single task
methods as well as other multi-task classification approaches while introducing 50
times fewer parameters than previous model-focused approaches. The code and models
are available at the project page http://vap.aau.dk/ctgnn.

1 Introduction
The sewerage infrastructure is a key infrastructure of modern society, which needs to
be regularly inspected and maintained in order to ensure its functionality [2]. These
inspections require professional sewer inspectors who are capable of documenting
and differentiating the fine-grained sewer defects, but also the properties of the sewer
pipe such as the water level, pipe shape and pipe material, see Figure D.1. All of this
information can be combined to compute a single deterioration score for each sewer
pipe [3] used by water utility companies for asset management. Due to the hidden
nature of the sewerage infrastructure sewer inspections are hard and cumbersome to
conduct, as the sewer inspectors have to inspect using a remote controlled vehicle
with a movable camera. Each inspection can stretch over a long duration of time due
to obstacles in the sewers and limited speed of the vehicle. This leads to prolonged
duration of looking at a screen, and can potentially result in flawed inspections due to
fatigue.

In order to alleviate and assist the sewer inspectors, academia and industry have
researched how to automate parts of the inspection process for more than 30 years [4].
However, the majority of work within this field has been focused on the important task
of classifying the defects present in the pipes, while omitting the concurrent tasks of
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Task Ground Truth R50-MTL CT-GNN

Defect FS, RO FS FS, RO
Water [0%,5%) [0%,5%) [0%,5%)
Shape Circular Circular Circular

Material VC VC VC

Task Ground Truth R50-MTL CT-GNN

Defect OB, FS FS OB, FS
Water [0%,5%) [0%,5%) [0%,5%)
Shape Circular Circular Circular

Material Conc. VC Conc.

Fig. D.1: Example images from the Sewer-ML dataset [1] together with examples showing how the baseline
R50-MTL model with no cross-task relationship modeling misses the noticeable roots (RO) and surface
damage (OB). Additionally, the R50-MTL model misclassifies the material as vitrified clay (VC) instead of
as concrete (Conc.), whereas the proposed CT-GNN model classifies all classes in each task correctly in both
examples.

determining the water level, pipe material, and pipe shape needed to determine the
deterioration score [4]. Furthermore, as the inspections are performed on location it is
infeasible to deploy several large models for each task.

Therefore, we investigate how to utilize Multi-Task Learning (MTL), and its sub-
field Multi-Task Classification (MTC), to simultaneously classify the sewer pipe defects
and properties, by training a single model that is capable of processing multiple tasks
during a single forward pass [5].

The MTC problem is often defined as learning how to solve several unrelated
datasets with a single network [6, 7], whereas the problem of related and concurrent
classification tasks, as e.g. during sewer inspections, is less well understood [1, 8]. The
occurrence of the different task classes follows a hidden intractable joint distribution
over all classes from all tasks. While the joint distribution is intractable, the co-
occurrence information of the task classes can be inferred from the data, or learned by
a model, and subsequently utilized to improve the classification process.

In order to handle the concurrent MTC problem, we propose a novel decoder-
focused model, the Cross-Task Graph Neural Network (CT-GNN) Decoder, where the
per-task features are refined using a cross-task sharing mechanism, inspired by recent
dense vision decoder-focused models [9–12]. Specifically, we propose applying a CT-
GNN on the initial task feature representations utilizing cross-task class relationships
to refine the predictions.
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We find that classification of all tasks can be improved by incorporating these
cross-task class relationships into the decoder, by either utilizing the a priori known
co-occurrence of the different task classes or dynamically estimating it through self-
attention. Our proposed method is illustrated in Figure D.2. Compared to the previously
limited use of graphs in MTC, we do not utilize feature vectors from different images in
a batch [13, 14] nor do we consider sequential data inputs [15]. Compared to previous
decoder-focused MTC models, we neither estimate the statistical relationship from
batches [16], nor impose tensor-based constraints [17, 18].

Our contributions are therefore the following:

• We present the Cross-Task GNN Decoder, a novel MTC decoder that refines the
per-task features through a late cross-task mechanism, trained in an end-to-end
manner with only a small parameter count increase.

• In order to quantify a priori knowledge of task relationships we construct a
cross-task graph adjacency matrix in a data-driven manner.

• We achieve State-of-the-Art performance on all four classification tasks in the
Sewer-ML dataset [1], demonstrating the importance of utilizing cross-task
relationships during automated sewer inspections.

The paper is structured as follows. In Section 2, we review the related works within
the automated sewer inspection as well as MTL and MTC fields. In Section 3, we
introduce the CT-GNN decoder head and how to construct the adjacency matrix. In
Section 4, we compare the CT-GNN against other MTC methods on the Sewer-ML
dataset, investigate per-class performances, and conduct ablation studies. Finally, in
Section 5, we conclude the paper.
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2. Related Works

2 Related Works
Automated Sewer Inspections. The field of automated sewer inspections has been
researched for several decades by both academia and industrial research and develop-
ment [4]. However, until the release of the Sewer-ML dataset [1] there was no public
dataset or commonly agreed upon evaluation protocol [4].

The majority of work within the field has instead focused on automatically clas-
sifying defects using CCTV images [1] and other sensor based approaches [19–28].
Only within recent years [4] have deep learning based methods been utilized for defect
classification [1, 29–34], detection [35–37], segmentation [38–41], and spatiotemporal
based analysis [42, 43]. Defect classification models often employ a two-stage ap-
proach with a small initial classifier making a binary defect/non-defect classification,
followed by a specialized defect classifier [1, 29, 31, 32, 34]. Recently, work has been
conducted on classifying the water level in sewer pipes [44, 45], such that it is possible
to estimate how much of the pipe can be inspected for defects. However, no work has
been conducted on classifying the sewer pipe defects and properties concurrently. For
an in-depth review of the vision-based automated sewer inspection field we refer to the
survey by Haurum and Moeslund [4].

Multi-Task Learning. The field of multi-task learning has been applied across
several different domains. Within the computer vision domain, MTL has been applied
on image-level classification tasks such as facial attributes [8] and age and gender
estimation [46, 47], learning several unrelated datasets at a time [6, 7], as well as
learning multiple dense vision tasks such as per-pixel depth estimation and semantic
segmentation [48–51]. Two main research branches have been developed through the
years: optimization-focused and model-focused approaches [5]. For an exhaustive
review of the field we refer to the surveys of the field [5, 52, 53].

The optimization-focused approaches investigate the effect of balancing how the
tasks are learned. The tasks are balanced through operations such as normalizing the
gradient magnitudes [54], approaching the problem as a multi-objective optimization
problem and finding a Pareto optimal solution among all tasks [55, 56], adjusting the
task weights based on the loss descent rate [57], the task-dependent homoscedastic
uncertainties [58, 59], and more [60–62]. Each of these approaches is built on different
underlying assumptions regarding how the task balancing is controlled, and introduces
either an extra computational load or extra hyperparameters.

The model-focused approaches investigate the effect of parameter sharing in the
model and is classically split into two types, hard and soft parameter sharing. Hard
parameter sharing approaches are built around a shared backbone split into task-specific
branches and heads [63–67], whereas in soft parameter sharing each task is assigned
its own parameters with cross-task information introduced through one or more feature
sharing mechanisms [57, 68–70]. Typically, these models utilize an encoder-decoder
structure, where an input is passed through an encoder generating a global or per-task
feature representation, which is used by a decoder to produce the task predictions [5].
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This has led to encoder- and decoder-focused methods.
In encoder-focused models the task parameters are only shared in the encoder, while

the decoder consists of disjointed task-heads with no cross-task information [54, 56, 58].
In decoder-focused models, the model parameters are also shared across tasks in the
decoder through mechanisms such as multi-model distillation [9–12, 71], sequential
task prediction [72], or cross-task consistency [73]. Decoder-focused models have been
applied primarily for dense vision tasks. The few decoder-focused models that have
been applied to multi-task classification depend on tensor factorization over pre-trained
single task networks [18], placing a tensor normal prior over the decoder [17] and
utilizing a maximum a posteriori optimization objective, or constraining the decoder
layers based on the task relations [16]. However, the previous methods suffer from
either requiring initially training single task networks [18], modifying the optimization
loop [17], or limited to two tasks [16].

Lastly, graphs have seen recent usage in the MTL and MTC fields in modeling
between- and within-task relationships. An example of this is the PSD-Net which
utilized graphlets to improve per-pixel predictions [12]. For multi-task classification,
graph neural networks (GNNs) have been used to model the relationship between
the multiple inputs in a batch [13, 14], or across sequential data [15]. In concurrent
work [74] a Laplacian graph across facial attributes is learned and used within a
regularization term during optimization.

Overall, the literature on MTC decoder-focused models is scarce and existing
methods either rely on compressing single task networks or constrained to two tasks.
Here, we present a novel decoder-focused model, CT-GNN, which is end-to-end
trainable for any number of tasks. Furthermore, in contrast to previous usage of graphs
in MTC, the CT-GNN is trainable without relying on sequential or batched data for the
graph construction.

3 Methodology
In this section, we present our proposed Cross-Task GNN Decoder for Multi-Task
Classification. First we provide a recap of Multi-Task Learning and Graph Neural
Networks, followed by an explanation of the CT-GNN decoder and how the graph
adjacency matrix can be constructed in a data-driven manner.

3.1 Multi-Task Learning Recap
Multi-Task Learning focuses on the problem of classifying a set of T tasks, T , simul-
taneously. Each task contains a set of Ct classes, for a total of C = ∑t Ct classes. In
the case of sewer inspection each image, I , has T task-specific labels yt . The MTL
networks are optimized using a linear combination of the task-specific losses:

LTotal =
T

∑
t=1

λtLt(I ,yt), (D.1)
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where λt and Lt are the weight and loss of the tth task, respectively.
When applying multi-task learning methods there are typically varying degrees

of parameter sharing in the encoder and no parameter sharing in the decoder. An
input image is processed by an encoder network, fENC, and a set of per-task features
xt ∈RdENC are extracted. If there are no task-specific parameters in fENC all T tasks
will use the same encoded feature x ∈ RdENC . The encoder features are processed
by a decoder network, fDEC, producing predictions for each of the tasks, ỹt ∈ RCt .
Classically, fDEC is constructed as T disjointed classifiers.

3.2 Graph Neural Network Recap
A graph, G = (V ,E), is defined as a set of nodes, V , and edges connecting two
nodes, E , together with a set of d-dimensional node features X ∈ R|V |×d . A graph
can be represented using an adjacency matrix A ∈ R|V |×|V |, where entry A[u,v] is
the edge weight from node v to u. The basic GNN is defined by its neural message
passing structure where the feature vectors of the nodes are exchanged and updated,
constituting a GNN layer [75]. The neural message passing structure for node u and its
neighbors N (u) is defined as:

h(l+1)
u = ψ(h(l)

u ,φ({h(l)
v ,∀v ∈N (u)})), (D.2)

where ψ and φ are arbitrary differentiable update and aggregation functions, respec-
tively, and hl

u is the hidden embedding of node u at layer l with h0
u = xu.

3.3 CT-GNN Decoder for Multi-Task Classification
The Cross-Task GNN Decoder builds upon the encoder features, xt , and consists
of the following four parts illustrated in Figure D.2: T task-specific decoder heads
producing the initial per-task feature representations, T bottleneck layers reducing the
dimensionality of the per-task feature vectors, C non-linear node embedding layers,
and a cross-task GNN which jointly refines the different class representations based on
an a priori or learned directed graph GT .

Task-Specific Decoders. The task-specific decoder heads are realized as a set
of T disjointed networks, fDEC,t , each generating a task-specific feature vectors zt =
fDEC,t(xt), zt ∈RdDEC . Classically, zt is used directly to obtain the class predictions, y̌t ,
by applying a linear layer followed by the classification activation function of choice. In
the CT-GNN decoder framework, however, the task-feature zt is used as the foundation
for the class-specific node embeddings, in order to allow for initial task-adaption of the
encoder feature, xt .

Bottleneck Layer. In previous work, the dimensionality of the task-specific feature
representation zt is equal to that of the encoder feature, meaning dENC = dDEC [56,
64]. In the CT-GNN decoder framework this is problematic, as the model parameter
count would increase dramatically when transforming the T task-specific features
into C unique class-specific features of size dEMB. Therefore, a non-linear down
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projection layer, fBTL,t , is applied in order to reduce the dimensionality of the task-
specific features and generate a more compact feature representation, z̃t ∈RdBTL . The
bottleneck is realized as a dense layer, z̃t = fBTL,t(zt) = σ(ztBt), consisting of the
down projection weight matrix, Bt ∈ RdDEC×dBTL , where dBTL ≤ dEMB ≤ dDEC, and
applying a differentiable non-linear function, σ. Bt can be task-specific or shared across
all T tasks, depending on the number of tasks. For a large number of tasks, using
task-specific bottleneck layers would result in a large parameter increase, decreasing
the parameter-wise benefits of using a MTL network.

Node Embeddings. The dimensionality-reduced task feature representation, z̃t , is
subsequently turned into Ct class-specific node embeddings. z̄t,c ∈RdEMB . Similar to
the bottleneck layer, this is realized as a dense layer, z̄t,c = fEMB,t,c(z̃t) = σ(z̃tEt,c),
consisting of a matrix multiplication and non-linearity. In order to get the Ct unique
node embeddings, we use Ct unique embedding layers, parameterized by Ct unique
learnable matrices Et,c ∈RdBTL×dEMB .

Cross-Task GNN. The stacked initial per-class node embeddings, Z̄ ∈RC×dEMB ,
of the cross-task graph, GT , are refined by passing them through a GNN, Ẑ = fGNN(Z̄),
where Ẑ∈RC×dEMB is the stacked GNN-refined node features. The GNN fundamentally
builds upon an adjacency matrix of GT , A ∈RC×C, which can be learned, provided a
priori, or obtained by a combination thereof. The GNN propagates the node embeddings
through L hidden layers with dEMB channels, adding contextual information to each
node embedding based on its incoming neighbors.

Each node embedding, ẑt,c ∈RdEMB , is passed through a class-specific linear pro-
jection layer, ẑt,c = fCLS,t,c(ẑt,c), to generate a scalar node embedding for each class.
The scalar embeddings, ẑt,c, are stacked per-task, and the task-specific activation func-
tions are applied to generate the per-task probability vectors, ŷt . For multi-label and
multi-class classification we use the sigmoid and softmax activation.

3.4 Adjacency Matrix Construction
A key part of the CT-GNN Decoder is the construction of the graph, realized by the
adjacency matrix A . This adjacency matrix can in theory be arbitrarily set. However,
in order to utilize the a priori knowledge of the task relationships, we follow a data-
driven approach based on the co-occurrence of the classes. We generalize the graph
construction method Chen et al. [76] to the multi-task classification scenario.

A consists of several sub-matrices, Ai, j, each describing the relationship between
the tasks i and j. Note that in the case that only binary and multi-class classification
tasks are considered, A will be a directed T -partite graph with self-loops. Firstly,
the conditional probabilities between the classes in task i and j, Pi, j ∈ RCi×C j , are
calculated based on the co-occurrence matrix between the two tasks, Ci, j ∈RCi×C j , see
Eq. D.3–D.4. The co-occurrence matrices are calculated using the training splits. We
follow the convention that Pi, j[u,v] defines the conditional probability of class u given
class v.
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Pi, j[u,v] =
Ci, j[u,v]

Nv
(D.3)

Nv =

{
Ci, j[v,v], i = j

∑
Ci
u=1 Ci, j[u,v], i 6= j

(D.4)

Pi, j is subsequently binarized in order to filter out noisy edges using a task-pair
specific threshold τi, j, see Eq. D.5. By utilizing task-pair specific thresholds the
different task-pairs can be binarized according to different rules, if desired. The
binarized adjacency matrices are then combined into a single adjacency matrix, A, see
Eq. D.6.

Ai, j[u,v] =

{
0, Pi, j[u,v] < τi, j

1, Pi, j[u,v] ≥ τi, j
(D.5)

A =

 A1,1 . . . A1,K
...

. . .
...

AK,1 . . . AK,K

 (D.6)

Lastly, the adjacency matrix is re-weighted across the incoming edges per node, in
order to counteract the oversmoothing problem with GNNs [76], leading to the final
adjacency matrix, A . This is done using A, and enforcing the sum of all incoming
edge weights to equal one, setting the sum of the neighbor edge weights to p, while the
center node self-loop weight is 1− p, see Eq. D.7.

A [u,v] =

A[u,v] p

∑
Cj
v=1,v6=u A[u,v]

, u 6= v

1− p, u = v
(D.7)

The larger p is the more weight will be assigned to the incoming neighbor nodes,
while a smaller p value will result in more weight assigned to the center node. If a
center node has no incoming edges a part from the self-loop, i.e. ∑

C j
v=1,v6=u A[u,v] = 0,

we set the self-loop weight to one, to avoid the center node embedding decaying to a
zero vector.

4 Experimental Results
We evaluate on the Sewer-ML sewer defect and pipe property dataset [1]. The dataset
focuses on the multi-label defect classification problem and contains 1.3 million images
collected over a nine year period. The data are split into a preset training, validation,
and test split, containing 1 million, 130k, and 130k images each [1]. The defect
classification problem consists of 17 different classes as well as the implicit normal
class. Additionally, the water level, pipe material and pipe shape are also annotated.
The water level is annotated in 11 classes from 0 to 100% of the pipe filled with water
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in 10% steps, and the pipe material and shape tasks contain eight and six classes each.
Example images can be found in the supplementary material.

4.1 Evaluation Metrics
Model evaluation is done using the per-task evaluation metrics and number of parame-
ters, #P. As the classes in each task are imbalanced the tasks cannot be evaluated using
the traditional accuracy metric. Instead, the defect task is evaluated using the F2CIW
defect score and the F1Normal score [1]. The three remaining tasks are evaluated using
both the micro-F1 (mF1) and macro-F1 (MF1) scores.

Lastly, we report the average per-task performance increase for a multi-task model,
∆MTL, with respect to the single task learning (STL) baselines of the same base
architecture [77]:

∆MTL =
1
T

T

∑
t=1

(Mm,t −Mb,t)

Mb,t
, (D.8)

where Mm,t and Mb,t are the multi-task and single-task metric performance for task t,
receptively.

4.2 Training Procedure
We utilize the ResNet-50 network [78] as our base encoder, with no task-specific
decoders, meaning xt = zt . We cast the defect classification problem as a multi-label
classification task with a single task weight, λdefect, while the water level, pipe material,
and pipe shape are multi-class classification tasks. For the water level classification
task, we adapt the label discretization approach from [44], leading to four water level
classes.

We compare performance using the Graph Convolutional Network (GCN) [79]
and Graph Attention Network (GAT) [80] in the CT-GNN, denoting the variations
CT-GCN and CT-GAT, respectively. We use the reweighted adjacency matrix, A ,
for GCN, and the binary adjacency matrix, A, for GAT where the edge weights are
inferred through self-attention. While the GAT architecture could fully determine the
adjacency matrix through self-attention, we found that performance increases if we
provide the set of possible graph edges beforehand. The GCN adjacency matrix was
symmetrically normalized [79] using the in-degree matrix, and skip connections were
inserted between the GNN layers. Finally, we use task-specific bottleneck layers.

Hyperparameters. The networks are trained for 40 epochs using SGD with a
learning rate of 0.1, momentum of 0.9, weight decay of 0.0001, and a batch size of 256.
The learning rate is multiplied by 0.01 at the 20th and 30th epoch. The hyperparameters
used in the CT-GNN, including the number of attention heads in GAT, H, are described
in Table D.3, and are found through a sequential hyperparameter search described in the
supplementary material. Through initial tests we found that a single global threshold τ

in the adjacency graph construction leads to the best performance.
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Table D.3: CT-GNN hyperparameters. The hyperparameters were found through a sequential search.
L is the number of layers in the CT-GNN, dENB is the dimensionality of the class features, dBTL is the
dimensionality of the bottleneck, H is the number of attention heads in the GAT GNN, and τ and p are the
thresholding and re-weighting parameters in the adjacency matrix construction, respectively.

Hyperparameter L dEMB dBTL H τ p

GCN 3 512 32 - 0.05 0.2
GAT 1 128 32 8 0.65 -

Data Augmentation. We follow the data augmentation process by [1], rescaling
the images to 224× 224, horizontal flipping and jittering the brightness, contrast,
hue, and saturation values by ±10%. Due to class imbalance in each task, we use
class-weighted task-losses with the class weighting method of [81] with β = 0.9999,
except for the defect task where the positive class examples are weighted by their class
importance weights (CIW) [1].

Loss considerations. For all CT-GNN models the final task loss is a convex
combination of the final probability vector ŷt and the probability vector produced by
applying a classification layer to zt, denoted y̌t :

Lt = ωLt(ŷt ,yt)+ (1−ω)Lt(y̌t ,yt), (D.9)

where Lt is the task-specific loss function for task t, and ω is a weighting hyperparame-
ter in the interval [0,1]. This is to ensure the feature representation zt is representative
for task t, through an auxiliary loss signal. We set ω = 0.75, such that the primary loss
signal is propagated through the CT-GNN.

We constrain the task weights to be a convex combination and set to λdefect = 0.90
and λwater = λshape = λmaterial =

1−λdefect
3 . In order to keep the losses comparable across

different settings, we multiply the task weights by T such that ∑t λt = T , similar
to [57].

4.3 Comparative Models
As there are no ResNet-50 STL baselines for all of the tasks, we train these using the
same hyperparameters as the in MTL networks. Note that we got the best single-task
performance for the defect task using the class weighting method from [81]. We
also compare with the benchmark defect classification model from [1], as well as the
water level classification model from [44]. As there are no prior work on multi-task
classification in the sewer domain [4], we compare with a set of MTL baselines: A
hard-shared ResNet-50 MTL network with no CT-GNN (R50-MTL), and the encoder-
focused soft-shared MTAN model with a ResNet-50 backbone, see Table D.4. Results
for the DWA [57] and the uncertainty [58, 59] optimization-based methods can be
found in the supplementary materials.
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4.4 Results
We find that the CT-GNN outperforms all other methods, beating state-of-the-art
defect [1] and water level [44] classifiers by 5.3 and 8.0 percentage points, respectively.
We also outperform the baseline STL and MTL networks, by a significant margin on
the defect, shape, and material tasks.

The CT-GCN and CT-GAT achieve comparable or better metric performance on all
tasks while adding 0.5-1.7 million parameters compared to MTAN encoder-focused
method which adds 25 million parameters. Specifically, CT-GAT achieves the highest
∆MTL while introducing 50 times fewer parameters than the MTAN encoder. Unlike
soft-shared encoders, the backbone only influences the parameter count of the CT-GNN
through the size of the encoder feature xt .

Comparatively, the optimization-based methods performed worse than using a
fixed set of task weights, echoing the results from [5], resulting in a ∆MTL of -15.70%
and -4.07% on the validation split and -11.57% and -4.07% on the test split, for the
DWA and uncertainty methods respectively. Details are available in the supplementary
material.

We also find that the CT-GAT outperforms the CT-GCN on the defect and materials
task, while the CT-GCN performs slightly better on the shape task MF1 score. This
indicates that there is a clear value in letting the edge weights be dynamically inferred
during inference, while prior information can be imbued beforehand through the
structure of the adjacency matrix. Furthermore, it demonstrates that good performance
can be achieved with limited prior knowledge of the task and class relationships.

Lastly, we observe that the general performance, as measured by ∆MTL, increases
when using MTL networks. By inspecting the results, one can see that the water task
performance is not affected by the MTL networks. However, for the defect, material
and shape tasks the performance increases dramatically, beating the STL method and
benchmark method from [1] by several percentage points, indicating a clear benefit
of utilizing an MTL approach. We also observe a clear difference in ∆MTL across the
validation and test splits. This is attributed to the shape and material tasks where the
classes are very imbalanced, leading to few labels to learn from during training and a
potentially large difference between the examples in the different splits.

4.5 Per-task Analysis of Results
To get a better understanding of the performance difference between the CT-GNNs
and R50-MTL, we dive into the per-class task performances. Images of the different
classes can be found in the supplementary material.

When comparing the individual defect F2-scores, shown in Figure D.4a, we see
that the CT-GNN performs better on defects with high CIWs but few training examples
such as OS, PB, and PS, while the performance is worse on the rare defect classes with
a low CIW such as IS and FO. For classes where there are plenty of examples to learn
from we observe that the performance is comparable across all models.

223



Paper D.

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
defect

6

8

10

12
M

TL

R50-MTL
CT-GCN
CT-GAT

Fig. D.3: Evaluating ∆MTL for different λdefect. Comparison of performance of the R50-MTL, CT-GCN
and CT-GAT models. Evaluated on the validation split.

When investigating the water task, we observe that all models perform equally
well on all classes. On the shape task it is clear the CT-GNN performs better on the
rectangular and eye shaped pipes, see Figure D.4b. It should be noted that the amount
of validation examples of eye shaped pipes is very low. The CT-GNN does, however,
achieve a slightly lower F1-score on the egg shaped pipes. On the material task, the
CT-GNN again improves performance compared to the baseline, see Figure D.4c. By
using the CT-GAT performance on the Brickwork and Unknown classes increase by 13
and 37 percentage points, respectively.

4.6 Ablation Studies
Importance of λdefect. The most critical part of an automated sewer inspection system,
is the capability to classify the presence of defects correctly. Therefore, we investigate
the effect of different λdefect values on the overall performance metric ∆MTL. We com-
pare the performance when setting λdefect = {0.25,0.33,0.50,0.67,0.75,0.90,0.95}
ranging from an equal weighting between all four tasks (λdefect = 0.25) to focusing on
the defect task (λdefect = 0.95). We train an MTL model with a hard-shared ResNet-50
encoder with and without the CT-GNN decoder heads, see Figure D.3. We observe
that the ∆MTL increases steadily together with λdefect, peaking at λdefect = 0.90, before
decreasing when prioritizing the defect task too much when λdefect = 0.95.

Combining MTAN and CT-GNN. The combination of soft parameter sharing
encoder- and decoder-focused models has not previously been investigated. Therefore,
we compare the effect of combining MTAN encoder and the CT-GNN decoder, to
determine whether the two approaches are complementary. We find that the CT-
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Fig. D.4: Per task class comparisons. We compare model performance on the validation set. The F2 defect
scores are plotted for each defect class in Figure D.4a ordered by increasing CIW from left to right. We refer
to the Sewer-ML paper [1] for an explanation of the defect class codes. The class F1-scores for the shape
and material tasks are plotted in Figure D.4b-D.4c. The scores are plotted by decreasing number of training
samples per class.

GCN and CT-GAT obtains a ∆MTL of 12.72% and 11.48% when trained with MTAN,
respectively. This shows that the combination of MTAN and CT-GCN leads to a higher
performance with the CT-GCN compared to using a hard-shared encoder. However,
when using the CT-GAT the performance decreases. This indicates the GNN settings
cannot just be transferred from a hard to soft-shared encoder, instead requiring a small
search over how the graph is constructed.
The per-task metric performances for both ablation studies can be found in the supple-
mentary material. h
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5 Conclusion
One of the most important infrastructures in modern society is the sewerage infrastruc-
ture, but it is difficult to inspect and maintain. Automated sewer inspection methods
have been investigated for decades, with an emphasis of the important defect classifi-
cation task, while sewer properties such as water level, pipe material, and pipe shape,
which are needed to determine the deterioration level, have been neglected.

We approach the automated sewer inspection problem as a multi-task classification
problem. To this end we introduce our novel Cross-Task Graph Neural Network (CT-
GNN) Decoder, which utilizes the cross-task information between concurrent and
related tasks to refine the per-task predictions. This is realized by generating unique
per-class node embeddings that are combined and refined through the use of a graph
neural network.

Using our novel method, we not only beat the state-of-the-art on the defect and
water level classification tasks by 5.3 and 8.0 percentage points, respectively, but also
outperform other single-task and multi-task learning methods on all four classification
tasks in the Sewer-ML dataset [1]. Furthermore, the CT-GNN decoder introduces 50
times fewer parameters compared to encoder-focused models.

The novel CT-GNN approach is focused on handling the concurrent image-level
classification tasks present in the Sewer-ML dataset. It is, however, important to
note that the method is not specific to the sewer data and can therefore be expected
to generalize to other domains containing concurrent classification tasks. Another
interesting future direction for the CT-GNN is to adapt it to regression tasks where the
values cannot be discretized.
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D.A. Supplementary Materials Content

D.A Supplementary Materials Content
In these supplementary materials we describe the hyperparameter search, more in-
depth results for the optimization-based multi-task learning (MTL) methods as well as
the ablation studies. We also show examples of the different task classes, and show
examples of success and failure cases for the CT-GNN. Specifically, the following will
be described:

• Example images of the different task classes (Section D.B).

• Hyperparameter search (Section D.C).

• In-depth optimization-based MTL results (Section D.D).

• In-depth results for the λdefect ablation study (Section D.E).

• In-depth results for the MTAN and CT-GNN ablation study (Section D.F).

• Examples of how the CT-GNN succeeds and fails (Section D.G).

D.B Sewer-ML Task Class Examples
For the sake of clarity we show examples of each class in the water level, pipe shape
and pipe material tasks, see Figure D.14-D.16. For examples of the pipe defect classes
we refer to the supplementary materials of the Sewer-ML paper [1].

D.C Hyperparameter Search
In the hyperparameter search for the CT-GNN decoder we investigated the effect when
varying the design of the bottleneck layer and the CT-GNN. The investigated parameters
and their search space is presented in Table D.6. It should be noted that the amount
of attention heads, H, and the re-weighting parameter, p, were only utilized for the
GAT [80] and GCN [79] GNNs, respectively. Due to the amount of hyperparameters
and the size of the value ranges, we decided to employ a sequential hyperparameter
search design. The search was initialized with the hyperparameters stated in Table D.5.
All tests were performed with λdefect = 0.50 to ensure a fair weighting of the tasks,
while prioritizing the defect task.

At each step of the search the best performing hyperparameter was kept and used
for all future steps of the search. The order of the sequential search was realized as
follows:

1. Grid search across the number of GNN layers, L, and the number of GNN
channels, dEMB.

2. Search over the number of channels in the bottleneck layer, dBTL.

3. Search over the number of attention heads, H. Only performed for GAT.
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Table D.5: Initial Hyperparameter Values. The investigated hyperparameters are set to the following
starting values, and after each step of the sequential search the corresponding hyperparameter is updated. It
should be noted that τ used in the GAT GNN was set to 0.05. This was done to reduce the amount of noisy
graph edges in the Sewer-ML dataset, caused by the large class imbalance in some tasks.

Hyperparameter GCN GAT

L 2 2
dEMB 256 256
dBTL 32 32
H - 8
τ 0.05 0.05
p 0.2 -

Table D.6: Investigated Hyperparameters. The hyperparameters of the CT-GNN and the Bottleneck layer
were investigated. For each hyperparameter we have denoted the values investigated.

Hyperparameter Range

L [1, 2, 3]
dEMB [128, 256, 512]
dBTL [16, 32, 64, 128]
H [1, 2, 4, 8, 16]
τ [0.00, 0.05, 0.15, 0.25, 0.35, 0.45, 0.55, 0.65, 0.75, 0.85, 0.95]
p [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9]

4. Search over the adjacency matrix threshold, τ.

5. Search over the adjacency matrix neighbor node reweighting parameter, p. Only
performed for GCN.

The results of the sequential hyperparameter search on the Sewer-ML dataset are
shown in Figures D.5-D.10. From these results we can conclude that the performance
when using the GAT leads to more stable performances as the ∆MTL in general does
not vary as wildly as when using the GCN. However, when using the GCN we achieve
in general higher ∆MTL. We can also observe that the adjacency matrix threshold τ has
a large effect on the performance. Specifically, it is observable that using a low τ of
0.05 leads to good performance, which is only matched when τ is set to 0.65 and above
for the GAT and 0.35 and above for the GCN. Lastly, we observe that an increased
neighbor node reweighting parameter p leads to degraded performance, indicating that
the center-node information is crucial. The conditional probability matrix, the binary
matrices with τ set to 0.05 and 0.65, as well as the reweighted adjacency matrix with
τ = 0.05 and p = 0.2 are shown in Figure D.11a-D.11d.

228



D.C. Hyperparameter Search
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Fig. D.6: Grid search over L and dEMB for CT-GAT.
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D.D Optimization-Based MTL - In-Depth Results
We present the full results for the optimization-based method Dynamic Weight Averag-
ing (DWA) [57] and Uncertainty estimation (Uncrt.) [58, 59], see Table D.7. The DWA
task weighting method is initialized with λdefect = 0.90, while Uncrt. is initialized
with unit variances for each task. From the results we observe that the DWA method
performs worse than the STL networks on nearly every task. The Uncrt. method
improves the shape and material MF1 compared to the STL networks, but suffers from
poor defect classification rate.

D.E Effect of λdefect - In-Depth Results

We show the in-depth results for each tested setting of λdefect on the validation split for
the R50-MTL baseline as well as CT-GNNs, see Table D.9. We observe that a larger
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(a) The conditional probability matrix based on the training
labels.
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(b) The re-weighted adjacency matrix obtained when τ =
0.65.
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(c) The re-weighted adjacency matrix obtained when τ =
0.05.
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(d) The re-weighted adjacency matrix when τ = 0.05 and
p = 0.2.

Fig. D.11: Adjacency matrix construction. We show the conditional probability matrix across task classes,
as well as the constructed binary and reweighted adjacency matrices.

λdefect leads to a higher ∆MTL due to a higher F2CIW. However, it also leads to a lower
material MF1 score, as we observe that the material MF1 score peaks at 90.5% for the
CT-GNNs when λdefect = 0.50, and decreases to 82-86% when λdefect = 0.90.
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D.F Combining the MTAN Encoder and CT-GNN De-
coder - In-Depth Results

We present the in-depth results of the ablation studies investigating the combination
of MTAN encoder and the CT-GNN Decoder, see Table D.8. The methods were only
evaluated on the validation split. From the results we see that the ∆MTL is increased
by introducing the CT-GNN, and that the combination with the CT-GCN outperforms
using a hard-shared encoder. We observe that the noticeable difference is in the defect
classification task where the performance is increased by 0.6-0.7 percentage points on
the F2CIW metric.

D.G CT-GNN Success and Failure Cases
We show several cases where the CT-GNN decoder correctly classifies all tasks, shown
in Figure D.12, as well as cases where some or all tasks are misclassified, shown in
Figure D.13.

We observe that the the CT-GNN performs well when several defects occur at the
same time at different distances to the camera (see top left example), as well as subtle
defects such as the distortion in the bottom middle example and crack in the bottom left
example. Similarly, this can be observed in the top right example where the high water
level is detected even though it is partially occluded and unlit. Lastly it can correctly
handle rare classes such as the iron material in the bottom right example.

In Figure D.13 we observe that the the CT-GNN misclassify irregularities in the
pipe geometry as displaced pipes (FS) or construction changes (OK), as seen in the
top right and top middle examples. In both cases the predictions is understandable as
the internal reparation is shifted (top left) and the camera is placed right before a well
(top middle). In the top right case the deformation is observed as a surface damage,
which is understandable due to the folds of the deformation. For the cases where all
classifications are incorrect, we see that the CT-GNN decoder misclassifies several
tasks due to limited context introduced by the camera perspective.
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D.G. CT-GNN Success and Failure Cases

Task Ground Truth CT-GNN

Defect RB,OB,FS,AF RB,OB,FS,AF
Water [0%, 5%) [0%, 5%)
Shape Circular Circular

Material Concrete Concrete

Task Ground Truth CT-GNN

Defect FS,AF FS,AF
Water [5%, 15%) [5%, 15%)
Shape Circular Circular

Material Concrete Concrete

Task Ground Truth CT-GNN

Defect FS,PH FS,PH
Water [30%, 100%] [30%, 100%]
Shape Circular Circular

Material Concrete Concrete

Task Ground Truth CT-GNN

Defect RB,PB RB,PB
Water [5%, 15%) [5%, 15%)
Shape Circular Circular

Material Plastic Plastic

Task Ground Truth CT-GNN

Defect DE DE
Water [5%, 15%) [5%, 15%)
Shape Circular Circular

Material Lining Lining

Task Ground Truth CT-GNN

Defect OB,OK OB,OK
Water [0%, 5%) [0%, 5%)
Shape Circular Circular

Material Iron Iron

Fig. D.12: Examples of correct classifications with the CT-GNN. Example cases where the CT-GNN
correctly classifies all four tasks.
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Task Ground Truth CT-GNN

Defect OK OK,FS
Water [0%, 5%) [0%, 5%)
Shape Circular Circular

Material Plastic Plastic

Task Ground Truth CT-GNN

Defect BE BE,OK
Water [0%, 5%) [5%, 15%)
Shape Circular Circular

Material Plastic Plastic

Task Ground Truth CT-GNN

Defect DE,OK OB,OK
Water [0%, 5%) [0%, 5%)
Shape Circular Circular

Material Lining Lining

Task Ground Truth CT-GNN

Defect PF,OS OB,FS,PH
Water [5%, 15%) [30%, 100%]
Shape Conical Circular

Material Lining Concrete

Task Ground Truth CT-GNN

Defect OS None
Water [15%, 30%) [30%, 100%]
Shape Circular Conical

Material Plastic Lining

Task Ground Truth CT-GNN

Defect OK None
Water [5%, 15%) [0%, 5%)
Shape Circular Conical

Material Plastic Lining

Fig. D.13: Examples of incorrect classifications with the CT-GNN. Example cases where the CT-GNN
incorrectly classifies some or all four tasks. Incorrect classifications are denoted in red.
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D.G. CT-GNN Success and Failure Cases

Table D.14: Water level class examples. Example images of the four considered water level classes.

[0%,5%)

[5%,15%)

[15%,30%)

[30%,100%]

Table D.15: Pipe shape class examples. Example images of the six considered pipe shape classes.

Circular

Conical

Egg

Eye

Rectangular

Other
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Table D.16: Pipe material class examples. Example images of the eight considered pipe material classes.

Concrete

Vitrified
Clay

Plastic

Lining

Iron

Brickwork

Unknown

Other
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1. Introduction

Abstract
A crucial part of image classification is capturing non-local spatial semantics of image
content. In this work, we present MSHViT, a vision transformer based multi-scale
extension of the classical CNN backbone, for multi-label sewer defect classification.
In order to better model spatial semantics in the images, our approach non-locally
aggregate features at different scales through the use of lightweight vision transformer,
and produces a smaller set of tokens through a novel Sinkhorn clustering-based tok-
enizer using distinct cluster centers. We evaluate the proposed MSHViT and Sinkhorn
tokenizer on the Sewer-ML multi-label sewer defect classification dataset, showing
consistent performance improvements of up to 2.53 percentage points.

1 Introduction
The sewerage infrastructure is one of a few critical infrastructures in modern society.
If the infrastructure does not function properly, it can lead to dramatic environmental
damage and pose a risk to the public health [1]. Therefore, the sewer pipes require
regular inspections in order to determine when a pipe has to be replaced or rehabilitated.
However, with more than 1.2 million kilometers of public sewerage infrastructure
in just the U.S. [1], this becomes an unimaginable task to perform manually on a
regular basis, as each inspection has to be performed by a professional sewer inspector.
Therefore, the task of automating the sewer inspection process has been researched
for more than three decades, through the development and application of sensors and
computer vision algorithms [2–5].

Since its adoption in 2017, the Convolutional Neural Network (CNN) has been
the method of choice within the automated sewer inspection domain [2]. A key
component of the CNN is the convolutional layers, which efficiently model local
spatial semantics within the image. However, for tasks such as multi-label image
classification, object detection and object segmentation, it is essential to model non-
local spatial semantics [6]. For example, a displaced joint and intruding roots could
be simultaneously in an image but in opposite corners. This represents a case where
multi-scale non-local spatial semantics are helpful, as knowing the presence of the
displaced joint is a strong signal for inferring the presence of the roots.
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1. Introduction

Two different approaches have been adopted for vision tasks – either replacing
convolutions within the CNN with non-local operations [6, 8–10] or appending CNNs
with non-local operations [11–15], denoted Hybrid Vision Transformer (HViT)-like
methods in this paper. However, none of these methods explicitly model non-local spa-
tial semantics across scales for image classification, even though it is used as a common
approach in object detection and segmentation. We therefore propose the Multi-Scale
Hybrid Vision Transformer (MSHViT), where a Vision Transformer (ViT) [13] is
appended at different stages of a CNN backbone for non-local aggregation of features
and cross-scale propagation of features. We also introduce the Sinkhorn tokenizer, a
clustering-based tokenizer to replace the simple patch based tokenizer in ViTs and act
as another source of non-local spatial semantics. Furthermore, we demonstrate that
the Sinkhorn tokenizer successfully cluster the CNN features, which are expected to
have a high amount of redundant information due to successively applying overlapping
convolutional filters and pooling layers. We find that introducing these multi-scale and
non-local spatial semantics operations leads to a relative improvement compared to
using just the CNN backbone.

Our main contributions are as follows:

• We present Multi-Scale Hybrid Vision Transformer (MSHViT), a novel multi-
scale extension of the Hybrid Vision Transformer model for capturing non-local
spatial semantics across scales.

• We present the Sinkhorn tokenizer, a novel clustering-based tokenizer using
Sinkhorn distances, which reduces the amount of tokens and improves metric
performance. We visually verify the cross-scale non-local interactions.

• We achieve State-of-the-Art performance on the Sewer-ML multi-label clas-
sification sewer dataset, when considering only the defect classification task,
outperforming the baseline CNN approaches and other HViT-like approaches.

• We demonstrate the transferability of MSHViT and the Sinkhorn tokenizer
across the backbones in the ResNet and TResNet CNN architecture families, and
thoroughly investigate the impact of each introduced hyperparameter.

The paper is structured as follows. In Section 2, we review the related works
within automated sewer inspections, vision transformers, non-local CNN blocks, and
tokenizers. In Section 3, we introduce MSHViT and Sinkhorn tokenizer. In Section 4,
we determine the improvement obtained by introducing the MSHViT and Sinkhorn
tokenizer and compare to other HViT-like approaches. In Section 5 we conduct an
extensive ablation study of the proposed methods, and in Section 6 we qualitatively
investigate the clustering assignment made by the Sinkhorn tokenizer. Finally, in
Section 7, we conclude the paper.
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2 Related Works
In this section we review the literature within the automated sewer inspection domain,
as well as recent progress within vision transformers, non-local CNN blocks, and
tokenization approaches.

2.1 Automated Sewer Inspections
The automated sewer inspection research field has been active for more than three
decades, developing domain specific computer vision algorithms to handle the unique
environment that is the sewerage infrastructure [2]. However, the research field has
been hindered by the lack of open source code and data, which in combination with
differing evaluation protocols, has made it extremely difficult to compare the proposed
methods in the literature and caused the field to lag behind the general computer vision
domain. This has been rectified within for the classification tasks with the introduction
of the public Sewer-ML dataset [16], enabling fair and open comparisons of multi-label
classification approaches. Using the Sewer-ML dataset Haurum and Moeslund showed
that the sewer defect classification tasks is far from solved. However, the main focus
of the field within recent years has been on the defect detection and segmentation
tasks [17–24], where no public datasets are available. The field has, however, become
more transparent as many have started directly compare different methods on the
same datasets, in an effort to offset the lack of public detection and segmentation
datasets [20, 22, 24]. Recently, the field has also started investigating other parts of
the sewer inspection process [17, 19, 20, 25–29], such as Haurum et al. [25] proposing
a multi-task classification approach for classifying defects, water level, pipe material,
and pipe shape, and Wang et al. [17] proposed a framework to accurately determine
the severity of defects related to the operation and maintenance of the pipes. The
field has also adopted recent trends from the general computer vision field such as
self-supervised learning [27], synthetic data generation [30–34], neural architecture
search [35], and the usage of the Transformer architecture [20, 36], indicating that the
automated sewer inspection field is catching up to the general computer vision domain.

2.2 Vision Transformers
Transformers were originally developed for Natural Language Processing (NLP) [37].
Dosovitskiy et al. [13] demonstrated how a pure transformer based architecture, de-
noted Vision Transformer (ViT), led to competitive performance on several vision
classification tasks. The ViT architecture has led to an increased research focus on
adapting Transformers for vision tasks [38–48]. A general trend has been introducing
components from CNNs into the ViTs, such as limited region of interests and hierar-
chical representations [40, 43–45] or extending CNNs with transformers in a hybrid
approach [12, 13, 15, 38]. However, unlike CNNs the ViT only processes the input
image on a single scale due to the original tokenization step and the absence of pooling
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operations. This problem has been approached in two ways, by either introducing
hierarchical representations inspired by classical CNN architecture design [43–46] or
multi-scale representations by applying different ViTs sequentially [49] or working on
variations of the input in parallel [48, 50]. Our proposed method differs fundamentally
from the prior work as we introduce multi scale features by combining CNNs and ViTs,
instead of adapting a purely ViT-based model.

2.3 Non-Local CNN Blocks
Combining non-local blocks and operations with classical CNNs have been of great
interest as a way of capturing global spatial semantics. The Non-Local Network
(NLN) [8] was proposed as an extension of the ResNet architecture family, where
non-local aggregation operations were inserted into the last blocks of the architecture.
The NLN architecture was extended by Srinivas et al. [6] who introduced the Bot-
tleneck Transformer, where Multi-Head Self-Attention was inserted directly into the
ResNet bottleneck blocks. Both of these approaches lead to direct improvements on
several vision tasks. Appending CNNs with non-local operations have similarly lead
to improvements in image classification as shown by Dai et al. [14] who investigated
how to design Hybrid Vision Transformers (HViTs), i.e. CNNs appended with a ViT,
as well as in tasks such as object detection with the DETR model [11] and enabling
image-caption pair based training [15]. In contrast to the previous application of
non-local blocks, we append the CNN at several stages in order to explicitly introduce
multi-scale interactions through the proposed MSHViT architecture.

2.4 Tokenizers
An essential part of the transformer architecture is the choice of how to generate
the token embedding inputs. In NLP several embedding methods have been utilized
through the years in order to represent sentences and words [51, 52]. However, for
image data this has not been the case. Dosovitskiy et al. [13] proposed simply extracting
non-overlapping patches of the input image and linearly map this to an embedding
space. This approach has since been iterated upon, by instead extracting overlapping
patches [47], learning to select the patch size of the conventional patch tokenizer [53],
as well as replacing the initial layer of the Transformer with a convolutional stem similar
to those found in CNNs [39]. In parallel different token downsampling approaches
have been investigated in order to reduce token redundancy. Goyal et al. [54] and Rao
et al. [55] propose score-based token downsampling methods, where each token is
assigned a score based on the incoming attention from other tokens or a predictive
subnetwork, respectively. In contrast, this work and the concurrent work by Marin
et al. [56] proposes a clustering based approach for reducing the amount of tokens.
The method by Marin et al. utilizes a K-means/medoids based approach, whereas
our proposed Sinkhorn tokenizer utilizes Sinkhorn distances [7] in order to softly
assign the input tokens to a set of cluster centers. All of the prior approaches [54–56]
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are focused on pure ViT architectures and inserted in between each encoder block
progressively decimating the amount of tokens present. Comparatively, the proposed
Sinkhorn tokenizer is applied on HViTs in order to reduce redundancy in the CNN
feature-based tokens.

3 Methodology
In this section we first review the Vision Transformer and its hybrid variant originally
proposed by Dosovitskiy et al. [13]. Then we present our novel clustering-based
Sinkhorn tokenizer, designed to reduce the number of redundant tokens in ViTs. Lastly,
we present our MSHViT architecture, designed to non-locally combine CNN features
at the ith scale and progressively combine features across scales, as illustrated in
Figure E.1.

3.1 Vision Transformers
The Vision Transformer [13] demonstrated that the original Transformer architecture
[37] can be used with little modifications for image classification, and without the
image-related inductive biases found in CNNs.

Tokenization

The transformer takes a series of 1D token embeddings as input, and process the
series in parallel. In order to convert image data to a series of 1D tokens the input
image X ∈RC×H×W is convolved with D different P×P kernels with a stride of P and
flattend to a 1D series of tokens, producing N = HW /P2 linearly embedded tokens
Tp ∈RD×N .

Furthermore, a special class (CLS) token xCLS ∈RD is appended to Tp. The CLS
token is randomly initialized and used to generate an image-level feature representation.
In order to encode a spatial ordering into the tokens a learnable positional embedding
Epos ∈RD×N+1 is added, leading to the final token representations:

Z0 = [xCLS ‖Tp]+Epos, (E.1)

where ‖ denotes concatenation.

ViT Model

The transformer consists of L stacked encoder blocks, each consisting of a token-
aggregation step such Multi-Head Self-Attention (MHSA) followed by an inverted
bottleneck projecting each token into an intermediate RD×r space, where r is an
adjustable hyperparamter, followed by a down projection to the D-dimensional feature
space. Layer normalization (LN) [57] is applied before both actions, and residual
connections around each action. The final feature representation is the CLS token after
L blocks and a final layer normalization step, y = LN(ZL,0).
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Hybrid ViT

Unlike CNNs, ViTs have very little image-specific inductive biases [13]. Therefore,
ViTs often require large amount of training data in order to learn relevant relations,
which are encoded directly into CNN architectures. However, this lack of inductive
biases similarly allows ViTs to learn relations within images, which are not viable with
CNNs, such as capturing non-local spatial semantics. The HViT aims at combining
these two architectures, by first using a CNN to encode local features, and then compute
non-local spatial semantics using a ViT. This is realized by extracting the tokens Tp

from a CNN feature map with a kernel size P = 1, typically at the last feature map
before the commonly global pooling step. This is in contest to the ViT model where
the tokens are extracted directly from the input image X.

3.2 Sinkhorn Tokenizer
The original ViTs generate the token representations of the image through a non-
overlapping patch based method [13]. Several methods have been proposed to improve
the tokenizer either by reducing the stride of convolutional layer such that the patches
overlap [47], or instead use a convolutional stem which aggressively downsamples
the spatial dimensions of the input [39]. However, these methods do not consider
the redundancy of features encoding similar patches in the image and therefore lead
to disproportionately representing these in the generated tokens. While this may be
implicitly handled by the attention mechanisms in the ViT, it introduces an unnecessary
processing overhead and time needed to learn these relations.

To deal with the redundant features we introduce a clustering-based tokenizer using
Sinkhorn distances [7], inspired by clustering-based self-supervised learning [58, 59].
The approach builds upon the original patch tokenizer with P = 1. The N patch
tokens Tp are compared to K cluster centers C ∈ RD×K which are initialized from
a D-dimensional Normal distribution with zero-mean and unit variance. We assume
both Tp and C are `2 normalized and measure similarity using the cosine similarity
V = C>Tp ∈RK×N . Based on the similarity scores V we compute the soft assignment
matrix Q ∈RK×N

+ , which belongs to the set of valid assignment matrices Q, such that
the similarity between the cluster centers and features is maximized:

max
Q∈Q

Tr(Q>V)+ εH(Q), (E.2)

where H is the matrix entropy function and ε controls the weighting of the entropy loss
and thereby the smoothness of the assignment scores.

Similar to [58, 59] we constrain Q to be in the transportation polytope under an
equipartition constraint of the input and cluster centers i.e. the features should on
average be uniformly assigned to the cluster centers. However, instead of applying the
constraint on the full dataset [58] or mini-batches [59], we apply the constraint on the
N features from a single input, see Eq. E.3. We apply the constraint on the N features
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such that there are no cross-information between input images, enabling single image
evaluation.

Q ={Q ∈RK×N
+ |

Q1N =
1
K

1K ,Q>1K =
1
N

1N},
(E.3)

where 1K and 1N are K and N-dimensional vectors filled with ones, respectively.
The solution to Eq. E.2 can then be formulated as follows:

Q∗ = diag(u)exp
(

V
ε

)
diag(v) ∈RK×N

+ , (E.4)

where the renormalization vectors u and v are computed using the iterative Sinkhorn-
Knopp algorithm [7] through tSK iterations.

Using the soft assignments between input features Tp and cluster centers C stored
in Q∗ we transform the input features into K new tokens:

TS = TpQ∗> ∈RD×K (E.5)

3.3 Multi-Scale Hybrid Vision Transformers
Based on prior work on combining non-local operations with classical CNNs, such as
HViTs, we propose the Multi-Scale Hybrid Vision Transformer. Whereas the original
HViT simply extends the backbone CNN with a ViT, we propose applying ViTs at
different scales of the backbone CNN. Furthermore, we also introduce cross-scale
connections between the ViTs in order to encode non-local spatial semantics in the
image at different scales, see Figure E.1.

CNNs such as ResNets [60] and Inception networks [61, 62] have a set of natural
scales within them due to the periodic pooling operations. The representative feature
map of each scale is defined to be the last feature map before each pooling operation
and denoted Xi for the ith scale. At every scale each feature in Xi is linearly embedded
into a common D-dimensional space as tokens Ti

p. These tokens are processed using
a tokenization function ψi, representing either the Sinkhorn tokenizer (Eq. E.5) or an
identity function for the standard patch tokenizer, with the final scale tokens denoted
Ti. The tokens can then be processed by a scale-specific ViT of depth L, denoted as φi,
producing the scale features:

Zi
L = φ

i(Ti) (E.6)

Cross-Scale Connections

In order to share information between different scales, we introduce cross-scale connec-
tions. For scale i > 1 all or a subset of the previous scale features are included, denoted
Si, in addition to the ith scale features Ti

p, see Eq. E.7.

Ti = ψ
i(Ti

p ‖Si) (E.7)
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This cross-scale connection can occur using features from three different stages: the
CNN features Tp, see Eq. E.8, the initial tokens T, see Eq. E.9, or the final token
embeddings ZL, see Eq. E.10. j denotes the initial scale which we consider for scale i.
For example, if j = 1 all features from scale 1 to scale i−1 are aggregated, while if
j = i−1 only the features from scale i−1 are aggregated.

Si = ‖i−1
j T j

p (E.8)

Si = ‖i−1
j T j (E.9)

Si = ‖i−1
j Z j

L (E.10)

Lastly, the overall image representation is defined to be y = LN(ZI
L,0), where I

denotes the last scale of the backbone.

4 Experimental Results
In this section we investigate the performance of the MSHViT architecture and Sinkhorn
tokenizer on the Sewer-ML dataset, a multi-label sewer defect classification dataset [16].
Sewer-ML is the world’s only public multi-label sewer defect dataset, consisting of 1.3
million images, 17 defect classes, and the implicit normal class. The dataset is split into
three distinct training, validation, and testing splits, each containing 1 million, 130k
and 130k images, respectively. We refer to the supplementary material of Haurum and
Moeslund [16] for example images. Defect predictions are evaluated using the F2-score
weighted by the classes class importance weight (CIW), F2CIW, which indicates the
economic importance of the classes, and the normal pipes are evaluated by the F1-score,
F2CIW [16].

4.1 Training Procedure
We follow the training procedure of Haurum et al. [25] with the addition of using the
Exponential Moving Average (EMA) technique on the model weights, see Table E.1.
We utilize the Fourier Network (FNet) based attention mechanism [63] in the HViT as
an efficient alternative to the conventional MHSA based attention mechanism.

We define the ResNet architecture to have five natural scales: the convolutional
stem followed by four ResNet blocks, numbered from 1 to 5. These stages are chosen
as they act on feature maps with different spatial dimensions.

4.2 Hyperparameter Search
The hyperparameter search for the MSHViT and Sinkhorn tokenizer are conducted
in a sequential manner in order to reduce the search space due to the amount of
hyperparameters and the investigated value ranges. The investigated hyperparameter
values as well as the initial and final values are shown in Table E.2. The initial Sinkhorn
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Table E.1: Detailed training procedures. We follow the training procedures of Haurum et al. [25] with
the addition of utilizing model EMA.

Variable Value

Image Size 224
Epochs 40
Batch Size 258
Learning Rate (LR) 0.1
Weight Decay 0.0001
LR Scheduler Step @ 20, 30 epochs
LR Decay Factor 0.01
Optimizer SGD w/ momentum
Loss function Binary Cross-Entropy
Class Weighting Effective samples [64]

β = 0.9999
Model EMA 0.9997
Augmentations Horizontal flip (p = 0.5)

Color Jitter (±0.1)

Tokenizer values were set as in Caron et al. [59], except for the number of clusters K,
where we chose 64 centers as the initial value to ensure a large average assignment
probability per cluster in each scale. For the MSHViT architecture we initialized
the model with the last two layers, where higher-order features are available. The
hyperparameters of the ViTs were chosen such that only a moderate parameter increase
was introduced. After each step in the sequential search we used the configuration which
performed the best for the next step. The steps of the sequential search were ordered
such that the Sinkhorn Tokenizer cluster and MSHViT cross-scale hyperparameters
were determined, and lastly the structure of the ViTs. The order of the search was as
follows:

1. Search over the entropic regularization ε in the Sinkhorn tokenizer.

2. Search over the number of iterations tSK in the Sinkhorn tokenizer.

3. Search over the number of clusters K in the Sinkhorn tokenizer.

4. Search over which scales to be used and selection of j in the MSHViT extension.

5. Search over the multi-scale method, S.

6. Search over token dimensionality D.

7. Search over the MLP ratio r.

8. Search over vision transformer depth L.

We find that the initial hyperparameters perform well, with only the entropic
regularization and number of iterations in the Sinkhorn-Knopp algorithm being adapted.
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Table E.2: Hyperparameters. Overview of all searched hyperparamters, with the investigated values as
well as the initial and final values.

HP Range Initial Final

ε [0.05, 0.25, 0.5, 0.75, 1.00, 1.25] 0.05 0.25
tSK [1, 3, 5, 7, 9] 3 5
K [32, 64, 128, 64/32, 128/64] 64 64
Scales [{2,3,4,5}, {3,4,5}, {4,5}, {5}] {4,5} {4,5}
S [Tp, T, ZL] T T
j [i−1, min(Scales)] i−1 i−1
D [512, 1024, 2048] 512 512
r [1, 2, 3, 4] 4 4
L [1, 2, 3] 2 2

4.3 Comparative Models
We investigate the performance increase incurred when applying MSHViT to the
ResNet-{18, 34, 50, 101}, a commonly used backbone architecture in the image
classification literature [6, 12, 65], as well as TResNet backbone [66], an adaption of
the ResNet backbone using concepts such as anti-aliased downsampling and Squeeze
and Excitation (SE) [67] layers. Furthermore, we compare performance against the
HViT-like models BoTNet-50-S1 [6] and CoAtNet-{0,1} [14], as well as the original
HViT structure [13]. BotNet and CoAtNet were trained with the model structure
described in the original papers, while the HViT model uses the same ViT parameters
described in Table E.2 with the exception of the attention mechanism where we use
the classical MHSA based token mixing. We compare using both the conventional
patch based tokenizer and the proposed Sinkhorn tokenizer. Lastly, we compare to the
previously published results on Sewer-ML [16, 25]. We run all experiments within
the same codebase, using the torchvision [68], Pytorch Lightning [69] and timm [70]
libraries. All models were trained using a single Nvidia V100 GPU except for the
CoAtNet models which required two V100 GPUs due to a higher VRAM consumption.

4.4 Results
We find that introducing the MSHViT and Sinkhorn Tokenizer leads to a noticeable
improvement on all tested backbones, see Table E.3. On the F2CIW metric we observe
an increase of 0.7 and 2.5 percentage points, with the largest increase observed on the
ResNet-50, where the performance is improved by 2.4-2.5 percentage points on both
the validation and testing splits. On the F1Normal we observe a more moderate increase
of up to 0.24 percentage points. However, we observe a generally higher baseline
performance compared to previous methods. This is a comparable performance to the
previous state-of-the-art on Sewer-ML, the multi-task classification method CT-GAT,
while only using defect labels.
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Interestingly, we observe that the ResNet-34 backbone performance surprisingly
well for both the baseline and MSHViT extension. Not only does the ResNet-34 base-
line achieve the best performance out of the ResNet networks, it also either outperforms
or matches the ResNet-101 backbone when applying the MSHViT extension. For the
TResNet architectures we observe that the improvement gained by adding MSHViT
extension is smaller than that for the ResNet backbones. This is most likely due to the
SE layers in the TResNet model, which means the TResNet already includes some
attention based mechanisms. However, it is clear that the MSHViT extension is still
beneficial.

When comparing to other HViT-like models we see that the MSHViT extension
outperforms the original HViT structure, as well as all models where the transformer
structure is incorporated directly into the backbone. It should be note that on the
validation split the BotNet-50-S1 model nearly matches the ResNet-50-MSHViT’s
F2CIW and achieves state-of-the-art F1Normal performance. However, on the test split
the F2CIW performance is significantly lowered compared to the ResNet-50-MSHViT,
indicating the model does not generalize as well as the ResNet-50-MSHViT model.

From these results we can conclude that the proposed MSHViT extension lead to
improvements without tuning the hyperparameters for the backbone. We hypothesize
that if hyperparameters were tuned for each backbone, the performance gain would
further increase.
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(a) Per-class performance for all MSHViT models.
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(b) Per-class difference when comparing the MSHViT and baseline models.

Fig. E.2: Per-Class F2-scores analysis. We present the per-class F2-scores on the validation split for all
MSHViT-based models as well as the difference between the MSHViT variants and the baseline models,
δc. The classes are sorted in ascending order by their class-importance weight [16]. Class names and
abbreviations are described in the original Sewer-ML paper [16].

4.5 Per-Class Analysis
In order to better understand how the compared models work, we investigate how
the baseline and MSHViT extended models differ in their class predictions on the
validation split. In Figure E.2a we present the per-class F2-scores for all MSHViT
models, and in Figure E.2b we determine the difference in per-class F2-scores when
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comparing the MSHViT variants with the baseline models, see Eq. E.11.

δc = cMSHViT− cBaseline, (E.11)

where δc
s is the difference in F2-scores for class c, and cMSHViT and cBaseline are F2-

scores for class c for the MSHViT and Baseline models, respectively.
When analyzing the absolute per-class performance in Figure E.2a, we see that the

ResNet-34, ResNet-50, and ResNet-101 all perform similarly well on nearly all classes,
with the ResNet-34 and ResNet-50 achieving noticeable performances in the highest
weighted classes, whereas the TResNet models and ResNet-18 have a noticeably lower
score on several classes. In Figure E.2b observe that when using MSHViT together
with the ResNet backbones performance increases on nearly all classes, except for
consistent decreases on the attached deposits (BE) class and on the connection with
construction changes (OK) class. For the ResNet-34 backbone we also observe a
significant decrease in performance on the deformation (DE) class. However, there is
a noticeable increase in performance on both the lateral reinstatement cuts (OS) and
cracks, breaks, and collapses (RB), the two highest weighted classes, across all ResNet
backbones. On the contrary we see that the TResNet backbones behaves very poorly
on the OS class, which drags down the overall score, even though it performs well on
nearly all other classes.

4.6 Qualitative Examples
In addition to quantiative per-class comparison, we also look into specific cases where
the predictions of the compared models differ. Focusing on the ResNet-50 backbone we
compare cases where the MSHViT extensions matches all classes correctly while the
baseline misclassifies some or all classes and vice versa, see Figure E.3. Four examples
are shown where the MSHViT model correctly predicts all classes. In the top left image,
the MSHVIT correctly predicts the pipe to be normal, whereas the baseline predicts
surface damage (OB). This is most likely due to the missing top half of the pipe, as the
image is taken from within the sewer well. In the top middle and bottom left cases the
baseline misses the cracks, breaks, and collapses (RB) and lateral reinstatement cuts
(OS) classes, the two highest weighted classes by CIW. Missing these classes could
lead to significant economic repercussions. The RB class is most likely missed due to
its visual similarity to the displaced joint (FS) deeper in the pipe, whereas the OS is
similarly missed as the baseline misses the fact that a lining has been inserted and the
low severity of the class. In the bottom middle example, the baseline simply misses
the intruding sealing material (IS) class, instead only classifying the displaced joint
(FS). In the top right and bottom right, the MSHViT variant misses the displaced joint
(FS) and roots (RO), respectively. It is not clear why the MSHViT missed the displaced
joint, however, we hypothesize it might be due to the co-occurring connection with
construction changes (OK) class, where the material of the pipe changes. For the
bottom right case, the MSHVIT misses the small fine roots in the joint, most likely due
to focusing on the much more prevalent displaced joint (FS) and surface damage (OB).
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Ground Truth R50 R50-MSHViT

None OB None

Ground Truth R50 R50-MSHViT

FS FS FS
RB RB

Ground Truth R50 R50-MSHViT

GR GR GR
OK OK OK
FS FS

Ground Truth R50 R50-MSHViT

OS None OS

Ground Truth R50 R50-MSHViT

FS FS FS
IS IS

Ground Truth R50 R50-MSHViT

OB OB OB
FS FS FS
RO RO

Fig. E.3: Examples of classifications with MSHViT. Example cases where the MSHViT extensions
correctly classifies all classes as well as misclassifies some classes. The class codes are described in the
original Sewer-ML paper [16]. Incorrect predictions are shown in red.

4.7 Efficiency Analysis
In order to verify that the increased metric performance is not simply due to an increase
in learnable parameters, we compare the validation F2CIW against the number of
trainable parameters in the models as well as the throughput measured in images
processed per second (img/s) during both training and inference, as recommended by
Dehghani et al. [71]. The throughput performance is computed over 200 batches of
256 images with an initial 10 warmup batches, and averaged over five separate runs. As
the method from Haurum and Moeslund [16] is a two-stage approach and the method
from Haurum et al. [25] is designed for the multi-task classification task, we do not
include these in the throughput comparison. The results are shown in Figure E.4. From
these results it is clear that the increased performance obtained with the MSHViT
extension is not only due to the increase amount of parameters, as the extended models
consistently outperforms baseline variants with a higher number of parameters. When
looking at the throughput of the models, we see that the MSHViT does lead to a slower
processing speed, however, for the larger models such as ResNet-50 and ResNet-101
this slowdown is marginal at best.

264



4. Experimental Results

0
10

20
30

40
50

60
Tr

ai
na

bl
e 

Pa
ra

m
et

er
s (

M
)

5859606162 F2CIW (%)

0
10

00
20

00
30

00
Tr

ai
ni

ng
 T

hr
ou

gh
pu

t (
im

g/
s)

HV
iT-

Lik
e

Ba
se

lin
e

M
SH

Vi
T

Re
sN

et
-1

8
Re

sN
et

-3
4

Re
sN

et
-5

0

Re
sN

et
-1

01
TR

es
Ne

t-M
TR

es
Ne

t-L

Co
At

Ne
t-0

Co
At

Ne
t-1

Bo
tN

et
-5

0-
S1

HV
iT-

Pa
tc

h
HV

iT-
Si

nk
ho

rn

0
20

00
40

00
60

00
80

00
10

00
0

In
fe

re
nc

e 
Th

ro
ug

hp
ut

 (i
m

g/
s)

Fi
g.

E
.4

:C
om

pa
ri

so
n

of
m

et
ri

c
pe

rf
or

m
an

ce
an

d
ef

fic
ie

nc
y.

W
e

co
m

pa
re

th
e

pe
rf

or
m

an
ce

of
th

e
m

od
el

s
in

Ta
bl

e
E.

3
ag

ai
ns

tt
he

pa
ra

m
et

er
co

un
to

fe
ac

h
m

od
el

as
w

el
l

as
th

e
m

od
el

s
th

ro
ug

hp
ut

in
im

ag
e

pe
rs

ec
on

d
(i

m
g/

s)
du

ri
ng

tr
ai

ni
ng

an
d

in
fe

re
nc

e.
M

SH
V

iT
va

ri
an

ts
ar

e
lin

ke
d

to
th

ei
rb

as
el

in
e

va
ri

an
tb

y
a

do
tte

d
lin

e.

265



Paper E.

Table E.4: Effect of ε. Comparison of different entropic regularization values in the Sinkhorn tokenizer.

ε F2CIW F1Normal

0.05 60.80 92.56
0.25 61.68 92.44
0.50 61.33 92.47
0.75 60.85 92.35
1.00 60.86 92.51
1.25 60.46 92.36

5 Ablation Studies
We conduct a series of ablations studies in order to determine the sensitivity to the
hyperparameter settings in the Sinkhorn tokenizer and MSHViT architecture. All tests
are conducted on the Sewer-ML validation set using a ResNet-50 backbone, with the
hyperparameter values stated in Table E.1-E.2 unless otherwise stated.

5.1 Sinkhorn-Knopp Hyperparameters
At the heart of the Sinkhorn tokenizer is the iterative Sinkhorn-Knopp algorithm, which
is controlled by two hyperparameters: tSK and ε. We investigate these hyperparameters’
effect on the metric performance one at a time.

First, we investigate the strength of the entropic regularization term in Eq. E.2
comparing values of ε = {0.05,0.25,0.50,0.75,1.00,1.25}, see Table E.4. We observe
that the highest F2CIW and F1Normal are achieved using ε = 0.25, a slightly higher
entropic regularization term than what has previously been used in the self-supervised
training domain [59]. In general, we see that a too high or low entropic regularization
negatively affects the F2CIW performance.

Secondly, we investigate the effect of the number of iterations conducted tSK. We
compare the performance when setting tSK = {1,3,5,7,9}, see Table E.5, as well as
the effect on efficiency by measuring training and inference img/s, see Figure E.5. We
observe that peak performance on both F2CIW and F1Normal is achieved when tSK is set
to 5, while too few or too many iterations led to degradation in performance. We also
observe a monotonic decrease in throughput when tSK is increased, as expected. When
compared to the conventional patch tokenizer we observe that the training throughput
and the inference throughput of the Sinkhorn tokenizer beats that of the patch tokenizer
at all settings of tSK.

5.2 Number of Cluster Centers K

A key part of the Sinkhorn tokenizer is the number of clusters K. We investigate the
effect of setting K = {32,64,128,64/64,128/64}, where x/y denotes x clusters for

266



5. Ablation Studies

Table E.5: Effect of tSK. Comparison of number of iterations in the Sinkhorn tokenizer.

tSK F2CIW F1Normal

1 61.16 92.58
3 61.24 92.47
5 61.68 92.44
7 61.13 92.50
9 61.45 92.47

1 2 3 4 5 6 7 8 9 10
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Fig. E.5: Effect of tSK on throughput. Comparison of the training and inference throughput at different
amount of iterations in the Sinkhorn tokenizer, tSK. Training and inference throughput is also shown for the
conventional patch tokenizer. Throughput is measured only for the MSHViT extension, as the backbone
processing time is simply an offset.

the 4th scale and y clusters for the 5th scale, see Table E.6. We find that increasing or
decreasing the number of cluster centers slightly reduced the classification performance,
whereas having more clusters for earlier scales dramatically decreased performance.
This is hypothesized to be due to the earlier clusters capturing similar semantics, as the
larger amount of cluster centers allow a less aggressive clustering process.

5.3 Tokenizer Efficiency at Different Image Resolutions
A key benefit of the Sinkhorn Tokenizer is the constant efficiency when the image
resolution is increased. To demonstrate this we compare the training and inference
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Table E.6: Effect of number of cluster centers. Comparison of metric performance when varying the
number of cluster centers K in the Sinkhorn tokenizer.

K F2CIW F1Normal

32 61.33 92.47
64 61.68 92.44
128 61.33 92.34
64/32 60.56 92.46
128/64 60.73 92.54

224 299 384 448 576 640
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Fig. E.6: Effect of image resolution on throughput. We compare the training and inference throughput
for the Sinkhorn and patch tokenizers across commonly used image resolutions. The Sinkhorn tokenizer
consistently achieves a higher throughput than the conventional patch tokenizer. Throughput is measured
only for the MSHViT extension, as the backbone processing time is simply an offset

throughput of the MSHViT model (excluding the backbone, which would simply be
an offset) at different image resolutions, when using the conventional patch tokenizer
and the proposed Sinkhorn tokenizer, see Figure E.6. From this it is clear that the
throughput of the Sinkhorn tokenizer better handles the changes in image resolutions,
whereas the throughput of the conventional patch tokenizer suffers greatly when the
resolution is increased.
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Table E.7: Effect of `2 normalization. Comparison of performance when `2 normalizing the cluster centers
C and input features Tp, before computing the similarity scores V.

`2 normalized F2CIW F1Normal

7 60.40 92.40
3 61.68 92.44

Table E.8: Effect of sharing tokenizer. Comparison of metric performance when sharing tokenizer cluster
centers.

Shared Tokenizer F2CIW F1Normal

7 61.68 92.44
3 61.22 92.53

5.4 Effect of `2 Normalization
Within the Sinkhorn-Knopp algorithm is the calculation of the cosine similarities
between cluster centers and input features, V, This step requries an `2 normalization
of all cluster centers and input features in order to yield output values between 0 and
1. We investigate the effect of skipping this normalization step, see Table E.7. We see
that the metric performance clearly drops when the features are not normalized onto
the unit D-sphere. We can therefore conclude the normalization step is crucial for the
Sinkhorn tokenizer.

5.5 Effect of Shared Sinkhorn Tokenizer
Inspired by the Perceiver papers [72, 73] we investigate the performance when sharing
the tokenizer cluster centers and linear projection weights, see Table E.8. We find that
when sharing the tokenizer parameters, the performance decreases by nearly a half
percentage point. This is expected as the same cluster centers have to meaningfully
represent CNN features from all considered scales, even though the CNN features are
hierarchical in nature.

5.6 Comparison of Attention Mechanisms and Tokenizers
We investigate whether the Sinkhorn tokenizer leads to improvements compared to the
standard non-overlapping tokenizer from Dosovitskiy et al. [13], as well as the effect of
attention mechanism, see Table E.9. The patch based tokenizer uses a kernel size and
stride of P = 1 for both scales. We observe that the Sinkhorn tokenizer outperforms
the conventional patch tokenizer on all attention mechanisms, and that the inverted
bottleneck yields little benefit in all cases but the Sinkhorn tokenizer combined with
FNet. This shows a clear benefit from the clustering-based Sinkhorn tokenizer.
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Table E.9: Effect of tokenizer and attention mechanism. Comparison of metric performance when using
the standard non-overlapping patch tokenizer and the Sinkhorn tokenizer. #P indicates the amount of trainable
parameters in the MSHViT head in millions.

Attention Tokenizer #P F2CIW F1Normal

Fourier
Patch

1.72
59.61 92.46

Sinkhorn 61.03 92.41

MHSA
Patch

3.82
58.95 92.24

Sinkhorn 61.09 92.49

FNet
Patch

5.92
59.46 92.37

Sinkhorn 61.68 92.44

Transformer
Patch

8.02
59.20 92.38

Sinkhorn 61.11 92.41

Table E.10: Effect of using different scales. Comparison of metric performance when using different
scales and different cross-scale sharing range j.

Scales j F2CIW F1Normal

2, 3, 4, 5 i−1 61.36 92.49
3, 4, 5 i−1 60.92 92.44
4, 5 i−1 61.68 92.44

2, 3, 4, 5 2 60.45 92.49
3, 4, 5 3 60.86 92.37

5 - 61.03 92.52

5.7 Effect of Multi-Scale Approach
In order to determine the effect of the multi-scale approach, we compare the perfor-
mance when using different scales and the range of the cross scale connections j.
Specifically, we compare using subsets of the scales 2-5 of the ResNet architecture i.e.
all but the convolutional stem scale, as well as cross scale connections with j = i−1
where only the previous scale is relevant, or j set equal to the initial scale. The compar-
ison is listed in Table E.10, where it is clear that a multi-scale approach outperforms
the classic single-scale HViT architecture, and that using too many scales diminish the
performance.

5.8 Comparison of Cross-Scale Connections
A key part of the MSHViT architecture is the multi-scale connections which enable
information sharing across scales. Three variations are presented in Eq E.8-E.10, and
compared in Table E.11. We also compare against a scenario with no cross-scale
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Table E.11: Comparison of cross-scale mechanisms Comparison of metric performance when using a late
stage scale fusion step or cross-scale mechanism S (Eq. E.7) using either CNN (Eq E.8), Sinkhorn tokenizer
(Eq E.9), or ViT (Eq E.10) features.

S Shared ViT F2CIW F1Normal

- 7 59.88 92.31
- 3 60.06 92.40
Tp - 60.25 92.38
T - 61.68 92.44
ZL 7 60.75 92.49
ZL 3 61.37 92.48

information sharing between the ViTs, instead using a late stage scale-fusion step.
The late stage fusion step combines the CLS tokens from each scale together with a
learnable cross-scale CLS token, using a MHSA operation with 8 heads. We find that all
cross-scale connections outperform the late stage scale-fusion variation and that using
the ViT or linearly embedded CNN features led to a decrease in metric performance.
Instead the best performance is achieved by sharing the clustered tokens from the
Sinkhorn tokenizer across scales, indicating that the clustering process is crucial for
performance. We also compare sharing weights for the ViTs when applicable, and find
that sharing ViT weights results in a clear performance benefit, unlike when sharing
weights and cluster centers in the tokenizer (See Section 5.5).

5.9 Effect of ViT Hyperparameters
Lastly, we investigate the effect of varying the hyperparameters of the ViT. Specifically,
we investigate the effect of the token dimensionality, D, the MLP ratio, r, in the
inverted bottleneck, and the depth of the ViT, L. The effect on the metrics are reported
in Table E.12-E.14, as well as the number of trainable parameters in the MSHViT
extension, #P. From these results we observe a clear decrease in metric performance
when increasing the token dimensionality D, as well as when the ViT is too shallow
or deep. For the MLP ratio we observe that best performance is achieved when r = 4,
with performance in general decreasing when lowering r as the inverted bottleneck
becomes narrower.

Table E.12: Effect of token dimensionality D. We see that increasing the token dimensionality leads to
poorer performance.

D #P F2CIW F1Normal

512 5.92 61.68 92.44
1024 20.23 61.34 92.49
2048 74.01 60.36 92.44
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Table E.13: Effect of MLP ratio r. We see that increasing the MLP ratio in general leads to better
performance.

r #P F2CIW F1Normal

1 2.77 60.98 92.45
2 3.82 61.31 92.48
3 4.87 61.02 92.50
4 5.92 61.68 92.44

Table E.14: Effect of depth of the ViTs L. We observe that increasing or decreasing the depth of the ViTs
leads to poorer performance, with the best performance obtained when L = 2.

L #P F2CIW F1Normal

1 3.82 61.05 92.51
2 5.92 61.68 92.44
3 8.02 60.53 92.55

6 Sinkhorn Tokenizer Cluster Visualizations
We visualize the cluster assignments within the Sinkhorn Tokenizer of the ResNet-
50-MSHViT model to get a better understanding of how the non-local features are
combined. For each cluster k we get the probability for each pixel that the pixel belongs
to cluster k. We then visualize this map using a JET color mapping, where the mapping
ranges from the minimum to maximum probability assignment. The JET color mapping
maps the lowest value to blue and the largest value to red, with green as the intermediate
color.

In tokenizers where there is information from previous scales, we visualize the
clusters by first determining the assignment probability per pixel for the scale in
focus. Then, for each cluster center from the previous scales we normalize the cluster
assignments such that the maximum value is one. The cluster assignments are then
multiplied by the assignment probability from the current scale cluster center and added
to the overall assignment map. Lastly, the combined probability map is colored with a
JET color mapping as before.

Examples are shown in Figure E.7. From these examples it is clear that not only
does the Sinkhorn Tokenizer lead to non-local interactions, but captures the different
scales of the defects. This is exemplified by the highlight of the multi-scale cracks
as shown top example of Figure E.7 and the displaced pipe in the bottom example of
Figure E.7. We observe that the clusters capture parts of the same regions, but within
in different context such as one cluster center capturing a crack running along the pipe
wall while another cluster center captures a cross section of the pipe.
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Fig. E.7: Visualization of the Sinkhorn Tokenizer clusters. We show a subset of the cluster assignments
for two images using the ResNet-50-MSHViT model. The first image contains the classes cracks, breaks,
and collapses (RB), displaced joint (FS), and branch pipe (GR), and the second image contains the classes
surface damage (OB), displaced joint (FS), and connection with construction changes (OK). For each
image, the top row contains examples of cluster assignment maps from the 4th scale clusters, while the
bottom row contains examples of cluster assignment maps from the 5th scale clusters. See the description of
the computation of the cluster assignment maps in Section 6.

7 Conclusion
Vision Transformers (ViTs) have taken the computer vision domain by storm, and
led a surge in transformer focused research. A large part of this research focuses on
exclusively using a transformer based architecture, while in comparison little attention
has been given to the fusion of CNNs and transformers.

In this paper, we presented the Multi-Scale Hybrid Vision Transformer (MSHViT)
for image classification, a natural extension of the hybrid vision transformer (HViT)
which combines CNNs and ViTs, and the Sinkhorn Tokenizer, a clustering-based
tokenizer based on Sinkhorn distances. The MSHViT extension enables the model to
learn multi-scale non-local spatial semantics in the input, while the Sinkhorn tokenizer
produces a smaller set of tokens that captures non-local spatial semantics.

We investigated the relative performance difference when extending ResNets with
MSHViT and Sinkhorn tokenizer on the Sewer-ML multi-label sewer defect classifi-
cation dataset, demonstrating a relative improvement of up to 2.53 percentage points.
Through an extensive ablation study, we provided insights into the sensitivity of the
introduced hyperparameters, verifying that the multi-scale extension outperforms regu-
lar HViTs, as well as qualitatively showing how the Sinkhorn tokenizer cluster centers
captures distinct spatial semantics from one another.
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1. Introduction

Abstract
Automatic robot inspections of sewer systems are progressively becoming more used
for extending the lifetime of sewers and lowering the costs of maintenance. These
automatic systems rely on machine learning and the acquisition of varied training data
is therefore necessary. Capturing such data can be a costly and time consuming process.
This paper proposes a system for generation and acquisition of synthetic training data
from sewer systems. The system utilizes Structured Domain Randomization (SDR) for
the generation of the sewer systems and an approximated model of a Pico Flexx Time-
of-Flight camera for capturing depth and point cloud data from the generated sewer
network. We evaluate the proposed system by comparing its output to ground truth data
acquired from a Pico Flexx sensor in sewer pipes. We demonstrate that on average
our system provides an absolute error of 5.78±8.92 and 7.58±8.68 mm, between
data captured from real life and our proposed system, for two different scenarios.
These results prove satisfactory for capturing training data. The code is publicly
available at https://bitbucket.org/aauvap/syntheticsewerpipes/
src/master/.

1 Introduction
The sewerage infrastructure is an essential part of modern society consisting of huge
pipe networks hidden under the ground. This system is normally not a concern for the
general public, but it is indispensable. To reduce maintenance costs, regular inspection
of the entire sewer system is important. With today’s methods this is not feasible,
as inspection of sewer systems is a laborious task, carried out manually by skilled
operators [1]. This is done by sending a remote-controlled platform with a camera
through a section of the sewer system while an operator monitors the live video feed
from this camera. As a result, pipes are often replaced prematurely to avoid older pipes
causing issues. Pipes with an expected lifetime of 75 years are replaced after just 50
years, causing several hundred million DKK in expenses for the Danish state [2]. To
improve this lack of inspection, an ongoing research project, the Automated Sewer
Inspection Robot (ASIR) project, intends to develop an autonomous robot, that will
roam the sewers and utilise machine learning to identify defects [2]. For a machine
learning algorithm to properly identify defects and landmarks such as joints and branch
pipes in a sewer network, the algorithm that is utilised by the robot requires training,
and for this, an annotated data set is desired. The intended plan of collecting data
from the sewers is using depth- and RGB cameras. Currently, only databases with
RGB images from CCTV inceptions are available, and a data set consisting of depth
information is needed. As capturing data from real sewers can be a huge and expensive
task, an alternative could be generating synthetic data.
Different types of depth sensors can be utilised for capturing depth information, such
as Time of Flight (ToF) [3, 4], stereo cameras [5], and structured light [6]. The ToF
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sensor Pico Flexx by Camboard is chosen as the sensor to be implemented as part of
the proposed system. The sensor is chosen because of its small size, high resolution
and low power consumption. It is also shown by [7] that ToF sensors are ideal for
use in inspection of hazardous and hard to reach places. The Pico Flexx outputs point
clouds, which offers more depth information that can help identify defects in the sewer
network. This sensor will be implemented and will be the focus of this paper.

Contributions: Our contribution is a novel system, making the first foray into generat-
ing Synthetic Point Clouds (SPC) in the sewer domain. This system consists of two
parts;

• Generate virtual sewer networks which are based on the method Structured
Domain Randomization (SDR) method.

• Generate SPCs, approximating the Pico Flexx output, that can be used for training
machine learning algorithms.

2 Related Work
We will be looking at the state of the art for both the sewer generation and ToF simula-
tion.

Depth sensors: Bulczak et al. [8] suggests a method for simulating amplitude modu-
lated continuous wave (AMCW) ToF sensors including the artefacts caused by multi-
path interference (MPI). MPI is of particular interest for simulating sewer inspection
in textured pipes, which could be of interest even in smoother plastic pipes, as it
could model reflections. This method increases computational costs, however, it is
specifically designed for GPU execution to allow fast processing.
Sarbolandi et al. [9] compares structured light and ToF depth sensing in detail, specifi-
cally comparing the two different versions of the Microsoft Kinect sensors that employ
these different technologies. They found that the ToF variant performed better at
rejecting background illumination, motion, highly translucent objects, and at large
incident angles.
Sarker et al. [10] explores the use of a stereo vision based depth camera for the use
of crack detection in concrete, showing the ability to detect and classify variants of
cracks.

Synthetic generation of environments: In recent years the interest in generating
annotated synthetic data has been steadily increasing, as to meet the demands of more
complex deep learning architectures in an inexpensive manner [11–14]. Tobin et
al. [15] presents a method for computer generation of synthetic data, called Domain
Randomization (DR), which is achieved by generating structured variations of a chosen
scenario, such that a machine learning algorithm would process real images as if they
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Fig. F.1: Structure of the proposed solution.

were another variation of the scenario. The work was further developed by Prakash et
al. [16], into an expanded version of DR: Structured Domain Randomisation (SDR).
Instead of placing objects by a uniform random distribution with DR, context of the
scene is considered. This structures the randomisation by a set of rules that corresponds
to the intended environment. This allows machine learning algorithms to train not only
on the virtual objects placed in the scene, but also on the context of where these objects
are positioned in relation to each other. The SDR method is found to fit the focus of
our solution, and it will be used for generating the environment that will later be used
for the 3D data acquisition.

3 Methods and Material
The proposed solution is implemented in Unity, which consists of two parts: Environ-
ment Generator and Data Generator. The overall structure of the system is shown in
Figure F.1.

The Environment Generator dynamically generates a virtual sewer network con-
sisting of splines, control points and pipe meshes based on given parameters. These
are passed to the Data Generator that generates point clouds based on them and two
additional parameters: folder path and number of point clouds. Folder path: defines the
output folder for point cloud data. Number of point clouds: defines how many point
clouds to create. The camera moves forward until this parameter is satisfied.

3.1 Pico Flexx
Camboard Pico Flexx, is a joint production by PMD Technologies and Infineon. It is
based on PMD ToF technology (AMCW-ToF), which uses Near Infrared (NIR) laser
to determine the distance from the sensor to the impact points of objects. The small
size and the low power consumption enhances the number of possible applications. To
mimic the Pico Flexx, its parameters should be implemented for the synthetic sensor.
Because the information available from PMD [17] only shows camera characteristics
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such as field of view and aspect ratio, a complex ToF simulation can be difficult to be
implemented as more information is required. The sensor approximation in this paper
is therefore estimated using ray casting.

3.2 Environment Generator
The gap between the real- and the virtual domain can be reduced using 3D models that
mimic physical models and utilize SDR to generate the environment. 3D models and
environment generator will be explored in the upcoming sections.
Pipes & Defects: To mimic the physical environment, 3D representations of physical
pipes and defects are utilised. The system generates points along the network, where
handmade defects can spawn.
Generator: To enhance the generator, the structure of how objects are generated should
be acknowledged by utilizing SDR. As the sewer system domain differs to the domain
in the SDR paper, other contexts such as rubber rings mostly occurring at pipe displace-
ments should be considered. SDR proposes a taxonomy which covers the following
four principles. Scenario: determines general parameters to generate the domain such
as length of the sewer network and defect probability. Global Parameters: generates
contextual splines based on parameters from the scenario. Context Splines: instantiate
objects based on given probabilities and context. Objects: contain a transform, 3D
mesh, collider, and defect- or fine tag.

3.3 Data Generator
Without extensive information about the Pico Flexx, an approximated virtual camera in
Unity is set up to mimic the output of the Pico Flexx. The virtual camera utilises the
same resolution and focal length. Moreover, to detect depth in a scene, rays are cast up
to the distance of the detectable depth of the Pico Flexx. These rays are cast from each
pixel of the virtual camera in the direction of the viewport in normalized coordinates.
Figure F.2 shows a comparison of 2D depth images from the data generator and Pico
Flexx. However, to evaluate the data generation, comparing point clouds is preferred to
avoid dimensionality reduction.

In a simulated environment, a physics engine can utilise ray casting to determine
impact positions at 3D meshes. This provides additional information for each ray
which can label the points within the point cloud. For each ray, random noise from a
Gaussian distribution is added with a range of ±1% from the true value, based on the
datasheet from PMD [17].

4 Results
To evaluate the solution, point clouds from both Pico Flexx and the system using similar
setups are acquired.
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(a) Synthetic (b) Pico Flexx

Fig. F.2: Output image from the image generator, compared to the Pico Flexx, where white indicates missing
points.

4.1 Data Gathering from Pico Flexx
To gather Pico Flexx data, a controlled environment was set up, and an already built
robot with a mounted Pico Flexx was used, as shown in Figure F.3a. It is preferred
to get data around pipe connections, as displaced pipes are the most common defect1.
Physical pipes were set up inside a windowless room, to avoid external light sources
disturbing the Pico Flexx sensor that was attached to a small remote controlled mobile
platform. Based on the setup in Figure F.3b, two scenarios were arranged; the first
setup without displacement and second with displacement. In the first scenario (S1),
the robot was placed at the start of the pipe and programmed to move forward through
the pipe. In the second scenario (S2), the robot was placed 50 cm from both the first
pipe connection and a misplaced rubber ring, and programmed to move through the
connection. The outcome from these scenarios was point cloud data sequences split by
time stamps. In order to evaluate the Pico Flexx data, the sewer system and scenarios
of the physical setup were mimicked for the virtual setup, as shown in Figure F.3c
where the Pico Flexx’s orientations were mimicked by approximately transforming the
virtual camera. Using these virtual scenarios, SPCs were extracted to be compared to
the Physical Point Clouds (PPC).

4.2 Point Cloud Comparison
To evaluate the simulation performance, differences and similarities between the PPCs
and SPCs were compared, which allows a per point distance calculation. For this, the
widely used software CloudCompare [18], which has been tested by several studies
[19, 20], is utilised. The PPC will be used as the ground truth whilst the SPC will be
used to compare with. Before comparing the point clouds, they are aligned using the
fine registration method, Iterative Closest Point (ICP) [21], which aligns the desired
point clouds to the ground truth, by minimizing the distance error between them. As

1Based on unpublished works
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(a) The robot (b) Physical setup (c) Virtual setup

Fig. F.3: The figures represent the robot’s placement, the physical- and virtual setup, respectively. Note: The
branch pipe is not within the sensor’s FoV.

missing points exist in the PPCs, local modelling is utilised to approximate planes
based on least square to estimate the pipe geometry. This minimizes the distance
between point clouds, as approximated planes can cover holes in the PPCs.

The absolute distances distribution of the compared point clouds for the two
scenarios is presented in Figure F.5. The results show a difference of 5.78±8.92
mm for S1 and 7.58±8.68 mm for S2.

4.3 Accuracy of Point Clouds
To ensure both the synthetic- and physical data give correct measurements of the real
pipe, the diameter error is calculated. This is done on S1 as this is the scenario with the
longest straight section. Each point cloud is sliced into overlapping segments of 100
mm, using a step size of 10 mm. At each segment, the distance from each point to its
most distant point is calculated, and the mean of these distances are then used as the
diameter for that section.

5 Discussion
In the point cloud comparison, some of the error described by the mean in both
scenarios, may be caused by a difference in placement of the Pico Flexx and the virtual
camera, as the placement of the virtual camera was done by hand, as close to the Pico
Flexx positioning as possible. As seen in Figure F.5, outliers are present, with the
largest occurrence is in S1. The outliers appear at the pipe connection of the pipes
which can be seen in Figure F.4, by the yellow and red colors. The remaining outliers
in S1 are located at the end of the point cloud, likely caused by the lower point density.
In S2, the outliers are most noticeable around the pipe connection point, but in this case
they seem to be caused by the shadow cast by the rubber ring in S2. This can be seen
in Figure F.4 as a lack of points. Considering the mean for all evaluations, in regards
to the size of the pipes, the error rate is considered acceptable in order to classify e.g.
displacements.

Figure F.6 shows the diameter size along the point clouds from the accuracy of
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Fig. F.4: This figure represents the two scenarios, where the white point clouds are PPCs and the colored
point clouds are SPCs. Moreover, the legend indicates the absolute distance error value for the gradient
colors in the SPCs.

point cloud comparison. The first 25 cm section of both the point clouds shows a
diameter of 0 mm, and that is due to the distance between the sensor and the pipe
surface. The next 35 cm section has increasing diameters size due to the slanted shape
of the point cloud at the beginning as can be seen in Figure F.4, which results in a
non-circular slice. From 60 until 150 cm, the mean diameter is 405mm for the PPC
and 376mm for the SPC, which shows a small error in the PPC, believed to be caused
by the lack of points in that area of the point cloud. However, the SPC shows almost a
diameter size that matches the real pipe diameter for the majority of the pipe length.
After 160 cm, major errors occur in both point clouds, which starts around the bend of
the pipe, this is not of interest as the test assumes the pipe is straight. The point cloud
comparison test indicates that the Pico Flexx yields more noise than expected, but to
clarify this, further research is required. The accuracy of the point clouds test, indicates
that the imperfections can be caused by the textures, imperfectness of the surfaces, dirt
in the pipes or lighting that could reflect within the pipes’ internal surfaces. All these
characteristics define the appearance of real surfaces, which can have an impact on
other elements when implemented in computer graphics.
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Fig. F.5: Histogram of the absolute distances from points in the SPC, to the corresponding calculated least
square plane in the PPC. Note the y-axis is log-scaled. Scenario 1 mean: 5.78±8.92 mm. Scenario 2 mean:
7.58±8.68 mm.

Fig. F.6: Error rate compared to the specified diameter of the real pipe from S1.

6 Conclusion
This paper has introduced a system which is capable of generating annotated SPCs
based on the characteristics of the Pico Flexx in a synthetic sewer environment. Through
experiments, it is concluded that the difference of the two point clouds is mainly caused
by the lack of points in areas of the PPC. Furthermore, it is found that regions of the
point clouds have points that approximately match the real data. Using a moving robot,
a continuous good point cloud could be stitched together from multiple instances of
the good section. However, if a larger portion of the point cloud is to be used, a more
accurate simulation of the sensor might be required, for example an implementation of
the MPI simulation as mentioned in related work section 2. Considering the simplicity
of the calculation behind the SPCs, the result seems promising. This especially applies
in relation to the first part of the point clouds in S1. It should be noted that this is
a controlled environment, and entering more realistic scenarios, that contain water,
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dirt etc. might challenge the Pico Flexx and therefore it yields noisier data. Here the
solution might perform poorly due to it being too idealised, therefore reflection, refrac-
tion etc. need to be taken into considerations. Overall the solution is able to generate
randomised sewer systems that contain defects using SDR. Moreover, SPCs can be
generated which can potentially be used to accelerate the data acquisition process for
machine learning algorithms.
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1. Introduction

Abstract
Sewer pipes are currently manually inspected by trained inspectors, making the process
prone to human errors, which can be potentially critical. There is therefore a great
research and industry interest in automating the sewer inspection process. Previous
research have been focused on working with 2D image data, similar to how inspections
are currently conducted. There is, however, a clear potential for utilizing recent
advances within 3D computer vision for this task. In this paper we investigate the
feasibility of applying two modern deep learning methods, DGCNN and PointNet, on a
new publicly available sewer point cloud dataset. As point cloud data from real sewers
is scarce, we investigate using synthetic data to bootstrap the training process. We
investigate four data scenarios, and find that training on synthetic data and fine-tune
on real data gives the best results, increasing the metrics by 6-10 percentage points
for the best model. Data and code is available at https://bitbucket.org/
aauvap/sewer3dclassification.

1 Introduction
The sewerage infrastructure is one of the largest, but also most forgotten, infrastructures
in our modern society. In the United States there are currently approximately 2 million
km of sewer pipes serving nearly 240 million Americans. By 2036 the sewerage infras-
tructure is expected to serve an additional 56 million users [1]. The size of the sewerage
infrastructure poses a clear problem during maintenance, as it is near impossible to
regularly inspect all stretches of sewer pipes. Furthermore, sewer maintenance requires
skilled inspectors who are capable of operating the required equipment to inspect the
buried pipes. These inspections are conducted using a remote-controlled “tractor”,
which the inspector controls from a vehicle above ground. This can be both demanding
and slow, and potentially prone to human errors.

To deal with this problem, one possibility is to use an autonomous or semi-
autonomous robotic solution. Such solutions have been successfully developed and
deployed for tunnel walls inspection [2], transmission and electrical wires [3], under-
water ship hulls [4], wind turbine blades [5], among others. An important characteristic
that each of these solutions share, is that the robotic system needs to have appropriate
sensors for both self-localization and mapping the environment, as well as capturing
enough information from the surfaces such that a proper inspection of potential dam-
ages or obstructions can be achieved. To ensure that enough information is captured,
3D information in the form of depth images and point clouds, is chosen in addition
to traditional 2D images. To capture such information, different sensor can be used -
LiDAR laser scanners [6, 7], stereo cameras [8], photogrammetry [9], time-of-flight
and structured light cameras [10, 11].

Sewer inspection data presented in the state-of-the-art is normally not available
as public datasets, and the ones used are focused around 2D RGB images [12]. How-
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(a) Phys. Normal (b) Phys. Brick (c) Phys. Disp. (d) Phys. Ring

(e) Synth. Normal (f) Synth. Brick (g) Synth. Disp. (h) Synth. Ring

Fig. G.1: Example point clouds from the real and synthetic pipe setup. Defects are shown in red for easier
visualization.

ever, capturing large amounts of 3D inspection data from sewers is not a trivial task.
Therefore, we look into using synthetic data for training a sewer inspection algorithm.
The creation of such synthetic data has been detailed in the work of [13], where sewer
pipes were 3D modeled and used in a custom simulation environment, together with an
approximated PMD Pico Flexx [14] time-of-flight camera, to generate 3D point clouds.
We therefore look into using synthetic data to bootstrap the training process of a deep
learning based 3D sewer defect classifier. The main contributions of this paper are
threefold:

1. A publicly available dataset of synthetic and real point clouds of normal and
defective sewer pipes.

2. Demonstrating the feasibility of using 3D point clouds and geometric deep
learning methods for classifying sewer defects.

3. A comparison of the effect of synthetic and/or real data when training a defect
classifier.

2 Related Work
Automated Sewer Inspections. Vision-based automation of sewer defects has tradi-
tionally been based on 2D image data from Closed-Circuit Television (CCTV) and
Sewer Scanner and Evaluation Technology (SSET) sewer inspections. CCTV and
SSET inspection data have been used for nearly 30 years, with methods ranging from
morphology based discriminators [15–18], to using feature descriptors and machine
learning classifiers [19–21], and within the recent years using deep learning for classifi-
cation, detection, and segmentation [22–25]. For an in-depth review of these methods
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we refer to the survey by [12]. There has, however, been significantly less work on
detecting defects using 3D sensors. 3D sensors are interesting as some sewer defects,
such as displaced joints and obstacles, may not be immediately visually apparent, but
can be obvious when looking at the depth information. Traditionally two types of
sensors have been used: Laser scanners and ultrasound. Laser scanners have been
used extensively by Duran et al. for binary defect detection of cracks, defective joints,
and obstacles, by utilizing depth and the intensity of the reflected light as input for
fully-connected neural networks [26–28]. Similarly, [29] designed a novel laser scan-
ner for detecting displaced joints, cracks, and deposits, which works in a comparable
way as to CCTV inspections. [30] similarly proposed a novel laser scanner design
for defect detection and extracting pipe geometry. Furthermore, [31] and [32] have
used laser scanners for navigation purposes as well as detecting defects and recovering
the geometry of the pipe. [33] utilized ultrasound based methods for detecting cracks
and holes in concrete pipes. Khan and Patil have proposed detection cracks in PVC
pipes by analyzing the acoustic response under different conditions using frequency
domain analysis [34, 35]. Alejo et al. have utilized RGB-D camera for localization and
defect classification, utilizing graph based learning and convolutional neural networks
(CNN) [36, 37]. Furthermore, as documented by [12] there is a lack of public dataset
and code releases for methods based on CCTV and SSET inspections, which is also
the case with methods designed for inspections using 3D sensors.
Geometric Deep Learning. Within recent years the application of deep learning meth-
ods on unstructured 3D data, such as point clouds, have gained interest within the
computer vision community. The earliest methods utilized specialized voxel-based
methods [38] and reutilizing 2D CNNs in a multiview-based approach [39] in order to
classify objects, resulting in, respectively, high memory consumption and slow compu-
tation times. Qi et al. were the first to successfully process the raw point clouds using
the fully-connected neural network architectures, PointNet [40] and PointNet++ [41].
This work has been expanded upon within the autonomous vehicle community for
object detection and segmentation [42, 43], amongst other point based methods [44, 45].
3D point clouds can also be observed as a graph problem, which was utilized by [46]
in the Dynamic Graph CNN (DGCNN) architecture, where edge information between
points are aggregated to better learn local and global information. For a review of the
geometric deep learning field we refer to the work of [47] and [48].

Synthetic Data. In the current era of machine learning based methods, representative
training data is essential. However, it may not always be possible to acquire the
necessary training data, as it can be prohibitively expensive. This is especially apparent
when working on tasks where the interesting parts are rare, such as defect detection. The
generation of representative synthetic data has therefore been increasingly investigated.
[49] proposed the Domain Randomization (DR) method, which generates randomized
renderings of a scene in order to train a robot. [50] expanded on this method by
accounting for the structure in the scene, called Structured Domain Randomization
(SDR), which was demonstrated on the KITTY object detection task. [51] showed using
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Fig. G.2: An example pipe configuration, used for collecting the point cloud data from the physical setup.

large amount of synthetic data can help handle the long tailed distribution that occurs
in the animal classification task, showing the promise of synthetic data. Lastly, [13]
proposed an SDR based synthetic data generator for PVC sewer pipes, which can
generate displaced joints and defective rubber rings in the joints.

3 Dataset
As mentioned in Section 2 there are currently no publicly available datasets within the
sewer inspection field. We therefore construct our own dataset, consisting of normal
non-defective pipes and defective pipes with three different kinds of defects: displaced
joints, defective rubber rings, and obstructions in the form of bricks. The three defect
types are selected as they are observed frequently in the real world. As 3D sensors are
very rarely used for sewer inspections, the constructed dataset consists of synthetic
point cloud data, as well as real data obtained in a lab environment.

3.1 Synthetic Data Generation
We base our synthetic data generation on the SDR-based approach proposed by [13].
The proposed data generator generates a random sewer network consisting of clean
PVC pipes, with no water or sediments, and randomly places defects along the pipes.
A virtual approximation of the PMD Pico Flexx time-of-flight sensor is moved through
the sewer network, and record synthetic point clouds.

The generated defects are, however, constrained to only displaced joints and defec-
tive rubber rings, which are concurrent. We update the simulator to allow displaced
joints and defective rubber rings to occur independent of each other, and further extend
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Table G.1: Overview of the data in the different data splits. The Displacement (Disp.), Brick, and Rubber
Ring columns represent the amount of point clouds for the three investigated defect types.

Synthetic Real
Split Normal Disp. Brick Rubber Ring Normal Disp. Brick Rubber Ring Total
Training 5,365 1,811 1,822 1,802 140 45 45 44 11,074
Validation 1,385 439 428 448 31 12 12 13 2,768
Test 1,350 450 450 450 244 85 76 80 3,185
Total 8,100 2,700 2,700 2,700 415 142 133 137 17,027

it to allow for randomly placed bricks in the pipe. Bricks are chosen, because of
their relatively basic shape, not prone to many variations, compared to other possible
obstructions in sewer pipes. This way the overall defect classification performance of
the algorithms can be evaluated, without the need to create too many different shape
cases. The bricks are placed by applying a random force to the brick, which pushes it
into a random position and orientation in the pipe. We constrain the simulator to only
allow one kind of defect per extracted point cloud, in order to be able to determine the
effect of each type of defect.

3.2 Physical Data Collection
In order to collect point clouds from a set of real PVC sewer pipes, a physical setup was
created in an indoor laboratory, see Figure G.2. The data was collected using a PMD
Pico Flex sensor. As no sewer data captured with the Pico Flex sensor is available,
we conduct a simple test, to verify its accuracy presented in its datasheet [14]. The
sensor is mounted on a moving platform and directed towards a white wall with an
approximately Lambertian surface. The sensor is then moved away from the wall at
equal 0.1m intervals, starting from 0.2m until 2m. A Leica DISTO laser range finder,
is used to capture ground truth data at each position, as it has a known accuracy of
0.03m. The two sensors are calibrated to the same distance measurement at 0.2m. The
difference between the two are presented on Figure G.3. The distance errors are higher
than the ones given in the datasheet [14] for the camera. This needs to be taken into
account, as these distance errors, might result in noise or deformations in the selected
pipe segments, especially between 0.8m and 1.5m.

Five different pipe segments, with a diameter of 400 mm were used for data
collection: two straight pipes, and three corner pipes with turning angles of 15, 30, and
45 degrees. The pipe segments were combined in different permutation, with the sensor
moved through the pipes while placed in the center. Defects were added to the pipes
by randomly placing bricks or rubber rings in the pipes, or displacing the joints of the
pipe segments. As in the synthetic data generator, only one type of defect is present at
a time.
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Fig. G.3: The Pico Flexx distance errors, compared to a laser range finder at distances between 0.2m and
2m.

Fig. G.4: Example of point clouds captured with the real Pico Flexx and the holes, caused by missing data.

3.3 Comparison Between Real and Synthetic Data
Examples of the real and synthetic data are shown in Figure G.1, with one example
per class. One problem found from the real data captured with the Pico Flexx sensor,
is the presence of “holes” in both the depth map and the point cloud - areas, where
no depth data is captured. These holes depend on the environmental lighting, the
distance and orientation of the imaged surface, compared to the camera, as well as the
glossiness of the surface. Examples of such holes can be seen in Figure G.4. One way
we address this problem is by subsampling both the synthetic and real point cloud data,
which lowers the density variation of the point clouds. More information, about the
subsampling process can be found in Section 4.1.

3.4 Dataset Split
The acquired synthetic and real data are divided into training, validation and test splits,
as shown in Table G.1. We choose to place the majority of the real data (85%) in the
test split, as to reflect the real world data situation, where inspection data is in the form
of CCTV and SSET videos and annotated 3D data is limited. Inversely, we utilize the
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majority of the synthetic data in the training and validation splits. We make sure there
is no data leakage between splits by generating new synthetic data for each split, and
splitting the real data based on the pipe segment configurations. We balance the amount
of defective and normal data, such that the problem is more well-behaved, which is
standard within the sewer defect classification field [22, 23].

4 Methods
The proposed method consists of two steps: preprocessing the data and the deep
learning models.

4.1 Data Preprocessing
Training a deep learning model on the raw point cloud data is infeasible due to the
large number of points, leading to high memory consumption. It is therefore necessary
to subsample the point clouds in order to efficiently process them. Before subsampling
point clouds, it is preferred to reduce the number of outliers that may occur. This can
prevent subsampling approaches being biased by the outliers and rather focus on points
containing relevant geometric information of a given pipe. Points that are stored in
the origin of a point cloud are discarded, as they represent points that did not return a
valid value. Afterwards, Statistical Outlier Removal (SOR) [52] is applied to discard
aberrative points that heavily differ from the geometric representation of a pipe.

We subsample the point clouds to 1024 points, the number of points originally used
for the PointNet approach. Traditionally the subsampling step has been performed by
applying the Farthest Point Sampling method, which iteratively selects the point in the
point cloud which is farthest away from the previously selected points [40]. This is,
however, not the best approach for our data, as some defects manifest themselves as
points in the middle of the pipe, which would be subsequently removed. Therefore
we apply two different subsampling approaches sequentially. First we apply a spatial
subsampling step [53], which enforces a minimum distance, d, between each point. d
is selected such that more than 1024 points remain, though d may change per point
cloud. d is initially set to 0.03, and decremented by 0.004 each time the resulting point
cloud has less than 1024 points. Afterwards the point cloud is reduced to 1024 through
uniformly sampling the subsampled point cloud. As a last step the subsampled point
clouds are normalized into a unit sphere. Examples of a pipe segment before and after
the preprocessing steps can be seen in Figure G.5.

4.2 Model Architectures
We investigate the performance of two state-of-the-art geometric deep learning methods:
PointNet [40] and DGCNN [46]. We choose PointNet to get a baseline performance,
whereas DGCNN is chosen to evaluate the effectiveness of the advances within the field.
PointNet is built upon sequentially applying the same fully-connected sub-networks on
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(a) Before Subsampling (b) After Subsampling

Fig. G.5: Example of a sewer pipe segment before and after the subsampling preprocessing steps

the individual points, in parallel. This way each point is processed independently of any
other points. In order to aggregate the feature information of each point, the symmetric
max pooling function is used. Furthermore, the PointNet architecture includes a special
sub-network called a T-Net, which predicts an affine transformation matrix used to
align the input into a canonical form. The T-Net is applied in the beginning on the raw
input, as well as the intermediate features. However, the intermediate feature alignment
matrix is learned in a high dimensional space, which makes the optimization process
more difficult [40]. Therefore, [40] regularize the feature alignment matrix, A, by
forcing it to be close to an orthogonal matrix, as shown in Equation G.1.

Lreg = ||I−AAT ||2F (G.1)

The DGCNN network builds upon the PointNet architecture, by introducing the Edge-
Conv layer between each of the shared fully-connected subnetworks. For each point,
xi, in point cloud, the EdgeConv layer finds the k closest points in the feature space,
x j, including the point itself. For all k points, a learnable edge function, denoted
h(xi,x j), is applied, and the obtained edge features are aggregated using a symmetric
aggregation function. In DGCNN, h is defined as a fully-connected network which
takes the concatenation of xi and x j− xi as input, while the aggregation function is a
simple channel wise max operation. This way both global and local shape information
is captured in the EdgeConv layer.

5 Experimental Results
We approach the task as a multi-class classification task, where we have to determine
whether the point cloud represents a sewer with one of the three considered defects, or
whether it is a normal sewer pipe. The PointNet and DGCNN networks are trained and
evaluated using the dataset described in Section 3.
The two selected networks are trained under four different data scenarios:

S1 Train on synthetic data.
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Table G.2: Relevant hyperparameters and the chosen values. For the learning rate and weight decay we try
all permutations of the specified values.

Parameter Value
Learning Rate (η) [10−3, 10−2, 10−1]
Momentum 0.9
Weight Decay [10−5, 10−4, 10−3, 10−2, 10−1]
Dropout Rate 0.5
Batch Size 32
Epochs 50

S2 Train on real data.

S3 Train on synthetic and real data.

S4 Train on synthetic data, and fine-tune on real data.

The validation and test splits consist of both real and synthetic data for all data scenarios.
By testing these different data scenarios we hope to determine the effect of the synthetic
data, and how to best utilize the small amount of real life data which may be available.

For each method and scenario we utilize the hyperparameters shown in Table G.2 and
perform grid search over the learning rate, η, and the weight decay. For DGCNN we set
k to 20, while for PointNet we weight the regularization loss Lreg by 0.001. The models
are trained for 50 epochs using Stochastic Gradient Descent (SGD) with Momentum,
and cosine annealing [54] the learning rate from η to η ·10−2, and the Cross Entropy
loss objective. We handle the class-imbalance between the normal pipes and three
defects by weighing the loss objective differently for each class. The class weights are
set as the proportion of class samples compared to the class with the most samples.
Lastly, the data is augmented during training by jittering each point with noise from a
Gaussian distribution, with zero mean and 0.02 standard deviation. For scenario 1, 2,
and 3 we select the model which achieved the best validation loss. For scenario 4 we
take the best performing model in scenario 1 and fine-tune it, with identical parameters
except the selected η, which is multiplied by 10−1.

We evaluate the models by considering their confusion matrices on the real test data
as shown in Figure G.7-G.8, as well as the precision, recall, and F1-score in Table
G.3-G.4. The metrics are calculated as the average of the binary metrics for each class,
where each class is weighted by the proportion of the class in the dataset. We present
the resulting metrics for the real test data, as well as for the full test data split. Lastly,
we also investigate the effect of the ratio of real life data used when fine-tuning the
models in data scenario 4. We investigate using between 0% (i.e. no fine-tuning) up to
100% of the real training data, in increments of 10%. The resulting metrics for the real
data test split are shown in Figure G.6.
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Table G.3: Performance of the PointNet and DGCNN networks on the real data test split, for all four data
scenarios. All metrics are the weighted average across all classes.

Model Precision Recall F1
PointNet-S1 3.58 15.88 5.25
DGCNN-S1 29.02 20.62 17.65
PointNet-S2 2.72 16.49 4.67
DGCNN-S2 25.31 50.31 33.68
PointNet-S3 28.61 32.16 30.23
DGCNN-S3 34.55 22.27 16.66
PointNet-S4 23.17 27.42 24.24
DGCNN-S4 39.69 26.19 23.58

Table G.4: Performance of the PointNet and DGCNN networks on the entire data test split, for all four data
scenarios. All metrics are the weighted average across all classes.

Model Precision Recall F1
PointNet-S1 8.00 17.21 6.70
DGCNN-S1 57.57 56.73 57.09
PointNet-S2 2.77 16.64 4.75
DGCNN-S2 25.05 50.05 33.39
PointNet-S3 34.36 32.40 31.65
DGCNN-S3 58.72 57.52 58.67
PointNet-S4 28.37 36.11 30.98
DGCNN-S4 50.37 36.61 35.25

6 Discussion
From the results it is evident that the DGCNN network consistently outperforms the
PointNet network. Even the best performing case of PointNet, trained using data
scenario 3, which scores the highest F1 score, consistently avoids predicting the rubber
rings. This is a general theme throughout the trained PointNet networks, which in all
other cases stick to predicting one or two classes. Comparatively, the DGCNN networks
makes more well rounded predictions, with only DGCNN-S2 consistently predicting a
single class. This is reflected by the consistently high metrics. Therefore, it appears
that there is a clear benefit of the EdgeConv layers for the sewer defect classification
task. This makes sense as both the local and the global structure is affected by defects,
due to shadowing of the sensor and changes to the pipe itself.

When looking into the different data strategies, it is found that using either only
synthetic or real data is a poor strategy. Instead the best results were obtained by
pre-training on synthetic data, followed by fine-tuning on real data. This led to a
consistent improvement over both data scenario 1 and 3 on the real data. Looking at
Figure G.6, we see that the ratio of real point cloud data used to fine-tune the DGCNN
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Fig. G.6: Plot of the evaluation metrics, when increasing the ratio of the real training data used to fine-tune
the networks.

network is proportional to the metric performance. However, the PointNet network
again converges to a point where only one or two classes are predicted, as seen in
Figure G.8d. We can therefore conclude that synthetic training data can be used to
bootstrap the training process of a 3D sewer defect classifier.

However, the networks are not a perfect classifier, as there are several failure points.
As mentioned earlier, only one of the PointNets managed to converge to a usable
classifier, with the rest instead simply predicting one or two classes. Conversely, the
DGCNN converge to a more usable classifier. However, the best performing model,
DGCNN-S4, is biased towards the defect classes, with only 9% correctly predicted
non-defective pipes in the real data. This may be due to some defects occurring quite
far into the pipe, though still visible to the sensor. In these cases the effect on the
recorded point cloud, such as shadowing, will be quite subtle, and more easily confused
with a normal sewer pipe.

7 Conclusion
In this work we investigate the possibility of utilizing modern geometric deep learning
techniques in order to detect defects in sewer pipes, using a combination of synthetic
and real point cloud data. We compare two network architectures, PointNet and
DGCNN, on a new publicly available dataset with 17,000 point clouds and four classes.
The dataset is structured such that the majority of the training and validation splits
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consist of synthetic data, with the majority of the point cloud data of real sewer pipes
are reserved for the test data. We conduct a grid search for the hyperparameters,
and train the chosen networks under four different training data scenarios, in order
to investigate the effect of using synthetic and real training data. We find that the
DGCNN networks consistently outperforms the PointNet baseline, when investigating
the confusion matrices and metrics. We also find that the best performance is achieved
using both synthetic and real training data, specifically when using the real data to
fine-tune a network trained on synthetic data. The trained classifiers are, however, not
perfect, as they tend to favor classifying defects instead of normal pipes. With these
findings we show that both geometric deep learning methods and synthetic training
data is viable for training sewer defect classifiers, though more work is needed for the
classifiers to become more stable.
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The sewerage infrastructure is one of the critical infrastructures of modern 
society, which most people rarely consider. However, due to its immense 
size regular inspection of the sewer pipes is impossible. This thesis focuses 
on using Computer Vision to automate sewer inspections through two con-
sidered modalities: images and point clouds. Computer vision aided sewer 
inspections has been researched for over three decades but has yet to be 
widely adopted by professional inspectors.

In this thesis, the fundamental historic trends and hindrances were investigat-
ed, covering the algorithmic trends and the lack of public code and datasets 
as well as no common evaluation protocols. These hindrances were broken 
down by the release of the first publicly available image and point cloud 
sewer defect classification datasets, the introduction of domain influenced 
evaluation metrics, and open-sourcing the developed code. This has conse-
quently made the automated sewer inspection domain far more accessible. 
Finally, two novel graph-based computer vision algorithms were developed 
for automating parts of the sewer inspection process leading to significant 
improvements over prior methods.


