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In this work, data is acquired from both a real refrigeration system installed in Bitzer 
electronics and a high-fidelity model in Matlab/Simscape which has been used in the 
company for multiple purposes such as controller development. The real data is ac-
quired from an embedded system called LMC which is a controller produced by Bitzer 
electronics. 
Data pre-processing are done in Python using pandas library, and Machine Learning 
models are made in Python using sklearn library which provides several machine learn-
ing toolboxes for the users. This document is written in Latex environment. The plots 
are printed in Python and self-made figures are sketched in Microsoft Visio.



Abstract

This study is concerned with the capability of machine learning models in fault de-
tection and diagnosis (FDD) in refrigeration systems such as supermarket refrigeration
systems. The functionality of refrigeration systems has huge impacts on energy con-
sumption, preserving goods in cold storage, and decreasing air pollution. Thus, the
development of FDD tools in this industry is desired by manufacturers, customers, and
environmental protection agencies. The goal is to investigate FDD algorithms that
perform satisfactorily and are robust regarding the accuracy, false positive rate, and
applicability.

This study compared a deep learning algorithm called Convolutional Neural Net-
work (CNN) and multiple shallow learning algorithms such as Support Vector Machines
(SVM) and Linear Discriminant Analysis (LDA). In addition, Principal Component
Analysis (PCA) and LDA are implemented for preprocessing of the data. In this re-
gard, data from a refrigeration system that is set up in Bitzer Electronics is acquired,
and further, simulation data is collected from a high-fidelity Simscape model which has
been used in the company.

The results illustrate that the CNN model is highly robust in binary classification
tasks when unseen data is noisy or perturbed, and the number of data samples affects
the model’s accuracy. PCA-SVM performs better than SVM regarding classification
accuracy and computation time. PCA reduces input dimensions to only two and helps
the SVM classifier deal with noise, perturbation, and running the system in on/off mode.
Data with different sample rates in the range [1,0.01] Hz does not affect the mentioned
models’ accuracy in the classification task. For multi-class classification purposes, SVM
and LDA-SVM perform better than CNN, LDA, and PCA-SVM. SVM and LDA-SVM
can identify 18 classes out of 21 classes with 100% accuracy, while the LDA-SVM stands
alone for detecting faulty systems from non-faulty systems with a 0% false positive rate.
This means that LDA-SVM is a reliable model for fault detection purposes, and SVM
performs better than the other models for fault localization.
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Resumé

Denne undersøgelse beskæftiger sig med nøjagtigheden af maskinlæringsmodeller inden
for fejldetektion og -diagnose (FDD) i kølesystemer såsom supermarkedskølesystemer.
Funktionaliteten af et køleanlæg har stor indflydelse på energiforbruget, konservering af
varer i kølerum og mindskelse af luftforurening. Udviklingen af FDD-værktøjer i denne
industri er således efterspurgt af producenter, kunder og miljøbeskyttelsesagenturer.
Målet er at undersøge FDD-algoritmer, der fungerer tilfredsstillende og er robuste med
hensyn til nøjagtighed, falsk positiv rate og anvendelighed.

Denne undersøgelse sammenlignede en dyb læringsalgoritme kaldet Convolutional
Neural Network (CNN) og flere overfladiske læringsalgoritmer såsom Support Vector
Machines (SVM) og Linear Discriminant Analysis (LDA). Derudover er Principal Com-
ponent Analysis (PCA) og LDA implementeret til forbehandling af dataene. I den
forbindelse indhentes data fra et køleanlæg, som er opsat hos Bitzer Electronics, og
yderligere indsamles simuleringsdata fra en high-fidelity Simscape-model, som er blevet
brugt i virksomheden.

Resultaterne illustrerer, at CNN-modellen er meget robust i binære klassifikationsop-
gaver, når usete data indeholder støj eller forstyrrelser, og antallet af samples påvirker
modellens nøjagtighed. PCA-SVM yder bedre end SVM med hensyn til klassificer-
ingsnøjagtighed og beregningstid. PCA reducerer inputdimensioner til kun 2 og hjælper
SVM-klassifikatoren med at håndtere støj, forstyrrelser og at systemet kører i on/off-
tilstand. Data med forskellige sample rates i området [1,0.01] Hz påvirker ikke de
nævnte modellers klassificeringsnøjagtighed. Til flerklasseklassifikationsformål klarer
SVM og LDA-SVM sig bedre end CNN, LDA, og PCA-SVM. SVM og LDA-SVM kan
identificere 18 klasser ud af 21 klasser med 100% nøjagtighed. LDA-SVM er bedst til
at detektere fejlbehæftede systemer fra ikke-defekte systemer med en 0% falsk positiv
rate. Det betyder, at LDA-SVM er en pålidelig model til fejldetektionsformål, og SVM
yder bedre end de andre modeller til fejllokalisering.
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Extended summary

1 Motivation
A cold chain is a low-temperature controlled chain from the point of production or
manufacturing to the end consumers, shown in Fig. 1. Perishable food, beverage,
pharmaceuticals, and temperature-sensitive chemicals are preserved in the cold chain.
refrigeration systems play an important role in the cold chain as they control the temper-
ature of the goods’ environment. Refrigeration systems are required in manufacturing
and transporting products, warehouses, supermarkets, pharmacies, and households [1].
Even a small unexpected change in the cold storage temperature may have a huge impact
in different areas as follow:

Production Transportation Warehouse

ConsumerRetailManufacturing

Fig. 1: An overview of a cold chain from production and manufacturing to the consumers where in
each section, the functionality of refrigeration systems is essential to ensure the goods are delivered
safely to the end user.

• Human health
A cold chain can affect food nutrition, and improper cooling processes in the cold
chain may lead to some irreversible consequences in societies. For instance, it can
potentially affect a society’s population’s height in the long term [2], foodborne

3
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diseases, and so on. Therefore, minimising the risk of such consequences is de-
manded by standardising the cold chain and monitoring the product’s quality [3].

• Medicine
For many decades, sensitivity and accuracy of storage temperature in refrigera-
tion systems have been considered for protecting medical products and develop-
ments [4]. During the corona pandemic, refrigeration systems were essential for
vaccine storage and distribution to rescue the world’s population. [5]. Therefore,
temperature control and monitoring are vital to the security and development of
medical solutions.

• Global warming
Refrigeration systems are one of the products whose functionality is important
for environmental agencies. Additional energy consumption due to a refrigeration
systems failure, air pollution/earth pollution due to the waste of products, and
refrigerant leakage or other refrigeration systems failures impact the environmental
issues [3].

• Economy
About 30% of all produced food is annually wasted due to inappropriate food
preservation. For example, in the USA, $218 billion is spent yearly on the cold
chain for food that is never consumed. In the EU, around 10% of the imported
food is wasted, which is roughly e6.63 billion per year [1]. Thus, the preservation
of food appropriately saves money since most of the produced food is consumed,
and finally, demands on the amount of food production are reduced.

Today, the responsible authorities for each item mentioned above are aware of the
importance of cold chain performance. Therefore, they request manufacturers pay more
attention to the accurate and robust storage temperature and continuous monitoring to
detect any failure at an early stage. From the users’ point of view, early fault detec-
tion in refrigeration systems is cost-saving considering decreasing power consumption,
maintenance cost, fatigue faults’ cost, and spoilage of goods.

Bitzer Electronics produces HVAC system controllers and supplies cloud-connected
electronic protection modules called IQ modules. IQ modules are integrated into the
compressors produced by Bitzer in Germany. IQ modules have basic fault detection
capabilities to identify some severe faults that destroy the systems. In addition, techni-
cians handle the refrigeration system monitoring at a fixed interval or upon request. In
many refrigeration systems, faults happen gradually, and performance is affected over
time. This means that a failing system often runs for an extended period at low efficiency
before the error is discovered. Bitzer Electronics is interested in a solution to increase
its products’ uptime, efficiency, and reliability. Early fault detection and diagnosis in
refrigeration systems are proposed to improve the competitiveness of the products. Due
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to system configurations and component variations, data-driven approaches are inves-
tigated in this work. This study takes advantage of looking at the problem from an
industrial perspective. The investigations during this study can improve other business
areas at Bitzer Electronics, such as ventilation systems and heat pumps and turn into a
core technology for the company, which in time may help improve most of the products
at Bitzer Electronics.
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2 Research Question
This chapter addresses the problem of fault detection and diagnosis that exists in the
refrigeration industry and the challenges this research covers.

The problem of automatic and data-driven FDD applications in refrigeration systems
appeared some decades ago when data availability increased. Running a malfunctioning
refrigeration system may lead to various components damages in the short or long term,
low efficiency, or high power consumption.

Bitzer Electronics A/S produces controllers which are widely used in HVAC&R appli-
cations. In addition, the parent company Bitzer provides so-called "condensing units",
in which components for compression and condensation in the refrigeration cycle are
mounted. Therefore, in many applications, for instance, supermarket refrigeration sys-
tems, Bitzer Electronics has access to data from a part of the refrigeration systems.
However, since Bitzer provides condensing units, there is usually no information about
evaporation and expansion phases; the numbers and sizes of evaporators, evaporator
fans, cold rooms, expansion valves, and the design of evaporation-side controllers differ
from application to application.

In other applications, on the other hand, the controller produced by Bitzer Electron-
ics controls the whole refrigeration systems, such as heat pumps, reefer containers, and
reefer trucks.

It is thus only natural that Bitzer Electronics is interested in robust solutions that
are able to work effectively in vastly different operating conditions and configurations.

The research undertaken in this PhD study addresses the questions below:

• Is it possible to find faults in the evaporation side of the refrigeration system using
data available to Bitzer, such as data from the inlet of the compressors?

• Is it possible to use machine learning methodologies to simultaneously identify
several components and sensor faults in refrigeration systems?

• Do deep learning classifiers perform better than shallow learning classifiers?

• How many data samples are required for fault detection and diagnosis in refriger-
ation systems using selected classifiers?

• Comparison of the classifiers regarding computation time, accuracy and false pos-
itive rate.

• Does sample rate affect the classification accuracy?

• Are the selected classifiers robust in different operational conditions?

• Are the selected classifiers robust against noise?



2. Research Question 7

• How do the selected classifiers perform when the refrigeration system alternate
between on and off mode?

• What is the effect of training data excitation or variation on training the models?

• Does any data feature affect the classification results inversely?

Finding answers to the questions above is valuable to Bitzer Electronics, as it would allow
the company to introduce more efficient, reliable and intelligent products and increase
components’ uptime due to early fault detection across entire classes of refrigeration
systems. The challenges above are discussed in Sections 7 and 8, and the answers can
be found in Section 9.

According to the considerations above, different data collection scenarios are con-
sidered in the research reported in this thesis. Papers A and B consider data from
a condensing unit without information about the evaporation and expansion phases,
whereas the data acquired in Paper C contains information from a complete refriger-
ation system. Paper C studies some classifiers that identify several possible faults in
refrigeration systems, including sensors and components faults.
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3 Content outline
This report consists of two parts. Part I presents the extended summary of the published
papers which are done during the PhD study. Chapter 1 explains the importance of the
research from different aspects, such as human health, global warming and the economy.
The problem of fault detection and diagnosis in refrigeration systems and the reasons
for carrying this research out are argued in Chapter 2. In Chapter 4, the refrigeration
systems background, description of potential faults in refrigeration systems, the test
setups configuration are presented. Recent fault detection and diagnosis studies are
introduced in Chapter 5. In this chapter, state-of-the-art is investigated in Heating,
Ventilation, Air conditioning, and refrigeration systems. Afterwards, the methods used
in Papers A, B, and C are introduced in Chapter 6. In addition, several experiments are
introduced in Chapter 7, which are conducted during the study and are not mentioned
in the papers. In Chapter 7, description of the faults emulated or simulated in this
study, data acquisition specification, and data visualisation are also presented. Then,
the results achieved in the papers are summarized in Chapter 8. The summary of the
main contributions of Papers A, B, and C are discussed in Chapter 9. Finally, practical
remarks of the papers are concluded in Chapter 10.

Part II consists of three scientific articles which are conducted during this research.
Papers A and B are studied based on the data from a real refrigeration system which
is set up in the Bitzer electronics laboratory. These two research investigate different
classifiers for binary classification between functional and faulty systems. Paper C
compares and evaluates several fault detection and diagnosis models which can classify
different types of faults in refrigeration systems.

Appendix 1 describes the important corrections in Paper C, which are investigated
after publication of the paper. Therefore, The corrected sections of Paper C are applied
to this report as an appendix.
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4 Refrigeration systems
This chapter consists of the preliminaries in refrigeration systems, the problem of fault
detection, and the refrigeration systems’ models which are used in this study for data
acquisition.

4.1 Refrigeration systems background
The purpose of using refrigeration systems is to transfer unwanted heat from a cold
room to the ambient environment. Heat is defined as a transfer of energy between two
regions which are not in the same thermal equilibrium [6]. Refrigeration systems have
four primary components that fulfil thermodynamic behaviour during heat exchange:
compressor, condenser, expansion valve, and evaporator. These main components are
responsible for changing the refrigerant pressure, temperature and phase in a cycle shown
in Fig. 2. Thermodynamic behaviour in vapour-compression refrigeration systems is
described below:

• Compression
In the compression process, the low-pressure, low-temperature gas refrigerant en-
ters the compressor where the refrigerant is compressed to a high-pressure, high-
temperature gas and delivered to the condensation phase, see Fig. 2. Note that
if the ambient/coolant temperature and the refrigerant temperature are in equi-
librium, heat transfer is not possible in the condensing phase. Therefore, the
compressor is essential before condensation to increase the refrigerant tempera-
ture and pressure and ensure heat transferability to the ambient environment.
Some different compressors are hermetic, reciprocating, open drive, semi-hermetic
reciprocating, and scroll [7].

• Condensation/Heat dissipation
During condensation, heat dissipation leads to a change of refrigerant phase from
liquid to gas. A condenser releases heat to the ambient environment, such as air
or water. Three processes happen during condensation while refrigerant pressure
(P ) is constant. First, the hot gas refrigerant at the inlet of the condenser is de-
superheated. It means that the refrigerant temperature drops while the pressure
is constant. In this part, 10-15% of total de-superheating is done. Second, heat
dissipation leads to refrigerant condensation. Therefore, the refrigerant phase
changes from gas to liquid. The last part of the condensation process is called
subcooling, in which liquid refrigerant temperature decreases. Different condensers
are air-cooled, evaporative water-cooled, shell and tube condensers, and plate heat
exchangers [7]. Selection of the condenser in the refrigeration system depends on
several factors such as weather conditions, availability of electricity, availability
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of water, refrigeration system specification, heat capacity, refrigerant type, and
operation period [6].

• Expansion
The expansion valve is mounted just before the evaporator to reduce refriger-
ant pressure and temperature and make the refrigerant ready to vaporize in the
evaporator pipeline. Therefore, 20-40% of the refrigerant evaporates during the
expansion process to the pressure in the evaporator. The amount of vaporization
depends on the operating condition of the refrigeration system and the require-
ments. In this process, changes in temperature and pressure happen due to the
volume expansion of the refrigerant. There are different expansion valves, such
as thermostatic, electronic, capillary tubes, and float valves. Thermostatic ex-
pansion valves work based on the thermodynamic behaviour of the refrigerant.
In electronic expansion valves, the opening degree is controlled by the controller.
Capillary tubes are usually used in small-size refrigeration systems, and the float
valves are controlled based on the pressure at the high-pressure side [6].

• Evaporation/Heat absorption
An evaporator is responsible for transferring heat from a cold room environment to
the refrigerant. The refrigerant temperature at the inlet of the evaporator should
be less than the cold room environment so that the refrigerant can absorb the
heat. Heat absorption is an isobaric process in which a liquid phase changes to a
gas. After the phase change, the gas refrigerant is superheated until it leaves the
evaporator outlet while the pressure is constant. Evaporators can be found in two
types, air or liquid-cooled [7].

Beside mentioned components, there are normally additional components which help
a complete refrigeration cycle, such as condenser fan, evaporator fan, receiver, sensors,
controller, et Cetra. shown in Fig. 3. These components are introduced below:

• Refrigerant
Refrigerant is a fluid that circulates through the pipes and other components to
absorb heat from an area with unwanted heat and release it to the outside. The
type of refrigerant is selected based on the required cooling capacity, ambient tem-
perature and refrigeration system design. The most common refrigerants that are
currently in use are divided into three categories: Halogenated hydrocarbon com-
pounds such as R134a and R32, Organic hydrocarbon compounds such as propane
and isobutane, and Inorganic compounds such as CO2 and Ammonia [7]. Usually,
refrigerants have low boiling points and their volume increase by increasing the
temperature.

• Frequency converters
Compressors utilize mechanical energy in order to compress the gas flow. This
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Fig. 2: Primary setup for a vapour-compression refrigeration system. The blue line indicates the
low-pressure side and the red line indicates the high-pressure side of the refrigeration cycle.

energy is supplied by electricity. The compressors’ motors change electrical energy
to mechanical. The motors need specific voltage and frequency based on the
compressors’ capacity, size, and type of refrigerants. Frequency Converters (FC)
are used to modulate the rated frequency to an adjustable frequency.

• Receiver
Receivers are the containers located right after condensers. Receivers are used
to ensure the required amount of refrigerant in each operating point. In other
words, if the amount of refrigerant is more than required in an operating point,
the condenser would not have sufficient space to store the refrigerant. Therefore,
a receiver is needed to store condensed liquid refrigerant. In practice, a receiver
is used if an operating point uses more than 3.6 Kg refrigerant [6].

• Evaporator fan
Evaporators are generally located in the cold room. In the absence of a fan,
cold room temperature can vary in different spots. Thus, an evaporator fan is
required to make a consistent air temperature all over the cold room. In addition,
the evaporator fan helps heat transfer from the air inside the cold room to the
refrigerant. Evaporator fan speed can be determined by the controller such that
the required heat transfer is done before the refrigerant leaves the evaporator.

• Condenser fan
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The amount of heat accumulated in the refrigerant during evaporation and com-
pression needs to be released to another environment. The refrigerant is condensed
at a temperature above the ambient temperature around the condenser. A con-
denser fan is required to ensure that heat is released before the refrigerant leaves
the condenser. The controller controls the fan speed.

• Controller
Controllers control the components of refrigeration systems to ensure sufficient
heat exchange during each operating point. Controllers are generally designed to
control cold room temperature or suction pressure.

• Sensors
Sensors are mounted in different positions in refrigeration systems. Sensors give
the controller information about the refrigeration cycle or components’ behaviour.
Different sensors used in refrigeration systems can be temperature, pressure, vi-
bration sensors, et Cetra.

• Liquid line valve
Liquid line valves control the flow passing from condensing unit to the expansion
valve. Liquid line Solenoid valves are used in refrigeration systems where a ther-
mostatic expansion valve is used, or there is no information about the expansion
valve and the evaporation side.

• Oil separator
Compressor oil is used for the lubrication of pistons. It is usually mixed with
refrigerant and passes through the discharge line. Therefore, an oil separator is
required to separate and return the oil to the compressors. Oil separators are
located in the discharge line (between the compressor and condenser). Note that
between 0.0003% to 0.001% of the total amount of oil can not be separated and
passes the refrigeration cycle along with the refrigerant.

• Filter dryer
This filter is located after the receiver to deal with a tiny amount of existing
moisture after installation of the system. The type and amount of refrigerant, line
size, and allowable pressure drop affect the dryer selection.

• Sight glass
To visualize that only liquid gas is delivered to the expansion, sight glass is utilized.
However, sight glasses may show air bubbles due to several reasons. For example,
there may be an insufficient refrigerant charge, pressure drop in the pipes, shut-off
filters or devices, foreign gas like air or nitrogen in the system, or extreme heat
transfer into the liquid line from surroundings [7].
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Fig. 3: Schematic of a refrigeration system including common components that help a complete and
more efficient refrigeration cycle.

• High-pressure and low-pressure switches
High-pressure and low-pressure switches are located before the compressor’s inlet
and after the compressor’s outlet. These two switches are closed in any regular
operation. A high-pressure switch works as an emergency switch when it is nec-
essary to shut down the FC and stop the compressor. A Low-pressure switch is
open when the pressure at the compressor’s inlet is insufficient.

4.2 Faults in refrigeration systems
Fault, in general, is a term for malfunctioning a system or a component. Each system
or component has its operation specification. An operation out of the specification lim-
its is considered a faulty operation. Operating a faulty system may lead to stopping
operation, damaging other components, or fatigue faults in the system. Thus, detect-
ing, identifying, and fixing the fault has always been preferred to be done on time.
Fault detection and diagnosis procedure can be done by technicians, technical tools, or
automatically.

According to [8], failures in refrigeration systems are divided into four categories as
follows:

• Component faults
Malfunctioning refrigeration system components and sensors lead to different symp-
toms in the system. Some of the faults may also have the same symptoms, which
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makes it more difficult to be identified. In this work, many components faults and
sensors faults are described in Section 7 and analyzed.

• Refrigerant leakage
Refrigerant may leak from the system in different positions. Leakage may appear
in different components or have different symptoms. For instance, the refrigerant
may leak from the expansion valve, solenoid valve, or compressor. Leakage may
result in compressor stop due to low suction pressure, bubbles in the sight glass,
insufficient compressor lubrication, frost at the evaporator outlet, and more [7].

• Mass flow rate reduction
The system may face a low mass flow rate if pressure drops or heat absorption
exist in the suction line.

• Condenser and evaporator blockage due to fouling
Faults such as fouling and blockage around the condenser or evaporator can be
inspected by experts and are more feasible for diagnosing compared to the other
faults. For example, a dirty condenser causes high compressor power consumption.
The evaporator can be blocked due to the heavily frosted coil, improper positioning
of goods, or refrigerant flooding. The blocked evaporator results in an increase in
discharge temperature and affect system efficiency [7].

4.3 Modeling
Real refrigeration system test setup

The real refrigeration system prototype used in Papers A and B is a setup in the
Bitzer Electronics laboratory. This setup consists of two parts: Condensing unit and
Evaporation side. The laboratory setup, introduced in Fig. 4, includes ECOSTAR
LHV7E/LHV5E condensing unit that delivers the cooling capacity to an evaporator in
a cold room.

ECOSTAR is produced for supermarket refrigeration systems. Today, there are
seven types of compressors by Bitzer which can be installed in the ECOSTAR unit.
These compressors are, in general, 4-cylindrical and 2-cylindrical compressors. In the
laboratory setup, a 4VE-7 compressor is installed, which is a 4-cylindrical semi-hermetic
reciprocating compressor. The compressor’s cooling capacity is defined by the percent-
age, which is a map of the frequency converter speed to the percentage. The compressor
starts working when the frequency converter speed is 20 Hz. Therefore, the compressor
cooling capacity is 0% when the converter speed is less than 20 Hz. The maximum
compressor cooling capacity is 100%, which is obtained when the converter speed is
87 Hz. The other operating condition specification of the laboratory setup is given in
Table 1.
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Fig. 4: Condensing unit of the laboratory setup at left and the evaporation side which is inside of the
cold room at right. This setup is used for data collection in Papers A and B.

Fig. 5 presents the laboratory setup components. Supermarket refrigeration systems
typically consist of two parts controlled separately. Condensing unit of the laboratory
setup is designed for supermarket refrigeration systems, as shown in this figure. The
mentioned condensing unit has a controller called LMC300, which is parameterized
according to the compressor’s model to regulate compressor capacity. Data from the
controller is logged and monitored using LMT software with two different modes. The
first one is suction pressure control, and the second one is room temperature control.
LMT controls condensing units with different hardware setups and input/output con-
figurations.

parameters range values
Condensing temperature (TC) less than 55°C
Discharge temperature (Tdis) less than 130°C
Saturation temperature (T0) more than -45°C
Pressure difference 350000 Pa
Superheat temperature (Tsh) less than 21°C
Compressor drive frequency 25-87 Hz
Condenser fan speed 0-100%
Cooling capacity at T0: 5°C 30 kW
Cooling capacity at T0: -10°C 17 kW

Table 1: Rang of operating condition for the laboratory setup using refrigerant R-134a.

Two types of inverters are used in the ECOSTAR unit: Danfoss FCM300 and Leroy
Somer Varmeca 30 series. In the laboratory setup, a Danfoss FCM300 inverter operates
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ECOSTAR unit

Fig. 5: Refrigeration setup used in the laboratory. Condensing unit of the test setup (ECOSTAR),
which is produced for supermarket applications, is distinguished by red colour.

between 25-87 Hz. The inverter frequency depends on the cold room temperature and
suction gas pressure.

A double condenser fan is installed in the laboratory setup. Each fan has a maximum
power consumption of 350 W and 9070 m3

h air flow rate at 50 Hz.
The setup’s receiver can be charged with 23.2 Kg refrigerant. There are several

sensors installed in ECOSTAR units which are, in general, temperature and pressure
sensors. Temperature sensors measure evaporation temperature, suction temperature,
saturated temperature, discharge temperature, ambient temperature, and optional cold
room temperature. The pressure sensor measures suction pressure and discharge pres-
sure.

The evaporation side of refrigeration systems can be in different sizes and designs
depending on the field’s requirements. Thus, we do not specify evaporation side compo-
nents and configuration. However, for an overview of the laboratory setup, an electrical
expansion valve is installed before the evaporator; one evaporator and two evaporator
fans are used in this setup. A controller controls superheat temperature by regulating
the expansion valve opening degree and speed of the evaporator fans.
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Simulation model

Several reasons encourage us to collect data from a simulation model instead of a real
system. First of all, training the neural network is a process which requires data in
different operation conditions. Unfortunately, the required amount of data in differ-
ent operation conditions, both for non-faulty and several types of faulty conditions, is
unavailable for doing experiments. In addition, data from the field cannot be trusted
whether they are correctly labelled. Plus, emulating several faults in the laboratory
setup and collecting data was time and cost-consuming. Thus, in Paper C, it is decided
to work on the simulation model used in the company for other development purposes.

The simulation model in Matlab/Simscape is presented in Fig. 6. This model
presents the main components of the refrigeration system in grey blocks. Properties
of refrigerant R-134a are used through the simulation. A controller adjusts parameters
such as condenser fan speed (Vcond), compressor drive frequency (Vcpr), condensing tem-
perature (TC), saturation temperature ((TO), superheat temperature (Tsh), expansion
valve opening degree (Vexp), and evaporator fan speed (Vevap). By using these param-
eters, the controller regulates room temperature (Troom), which is considered, in this
model, the same as supply temperature. Heat is applied to the cold room in this model
using heat load block. An electrical expansion valve and two-stage compressor, which
run between 25-87 Hz, are selected. The model has a cooling capacity of 17 kW at
ambient temperature ( Tamb)10°C and Troom5°C [9]. The red blocks in Fig. 6 indicate
faults emulation. These faults are described in Sub-sections 7.1 and 7.2 in details. The
operation envelope of the simulation model can be found in Table 2.

Parameters Value ranges
Condensing temperature (TC) less than 67°C
Saturation temperature (T0) more than -45°C
Suction pressure less than 200000 Pa
Compressor drive frequency 25-87 Hz
Compression speed 20-100%
Condenser fan speed 0-100%
evaporator fan speed 30-100%
Cooling capacity at T0: -10°C 17 kW

Table 2: Operating limits for the simulation model.
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discharge

Fig. 6: High-fidelity Simscape model, which is used in Bitzer Electronics as a development prototype
[9]. In this model, grey blocks indicate the main components of the refrigeration system and the red
blocks are assigned to the system for fault simulation.

....
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5 State of the art
In this chapter, first, recent fault detection and diagnosis strategies in different industries
are introduced. Then, some of the recent research on fault detection and diagnosis of
heating, ventilation and air conditioning systems are presented. Finally, the state-of-
the-art in the field of refrigeration systems is discussed.

5.1 Fault detection strategies
Fault detection and diagnosis (FDD) is an approach to distinguishing one or more ab-
normal events in a system and identifying their locations. For several decades, FDD
methodologies have been highlighted by both manufacturers and scientists as the devel-
opment of FDD tools affects the efficiency and optimal operation of industrial systems.
Moreover, the FDD tools development improves product reliability and reduces product-
related costs [10]. FDD methodologies can be divided into model-based, and data-driven
approaches. The model-based FDD approaches are used in different industries in which
the reliability and development of FDD models rely on the precise mathematical mod-
els of the systems, see [11] and [12]. However, a mathematical model of the system is
difficult to make in many industries as the operation condition, type of components and
size of the system may differ. Thus, data-driven methodologies are introduced for such
systems. The data-driven FDD models rely on information obtained from input/output
data. Different data-driven approaches are capable in different industries depending
on data complexity, correlations, non-linearity, time dependency, dynamics’ frequency,
etc. For instance, a combination of a Genetic algorithm with a Support Vector Machine
(GA-SVM) is used in [13] for FDD purposes. Then, the faults are applied to the elec-
tromechanical actuators in electromechanical systems. [13] indicates that GA is able to
improve parameter optimization in SVM and computation time. A correlative statistical
analysis is combined with a sliding window algorithm in [14] for fault detection in the
thermal power plant process. Subspace system identification is used for detecting and
identifying actuator and sensor faults for three-Phase induction motors in [15]. In [16],
a neural network-based classifier is used for leak detection. A model-based Gaussian
process regression is proposed to estimate the leakage size in a water distribution net-
work. A Fuzzy learning-based algorithm is proposed in [17] for detecting sensor faults
in a converter where five types of faults: drift, bias, precision degradation, spike, and
stuck, are applied to a sensor.

5.2 State of the art for FDD in HVAC systems
Heating, Ventilation, and Air Conditioning (HVAC) systems control residential and com-
mercial buildings’ expected ambient temperature, humidity, and air ventilation. HVAC
systems are one of the residential areas’ energy consumption sinks; Thus, improving
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HVAC systems’ operation and maintenance may greatly impact energy costs [18]. Sev-
eral FDD approaches are investigated in HVAC applications. Artificial Neural Network
(ANN)-based FDD methodologies for chiller applications are proposed in different works
e.g. [19], [20], and [21]. Support Vector Data Description (SVDD) is proposed in [22]
and demonstrated as an effective method for fault detection in nonlinear applications.
SVDD supports functional system data in a minimum-volume hypersphere in a high-
dimensional feature space. Then, faulty data falls outside the hypersphere as outliers.
In [23], and [24], ML-based FDD strategies are used in air-handling applications. A
statistic-based strategy is used in [18] for finding and prioritizing three common faults
in HVAC systems: high cooling effort, cycle frequency, and setpoint error. [18] ana-
lyzes cloud-based data from residential buildings by comparing features between sys-
tems instead of within systems. Kernel Density Estimation (KDE) is applied to find the
probability density function of each feature where the faults are considered as outliers,
appearing in a low-density area. The effectiveness of the KDE method for fault detec-
tion in HVAC systems is presented in [25], in which the operational behaviour of five
normal and faulty household systems are studied. [25] demonstrates the model’s ability
to identify malfunctioning systems among thousands of systems whose thermostats are
connected to the cloud.

In [26], Deep Recurrent Neural Networks (DRNN) is proposed as a fault detection
and diagnosis classifier in small HVAC systems. [26] investigates several FDD models to
classify six categories: non-faulty condition, four types of valve faults in HVAC systems,
outside air damper, stocked, and outside air sensor bias. [26] studies three challenges as
follow:

1. Several DRNNs models with different depths and different hyperparameters are
proposed.
In order to make different DRNN structures, Input-to-memory, memory-to-memory,
and memory-to-output layers of the RDNN are extended in [26] by one or more
intermediate layers. Therefore, five different structures are proposed as standard
DRNN, Deep Transition Input DRNN (DTI)-DRNN, Deep Transition Output
DRNN (DTO)-DRNN, Stacked-DRNN, and Stacked and Deep Transition Output
combined DRNN S,DTO-DRNN, see fig. 7. The author tests all the models with
various Long-Short Term Memory (LSTM ) units from two to four layers. The
standard LSTM-based DRNN, shown in Fig. 7, is presented, which can remember
the data’s short and long-term temporal correlations. This methodology outper-
forms in FDD applications, e.g., HVAC systems better than traditional neural
network models such as Back Propagation (BP) [27].
A deeper input-to-memory function can perform as a feature extraction function
in DTI- DRNN. Therefore, more information from the data can be exploited by
adding the number of intermediate layers to the input layer. A deeper memory-to-
output function may be more strength in the classification task. In DTO-DRNN,
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Fig. 7: Five different DRNN structures proposed in [26]. These structures are called standard DRNN
(a), Deep Transition Input DRNN (DTI)-DRNN (b), Deep Transition Output DRNN (DTO)-DRNN
(c), Stacked-DRNN (d), and Stacked and Deep Transition Output combined DRNN S,DTO-DRNN (e).
Among these structures, a model using S,DTO-DRNN obtains the best result.

the intermediate layers are plugged into the last layer, which eases the prediction
task [26]. Stacked-DRNN is introduced to stack one or more LSTM units upon
each other. Then at each timescale, recurrent layers can share the features. The
author in [26] proposes that one or two stacked intermediate layers may improve
the FDD results compared to the standard DRNN. Another structure which may
help the FDD task is S,DTO-DRNN. This structure is proposed in [26] to improve
the prediction task by the DTO function; Plus, better learning can be achieved
due to preserving long and short temporal correlations when using stacked-DRNN.

2. The optimal model is selected to obtain better classification accuracy and lower
computation time.
The five DRNN structures mentioned above are configured to 200 models with
different numbers of LSTM and hyperparameters such as optimization problem,
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drop-out, mini-batch size, layers size, etc. Among all experiments, the S,DTO-
DRNN model with 2-layer LSTM obtained the best result. Ada-max is the best
optimizer in this model, and a 20% drop-out could prevent model overfitting.

3. The optimal S,DTO-DRNN model is compared with an optimal Random For-
est (RF) and Gradient Boosting models (GB). [26] indicates that S,DTO-DRNN
model outperforms RF and GB regarding higher accuracy. Fig. 8 illustrates a
comparison of S,DTO-DRNN, RF, and GB using Receiver Operating Character-
istic (ROC) curves. A ROC curve represents a binary classifier performance by
plotting a false positive rate versus a true positive rate in different thresholds
for the prediction. Calculating Area Under the Curve (AUC) helps evaluate the
classifier. Note that a higher AUC rate in the range [0,1] is preferred.

Fig. 8: Comparison of S, DTO-DRNN, RF, GB and a random classifier for classifying one of the faults
from non-faulty data in [26]. Plots (a) and (b) represent the responses for two different data sets from
air handling units. The curves in both plots start from zero false positives to true positives. The best
AUC can be obtained by S,DTO-DRNN.

An RF classifier is combined with SVM in [28] for FDD purposes in Air handling
units, see fig. 9. [28] obtained classification accuracy up to 98% and achieved a promis-
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Fig. 9: The algorithm structure of the RF-SVM model used in [28]. The model classifies 14 classes
with 98% classification accuracy.

ing result for building management purposes by using fewer samples for training. In [28],
the model classifies 14 classes, including a non-faulty class and thirteen types of faults
in an air handling unit. Fig. 10 represents the faults descriptions and the classification
result using the RF-SVM model. Fig. 10 indicates no false positive obtained using this
model, and several faults are classified with 100% classification accuracy. The RF-SVM
model is compared with the RF and SVM models. The results show that RF and SVM
could classify the data with 86% and 77% accuracy, respectively. However, both SVM
and RF perform very well in the classification of some of the classes, e.g., SVM performs
well for the classification of functional system condition with 100% accuracy and can be
used for fault detection. [28] confirms that even though RF-SVM outperforms SVM and
RF models, the RF-SVM model is computationally more expensive than the other mod-
els. [29] used another hybrid model called Extended Kalman Filter with Cost-Sensitive
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Dissimilar ELM (EKF-CS-D-ELM). The same data as [28] is used in [29]. To compare
the EKF-CS-D-ELM with the RF-SVM model, RF-SVM achieved a better classifica-
tion accuracy. In [30], another investigation is done on the same data set as used in [28]

Fig. 10: The table at the top represents the faults descriptions in [28], and the result of FDD in an air
handling unit using the RF-SVM model at the bottom. The diagonal values are correct classification
responses showing classification accuracies in the range [88% ,100%] for all classes.

and [29] for FDD purposes. In [30], Slow Feature Analysis (SFA) is combined with fea-
ture sparse data-based dynamic to reduce data dimensions. Then, the data is infused
into several FDD models, such as SVM and CNN, where better than 95% classification
accuracies are achieved. Therefore, the RF-SVM model proposed in [28] outperforms
the other models proposed in [30] and [29].
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5.3 State of the art for FDD in refrigeration systems
Different approaches are studied regarding FDD in refrigeration systems. As refrig-
eration systems are the main application of this objective, We decided to investigate
state-of-the-art in refrigeration systems specifically. There are both model-based and
data-driven proposals for FDD in refrigeration systems. For instance, in [8], the impact
of air mass flow rate reduction over each heat exchanger is explored. Thus, a dynamic
FDD model for vapor-compression refrigeration systems is introduced, which is sensi-
tive to the systems’ evaporator and condenser fouling faults. Moreover, the sensitivity
information is used to create a structural residual that is able to identify different types
of faults. As the precise model of many systems are complex or may be unavailable,
data-driven models are today more interesting for both scientists and industries [31].
There exist several investigations for FDD in refrigeration systems, e.g. [32] [33] [34].
Refrigerant leakage in four modes, namely overcharge in steady state, under charge in
steady state, overcharge in the non-steady state, and under charge in the non-steady
state, are considered in [34]. In this work, an ANN-based FDD model is applied to iden-
tify the faults in a laboratory setup. In [35], existing FDD in Supermarket Refrigeration
Systems (SRS) are explored and categorized into four groups as follows:

• Energy-analysis-based FDD
In this analysis, also called whole building level, the energy consumption of the
HVAC&R systems in supermarkets is compared with historical energy data or
standard baseline values. This method has the ability to identify a supermarket
with high energy consumption even though the systems’ components are fault-free.

• Thermodynamic-analysis-based FDD
The thermodynamic behaviour of Refrigeration systems can be affected by compo-
nents faults or sensor faults. Therefore, some faults can be detected by analysing
the changes in temperature, pressure, mass flow rate, heat transfer rate, etc.

• Sensor-value threshold-based FDD
In this strategy, the sensor values of refrigeration systems are compared with a
pre-set threshold. This method provides information about the system’s status
by identifying the symptoms. However, the root cause of the symptoms is not
clear. For example, In supermarket refrigeration systems, different faults can lead
to unbalanced cold room temperature. The FDD model can announce that the
room temperature is incorrect but can not identify the root cause of the problem.

• Alarm-analysis-based FDD
Every feature has some limits which are already defined during the control design
of the refrigeration system. In this method, an alarm raises when one or more
features are distinguished out of the pre-defined limits or operation envelope. An
alarm is presented as an event in the data log. Like the previous category, this
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Fig. 11: A comparison between the SVM model and PCA-SVM model for diagnosing eight types
of faults in Refrigeration systems regarding classification accuracy and computation time [36]. Here,
PCA-SVM obtained better results than SVM model and computation time is more efficient in PCA-
SVM than SVM.

method represents the malfunctioning of the system by detecting the symptoms
rather than diagnosing the existing fault in refrigeration systems.

A PCA-SVM classifier is used in [36]. In this article, feature space is reduced from
sixteen dimensions to four. Then, the four-dimensional data is fed into an SVM classifier
to diagnose eight types of faults. Fig. 11 represents the comparison between SVM model
using 16-dimensional data and PCA-SVM model using 4-dimensional data. In [36], the
PCA-SVM model with a Back Propagation Neural network (BPNN) is compared. The
results, introduced in Fig. 12 show that the PCA-SVM model obtains better results for
FDD in vapour-compression refrigeration system than BPNN.
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Fig. 12: According to [36], PCA-SVM outperforms BPNN model regarding diagnosing eight faults
in the refrigeration system. This figure indicates PCA-SVM classification accuracy in the range
[93%,100%], while BPNN obtains the accuracies in the range [82%, 93%].

.
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6 Methods
This chapter discusses the machine learning methodologies used in this study. First,
machine learning background is represented. Then, different methodologies proposed
in Papers A, B, C are described. The equations and figures may be used directly or
indirectly from the papers.

6.1 Machine learning Background
Machine Learning (ML) model is a predictive function that utilizes a set of examples
or training data to predict, make a decision, or classify a new data set. The data is
fitted to the model in the training process by adapting the parameters while minimizing
the cost function. The optimized function is used to decide on unseen data. Today,
data accessibility, availability of complex technologies, and easy-to-use frameworks and
libraries pave the way for using ML in many industries for the development of products
and processes [37]. Machine learning models can be divided into four categories when
talking about the learning process:

• Supervised learning
In this methodology, input data is labelled, and the labels are the model’s true
output. The model maps every input sample to the corresponding output during
the training phase. This methodology replicates human learning and can be cat-
egorized into regression and classification. A supervised learning model has some
pros and cons. For example, supervised learning models are usually simpler and
more accurate. However, they require proper training data, which provides accu-
rate and sufficient information. Moreover, inaccurate labelling leads to incorrect
training [38].

• Unsupervised learning
In unsupervised learning, a model extracts relations, patterns, or insights from
unlabeled input data. Then, use the information for different tasks such as clus-
tering, outliers detection or density estimation.

• Semi-supervised learning
A semi-supervised learning model takes advantage of both supervised and unsu-
pervised models. This model learns in the presence of both labelled and unlabelled
data. Semi-supervised learning algorithms are interesting in applications in which
labelling all data is either impossible or expensive [39]. Thus, the semi-supervised
algorithms use unlabeled data to improve supervised learning tasks.

• Reinforcement learning
In this category, the model learns while interacting in an environment that it re-
ceives maximum rewards accumulation and minimum penalties. Here, the agent,
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who decides which action should be taken, learns from its own experience, not
predefined training data set [40]. Some articles do not recognize reinforcement al-
gorithms as a subset of ML since they do not train like supervised or unsupervised
models. However, reinforcement learning is considered as a part of ML in many
articles due to the ability to learn during the environment interaction [38]. The re-
inforcement learning method is usually used for optimization purposes. However,
it is recently noticed for fault detection purposes such as [41].

This work relies on the data which is taken either from a real refrigeration system or
a high-fidelity simulation model. The generated data is labelled, meaning it is more fea-
sible and accurate to use supervised learning methods. In this study, several supervised
learning models are introduced because, first, we are not sure that a system in the field
does not carry one or more faults from installation or the start of data collection. There-
fore, the system in a situation defined as non-faulty can be faulty in reality. Second,
the supervised and offline models may be more economical as the model is trained once
and can be executed several times in embedded software without retraining. Therefore,
labelled data is used for fault detection, and we ensure accurate data labelling during
the training process.

6.2 Convolutional Neural Network
Convolutional Neural Network (CNN) is a supervised deep learning method which be-
comes more prevalent in image recognition studies and applications. The basic structure
of the CNN model is a common Feed Forward Neural Network (FFNN) structure. CNN
consists of artificial neurons parameterized by weights and biases. CNN model, repre-
sented in Fig. 13, is constructed from a multi-dimensional input layer, several hidden
layers and an output layer. The hidden layers consist of convolutional and fully con-
nected layers, and the output layer is fully connected. This model performs two tasks
to adjust CNN model parameters during a training process. The first task is feature
extraction which is done in convolutional layers. Then, after collecting all critical in-
formation and features of the data, the second task is classification of data using fully
connected layers. Finally, the output layer predicts probabilities which show to what
extent the data belongs to each class. Therefore, the model makes the same number of
estimations as the number of classes in the output layer.

For each class, κ, input data Xκ ∈ Rn×c is defined where n is the number of samples
and c quantifies the number of features. Feature vectors are the logged features from
a system which represent behaviour of the system and are defined as χj ∈ Rn×1, j =
1, . . . , c . CNN is a supervised learning methodology; Thus, the inputs of each class
required the true outputsyκ. {yκ} is defined as an orthonormal set of vectors in which
the κ’th entry is one and others are zero. Therefore, the classification problem is finding
a map N : X → {yκ}, κ = 1, . . . , ν. However, we need several examples which provide
information on the system’s behaviour in different operation conditions. Therefore,
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Fig. 13: A CNN model is designed to do two tasks of feature extraction and classification to predict
the output. The feature extraction task is done by convolutional layers, and fully connected layers are
assigned for the classification task, according to Paper A.

several data logs for each class in different operational conditions are acquired.

Data pre-processing

Collected data from a real system or a simulation model is prepared before feeding
into the ML model. Data pre-processing is one of the essential and practical works
in ML processes which affects the result’s accuracy or computational time. Therefore,
appropriate input data pre-processing is required to investigate the best model with the
most satisfactory result.

CNN input may be multi-dimensional data set, mainly when it handles image recog-
nition. In this work, the input data has two dimensions feature vectors and samples.
Here, data is divided into several mini-batches by a specific number of samples in order
to provide more variations of examples in the same scenarios for the training process.
Fig. 14 visualizes the mini-batch process, which is done as a preprocessing step. Nor-
malization of the data points is another preprocessing step which is done in some of the
application where the variance of feature vectors are too different. The big difference
between data variance causes more effect of one feature than the others. To avoid this,
data normalization is suggested before the training process.

Then, all the input data from all classes are stacked upon each other as illustrated
in Fig. 15. The data is ready after required preprocessing to feed into the model for
training.
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Fig. 14: Visualization of the mini-batch approach and structure of a data log after the min-batch
processing. This approach rearrange our two-dimentional input to three-dimentional.

Feature extraction

As mentioned, the first task of a CNN model is extracting important features and
information from the input data set. In this phase, input matrix Xκ is fed into the S
number of neurons which are characterized by two parameters of weight and activation
threshold (bias) matrices in an activation function as illustrated in Fig.16. The weight
and bias are defined as W k ∈ Rn̄×c̄ and bk ∈ Rn̄×c̄, respectively..

For each κ, Xκ is partitioned into the sub-matrices (xκ)ij for i = 1, . . . , n′, j =
1, . . . , c′ where size of (xκ)ij as the associated weights in that layer. Remark that in
the partitioning of Xκ, every (xκ)ij may have overlapping depending on the design of
Stride. Stride is a hyper-parameter which defines the number of shifts on the elements
of Xκ for partitioning. All hyper-parameters such as weights, biases, strides, etc., can
be tuned to design a classifier optimally. Pooling is another technique which helps
extract the essential features. Pooling is a filter that slides over each layer’s output
to do specific filtering, such as finding the maximum value in each filter or averaging
each filter. Pooling is to make the output elements independent of their location in the
output matrix.

The output of the last convolutional layer consists of the most important information
from the input data. As it represented in Fig. 13, in order to connect the last layer to
a fully connected layer, the output of the last convolutional layer should be vectorized
as Y 0 = col[yk

κ] ∈ Rn′c′Sν×1. Y 0 would be used as an input vector to the classification
phase.

Classification

Classification phase of a CNN consists of a Multi-Layer Perceptron (MLP). Typically,
the last layer of MLP takes advantage of Softmax activation function in CNN when
considering multi-class classification. For each class κ, Softmax activation function
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Fig. 15: Structure of pre-processed inputs and corresponding labels or true outputs. All mini-bached
input data from different classess are stacked upon in a certain dimention and labels are structured in
the same form. This three-dimentional stracture of the input and labels are used in Papers A and B.

converts the Ŷ ∈ Rν so as the κth coordinate of Ŷ is given by:

ŷκ =
exp
(
Y NMLP

κ

)∑ν
j=1 exp

(
Y NMLP

j

) (1)

where Y NMLP
κ is the κth coordinate of Y NMLP and Y NMLP is the output of the last fully

connected layer [9].
We quantify the estimation satisfaction across the training process by a loss function.

The loss function can be different depending on operational applications. Cross entropy
is one of the common loss functions After each iteration or epoch p, all the network
weights W p are adjusted to minimize the loss or error L. This adjustment is done using
Backpropagation (BP). Thus, for each class κ a gradient of the error wrt. W p in epoch
p is presented as:

Lκ(ŷκ, W p) = −y⊤
κ ln(ŷκ) − (1 − yκ)⊤ ln(1 − ŷκ). (2)

where 1 = [1, 1, . . . , 1]⊤ and ln(·) is taken element-wise to yield a ν-dimensional output
[42]. The gradient of the error Lκ(ŷκ, W p) is used to tune the weights until optimizing
the prediction. Stochastic Gradient Decent (SGD) is an optimization approach which
efficiently adjusts the weight wi in layer l in epoch p as follow:

w
(p)
il = w

(p−1)
il + α∇Lκ(ŷκ, W p) (3)

where α is learning rate [43] [44].
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Fig. 16: Illustration of a convolutional layer which is fed by Xκ as the input and gives yk
κ, k = 1, . . . , S

as the output of the layer. ⊙ denotes element-wise multiplication of matrices [9].

The derivative of the cross-entropy loss with respect to the weight wi in n′th neuron
is calculated by the chain rule as:

∂Eκ

∂wn,i
= ∂Eκ

∂ŷκ,n

∂ŷκ,n

∂un

∂un

∂wn,i

assume that in the previous layer, un =
∑

i wn,ixi − bn is the input to the n’th neuron
[42]. The calculated loss in each epoch is propagated backwards so that optimal output
estimation is obtained.

CNN has several advantages compared to other machine learning methodologies.
Some of the common advantages are, first, shared weights. Comparing a fully connected
neural network and CNN, CNN has considerably fewer weights as each filter has fixed
values in each neuron. Thus, CNN is computationally more effective than other fully-
connected models. In addition, in CNN classification, the data is location-independent
when using pooling especially when it is designed deeper. Last but not least, CNN can
efficiently perform anomaly detection due to the feature extraction ability, which does
not feed the inessential information to the classification phase [42].

6.3 Support Vector Machines
Support Vector Machines (SVM) is a shallow learning methodology which was intro-
duced in 1979 by Vapnik for binary classification [45] [46]. Even though SVM is a linear
classification algorithm, today, this method is proposed for many non-linear classifi-
cation applications due to the use of kernel trick. The kernel trick allows us to take
advantage of SVM for non-linear classification applications, which is discussed in this
section.
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First, we discuss two linearly separable classes Xκ, κ = 1, 2 with labels yj = −1
or yj = 1, and then expand our illusion to multi-class classification and non-linear
classification solutions. For each class κ, consider sample j as xj ∈ R1×cforj = 1, . . . , n.
There would be at least a linear hyperplane as

H = {x ∈ Rc | xwT + b = 0}

to separate classes Xκ linearly. In this hyperplane w ∈ R1×c is weight vector and b ∈ R
is bias. In the training process, the hyperplane is relocated to maximize the distance
between H and the nearest samples of each class. The maximum distance is called hard
margin, and the nearest samples of each class to H are called support vectors. In other
words, w and b are the solutions to an optimization problem such that 1/||w||, which is
the hard margin, is maximized. The optimization problem can be converted to:

min
w,b

1
2∥w∥2 (4a)

s.t.
yj(xjwT + b) ≥ 1, j = 1, . . . , n (4b)

Even though the optimization problem can find the best values for w and b to maximize
the hard margin, this solution may not be the best for classifying unseen data [47]. The
hard margin may be the best solution for training, but not for verification purposes.
For instance, deviation of unseen data may lead to misclassification if the hard margin
is not large enough. Thus, we allow the SVM model to gently do some misclassification
during the training to have a more reliable classifier when feeding unseen data [48]. The
margin that some misclassification is allowed is called Soft margin. Fig. 17 illustrates
the difference between hard margin and soft margin, in which the classifier with hard
margin in the bottom has a perfect classification during the training; however, it has
done misclassification during the verification phase. To find a reasonable soft margin,
a slack variable ζ is applied to the optimization problems to control over the size of
misclassification as:

min
w,b,ζ

1
2∥w∥2 + C

n∑
j=1

ζj (5a)

s.t.
yj(xjwT + b) ≥ 1 − ζj (5b)
ζj ≥ 0, j = 1, . . . , n (5c)

where multiplier C is a hyperparameter which determines the size of determined mis-
classification [9] . The size of C can vary depending on the data’s shape. For instance,
assuming two different Input spaces in which the training data of two classes are over-
lapped in some area, and in the second case, The classes are separated, and there are
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Fig. 17: The figure at the top-left presents a classifier which has a soft margin to the support vectors.
The figure at the top-right shows a proper classification even though the verification data deviates. The
figure on the bottom-left shows an optimized and proper classification during the training. However,
the model is overfitted when verification data is used.

just some outliers. The size of C would be bigger in the first case than in the second
case as the classifier must deal with overlapped samples even in unseen data in the first
case. In particular, the size of C can be tuned by software aiming for high classification
accuracy in the verification phase, so there is no need to choose C by trial and error.

Nonlinear classification

We already mentioned SVM as a linear classifier. However, SVM can overcome non-
linearity when linear classification is not possible. This modification can be done via a
so-called Kernel trick. Using a kernel trick, input data is transferred from the original
space to the higher dimensional space where the input data are linearly separable, see
Fig. 18. The higher dimensional space in which the samples are mapped is called feature
space. There are some common kernel functions which are used in the SVM classifier.
In Paper C, Radial Basis Function (RBF) in Gaussian distribution is presented as

Φ(x, x′) = exp
(
−γ ∥ x − x′ ∥2) (6)

where Φ is the kernel function which maps the samples to the higher dimensional feature
space. x and x′ ∈ R1×c are two samples that their similarity in a higher dimensional
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Fig. 18: The figure at left shows original data for 2 classes in 2-dimensional space, The data is
mapped to the 3-dimensional space using a polynomial kernel function. At right, linear separation
between classes is possible after transferring data into feature space.

space is measured by calculating Φ. Hyperparameter γ determines the influence of each
sample on measuring Φ and eventually on selecting the hyperplane. d-order polynomial
kernel function is described as

Φ(x, x′) = (xx′ + t)d (7)

where d ∈ N, d > 0 is the order, and t ∈ R,t > 0 is a regulator parameter for the
influence of higher and lower orders on the model.

6.4 Multi-class classification
SVM classifier is designed for binary classification problems. However, it can be used
for ν-class classification where ν > 2. When feeding a new sample in the multi-class
classifier, SVM estimates the probability that the new sample belongs to each class.
Thus, there are ν estimations as the output. One methodology is to have ν classifiers,
which run in parallel to classify each class from other ν − 1 classes. This method is
called One versus Rest (OVR). Another methodology is to find a classifier for each class
and every other ν − 1 class. Therefore, there would be a total of ν(ν−1)

2 classifiers which
run in parallel to train the SVM model.

6.5 Linear discriminant analysis
In this study, Linear discriminant analysis (LDA) is used both for dimensionality re-
duction and classification. LDA is described in Paper C. LDA transforms data from
its original space into lower dimensional space, using transformation matrix Ω ∈ Rc×c

which is defined as
Ω = S−1

s SB (8)
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V1

Fig. 19: An Example of 2-dimensional data that transformed to 1-dimensional data in V1 using
LDA [9].

Where Ss ∈ Rc×c is a matrix in which each column is a vector of variance within each
class, and SB ∈ Rc×c is a matrix in which each column indicates variance between
classes see Fig. 19.

After calculating the transformation matrix, this matrix is used to generate data
in the new space. However, we reduce data dimensions during the transformation
to eliminate unnecessary complexity and non-linearity of the data. In this regards,
eigenvalues λi, i = 1, · · · , c of matrix Ω are obtained and decreasingly ordered as
λ1 ≥ λ2 ≥ · · · λ′

α ≥ · · · ≥ λc. If λ′
α ≫ λα′+1, the most information of the data

distribution is carried by the corresponding eigenvectors, which are organized in matrix
V as V = [v1 v2 · · · v′

α] ∈ Rc×α. Then, data is transformed into the α′-dimensional
space using matrix product XκV . In the matrix product XκV each row is a transferred
sample rj ∈ R1×α′

, j = 1, . . . , n in class κ.
For the classification task, a neural network model is used to classify data already

explained in Section 6.3. Remark that transformed samples rj with α′ feature vectors
are the inputs to the classifier.
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7 Experiments
This chapter includes four sections. First, different types of faults are introduced and
described, which are emulated in the laboratory setup or simulated in the simulation
model. Then, the data collection approaches which are done in this work are presented.
Some examples of the data sets are visualized. Finally, several experiments are intro-
duced which are not presented in the papers. These experiments were investigated during
the study to improve the results of the papers.

7.1 Fault descriptions
This study considers both binary and multi-fault classifications. First, Papers A and
B investigate evaporator fan fault in a real supermarket refrigeration system. Then,
Paper C introduces some classifiers to diagnose twenty faults in refrigeration systems
including some sensors faults and components faults in refrigeration systems. A sensor
fault can be considered as a sensor drift, sensor offset, sensor freeze, sensor hard-over,
and parametric fault [49]. Hard-over sensor fault describes the failure that the sensor
shows some values outside of its measurable range. All of the faults investigated in
this study are represented in Table 3 and labelled numerically. The labels are used
for illustration of experimental results. Positive and negative offsets are applied to all
available sensors in the refrigeration system model. Regarding components faults, two
faults for each main component of refrigeration systems are considered. Remark that
from each fault one set of data is visualized in Section 7.3. All figures in Section 7.3
are selected from the same system configuration so that readers are able to compare a
specific faulty condition with another fault or with a non-faulty system. Below, every
fault is described as well as the symptoms, causes, and effects of each fault.

1. Tsuc sensor positive offset
The suction temperature (Tsuc) sensor is mounted in the suction line usually at the
outlet of the evaporator. A positive temperature offset for 2°C is applied to Tsuc.
This sensor fault causes a larger superheat, so the system operates inefficiently. An
example of a dataset when the system has Tsuc sensor positive offset is presented
in Section 7.3, Fig. 27 which is indicated as fault 1.

2. Tsup sensor positive offset
Supply temperature (Tsup) is the air temperature around the evaporator fan where
the heat is already transferred to the evaporator coil. A positive offset of 2°C is
added to Tsup measurements before sending the measurements to the controller.
When Tsup is used as a control variable, higher reading of Tsup causes higher
superheat temperature and leads to more compressor work. An example of a data
set when the system has Tsup sensor positive offset is presented in Section 7.3, Fig.
27 which is indicated as fault 2.
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3. Tret sensor positive offset
Return temperature (Tret) is considered the same as cold room temperature in
the simulation model. Tret is the temperature of the air before transferring heat
to the refrigerant through the evaporator coil. A positive offset of Tret causes a
wrong reading of the room temperature and regulates the cold room to a lower
temperature than is preferred. As a result, the failure causes an increase in the
compressor’s power consumption since it needs to work harder. The failure may
also lead to spoilage of the goods due to the wrong reading of the room tempera-
ture. For simulating this fault, a 2 °C offset is added to the Tret measurement. In
Section 7.3, Fig. 27, fault 3 represents an example of a dataset when the system
has Tret sensor positive offset.

4. Tdis sensor positive offset
Discharge temperature (Tdis) is measured in the discharge line right after the
compressor. In order to simulate sensor positive offset for 2 °C, the value is added
to the discharge measurements before sending the measurements to the controller.
This fault reduces the efficiency of refrigeration systems. An example of a dataset
when the system has Tdis sensor positive offset is presented in Section 7.3, Fig. 27
which is indicated as fault 4.

5. Pdis sensor positive offset
Discharge pressure (Pdis) positive offset is considered when the pressure sensor
in the discharge line reads 105 Pa higher pressure than the real pressure in the
discharge line. Therefore, the high-pressure switch may go off, or the compressor
consumes more power than required. An example of a dataset when the system
has Pdis sensor positive offset is visualized in Section 7.3, Fig. 27. This fault is
indicated as fault 5.

6. Psuc sensor positive offset
Suction pressure (Psuc) is measured in the suction line between the evaporator
and compressor. Usually, the sensor is installed right before the compressor. In
this study, a malfunction Psuc sensor with a positive offset is considered where
0.2∗105 Pa higher pressure reading than the real pressure is sent to the controller.
Thus, a higher superheat temperature than requested causes extra work for the
compressor and a high discharge temperature. Therefore, the system operates
with low efficiency. An example of a dataset when the system has Psuc sensor
positive offset is visualized in Section 7.3, Fig. 27 which is indicated as fault 6.

7. Compressor poor performance
In reciprocating compressors, failures such as inlet and/or outlet valve loss or
break, poor lubrication, pulsation of compressed gas, and dirt may lead to com-
pressors failure [50]. These failures affect, i.e. operating speed, efficiency, refrig-
erant flow rate, pressure ratio, or physical damage of the compressor [51]. In this
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work, the compressor’s poor performance is considered when the mass flow rate is
20% less than expected. The compressor’s poor performance can happen due to
the loss of a valve plate in the compressor. This failure increases discharge tem-
perature, consequently increasing compressor power consumption. An example of
a dataset when the compressor has a poor performance is visualized in Section
7.3, Fig. 28. This fault is indicated as fault 7.

8. Loose expansion valve
Expansion valve failure can be considered as refrigerant leakage, reduced mass flow
rate, partial opening of the valve, blocked valve or loose valve. In this work, we
consider a loose expansion valve where the valve opening degree is 20% more than
the commanded value by the controller. This fault results in higher compressor
power consumption. An example of the dataset for a loose expansion valve is
visualized in Section 7.3, Fig. 28. This fault is indicated as fault 8.

9. Evaporator fan poor performance
We considered an evaporator fan poorly performed when the evaporator fan speed
is 20% less than the commanded value by the controller. In this fault, less ventila-
tion is done in the cold room, and the room might have inconsistent temperatures
in different spots. Furthermore, in a period, frost appears around the evapora-
tor, and an imbalance Troom leads to damaged goods in the cold room. In such
a system, Psuc is lower than the normal condition and efficiency drops [42]. An
example of a dataset when an evaporator fan has a poor performance is visualized
in Section 7.3, Fig. 28. This fault is indicated as fault 9.

10. Condenser fan poor performance
low condenser airflow can be due to dirt or contamination. In this failure, heat can
not be adequately ejected from the system to the ambient environment. Therefore,
the system operates with insufficient subcooling. As a consequence, compressor
power consumption increases. This fault can be simulated as the fan speed is 20%
less than commanded speed by the controller which leads to lower airflow than
required. An example of a dataset when the condenser fan has a poor performance
is visualized in Section 7.3, Fig. 28. This fault is indicated as fault 10.

11. Tsuc sensor negative offset
A negative offset of Tsuc sensor is chosen when the sensor shows 2 °C less than the
real temperature of the suction line. Due to this failure, discharge temperature
increases. Therefore, the compressor power consumption increases. An example
of a dataset when Tsuc sensor has a negative offset is visualized in Section 7.3,
Fig. 29, which is indicated as fault 11.

12. Tsup sensor negative offset
In this work, Tsup sensor reads 2 °C less than the real Tsup. Therefore, the con-
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troller requests lower heat transfer than required which causes a decrease in su-
perheat temperature and a decrease in discharge temperature. This failure may
damage the compressor due to liquid slugging, which is a failure when liquid enters
the cylinders of the compressor and mixes with the compressor oil. An example of
a dataset when Tsup sensor has a negative offset is presented in Section 7.3, Fig.
29, which is indicated as fault 12.

13. Tret sensors negative offset
A negative offset of the Tret sensors is chosen by -2 °C offset in Tret measurements.
Therefore, insufficient heat transfer through the evaporator coil causes insufficient
superheat temperature. This failure may lead to damage of the compressor. An
example of a dataset when Tret sensor has a negative offset is visualized in Section
7.3, Fig. 29 which is indicated as fault 13.

14. Tdis sensor negative offset
The discharge line’s temperature reading drops for 2 °C to simulate the negative
offset of the Tdis sensor. As the Tdis reading is lower than the real temperature in
the discharge line, the compressor is forced to work harder in order to make the
required temperature in the discharge line. Therefore, the power consumption of
the compressor increases. An example of a dataset when Tdis sensor has a negative
offset is visualized in Section 7.3, Fig. 29. This fault is indicated as fault 14.

15. Pdis sensor negative offset
Pdis sensor negative offset is simulated by decreasing the pressure measurements
in the discharge line by 105 Pa. Due to this failure, the controller requests less
heat dissipation through the condenser than required. Therefore, the condenser
fan speed decreases and the superheat temperature increases. This fault leads to
inefficient operation of the system because of high superheat temperature. An
example of a dataset when Pdis sensor has a negative offset is visualized in Section
7.3, Fig. 29. This fault is indicated as fault 15.

16. Psuc sensor negative offset
Psuc sensor negative offset is considered when the pressure measurement in the
suction line is 0.2 ∗ 105 Pa less than the real pressure of the refrigerant at the
inlet of the compressor. Therefore, the compressor works less than required, and
Tdis drops. Therefore, the higher pressure of refrigerant than expected may cause
damage to the compressor. An example of a dataset when Psuc sensor has a
negative offset is visualized in Section 7.3, Fig. 29. This fault is indicated as fault
16.

17. Broken compressor
Different causes may result in a broken compressor, such as wet compressor oper-
ation, system operation when Tsh at the evaporator outlet is too high, lack of oil,
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etc. To simulate a broken compressor, we considered a compressor which passes
less than 20% of the required mass flow to the discharge line. This failure can be
due to damaged cylinders or valves in the compressor. An example of a dataset
when the compressor is considered as broken is visualized in Section 7.3, Fig. 30.
This fault is indicated as fault 17.

18. Blocked expansion valve
Different expansion valve failures are mentioned in fault number 8. However, for
this failure, a blocked expansion valve is considered when the valve opens only
20% of the commanded opening degree. This failure can be due to a clogged or
blocked valve by ice. A system with this fault operates with too low superheat.
The system may also face frost at the inlet of the evaporator. An example of a
dataset when the expansion valve is blocked is visualized in Section 7.3, Fig. 30.
This fault is indicated as fault 18.

19. Broken evaporator fan
A broken evaporator fan means that one or more fans have stopped working.
Therefore, heat transfer cannot be adequately done. Psuc and Tsh may be affected
and Tsh increased. Consequently, the system operates with low efficiency, high
Tdis, frost around the evaporator coil, and room temperature drifts from the set
point [42]. In this work, we consider a broken fan when its speed is less than
20% of the commanded value by the controller. An example of a dataset when
the evaporator fan is broken is visualized in Section 7.3, Fig. 30. This fault is
indicated as fault 17.

20. Blocked condenser fan
A condenser fan works poorly or totally stops for different reasons, such as me-
chanical or electrical problems of the condenser fan or when the fan is blocked by
dirt. In this work, we consider a blocked condenser fan whose speed is less than
20% of the commanded value. Too high condensing pressure may cause switching
off due to the high-pressure limit being violated. In addition, due to low coolant,
compressor power consumption increases. An example of a dataset when the con-
denser fan is blocked is presented in Section 7.3, Fig. 30. This fault is indicated
as fault 18.
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Table 3: simulated faults and their labels used in Paper C.

Label Fault
1 Tsuc sensors positive offset
2 Tsup sensors positive offset
3 Tret sensors positive offset
4 Tdis sensors positive offset
5 Pdis sensor positive offset
6 Psuc sensor positive offset
7 Compressor poor performance
8 Losse expansion valve
9 Evaporator fan poor performance
10 Condenser fan poor performance
11 Tsuc sensors negative offset
12 Tsup sensors negative offset
13 Tret sensors negative offset
14 Tdis sensors negative offset
15 Pdis sensor negative offset
16 Psuc sensor negative offset
17 Broken compressor
18 Blocked expansion valve
19 Broken evaporator fan
20 Blocked condenser fan

7.2 Data collection
In this study, data is collected from a real refrigeration system and high-fidelity simula-
tion model of the refrigeration systems in use in Bitzer Electronics. In this section, the
evaporator fan fault, which is emulated in the laboratory setup, is first described. Then,
the simulations of faults in the Simscape model are illustrated.

Real data collection

In the laboratory, a real supermarket condensing unit produced by Bitzer is connected
to a cold room; see Fig. 4. The cold room evaporator has its own controller that controls
the expansion valve opening degree, superheat temperature and evaporator fan speed.
The condensing unit does not have access to the information of the cold room controller.
The laboratory evaporator has two evaporator fans. One of the fans is manually switched
off and is not controlled by the controller to emulate the fault scenario on the system,
as shown in Fig. 20. We emulate this fault in Papers A and B as a scenario when one of
the fans is broken. In order to gather data at a specific temperature and running mode
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evaporator
fan

switch controllerrelay

Fig. 20: Emulation of evaporator fan fault on the laboratory setup for data collection purposes in
Papers A and B. Here a switch is placed such that one of the fans can be forced to stop, and the data
is collected when the system has lower air ventilation around the evaporator.

of the compressor, a heat load is set in the cold room. We can collect data on specified
compressor speeds by adjusting the heat load to certain values. In papers A and B,
data from the laboratory setup is taken in a full-speed operating compressor when the
heat load in the cold room is 17 kW . Moreover, the data is taken in the minimum
speed operating compressor when the heat load in the cold room is 3 kW . In order to
provide sufficient information for the machine learning model’s training, data must be
taken from the system in different operational conditions. In this regard, data covers
system operational conditions when the heat load is in the range [3,17] kW , the setpoint
varies in the range [0,12]°C, and Tamb varies in the range [15-27]°C. An example of data
collected in the laboratory is visualized in Fig. 20 in Section 7.3. This figure illustrates
that early fault detection of evaporator fan prevents noticeable consequences such as
ice accumulation around evaporator, more frequent defrosting of the system and more
power consumption due to higher compressor speed.

Artificial data collection

The Simscape model is already presented in Fig. 6. This part illustrates the simulation
of faulty scenarios in the Simscape model. Data is collected in different system opera-
tional conditions to ensure that the data provide enough information during the training
phase of the machine learning classifier. First, data is collected with the variation of
heat load in the range [3,18] kW , and the setpoint in the range [0,12]°C. This data set
has 12 dimensions, namely Pdis, Psuc, T0, TC , Tdis, Tret, Tsuc, Tsh, Tsup, Pcpr, Vcond,
ρ. Moreover, Paper C indicates the importance of applying a variation of ambient tem-
perature to the training data, which results in better model performance when feeding
unseen data in the verification phase. Therefore, a new set of training data is collected
in which data is excited by variation of Tamb in the range [10,30]°C. In addition, ambi-
ent temperature and setpoint temperature are added to the features of the input data
while recording the data. Therefore, the recorded data set with more excitation has 14
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dimensions. Some examples of logged data can be found in Section 7.3.

• Tsuc sensor offset
Fig. 21 illustrates the evaporator block in the Simscape model. As it appears
in this figure, there is an output called Tsuc, which is the sensor measurement.
In order to apply Tsuc sensor offset, the offset needs to be added to the sensor
measurements, which can be found in Fig. 6. Moreover, real Tsuc and other
fluid characteristics of the refrigerant are sent to the compressor by block out, as
the compressor behaves based on the real refrigerant characteristics which pass
through it. Both positive and negative offsets of Tsuc sensor are gathered when -2
and 2 °C are applied to the block called "Tsuc-real", respectively.

Evaporator block 

Fig. 21: The Simscape model of evaporator used in this study, for data collection.

• Tret sensor offset
In the simulation model, Tret is the same as room temperature and setpoint.
Therefore, any offset in Tret sensor affects the room temperature. For example,
suppose the Tret sensor has a 2 °positive offset. In that case, it means that the
compressor works harder than required to regulate the room temperature for 2 °C
colder than the set point temperature. the Tret measurement is calculated in the
evaporator block shown in Fig. 21. Then as it can be seen in Fig. 6, the 2 °C
positive and -2 °C negative offsets of Tsup sensor are added using the red block
called "Tsup-offset".

• Tsup sensor offset
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Positive and negative offsets of the Tsup sensors are applied to the Simscape model
in the same way as Tsup and Tsuc offset, see Fig. 6.

• Tdis sensor offset
Tdis is measured from the discharge link in Fig. 6 where temperature measurement
is calculated from thermodynamic characteristics of refrigerant as it is shown in
Fig. 22. 1 °C positive and negative offsets are applied to the Tdis measurements
as appears in Fig. 22.

• Pdis sensor offset
The Simscape model uses refrigerant pipe links where it is not possible just to offset
the pressure because it would break the equations. Therefore, the positive and
negative 100000 Pa offsets are applied to the Pdis measurement. Pdis measurement
is obtained from refrigerant characteristics in the discharge link; see Fig. 22.

Discharge measurements block 

Fig. 22: The detail of "discharge-measurement" block in Fig. 6 including Pdis and Tdis measurements.

• Psuc sensor offset
Psuc measurement is calculated based on the refrigerant characteristics in the
suction link, which is indicated by the block called "suction-measurement" in Fig.
6. Positive and negative 20000 Pa offset is applied to the Psuc measurement as
shown in Fig. 23.

• Compressor faults
The compressor in the Simscape model is a volumetric flow device, which accu-
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Suction measurement block 

Fig. 23: The detail of "suction-measurement" block in Fig. 6, in which Psuc offset is applied to the
Psuc measurements.

rately reflects a reciprocating compressor’s flow characteristics. This study applies
two faults to the compressor: poor performance and a broken compressor. Fig.
6 introduces the compressor fault simulation on the Simscape model where Vcpr

is the controller command to the compressor. For applying the fault scenarios
to the compressor, the block called compressor-fault affects the controller com-
mand for Vcpr. Thus, the compressor speed is 20% or 80% less than the required
Vcpr commanded by the controller. These faults are called poor performance of
compressors and broken compressors, respectively.

• Expansion valve faults
The opening degree of the expansion valve is controlled based on regulating Tsh

to maintain 10 °K. In this study, the expansion valve faults are defined as a loose
expansion valve when the valve is open 20% more than commanded opening degree
by the controller and blocked expansion valve when the valve is open 20% less than
commanded value by the controller. To simulate these faults, as shown in Fig. 6,
the controller command is affected before sending it to the expansion valve.

• Evaporator fan faults
The controller controls the evaporator fan speed to regulate the amount of heat
transfer in the evaporation phase. To simulate evaporator fan fault, the block
called "vexp-scale-fault" affects the controller command for Vexp before applying
the command in the fan’s block diagram, see Fig. 6. In Paper C, two faults
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[100:1 bar]

Fig. 24: An example of the data log, taken from the laboratory setup. In this example fault occurs at
sample 5000. The controller could compensate the error to some extent after a while. However, existing
error in the system for a longer period causes remarkable changes in all measurements. Papers A and
B attempt to detect the fault before these big changes affect the system. Here, kmf is a measured
proportional mass flow rate at the inlet of the compressor which is independent to the compressor
physical characteristics such as the inlet area.

are applied to the evaporator fan. Poor performance of the evaporator fan and a
broken evaporator fan are defined where the evaporator fan speed is 20% and 80%
less than the controller command, respectively.

• Condenser fan faults
Condenser fan fault is one of the common faults in the field. The heat transfer
between the condenser coil and the ambient environment can be lowered for sev-
eral reasons, such as existing dirt around the condenser, partially or completely
blocking the condenser fan, broken condenser fan, etc. In this study, we simulate
two condenser fan faults. Poor performance of condenser fan is simulated where
the fan operates with 80% of the controller command for Vcond, and a broken
condenser fan is simulated where the fan operates with only 20% of the controller
command for Vcond. The faults are applied by the block called "cond-fan-fault" in
Fig. 6. Then, the affected command, which is less than the required fan speed, is
sent to the condenser fan.

7.3 Data visualization
This section brings some examples of data sets collected during this study. First, an
example of data collected for Papers A and B is introduced. Then, One example for
each class, which is simulated and used in Paper C, is visualized.
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Fig. 25: The effect of evaporator fan fault on the evaporator of the laboratory setup at sample 17700
in Fig. 24. Papers A and B aim to detect the evaporator fan fault in the system before ice accumulates
around the evaporator coil or cold room temperature becomes uneven. In this experiment defrosting
mode of the system was off.

In papers A and B, the evaporator fan fault was emulated on the laboratory setup.
In order to give more information to the training algorithm, six scenarios with variations
of heat load and setpoint are made. Therefore, six data sets are used for the non-faulty
condition and six data sets for the evaporator fan fault condition. Fig. 24 is one of the
data sets taken from the laboratory setup, in which the system runs functionally up to
sample 5000. Afterwards, one of the fans is switched off, and the rest of the samples
represent data when the evaporator fan is broken/blocked.

In the setup which is used in this study, the fault does not affect the system operation,
so the fault can be detected immediately. The effect of the fault appears in the data
around sample 12000 in Fig. 24 even though the fault happens at sample 5000. The
effect of the fault can be visible to the owner after the operation of the faulty system
for some hours or even a day when ice is accumulated around the evaporator, see Fig.
25. In the case of defrosting, the owner would experience higher than normal defrosting
frequency.

In Paper C, 360 data logs are used where for each fault 18 scenarios are defined.
These scenarios are defined such that the training data for each class covers variations
of ambient temperature, variations of heat load in the cold room, and variations of
setpoint. Heat load variations are selected such that data from different compressor
speeds are achieved. In this part, one data log for each fault is introduced to visualise
how the system reacts differently or closely for different faults. All the graphs in this
part represent the refrigeration system Simscape model response in the same operating
condition of 30 °C for Tamb, 7 °C for the setpoint and 8 kW for the heat load. For each
data log, first, the system operates functionally up to sample 6000, see Fig. 26. Then,
each fault is applied to the simulation model. Therefore, Non-faulty data is collected to
sample 6000, and faulty data is collected from samples 6001 to 12000. Fig. 27 represents
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Non-faulty condition

Fig. 26: An example of data log for non-faulty condition where Tamb is 30 °C, the setpoint is 7 °C,
and the heat load is 8 kW.

positive offset of the sensor, which are indicated as faults 1 to 6 in Table 3. Fig. 28
shows an example of data for faults 6 to 10 in Table 3. Fig. 29 represents data for
negative offset sensors, which are indicated as faults 11 to 16 in Table 3, and Fig. 30
illustrates faults 17 to 20 in Table 3.
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Fault 1
Positive offset of suction temperature sensor

Fault 2
Positive offset of supply temperature sensor

Fault 1
Positive offset of suction temperature sensor

Fault 2
Positive offset of supply temperature sensor

Fault 3
Positive offset of return temperature sensor

Fault 4
Positive offset of discharge temperature sensor

Fault 5
Positive offset of discharge pressure sensor

Fault 6
Positive offset of suction pressure sensor

Fig. 27: Some examples of data logs for Positive offset of the sensors where Tamb is 30 °C, the setpoint
is 7 °C, and the heat load is 8 kW.
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Fault 7
Poor performance of compressor

Fault 8
Loose expansion valve

Fault 9
Poor performance of evaporator fan 

Fault 10
Poor performance of condenser fan 

Fig. 28: Some examples of data logs for the components faults such as compressor poor performance,
loose expansion valve, evaporator fan poor performance, and condenser fan poor performance.´For all
these examples, TT amb is 30 °C, the setpoint is 7 °C, and the heat load is 8 kW.
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Fault 11
Negative offset of suction temperature sensor

Fault 12
Negative offset of supply temperature sensor

Fault 13
Negative offset of return temperature sensor

Fault 14
Negative offset of discharge temperature sensor

Fault 15
Negative offset of discharge pressure sensor

Fault 16
Negative offset of suction pressure sensor

Fig. 29: Some examples of data logs for negative offsets of the sensors where Tamb is 30 °C, the
setpoint is 7 °C, and the heat load is 8 kW.
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Fault 17
Broken compressor

Fault 18
Blocked expansion valve

Fault 19
Broken evaporator fan

Fault 20
Blocked condenser fan

Fig. 30: Some examples of data logs for the components faults such as broken compressor , blocked
expansion valve, broken evaporator fan, and blocked condenser fan.´For all these examples, Tamb is 30
°C, the setpoint is 7 °C, and the heat load is 8 kW.
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7.4 Experiments
During this study, several experiments are done which are not presented in the papers.
These experiments are described here. These experiments may lead to the paper’s results
or illustrate the final results in detail.

Experiment 1

In Paper A, CNN is used for fault detection and performs binary classification between
Non-faulty conditions and evaporator fan malfunctioning. Different hyperparameters
are tested to obtain a model with satisfactory classification accuracy and a false positive
rate. Table 4 illustrates an experiment in which the CNN algorithms with different
activation functions mentioned in Table 4 are evaluated. The input data used in this
experiment is the real refrigeration system data used in Paper A. Note that in this
experiment, the same activation function is used for all the layers except the last layer.
The last layer uses a Sigmoid activation function in all tests as it can deal with binary
classification in the output layer. The results in Table 4 indicate that ReLU, ELU,
and Tanh activation functions perform very close to each other in which the accuracy
is high, false positive rates, and losses are low. However, the Sigmoid and especially
Identity activation functions do not perform as well as ReLU, ELU, and Tanh activation
functions.

Table 4: An investigation on using different activation functions in the CNN algorithm used in Paper
A. This table shows a better result obtained by using ReLU activation function considering the classi-
fication accuracy, value of loss and false positive rate.

Activation function accuracy loss false positive
ReLU 98% 0.065 1%
ELU 97% 0.07 1.7%
Tanh 97% 0.065 1.4%
Sigmoid 96% 0.1 2.8%
Identity 93% 0.11 5.5%

Experiment 2

In paper C, a CNN classifier is used to classify 21 classes, including 20 types of faults
and non-faulty conditions. The input data to this classifier is 12-dimensional simulated
data. The CNN algorithm used in Paper C is specified in Table 5. In this experiment,
Table 6 illustrates some performance tests using different activation functions for the
hidden layers of the CNN. Here, the output layer of each model takes advantage of
the Softmax activation function, described in 1 to deal with multi-class classification
tasks. The results in Table 6 indicate a narrow difference among non-linear activation
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Table 5: Design of the CNN algorithm, used in Paper C. Here, Sf stands for the size of the filter,Nf
for the number of filters, f for the activation function and MP for the size of maxpooling.

layer Sf Nf f MP
convolution (2,10) 16 ReLU (1,3)
convolution (2,3) 32 ReLU -
convolution (1,3) 64 ReLU -
Flatten - - - -
F-C 300 - ReLU -
F-C 21 - softmax -

Table 6: Performance comparison of the CNN algorithm in Paper C when using different activation
functions. Here. ReLU activation functions seems the best choice looking at the classification accuracy.
However, using Sigmoid activation function, the CNN model can classify the non-faulty condition better
than the other models.

Activation function accuracy loss false positive
ReLU 94% 0.01 58%
ELU 93% 0.01 51%
Tanh 90% 0.03 49%
Sigmoid 93% 0.01 47%
Identity 91% 0.03 100%

functions. In this exercise, ReLU has the best classification accuracy and the Identity
activation function which is a linear function, has the lowest accuracy, and the false
positive rate shows that the classifier cannot detect non-faulty data.

Experiment 3

In Paper B, data from a condensing unit of a real supermarket refrigeration system
is collected in two conditions. First, data is acquired in a functional condition called
non-faulty data; then, data is taken from the same system with a broken evaporator
fan. SVM classifier is proposed to detect the faulty condition from the non-faulty
condition. In this example, the same data as paper B is selected to illustrate the effect
of hyperparameters in the SVM classifier, such as selection parameters C, γ, and d where
the model uses the Polynomial kernel function. In this regard, Principle Component
Analysis (PCA) is used for visualization, where we reduce data dimensions from 14 to 2.
PCA is described in Paper B. In Fig. 31, the PCA-SVM classifier is presented using a
polynomial kernel function with a different degree. As it appears in this figure, a trade-
off between hyperparameter C and d is required to find the best fit for the classifier
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so that the model is not overfitted to the training data. Increasing C and increasing
d at the same time may not necessarily change the performance of the classifier; for
instance, the algorithm used C = 0.01 and d = 3 classifies data with almost the same
behaviour as the one with C = 1 and d = 7. The classification accuracy can be found in
Table 7, showing that increasing the polynomial degree does not help the classification
accuracy in this case. It seems that the non-faulty condition data has more variance
than the faulty condition. Therefore, hyperparameter C should be selected so that it
gives enough space for variation of non-faulty samples and, at the same time, takes care
of the correct classification of the faulty samples. Thus, selection of C= 1 or C =10
where d =3 are the best choice in this experiment.

C = 1, d = 3

P
C

 2

PC 1

C = 1, d = 5C = 1, d = 7

C = 10, d = 3C = 10, d = 5C = 10, d = 7

C = 0.01, d = 7 C = 0.01, d = 5 C = 0.01, d = 3

Support vectors

Contour line

Classifier

Fig. 31: PCA-SVM results using polynomial kernel function where the polynomial offset is 1, with
different polynomial order from left to right and different parameter C from top to bottom. Changing
the parameter C and polynomial order would affect the selection of support vectors and the shape of the
classifier and contour lines. In this example, decreasing parameter C leads to a lot of misclassification
in the non-faulty set. In addition, increasing the polynomial order does not necessarily improve the
classification.

Experiment 4

In Fig. 32, an RBF kernel function with different hyperparameters, C and γ is tested
for the PCA-SVM algorithm in paper B. From this figure, a trade-off between γ and C
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Table 7: Comparison of the PCA-SVM model where polynomial kernel function is tested with different
C and d parameters. Here, the best result obtined using d=3, and the higher polynomial degrees end
up to the less accurate classification results.

polynomial
hyperparameters accuracy(%)
C: 10 , d: 7 92.3
C: 10 , d: 5 92.6
C: 10 , d: 3 95.6
C: 1 , d: 7 91.8
C: 1 , d: 5 92.6
C: 1 , d: 3 97.1
C: 0.01 , d: 7 80.3
C: 0.01 , d: 5 81.8
C: 0.01, d: 3 90.8

is required so that first, the classifier does not unnecessarily tide up the non-faulty data
set which has more variance by careful selection of γ, and second, The classifier deals
with the outliers properly by careful selection of C. In this case, γ = 1 and C = 1000
or γ = 1 and C = 10 seem to be the best choices. Using the classifier with γ = 1 and
C = 10000 is not suggested, though its classification accuracy is high in Table 8; because
the classifier restricts the faulty data variation in unnecessary spots. Table 8 presents
the classification accuracy when the hyper-parameters such as the kernel function, pa-
rameters C, and γ are different in the algorithm. In addition, several tests are done
using an identity kernel function. In Fig. 32, linear classification using C = 10, γ = 0.01
seems to be feasible for 2-dimensional data. However, the results of the classification
using RBF are better than the linear classifier in Table 8. Comparing Tables 7 and 8,
classification accuracy is higher when using the RBF kernel function. Remark that too
big and too small values for C and γ are unreliable as they lead to overfitting or under-
fitting of the model [44]. However, they are used in this example to visualize the effect
of these parameters as more tangible. The data used in this experiment is collected
from a real system in the laboratory and PCA is used for dimensionality reduction to
visualize the experiment in 2-dimensional space.

Experiment 5

The PCA-SVM classifier is analyzed in Paper B, where the model is verified using
various verification tests, e.g. data resolution, noisy data, perturbed data, and data
with disturbances as follows:

• Sample rate
This experiment acquired data from a real refrigeration system in the Bitzer elec-
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C= 10000 ,     =100 C= 10000 ,     =1 C= 10000 ,     =0.01

C= 1000 ,     =100

C= 10 ,      =100

C= 1000 ,     =1

C= 10 ,     =1

C= 1000 ,     =0.01

C= 10 ,     =0.01

P
C

 2

PC 1

Support vectors

Contour line

Classifier

Fig. 32: PCA-SVM responses are depicted in 9 figures in which hyperparameter C is decreased from
top to bottom and parameter γ is increased from right to left. Changes in parameters C and γ affect
the shape of the classifier and contour line as well as a selection of support vectors. For example,
the classifier selects most of the samples as support vectors when choosing the highest value for C=
10000 and γ=100. This model is not appropriate due to overfitting the model. The selection of these
hyperparameters is tested to find a trade-off between them so that we have a model which has high
accuracy when feeding unseen data.

tronics laboratory. This data has a 1 Hz sample rate initially. However, data
logs from different systems in the field have various sample rates. Therefore, it
is essential to investigate the robustness of the classifier when a trained classifier
is used to deal with data from systems with different sample rates. Thus, data
samples are selected as 1 sample per 1s (1 Hz),1 sample per 10 s (0.1 Hz), and
1 sample per 60s (0.01 Hz). Fig. 33 introduces the results of several experiments
in which data with different sample rates and lengths are used for training. The
results indicate these sample rates do not affect the classification accuracy as the
dynamic of the refrigerant through refrigeration systems is lower than those tested
sample rates. Training time will be longer when more samples are used. However,
the test with the data with a length of 900 samples achieved better accuracy com-
pared to those tests with fewer samples, as indicated in Fig. 33. Therefore, we
can consider it the best length of data for training this classifier.
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Table 8: Accuracy comparison for PCA-SVM algorithm using different hyperparameters. Here, dif-
ferent hyperparameters are investigated using either RBF or linear kernel function. In general RBF
works better than linear kernal function. A trade off between C and γ is required to achieve the best
result.

RBF Linear
hyperparameters accuracy(%) hyperparameter accuracy(%)
C:10000 , γ: 100 96.5 C: 10000 95.1
C:10000 , γ: 1 98.3 C: 1000 95.3
C:10000 , γ: 0.01 96.6 C: 100 95.6
C:1000 , γ: 100 97.6 C: 10 95.8
C:1000 , γ: 1 98.3 C: 1 95.5
C:1000 , γ: 0.01 96 C: 0.1 0.933
C:10 , γ: 100 96.3 C: 0.01 0.936
C:10 , γ: 1 97.5
C:10 , γ: 0.01 94

• Noisy data
Feature vectors which are selected in this experiment are suction pressure (Psuc),
compressor speed (Vcpr), superheat temperature (Tsh), and proportional compres-
sor mass flow rate (Kṁ). For emulating noise to the data, random noise with
normal distribution N(0, 2) is added to Tsh and deducted from evaporation tem-
perature (T0). This range is selected so that the noise affects Tsh in range [−4, 4]°C.
Tsh is calculated as

Tsh = Tsuc − T0 (9)

Afterwards, Psuc is calculated by the thermodynamic behaviour of noisy T0 and
Kṁ is affected by noisy Tsuc. Assume that compressor mass flow rate (ṁ) is
calculated as

ṁ = ρVcprA (10)

where ρ and A are refrigerant density at the inlet of the compressor, and the cross-
sectional area of the compressor inlet, respectively. However, in this experiment,
Kṁ is used instead of ṁ in order to ensure that the data is independent of the
components’ type and physical characteristics. Therefore, Kṁ is calculated as

Kṁ = ρVcpr (11)

In this regards noisy Tsuc and Psuc affect ρ as

ρ = MmPsuc

RT0
(12)
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[S
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Fig. 33: Data with different sample rates and different lengths are fed into the SVM classifier. The
results of the classification appear in the legend showing that input data with 900 samples achieved
the most classification accuracy while training time is constant when changing the sample rate from
0.01 to 1 Hz. In addition, when selecting data with 900 samples, training time is six times less than
selecting data with 1800 samples.

where Mm and R are molar mass and ideal constant of gas refrigerant, respectively.
Fig. 34 represents an example of added noise to the data. The SVM classification
at right shows that noisy data is classified with high accuracy.
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Fig. 34: In Paper B, noise is added to Tsh and reduced from T0. Noisy data is visualised. Noise is not
added to Vcpr since the dynamic of the compressor speed is lower than getting effect from the noise.
The confusion matrix at right shows 99% and 98% accuracy for detecting non-faulty conditions (label
-1) and defective evaporator fan conditions (label 1), respectively.

• Perturbed data
Refrigeration systems run in different operating conditions and/or with different
system configurations. Therefore, data may vary from system to system. In this
experiment, temperature perturbation is applied to the measurements to emulate
various data, covering more system variation and/or operational conditions. In
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Fig. 35: In this example, Tsh is increased by 12 °C and T0 is decreased by the same value. This
offset value is not added to Vcpr as different refrigeration systems can operate with different compressor
speeds. The confusion matrix at right indicates 100% classification accuracy when the correlation of
the data points is changed by some perturbation. This experiment is used in Paper B.

paper B, Tsh is negatively offset to 5 degree C and positively offset up to 12 °C.
Those values approximately represent minimum and maximum acceptable Tsh for
different operational conditions. Kṁ and Psuc, and Vcpr are affected accordingly.
Fig. 35 represents an example in which Tsh is increased by 12 °C. The SVM can
classify perturbed data with 100% accuracy even though Vcpr remains unchanged,
and the correlation between data is different from training data.

• Disturbance on operation
When the temperature of the cold room is the same as the setpoint, the compres-
sor stops working until the changes in the cold room temperature exceed the valid
value. Then the compressor starts working again to keep the cold room tempera-
ture at the setpoint temperature constantly. The original data which is collected
in the laboratory contains only the running compressor condition. Therefore, a
periodic disturbance is added to the data so that we emulate both stops and run-
ning operational modes of the compressor, see fig. 36. A disturbance ∆ with a
period of 300 s is added to Psuc. TshΘ , PsucΘ ,VcprΘ , and KṁΘ , which are feature
vectors influenced by the disturbance as follows:

∆ = 0.5(sin
(

2πt

300

)
+ 1)

PsucΘ = Psuc + ∆Psuc

TsucΘ = Tsuc + ∆Tsuc

TshΘ = TsucΘ − T0

(13)
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Fig. 36: In this example, a disturbance is applied to all four feature vectors as presented in Experiment
7.4. SVM result is represented at right where non-faulty condition (label -1) and faulty condition (label
1) are detected with 58% and 60% accuracy, respectively. This experiment is used in Paper B.

VcprΘ =
{

∆Vcpr Vcpr ∆ > 0.3
0 otherwise

(14)

KṁΘ = ρΘ VcprΘ (15)

In Fig. 36, the SVM classification result at the right is not satisfactory, which
means that the On/Off mode of the compressor has made some data overlap when
the compressor is in off mode, which decreased the classification accuracy. How-
ever, Table B.3 indicates that PCA-SVM can improve the classification accuracy
even though the data consists of both stopping and running compressor mode.

Experiment 6

Paper C provides data from 21 classes, including 20 classes of different faults in refrig-
eration systems and one non-faulty condition. SVM classifier is used for fault detection
and diagnosis. In Table 9, OVO and OVR methodologies are compared while the hy-
perparameter C is selected as C = 10 in both tests. Fig. 37 represents the SVM
classification responses for 11-dimensional verification data using both OVO and OVR
functions. In this figure, True labels are the allocated labels to the classes, and Predicted
labels are the estimated output by the classifier. Thus, the values in the diagonal are
correct estimations by the classifier in the range [0,1]. Accordingly, every non-zero value
out of the diagonal is the wrong estimation of the classifier. According to Fig. 37 and
Table 9, OVO achieved more satisfactory results than OVR even though the estimation
time in OVO is higher than OVR.
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Fig. 37: The SVM response where hyperparameters are: C= 10, γ = 0.01, kernel = RBF , and
OVO decision function, in the right, and SVM response where hyperparameters are: C= 10, and OVR
decision function, in the left. OVO represents a more accurate classification for most of the classes
using unseen data.

Table 9: Comparison of OVO and OVR for the SVM classifiers in Fig. 37 shows that OVO are the
better approach in our case regarding classification accuracy though the estimation time is more than
3 times of the estimation time using OVR approach.

method accuracy training time estimation time
OVO 85% 6.1 s 0.7 s
OVR 71% 7.1 s 0.2 s

Experiment 7

14-dimensional data is recorded, which are named in Subsection 7.2. Each of the 14
feature vectors is tested to see if it helps higher classification accuracy or adversely affects
the classification estimation. To look at the experiment in detail, SVM classification
using the original 14-dimensional data is represented in Fig. 39 that achieves 71%
accuracy. Among all the feature vectors, three feature vectors, Tamb, Pcpr, ρ, are found
more interesting as they either have no effect or an adverse effect on classification result.
Fig. 38 illustrates the effect of each of those three feature vectors on the classification
results. Dropping Pcpr, has almost no effect on classification result as we achieved almost
the same classification accuracy as using 14-dimensional data. Dropping ρ slightly
improves the classification accuracy to 76%. However, dropping Tamb improves the
classification result comparably to 86%. Fig. 39 illustrates the classification result using
11-dimensional data where all three feature vectors mentioned above are removed. This
classifier achieved 87% accuracy, which is improved a lot compared to the 14-dimensional
classifier. The false positive rate is also improved compared to the other tests. Note
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Fig. 38: The three confusion matrices illustrate the classification of 21 classes using different input
data. The input data is 13-dimensional in each test, where the dropped feature vector is noted at the
top of the confusion matrices.

that SVM classifiers in this experiment have the same hyperparameters: C = 1000,
γ = 0.01, kernel = RBF , and OVO decision function.

Experiment 8

This Experiment illustrates the response of the training phase for SVM, LDA, and
LDA-SVM algorithms in Table 10. The input data used for this experiment is 11-
dimensional data specified in Experiment 7 and each algorithm is specified in Table 17
in Subsection 8.2. These trained models are used in Paper C, Appendix 1.4 to classify
unseen verification data in a different operational condition.

Table 10: Responses of the classifiers for training and test phase showing the better results obtained
by SVM and LDA-SVM. High false positive rates mean that the classifiers are not well trained to
identifying non-faulty condition among the other faulty conditions.

algorithm accuracy false positive rate
SVM 91% 60%
LDA 70% 69%
LDA-SVM 91% 87%

Experiment 9

An LDA algorithm is used in Paper C for dimensionality reduction and classification.
In order to reduce the dimensions, eigenvalues of matrix Ω are required to evaluate how
many dimensions are necessary. Fig. 40 presents the ratio of each eigenvalue against the
sum of eigenvalues calculated from matrix Ω in descending order. This figure indicates
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Fig. 39: The confusion matrix at left proposes 11-dimensional data to SVM, in which Tamb, Pcpr, ρ
are removed. The confusion matrix at right shows the classification response using original data with
14 feature vectors. Diagonal values represent the correct classification responses.

Table 11: Comparison of LDA classifiers when transforming data into different dimensional space.
This comparison shows a better classification accuracy when using 6 and 8 LDs for classification.
However, looking to the training time and estimation time using 6 LDs is more suitable than 8 LDs.

dimension accuracy training time estimation time
4 61% 0.01s 0.3 s
6 81% 0.02s 0.3 s
8 81% 0.04s 0.4 s

that the first 6 eigenvectors in descending order represent the most data characteristics.
Table 11 represents the results of the LDA when data is transformed from 11 dimen-
sions into different dimensions and then classified by the LDA. The results indicate
that the 6-dimensional data achieves the best result with 81% classification accuracy
and LDA, in general, performs poorly regarding detecting non-faulty class. Higher di-
mensional LDA represents the same classification accuracy as 6-dimensional LDA, and
lower dimensional classifiers perform poorly. Table 12 represents the results of different
LDA-SVM classifiers, which are the same in hyperparameters and different in input
dimensions. 4-dimensional LDA-SVM has the same total accuracy as 6-dimensional
LDA-SVM. However, they have a big difference in false positive rates. Therefore, we
consider 6-dimensional LDA-SVM more accurate than 4-dimensional as the classifica-
tion of non-faulty class matters a lot among all classes. 8-dimensional LDA-SVM has
higher total accuracy than 6-dimensional; However, the false positive rate is higher com-
pared to the 6-dimensional LDA-SVM classifier. Therefore, we suggest 6-dimensional
LDA-SVM as the one that performs the best among the other LDA-SVM models.
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Fig. 40: Variation of discriminant components (LDs) in descending order indicates that the first six
eigenvectors carry the most information of data.

Table 12: Comparison of LDA-SVM classifiers when transforming data from 11 into 4, 6, and 8
dimensions before classifying data by SVM. This comparison reveals that reducing input dimensions
to 6 before classifying input data by SVM is the best choice concerning false positive rate. However,
regardless of the false positive rate consideration, LDA-SVM with 8 LDs are the best choice.

LDA dimension accuracy training time estimation time false positive rate
4 86% 0.7s 1.5 s 100%
6 86% 0.7s 1.5 s 0%
8 90% 0.8s 1.5 s 13%
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8 Results
This chapter consists of two binary and multi-class classification parts. Each part repre-
sents the results of deep learning classifiers and shallow learning classifiers. This chapter
summarises the results of the papers done during the PhD program. An important cor-
rection in Paper C is investigated and notified to the publisher. The corrected results
are presented here and the corrected sections of Paper C can be found in Appendix 1.

8.1 Binary classification
Papers A and B investigate fault detection in supermarket refrigeration systems. In
addition, these papers used the same data to evaluate shallow learning and deep learning
algorithms.

CNN model sensitivity evaluation

CNN is selected and evaluated as a deep learning model in Paper A. The model used in
this paper is presented in Table 5. Paper A argues the model sensitivity against various
sample rates, number of samples, noise and perturbation in validation data.

Non-faulty data, sample rate 1 Hz

Non-faulty data, sample rate 0.1 Hz

Non-faulty data, sample rate 0.01 Hz

Non-faulty data, sample rate 0.001 Hz Faulty data, sample rate 0.001 Hz

Faulty data, sample rate 0.01 Hz

Faulty data, sample rate 0.1 Hz

Faulty data, sample rate 1 Hz
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Fig. 41: Visualisation of data down-sampling in non-faulty and faulty conditions from 1 Hz to 0.001
Hz in Paper A. These plots show that data information and characteristics are preserved by down-
sampling of the data to 0.01 Hz.
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• Sensitivity against sample rate and data log size
The effect of sample rate and the number of samples during the training process on
the classifier’s performance are studied. The original data taken in the laboratory
is recorded with a 1 Hz sample rate. Then, data resolution is reduced for this
experiment. Fig. 41 visualizes an example of non-faulty and faulty data where
down-sampling is done from 1 Hz to 0.001 Hz. In this experiment, decreasing
sample rates from 1 Hz to 0.01 Hz does not affect the data characteristics. How-
ever, down-sampling data to 0.001 Hz cannot preserve the important information
of the data as the data characteristics are changed. These data with different sam-
ple rates are fed into the CNN algorithm. The classification accuracy and loss for
seven experiments are introduced in Fig. 42, where the input size and resolutions
are different for each experiment.
Due to the limited number of samples in each data log, the number of samples
decreased when we lowered the sample rate. Therefore, we investigate the effect of
the number of samples and sample rate on the training process. Fig. 42 shows that
the original dataset, which is indicated by blue colour, obtains the best response,
where the model trained to classify the data with high accuracy after about 25
epochs, and the loss is low compared to the other experiments. Comparing orange
and red experiments (the experiments that input data have the same sample rate
but different numbers of samples), the orange experiment with a higher number
of samples performs better. Even though the orange and red experiments finally
present almost the same accuracy, the algorithm requires more iteration to be
trained well, and the loss value is higher in red than in the orange experiment. This
can be due to the lack of information when the number of samples is insufficient.
Another observation in Fig. 42 is the comparison of the experiments with the
same number of samples but different sample rates. Comparing green and orange
experiments (the experiments that input data have the same number of samples
but different sample rates), both tests result in the same accuracy and loss. How-
ever, the green experiment, in which the data has a lower sample rate, could be
trained faster than the orange one. Fig. 43 explains the reason why the CNN
classifier is trained faster when data has a lower sample rate.
Fig. 43 shows one dataset with two different sample rates. The figure at the bot-
tom has a lower sample rate, and more oscillations can be observed. This explains
the low thermodynamic behaviour of refrigeration systems. In this figure, 200
samples taken every 10 s or 0.1 Hz contain more information than 200 samples
taken every second. Therefore, the training process converges faster when each
dataset contains more information. Other experiments behave the same, e.g. pur-
ple and red. To conclude the observations in these experiments, the number of
samples has more effects than the sample rate to have a faster convergence during
the training process, and a lower sample rate is more effective than a higher sample
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Fig. 42: The results of CNN classifier in Paper A, using validation data in different resolutions and
lengths, which are specified in the legend. The model with a lower number of samples requires more
iterations than the one with more samples for training. However, when two datasets have the same
length, the one with a lower sample rate converges faster.

rate until the information of the thermodynamic behaviour is not disappeared.

• Sensitivity against noise To evaluate the model sensitivity, the CNN model is run
100 times with different random noises within the range N (0, 2). Noise is added to
the validation data, as explained in Experiment 5 in Subsection 7.4. The result is
presented in Fig. 44. This figure indicates higher than 99% classification accuracy
for non-faulty data for all 100 runs. Thus, the model is reliable with less than a
1% false positive. In addition, for 95 runs out of 100, faulty data is classified with
more than 97% accuracy.

• Sensitivity against data perturbation Perturbation of the validation data is done
to evaluate the model’s sensitivity when system operating conditions differ. Data
perturbation is explained in Experiment 5, in Subsection 7.4. The result of 100
runs using different random perturbations in the range [-3,3.5] is shown in Fig.
45. It is investigated that non-faulty data is classified with 99% accuracy for 92
out of 100 runs. For the rest of the runs, the classification accuracy is less than
91%. Therefore, a 1% false positive for the model is reliable 92% of the time when
validation data correlation is different from training data. The model shows a
satisfactory result for detecting faulty data. In all 100 runs, the model classifies
the faulty data with 99% accuracy.
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Fig. 43: For the sample rate test in Paper A, a dataset is zoomed to 200 samples. The original data
log at the top has a 1 Hz sample rate. In the same data log, the sample rate is changed to 0.1 Hz, and
then 200 samples are visualized at the bottom.

SVM model specification

Paper B studies the SVM classifier for binary classification. After several parameter
optimisations, the best model is specified with RBF kernel function where parameters
C and γ are determined as 100 and 1, respectively. Input dimensionality reduction
is investigated manually and automatically because less computation and less required
information are preferred. In Paper B, three models are made which are different in
input dimensions. First, 14-dimensional data are fed into the model. Second, four
feature vectors most relevant to the fan fault detection problem are selected based on
the expert’s knowledge. Third, PCA is used for dimensionality reduction from 14 to 2
dimensions. All these models with different input dimensions achieved the same result
of 98% accuracy in training and 100% accuracy in validation.

SVM model sensitivity evaluation

Even though all 3 SVM models mentioned above achieved the same results with the same
training and validation data set, we prefer to evaluate less dimensional input classifiers as
it might be computationally more efficient and eventually cheaper for implementation.
Therefore, the sensitivity of a 4-dimensional SVM and a PCA-SVM are investigated
below.

• Training data sensitivity against down-sampling and data length Table. 13 argues
the effects of data resolution and the data size during the training process. In this
test, 4-dimensional data are fed into the SVM model. As it is observed, down-
sampling does not affect the SVM classification until the dynamic characteristics
of the data are preserved. However, data length has a high impact on training.
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Fig. 44: Distribution of accuracy for 100 runs of the CNN classifier in Paper A, where different random
noise is added for each run to the validation data. The accuracy distribution for the non-faulty data
classification is determined by blue, and the accuracy distribution of the evaporator fan fault detection
is presented by orange.

This test illustrates the proper size of the data for SVM classification, which is 900
samples for this model. An insufficient number of samples leads to under-fitting the
model. Too many sample points have a negative impact both on computation time
and accuracy. Looking through Table 13, when the number of samples doubles
from 900 to 1800, the computation time increases at least 60% for the input data
with the same sample rate [48].

• Sensitivity against validation data resolution In this test, all 3 SVM classifiers
are trained with high-resolution data with a sample rate of 1 Hz. Then, the
validation data is down-sampled to 0.1 and 0.01 Hz. However, the same results
are obtained. This result illustrates that SVM classifies the data independent
from the data sample rate until the required dynamic behaviour in the data is
preserved. This test shows that the 0.01 Hz sample rate is still good enough for
classification using SVM.

• SVM sensitivity to the validation data variation In this observation, the sensitivity
of the SVM model is evaluated when validation data is noisy, perturbed, or data
is taken from the system in On/Off mode. In refrigeration systems, the system
operates in on/off mode when low cooling capacity is needed in the cold room; In
other words, when the cold room temperature reaches the set point. Therefore, the
compressor alternate between on and off mode to keep the cold room temperature
at the set point. Table 14 represents the result of several tests on all 3 SVM
classifiers, which are different in the input dimensions. In addition, PCA-SVM
results for validation data variation are introduced in Fig. 46. As it appears in
this figure, PCA can deal with noise and perturbation well. Thus, PCA-SVM
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Fig. 45: Distribution of accuracy for 100 runs of the CNN classifier in Paper A, where the validation
data is randomly perturbed for each run. Here, the orange block shows that the evaporator fan fault
is diagnosed with 99% accuracy for all 100 runs and the blue blocks show the accuracy distribution of
non-faulty class classification.

can classify validation data with noise or perturbation with high accuracy, the
same or even better than 4-dimensional or 14-dimensional SVM. The shape of the
data in On/Off mode is changed after using PCA because the data correlation
is different when the compressor stops operating. Therefore, PCA-SVM can not
correctly classify the data in On/Off mode as in operating mode. However, PCA-
SVM classifies data much better than 14-dimensional and 4-dimensional SVM, see
Table 14.

Result for noisy validation data Result for validation data in On/OFF mode Result for perturbed validation data
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Fig. 46: Visualisation of PCA-SVM classifications using different validation data according to Paper B.
The colours, from yellow to purple, show the contoured space that separates each class. So, the classifier
takes an optimal position between these two colours in the contoured space such that it classifies the
data with the lowest loss.
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Table 13: The result of SVM model classification in paper B, where down-sampling and data shortening
are applied. Here, SVM obtained a better classification result using data with 900 samples. Training
time of using 900 samples; however, reducing the number of samples from 900 to 300 doesn’t affect the
training time compared to decreasing the number of samples from 1800 to 900.

length sample rate [Hz] training time (s) accuracy [%]
1 0.07 94

300 0.1 0.08 94
0.01 0.07 94
1 0.09 99

900 0.1 0.09 99
0.01 0.1 99
1 0.57 93

1800 0.1 0.65 93
0.01 0.63 93

8.2 Multi-class classification
In Paper C, different faults are applied to the high-fidelity simulation model for collect-
ing data in different faulty conditions. The model and types of faults are described in
Subsection 4.3. Paper C proposes different algorithms for classifying 21 classes, includ-
ing a non-faulty class and 20 classes of different faults. LDA and PCA are proposed
for dimensionality reduction. CNN, SVM and LDA models are used for classification
purposes. In Paper C, 12-dimensional and 14-dimensional data are proposed, described
in 7.2.

ML algorithms mentioned in Paper C are tested first Using the 12-dimensional input
data. The training responses can be found in Table 15, showing high classification
accuracy during the training phase. In this table, LDA and SVM obtained the best
results with better than 99.6% classification accuracy and 0% false positive. On the other
side, PCA-SVM gives an unacceptable result as the classification accuracy is 55.4%. The
CNN performs poorly in detecting the non-faulty class with a 32% false positive rate
in the training phase. Table 15 compares computation time for LDA, SVM, LDA-SVM
and CNN. Even though LDA processes 5-dimensional input data, SVM is trained faster
than LDA. The verification of these classifiers is studied using data in another operating
condition. Therefore, in Paper C, verification data is collected for all classes where Tset

is set to 4 °C, heat load to 13 kW , and ambient temperature to 17 °C. The range of
operating conditions for training data is described in Section 7.2. However, from Table
16, the models can not classify data from unseen operation conditions properly as the
classification accuracies and false positive rats dropped remarkably compared to the
training responses. Thus, we need more investigation to optimise the performance of
the classifiers.
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Table 14: The sensitivity comparison of 3 different SVM classifiers proposed in Paper B to the
validation data variations. Here, PCA-SVM outperforms the other models, in all three noise, on/off
and perturbation tests, for classification of both non-faulty and faulty data.

algorithm non-faulty[%] faulty[%] operation time[s]

no
isy

14D SVM
4D SVM

PCA-SVM

98.5 -99.6
98 -100
98 -100

98 -99.4
98 -99.4
98 -99.6

0.31
0.24
0.25

on
/o

ff 14D SVM
4D SVM

PCA-SVM

50-60
55-60
85-86

53-60.5
54-61

95.5-96.4

0.33
0.25
0.25

pe
rt

ur
be

d 14D SVM
4D SVM

PCA-SVM

89-100
99.2-100

100

97-100
99-100

100

0.32
0.24
0.23

Table 15: Comparison of the classifiers in training phase in Paper C using 12-dimensional data.
This Table indicates the better performance of LDA and SVM regarding non-faulty data classification
during the training phase. CNN performs poorly to classify non-faulty data and PCA-SVM result of
classification is not satisfactory. LDA-SVM obtains high classification accuracy for faulty classes but
performs poorly for non-faulty class classification.

algorithm dimensions accuracy false positive training time
SVM 12 99.6% 0% 1.1 s
LDA 12 to 5 99.8% 0% 3.2 s
CNN 12 94% 68% 112.5 s
PCA-SVM 12 to 2 55.4% 24% 7.2 s
LDA-SVM 12 to 5 96.6% 18% 1 s

Sensitivity of the classifier against different operating conditions

As the classifiers mentioned in Table 16 could not deal with the verification test satisfac-
torily, we decided to improve the models by increasing the input information. Therefore,
another dataset is collected with more excitation during system operation and two new
feature vectors namely Tset and Tamb are added to the input data. Ambient tempera-
ture in range [10,30]°C is added to the limitations specified in Subsection 7.2. Therefore,
the 14-dimensional data holds some variation of ambient temperature as the excitation
of operation conditions. The results of using more excited data sets for training of the
algorithms are studied in, Experiment 8 in Subsection 7.4. To optimize the performance
of the classifiers, Experiment 7 in Subsection 7.4, is done to investigate if one or more
feature vectors may have a negative impact on classification accuracy. Experiment 7
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Table 16: Comparison of the classifiers in verification test where the training is evaluated in Table
15. These results are not satisfactory and motivate us to enrich training data to have better trained
models.

algorithm verification accuracy false positive
SVM 76% 92%
LDA 52% 100%
CNN 53% 91%
PCA-SVM 48% 96%
LDA-SVM 57% 100%

illustrates an investigation of three feature vectors: compressor power consumption, den-
sity, and ambient temperature which show adverse impacts on the classification results.
Finally, the algorithms described in Table 17 can classify 21 classes with the highest ac-
curacy. After training the algorithms described in Table 10, The model verified with an

Table 17: Classifiers specifications with different hyperparameters and input data in Paper C. Here,
df stands for decision function, kf for kernel function, and LD for Linear discriminants.

algorithm specification dropped features
SVM df=OVO, kf=RBF , C=1000 and γ = 0.01 Tamb, Pcpr, ρ
LDA-SVM LD=6 df=OVO, kf=RBF, C=1000 and γ = 0.01 Tamb, Pcpr, ρ
LDA LD = 6 Tamb,Pcpr, ρ

unseen data set with the same dimensions as training data. The results of the classifica-
tions are illustrated in Table. 18. Fig. 47 represents the models’ responses in detail. The
LDA-SVM model stands alone for the classification of the non-faulty condition with a
0% false positive rate and very close classification accuracy compared to SVM. However,
the computation time for decision-making is three times more than SVM. LDA-SVM
classifies 17 faults out of 20 with 100% accuracy. Three misclassified faults are namely
blocked expansion valve, loose expansion valve, and return temperature with positive
offset. The SVM model performs fault localization better than the other models, which
can classify 18 faults out of 20 with 100% accuracy. The only misclassified faults are the
blocked expansion valve fault and return temperature sensor fault with negative offset,
which are misclassified with loose expansion valve fault and evaporator fan low perfor-
mance, respectively. However, SVM is not able to detect the non-faulty condition as it
obtained a 90% false positive rate. Among the mentioned models, LDA performs with
lower accuracy of 80% and detects 16 faults out of 20 simultaneously. The computation
time in LDA is less than the other two methods. However, the performance is not as
satisfactory, neither for non-faulty condition detection nor for fault localization.
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Table 18: Comparison of the models in Paper C ( correction part). This table indicates a better
performance of SVM regarding accuracy and the best performance for LDA-SVM considering false
positive rate.

Model accuracy false positive rate training time prediction time
SVM 87% 70% 2.6 s 0.4 s
LDA-SVM 86% 0% 0.7 s 1.5 s
LDA 81% 100% 0.02 s 0.3 S
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Fig. 47: The verification results after training algorithms by more excited data. The correct classifi-
cations are shown by diagonal values. Label -1 indicates non-faulty class and label 1 to 20 represent
faulty classes which are described in Table 3. This results are included in the correction part of the
Paper C.

.
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9 Contributions
This chapter represents the main contributions of Papers A, B, and C.

Developments of fault detection tools are aimed at Bitzer electronics as these tools
can potentially affect the products’ efficiency, reliability, and uptime. This study aims
to investigate the capability of some of the machine learning methodologies in the field
of refrigeration systems, which can be improved by increasing available data at Bitzer
electronics through its digital network. This chapter summarizes the contributions of
Papers A, B, and C to the problem of automatic fault detection and diagnosis in re-
frigeration systems. This study tries to look at the problem from an industrial point
of view. Therefore, the evaluation of the proposed models has been done so that the
refrigeration industry can benefit from this investigation. In this regard, computation
time, data resolution, false positive rate, number of required samples, and ability to
lower the cost for human resources are considered.

9.1 Evaporator fan fault detection
Paper A uses a deep learning model to argue for evaporator fan fault detection in re-
frigeration systems connected to the supermarket condensing unit. Bitzer produces
condensing units for supermarket refrigeration systems called ECOSTAR. Ecostar con-
trols the compression and condensation phases of the refrigeration process. In the case
of using data from the Ecostar controller, information from the evaporation and ex-
pansion side of supermarket refrigeration systems is not available. However, evaporator
fan fault detection may affect Bitzer products’ uptime and reliability due to increasing
compressor efficiency or severity. Thus, detecting such a fault, which can indirectly
affect the products’ reliability, is an achievement. Therefore, CNN is proposed to use
the data from an ECOSTAR unit to detect the defective evaporator fan.

In this way, real data from a refrigeration system is collected at the Bitzer electronics
laboratory for training and verification of the CNN model. The data structure in the
field may vary regarding operational conditions, variation of components, data sample
rates, data length, noise, disturbance etc. Thus, the model’s sensitivity against some
of these variations is investigated, such as sensitivity against noisy data, variation of
sample rate, data length, data perturbation and disturbance. Remark that in Paper A,
perturbation is introduced to investigate correlations between the data features since
different components and loads in supermarket refrigeration systems can affect data
structure.

The results of 100 different verification tests on perturbed and noisy validation data
indicate that the model can distinguish the evaporator fan fault with better than 98%
classification accuracy for 92 runs out of 100 runs. The field applications vary in length
of data logs and sample rates due to the different requirements for embedded hardware
and software. In paper A, data with various sample rates and lengths are tested, showing



9. Contributions 79

limitations on data length and lowering sample rates.
Besides the CNN, which is a deep-learning neural network model, Paper B embarks

on several shallow-learning neural network models for evaporator fault detection. When
designing a fault detection algorithm in the field, computation time and space in em-
bedded software and hardware are of vital importance. Thus, it is worth investigating
if there is a shallow neural network which can contribute to the problem of fault de-
tection in refrigeration systems with a satisfactory result. Paper B introduces SVM as
a classifier and compares three models with different input dimensions regarding their
accuracy and computation time. Paper B uses input data in three different shapes:
high-dimensional input data, which includes signals from the controller; 4-dimensional
data, in which refrigeration systems experts select the features; and 2-dimensional data,
in which data dimension is reduced using PCA.

The results show that 2-dimensional PCA-SVM, where the dimensions are reduced
to 2 by PCA, is computationally more efficient than 4-dimensional SVM. In addition, the
4-dimensional SVM in Paper B requires careful input data selection to have the most
relevant information for a specific fault classification, which is inefficient and expen-
sive regarding experts’ effort compared to the PCA-SVM. Moreover, the 2-dimensional
PCA-SVM model can obtain nearly the same results as 4-dimensional SVM and full-
dimensional SVM when feeding noisy and perturbed data for verification tests. However,
it obtained a higher classification accuracy when the system ran in ON/OFF mode.
Thus, PCA can be used as a form of data normalization and optimizes computation
time when using the SVM classifier. Paper B indicates that a PCA-SVM trained in a
specific sample rate can be used to classify the fault in various refrigeration systems with
different sample rates. However, the classifier is sensitive to the data length. Too many
samples are not efficient, as the classifier would struggle with more noise and outliers
during training.

9.2 Multi-fault detection and diagnosis
Regardless of the evaporator fan fault detection done in Papers A and B, comparing and
evaluating the classifiers for other possible faults in refrigeration systems is essential.
Paper C presents twenty types of possible faults in refrigeration systems: sensor faults
and main components faults. Then, different classifiers are used to classify twenty-one
data classes, including non-faulty data. In this paper, it is decided to simulate the faults
in a high-fidelity Simscape model of refrigeration systems because emulating several
faults in the laboratory setup is expensive and time-consuming. Second, we are unsure
if the labelled data from the field, already in Bitzer electronics, are correctly labelled
according to our purpose. Finally, simulation data can be a proper replacement for
training such systems when systems’ operational conditions and types of components are
varied. Thus, generating data from the simulation model is trustful, feasible and cheaper
to cover most operational conditions and systems variations for training purposes. In
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Paper C, several algorithms are proposed: CNN, SVM, LDA, LDA-SVM and PCA-SVM.
Then, the classifiers are evaluated based on classification accuracy, false positive rate,
and computation time. Each model is used to classify all types of faults simultaneously.
Paper C compares a deep neural network model and some shallow neural network models
such as SVM and LDA.

Paper C emphasizes the careful selection of data variation, as low data variation
may lead to a completely different result for the same model. In addition, the selection
of data features is important as some of the data features can negatively affect the
classification results. In Paper C, dropping ambient temperature, density calculated
by suction pressure and suction temperature at the inlet of the compressor, and power
consumption of the compressor improved the classification results remarkably.

Even though the CNN model and PCA-SVM model could achieve satisfactory results
for binary classification in Papers A and B, the PCA-SVM model diagnoses multi-faults
poorly, and the CNN model is unreliable with a high false positive rate. Thus, PCA can
not perform as well as LDA for dimensionality reduction when the classifier should deal
with several classes. Among the LDA-SVM, SVM, and LDA classifiers, the SVM and
LDA-SVM models obtain the best performance addressing multi-fault classification in
refrigeration systems. The LDA-SVM performs well for detecting non-faulty class from
faulty with 0% false positive rate, and SVM localizes 18 faults out of 20 with 100%
accuracy. The computation time for predicting the label is less than one-third for the
SVM algorithm compared to the LDA-SVM. Remark that the SVM model performs
weaker than the LDA-SVM, counting for the false positive rate.
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10 Closing remarks and perspectives
In this chapter, we conclude that how data-driven models perform when addressing fault
detection and diagnosis in refrigeration systems from an industrial perspective. Further-
more, some of the remaining questions about the problem in the field of refrigeration
systems are introduced.

10.1 Industrial remarks
Faults in industrial refrigeration systems are inspected by technicians when the symp-
toms of the faults, e.g. inconsistent cold room temperature, extra noise from the system,
abnormal behaviour of some components such as continuous work of compressor or fan
appear. However, in some faulty cases, refrigeration systems operate inefficiently for a
long time, leading to some fatigue faults. In many industrial applications, a set of alarms
exists which notify users about the symptoms if the system operates out of the system
limits. However, the faults can not diagnose by the alarms and sometimes, the faulty
systems run for a long time without reaching the system limits. Therefore, early and
automatic FDD in refrigeration systems is attractive for manufacturers and customers.

Using all signals as the inputs of the classifier may be impractical in real-life appli-
cations, as all signals might not be available in various systems. In the case of binary
classification, PCA ensures that the essential information is still captured from the data
for the fault classification and that it handles perturbations better than using original
data. Normalizing data using the PCA algorithm improves the fault detection robust-
ness against refrigeration systems variations. In addition, the PCA-SVM model can be
separated into two phases: dimensionality reduction and classification. Then, the first
phase is feasible to be applied to the embedded controller; then, two-dimensional data
can be sent to the third party for fault classification.

In this study, offline classification is also offered. A trained model can be applied
to the controller, which requires less processor capacity and is safer because the model
cannot be trained with wrongly labelled data.

In industrial applications, a low false positive rate for FDD methods is very im-
portant. A misclassification of a functional system as a malfunction is expensive and
decreases the reliability of the FDD tool. Paper C states the LDA-SVM model with
0% false positive capability. Thus, LDA-SVM is emphasized as the reliable model for
detecting the fault, while the SVM model can be used to diagnose the specific fault in
the system with high accuracy.

10.2 Perspectives
In this research, the faults are defined with narrow limitations. However, the research
can be developed by covering a broader definition of the faults. In addition, in Paper
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C, the transient part of the data is not considered. Even though in many industrial
applications such as reefer containers and cold warehouses, the refrigeration systems of-
ten run in steady-state, The author appreciates more investigations in which a transient
part of the data is analyzed.

Of importance is to verify the models with real data from the field. This research
can give the industry an overview of the applicability of machine learning-based models
for FDD purposes in refrigeration systems. However, more investigation is required to
find the best model or model parameters before applying the model to refrigeration
systems, which requires reliable data from the field. The FDD model can be improved
and developed in the future by applying more data from the field.

Last but not least, before applying any FDD models mentioned above to the system,
the processing requirements need to be calculated. The result of the required processor
space significantly impacts selecting the best model due to the industry’s limited pro-
cessor space. Therefore, according to Paper C, the selected model must have a trade-off
between a high accuracy, low computation, and low false positive rate.
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Abstract
The functionality of supermarket refrigeration systems (SRS) has a significant impact
on the quality of food products and potentially human health. Automatic fault detection
and diagnosis of SRS is desired by manufacturers and customers as performance is im-
proved, and energy consumption and cost is lowered. In this work, Convolutional Neural
Networks (CNN) are applied for fault detection and diagnosis of SRS. The network is
found to be able to classify the fault with 99% accuracy. The sensitivity of the designed
model to data quality is also assessed. The results show that the model can classify faults
at low sample rates if the training set is large enough. Moreover, the model displays low
sensitivity to data quality such as noisy and perturbed validation data, and the frequency
of false positives is satisfactorily low as well.

1 Introduction
The general quality of refrigerated food depends on how accurately its temperature is
controlled throughout the cold-chain, from production to the end-users. Improvement
of reliability of Supermarket Refrigeration Systems (SRS) by early fault diagnosis is
highly relevant when considering the safety of food, human health, and environmental
pollution of a large industry. According to [1], because SRS must run night and day,
they consume about 50% of the entire energy budget of most supermarkets. Thus, using
a faulty refrigeration system can lead to critical economic losses. As a consequence,
refrigeration companies try to gain a competitive edge by producing products with as
high degree of automation as possible, including for performance monitoring or fault
diagnosis.

In this paper, classification of evaporator fan faults is studied; these faults may typ-
ically result in inaccurate cooling room temperature, which may lead to food spoilage
and energy waste. Therefore, it is of high importance to detect and diagnose evaporator
fan faults before they result in damage to the goods. However, constant human mon-
itoring is tedious, expensive and error-prone. Therefore, data-driven Fault Detection
and Diagnosis (FDD) has become increasingly popular in the industry, and in particu-
lar Artificial Intelligence (AI) is receiving a lot of attention due to its abilities to make
decision instantaneously and deal with vast amounts of data [2].

Convolutional Neural Networks (CNN) is a cornerstone in image processing when it
comes to the classification of highly challenging data sets [3]; CNNs are known to be
accurate and computationally faster than most other machine learning-based classifica-
tion methods. In this method, the essential features, information or correlation among
data is extracted. Afterwards, the data are classified based on the information. Similar
ideas can be used in the classification of signals in signal processing. From this view,
CNNs can be used for fault detection and classification.
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A number of different data-driven approaches have been proposed. For instance,
a combination of a Genetic Algorithm and a Pseudo-inverse matrix algorithm can be
found in [4] to obtain parameters and weights of the radial basis function network. This
method identifies, successfully, six faults emulated in a laboratory set up. An Extended
Kalman Filter (EKF) method is proposed in [5]. Although the EKF performed better
and faster fault detection than an ordinary Kalman filter, neither filter was able to
distinguish between sensor faults and parametric faults. On the other hand, successful
results of Artificial Neural Network (ANN) strategies regarding FDD in chillers have
been reported, e.g., [6], and [7]. The Support Vector Data Description (SVDD) method
was employed for FDD in chillers in [7], where SVDD is compared with the Principal
Component Analysis (PCA) method. The fault detection performance of the SVDD
method was better than the PCA method. In [8], refrigerant leaks were detected and
diagnosed using a probabilistic ANN algorithm; the ANN could detect refrigerant losses
with 90% accuracy. In [9], the better performance of a Probabilistic Neural Network is
demonstrated compared to Back Propagation (BP) method as BP has random initial
wights leading to a less reliable system. Air handling unit faults are detected using
a pattern matching method in [10]. This method is combined with PCA in [11]. It
improves the sensitivity of fault detection model and boosts the performance of air
handling units.

In image recognition applications CNN is known because of its impressive feature
extraction and classification capabilities. These capabilities make it a strong candidate
for FDD and process monitoring, where fault patterns might appear in data without
being immediately apparent to human observers, see [12].

This research contribution is a CNN model for fault identification and sensitivity
analysis of the model to the data quality. The model can classify a specific fault on the
evaporation side of a refrigeration system, using only indirect measurements gathered
from the condensing side of the system. The structure of available data can vary in the
field due to different requirements and configurations of SRS. For instance, the sample
rate when acquiring data can be between 1 to 0.0003 Hz; the number of samples or length
of the data logs varies depending on embedded hardware type and software requirements.
To some extent, there would be different correlations between data parameters due to
variations in SRS components and loads. Thus, the sensitivity of the model against
the variation of data structure is tested and improved. The model is found to be able
to classify validation data with 99% accuracy, and exhibits roughly low sensitivity to
low-resolution, noisy, and perturbed data. Non-faulty perturbed data are classified with
the same accuracy, but with less reliability (99% accuracy in 92 of 100 trials).

The outline of the rest of the paper is as follows: Section 2 explains SRS preliminaries,
the general methodology of CNN, and its training process. In section 3, data collection
and CNN design is represented. Different sensitivity tests against data quality are
proposed in section 4, and the results are investigated in section 5. Finally, conclusions
are presented in sections 6.
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2 Preliminaries

2.1 Supermarket refrigeration systems
Refrigeration systems transfer heat in a process where heat is absorbed from a cooling
room and released in the ambient environment. During a cycle, the heating absorption
and heat dissipation happen by changing the refrigerant phase from liquid to vapour and
vapour to liquid, respectively. The nomenclature of the SRS and refrigeration shown
in Fig. A.1, are introduced in Table A.1. This system includes two parts; a Bitzer con-
densing unit and an industrial evaporator for air cooling mounted in an insulated room.
The number of evaporators, fans and cooling rooms are different from supermarket to
supermarket. In Fig. A.1, CtrlCond is the condensing unit controller which is connected
to the required sensors to control the condenser fan speed and compressor speed Vcpr.
The compressor speed is controlled to provide the capacity required to keep the tem-
perature in the cooling room. Inside the cooling room, heat is transferred from the
goods via the evaporation process to the refrigerant. The evaporator controller is called
CtrlEvap and can be seen in Fig. A.1. This controller uses required inputs taken from
sensors to control the evaporator fan speed and opening degree of the expansion valve.
The opening degree of the expansion valve determines the amount of refrigerant that
passes through the evaporator and is controlled to achieve Minimum Stable Superheat
(MSS).
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Fig. A.1: Schematic of a refrigeration system.

The evaporator fan is responsible for circulating air over the evaporator surface
and in the cold room to enhance heat transfer into the evaporator and keep an even



96 Paper A.

Table A.1: Symbols used in the Fig. A.1

Symbols description SI unit
Troom cooling room temperature (sensor) [°C]
Tamb ambient temperature (sensor) [°C]

Tsuc1,2 suction temperature (sensor) [°C]
T0 evaporation temperature (sensor) [°C]

Psuc suction pressure (sensor) [Pa]
Tdis discharge temperature (sensor) [°C]
Pdis discharge pressure (sensor) [Pa]

Tc condensing temperature [°C]
Tret returned air temperature (Sensor) [°C]
Tsup supplied air temperature ( Sensor) [°C]
IF C converter current [A]
FC frequency converter [-]

CtrlEvap evaporator controller [-]
CtrlCond condensor controller [-]

temperature in the cold room. When the fan does not work or run slowly, there would
not be enough airflow around the evaporator pipes. The reduced airflow causes reduced
heat transfer. Thus, to compensate and keep the required cooling capacity for the room,
CtrlEvap increases the temperature difference between the refrigerant and the air. This
causes the suction pressure Psuc to drop and the vapor density ρv at the compressor
inlet to decrease as:

ρv = PsucMm

RT0
(A.1)

where Mm is Molar mass and T0 is evaporation temperature of the refrigerant and R
is the ideal refrigerant gas constant. Lower ρv leading to more work required by the
compressor and increased mass flow rate ṁ as:

ṁ = ρvV A (A.2)

where V is the volumetric flow rate of the refrigerant and A is the area of the compressor
inlet. Therefore, ṁ could be one of the indicators for a faulty evaporator fan. However,
it requires knowledge of the compressors parameters, which is not always available.
Therefore, the proportion to the mass flow rate is enough, where A is omitted and the
compressor speed (Vcpr) is used instead of V . Note that Vcpr is proportional to V itself.
Thus, a proportional compressor mass flow rate Kmf can be used, represented as:

Kmf ∝ ρvVcpr. (A.3)
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In the beginning stage, the evaporator fan fault leads to higher compressor speed and
more power consumption. If the compressor reaches its maximum speed due to exces-
sively low Psuc the temperature in the cold room will begin to increase. This implies
violation of the food quality. Therefore, early FDD is required before any change in the
cooling room temperature occurs.

2.2 CNN methodology
In the sequel, the CNN methodology adopted for fault detection will be presented.

Suppose we are given a set of feature vectors {χk}, k = 1, . . . , K, each of which
belong to a finite set of classes {κn}, n = 1, . . . , ν. The associated classification problem
is then the challenge of finding a map N : X → {en}, n = 1, . . . , ν, where X is the
feature space from which χk are drawn and {en} is an orthonormal set of vectors with
all entries equal to zero except the j’th entry, which is one; en corresponds to class n.

The map N will be approximated using a CNN. CNNs are composed of neurons,
which are nonlinear functions parametrized by so-called synaptic weights. The neurons
are organized in layers – an input layer, several hidden layers and an output layer –
and trained using supervised learning. Commonly, CNNs can be decomposed into two
separate stages. The first stage, called the feature extraction stage, includes the input
layer along with one or more convolutional layers. The second stage includes a number
of fully connected layers, which are responsible for the classification – see Fig. A.2. The
most informative features are collected in the last convolution layer. A flattening layer is
the vectorized shape of the last convolutional layer used as an input to the classification
stage. The number of neurons of the output layer should match the number of classes
ν.

Convolution

So
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Convolution on 
several layers

Vectorized 

Y 

Fully connected 
layers

ClassificationFreature Extraction

In
p

u
t layer

Fig. A.2: General design of CNN.
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2.3 Training the model
The first stage of a CNN is organized like a standard multi-layer perceptron network,
i.e., all nodes in each layer are feed-forward connected by weights wi ∈ R from inputs
xi ∈ R, i = 1, . . . , n via a neuron function f : R → R to yield a neuron output y:

y = f

(
m∑

i=1
wixi − b

)
. (A.4)

The input to the first layer is χk. The output y from each layer is subsequently used as
input for all neurons in the subsequent hidden layer. In neural network terminology, b
is called the activation threshold or bias, while the sum of weighted inputs and bias is
known as an activation potential, and m is the number of neurons in previous layer. A
layer is thus a column vector of neurons, each of which may be parametrized by different
sets of weights.

In a CNN, the last layer F : Rν → Rν is often chosen as a so-called Softmax activation
function, whose n’th component is defined as:

Ŷk,n = Fn(yk−1,n) = exp(yk−1,n)∑ν
n=1 exp(yk−1,n)

(A.5)

where Ŷk = Ŷk(W p) is the CNN’s estimate of the class of the k’th feature vector based
on the current set of weights W p. The Softmax function is a smooth approximation
to the function arg max(·), basically picking out the index n among the entries of the
input yk−1 with the largest value; that is, Ŷk ≈ en if the largest entry in yk−1 is found
at index n.

To begin training a CNN, it is first necessary to obtain the training data and desired
output corresponding to each input. For each class the training data are divided into
specific size and each small part is called a mini-batch. The mini-batches stack together
at the third dimension. Fig. A.3 illustrates the input pre-processing required for train-
ing the CNN and the output structure. The CNN needs to learn the corresponding
desired output for each input. In addition, for all of the mini-batches in the same class,
corresponding outputs are the same and the number of Training mini-batches in each
class (Tmb) is:

Tmb = nd

⌊
R

⌊
Ns

Smb

⌋⌋
(A.6)

where nd is number of data logs, R is split ratio between training and test data, Ns is
the number of samples, Smb is the size of each mini-batch. After designing the shape
of each class of functional and faulty system, The inputs to the CNN require both
classes of functional and faulty data. Thus, both classes are concatenated, as shown
in Fig. A.4. The number of output neurons in the CNN is the same as the number
of classes. Training is a process in which the network weights are updated to give
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Fig. A.3: Input pre-processing and the output structure of each class.
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Fig. A.4: Visualisation of input and output shape after concatenation of non-faulty and faulty mini-
batches.

increasingly better predictions of the correct classes as a function of the input feature
vectors. Each update of the weights is called an epoch. The improvement in prediction
is measured by way of a Loss function, which should be selected to match the activation
function of the output layer; the cross-entropy loss function is commonly chosen in
classification tasks (as opposed to, for example, the sum-of-squared-error loss function
used in function approximation). When only two classes are considered, one may choose
a sigmoid neuron in the output layer, which always yields an output prediction between
zero and one, which may, in turn, be interpreted as a probability of the given feature
belonging to the corresponding class. Training with the cross-entropy as the loss function
then corresponds to maximizing the conditional log-likelihood of the data being correctly
classified as explained in [13].

Given a collection of network weights W p and ν independent targets (classes), the
cross-entropy error for a single example χk is given by

Ek(Ŷk, W p) = −Y ⊤
k ln

(
Ŷk

)
− (1 − Yk)⊤ ln

(
1 − Ŷk

)
. (A.7)

where 1 = [1, 1, . . . , 1]⊤ and ln(·) is taken element-wise to yield a ν-dimensional output.
This function estimates the difference between the actual and predicted probabil-

ity distribution. Stochastic Gradient Descent (SGD) optimization is used to tune the
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weights to improve the prediction–see [14]. The weights in layer l are adjusted in epoch
p using

w
(p)
il = w

(p−1)
il + α∇Ek(Ŷk, W p) (A.8)

where α is learning rate or step size and ∇Ek(Ŷk, W p) is the gradient of the loss function
wrt. the weights. We may compute the derivative of the cross-entropy error with respect
to each weight connecting the hidden layer neurons to the output layer neurons using
the chain rule:

∂Ek

∂wn,i
= ∂Ek

∂Ŷk,n

∂Ŷk,n

∂un

∂un

∂wn,i

where un =
∑

i wn,ixi − bn is the input to the n’th neuron in the previous layer. In each
epoch, the calculated loss is propagated backward in the network in a layer-by-layer
sequential fashion, where the gradients are computed from (A.4). Adaptive Moment
estimation (Adam) is a variation of SGD, in which the learning rate α is tuned adap-
tively to deal with sparse gradient and non-stationary objectives. Moreover, the Adam
optimizer is capable of dealing with falling into local minima; see [15] for details.

Convolution of the filters or weights through the feed-forward process prevents having
a vast number of weight vector connections in every layer and speed up the network
operation. Besides, non-informative features can be eliminated in each layer using the
so-called pooling method. By using pooling after the convolutional layer, the outputs of
each layer are pooled together in the specified filter size. The most common pooling
methods are average-pooling, and max-pooling, which collect the average of the outputs,
and a maximum of the outputs, respectively.

3 Experiments
The condensing unit in the laboratory shown in Fig. A.1, consists of a semi-hermetic
reciprocating, four-cylinder compressor with a speed range of 25-87 Hz. It has 17KW
cooling capacity at 10 oC evaporating temperature using refrigerant R-134a. The two
condenser fans have a maximum power consumption of 350 W.

Supermarket condensing units are connected to different evaporation setups, de-
pending on the requirements of each supermarket. Moreover, information from the
evaporation part of refrigeration systems is typically not available. In this paper, data
is taken from the condensing unit, and the data from the evaporation side is neglected.
The evaporator at the Bitzer electronic laboratory has two fans. Fan speeds are con-
trolled by CtrlEvap shown in Fig. A.1. In order to emulate the evaporator fan fault,
a switch is installed between controller output and relay of one of the fans as seen in
Fig. A.5. Thus, it is possible to switch on and off, manually, one of the fans and collect
data in both conditions.
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Fig. A.5: Stop force on the evaporator fan to emulated defective fan.

3.1 Data acquisition
Data is taken where the room setpoint varies in the range of 1 ° C to 12 ° C. Different
compressor speeds between 33Hz and 70Hz are applied. This variation is needed in
the training phase to learn the response of the system in different states. Moreover, it
prevents the over-fitting of the neural network.

When one of the fans is switched off the defective fan fault is emulated on the
laboratory set up. Both non-faulty and faulty data are collected with 1 Hz sample rate.
Each set of data includes information of Psuc, Superheat temperature Tsh, Vcpr and Kmf.
These parameters change when the fan is switched off while room temperature remains
constant and controlled. When the fault occurs, Vcpr increases to compensate Psuc
and density drop at the inlet of the compressor. This means that the overall efficiency
of the system is reduced due to the fault, but, because the system is able to keep
the room temperature, this fault would normally not be detected by traditional fault
detection. Moreover, Kmf is oscillating more because there is less ventilation around the
evaporator, and it causes unstable heat transfer around the evaporator. This oscillatory
heat transfer induces oscillations in Tsuc and Psuc, which in turn results in Kmf oscillating
with a higher amplitude. While this fault continues in the system, the cooling room
temperature at different locations varies. Finally, due to the lower Psuc, and reduced
heat transfer, the evaporator surface is colder, and this leads to a faster build-up of ice
on the evaporator. Therefore, detecting of accumulated ice is needed more regularly,
and this also presents an additional energy cost.

Therefore, a CNN algorithm is used to detect the fault before it affects the room
temperature and prevents excessive energy usage due to inefficient running without the
fault detection.

3.2 CNN specification
In this work, six data logs corresponding to various loads and set-points are used. The
size of each data log is 4 × 13000 samples because there are four measurements in each
data set, as mentioned in Subsection 3.1. When designing CNNs, it is important to
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select proper hyper-parameters. Hyper-parameters are external and controllable param-
eters set by the user, including mini-batch size, number of layers, activation functions,
filter size, cost function, and optimization method, and so on. In this paper, the mini-
batch size is selected as 4 × 30 samples, which is obtained by manual optimization. The
initial learning rate is a key parameter in the training configuration; here α in (A.8) is
chosen as 0.0003. At the output layer a Sigmoid function

Ŷ1 = 1
1 + exp(yk−1) (A.9)

is used because it is a binary classification. The range of the Sigmoid function is [0, 1],
and the classification is performed by a simple threshold; if Ŷ1 < 0.5, the class is 0, and
1 otherwise.

In this work, binary-cross-entropy

E(Ŷ1, W p) = −Y1 ln
(

Ŷ1

)
− (1 − Y1) ln

(
1 − Ŷ1

)
(A.10)

is used as a cost function, which is the same as the cross entropy in (A.7) for only two
output vectors. In (A.10), Y1 = 1 is the value assigned to class one and Ŷ1 ∈ [0, 1] is the
estimated probability of the input sample belonging to that class. Since probabilities
sum to 1, the second class is assigned the value Y2 = 1 − Y1 and the corresponding
estimate is Ŷ2 = 1 − Ŷ1.

In this work, the design of the CNN is improved as table A.2 to obtain better
classification results. In this table, Sf stands for the size of the filters, Nf is the number
of filters in each layer, Act is activation function where ReLU stands for Rectifier Linear
Unit, and MP is Maxpooling size. Padding type is mentioned as P and valid means
that an array of zeroes is applied to the edges of the data when passing through the
next layer. The fully connected layer is used with 50% dropout. Dropout is an efficient

Table A.2: Design of the CNN algorithm, used in this work.

Layer Sf Nf Act P MP
convolution (2,20) 16 ReLU valid (1,3)
convolution (2,3) 32 ReLU valid -
convolution (1,3) 64 ReLU valid -

Flatten - - - - -
FC 40 - ReLU - -

Dropout(0.5) - - - - -
FC 2 - Sigmoid - -

solution to prevent over-fitting. In this method, the number of neurons is regularized
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in each layer, and the rest of the neurons are dropped temporarily together with all the
inputs and outgoing connections [16].

4 Sensitivity to data quality
As SRS operations and configurations vary significantly due to the individual supermar-
ket’s demands and geographical conditions, it is very important that the FDD model
has low sensitivity to variations in the data available. Here, a number of experiments is
introduced to examine the sensitivity to data quality and reliability of the model. For
all experiments, the structure of the model and the hyper-parameters of the CNN model
are the same as specified in the table A.2.

4.1 Low resolution data
In SRS data acquisition, the sample rate varies between 1 to 0.0003 Hz depends on the
embedded hardware memory. In this work, data is re-sampled from 1 Hz to 0.16, 0.016,
and 0.0016 Hz. Even though it was of interest to observe the result with much lower
sample rates such as 0.0003 Hz, it is not possible to do this here, due to limitations on
data log length. One non-faulty and one faulty data log with regards to four different
sample rates are introduced in Fig. A.6. From top to bottom, the sample rate is de-
creased by means of down-sampling; these re-sampled data sets will be used for training
CNN models. As can be seen, lowering the sample rates from 1 to 0.016 Hz does not
change the main features of the data due to the slow dynamics of the refrigeration sys-
tem. However, at 0.0016 Hz the important features can no longer be detected in the
sampled data.

As the data is down-sampled, the number of samples decreases. Therefore, an-
other experiment is done to train the model with the same data length to compare the
down-sampling result with the same size of data. The results of these experiments are
presented in subsection 5.1.

4.2 Noisy data
In industrial applications, data can be noisy and incomplete due to different reasons,
for instance, sensor noise, electromagnetic propagation, sample dropouts and so forth.
In this work, noise is added to data, not only to observe noisy data response but also to
generate random new validation data where correlation among parameters is preserved.
Random variables with normal distribution N (0, 2) is selected for this purpose. To do
this, the noise Sn is added to the saturation temperature Tsat and consequently to Tsh
as:

Tsh + Sn = (Tsuc − Tsat) + Sn (A.11)
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Fig. A.6: Visualisation of data re-sampling for Non-faulty data to the left and faulty data to the right.

where Tsuc is suction temperature or actual temperature of refrigerant after evapora-
tion. Therefore, by any change in Tsh, Psuc and eventually Kmf would change as the
correlations are introduced in (A.1) – (A.3).
In Fig. A.7, Random noise with N (0, 2) is added to Tsh, and eventually, Psuc and Kmf.
In order to test the reliability of the algorithm, noisy validation data is generated 100
times and passed through the network as new validation data sets. The result of this
test can be found in subsection 5.2.

4.3 Operating point change
The SRS may operate in different operating points depending on the needed capacity,
the layout of the system and the ambient conditions. To the CNN, this will look like
offsets or perturbations in measurements that are correlated according to the physics
of the system. Thus, a random offset value is applied to Tsh on validation data set
using random numbers between [-3,3.5]. In accordance with (A.1) – (A.3), Psuc and
Kmf change correspondingly; as Psuc should be in its valid refrigeration cycle envelope,
the random offset value can not be outside specific ranges when using the available data.
This random perturbation is applied 100 times to observe the reliability of the model
when the correlation between parameters is different from what is used in the training
data.
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Fig. A.7: Example of original and noisy data where noise is added to Tsh.
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Fig. A.8: Example of original and perturbed data.

5 Results
A number of different experiments to evaluate the sensitivity of the CNN model were
proposed in the previous section. The results of each experiment are presented in the
following.

5.1 Data re-sampling result
Re-sampling of the training data is done as specified in subsection 4.1. Fig. A.6 illus-
trates that even when the sampling rate is reduced and the number of samples is lowered,
the main features in the data are preserved due to the slow dynamic of SRS. Fig. A.9
shows the accuracy of classification and loss function with different sample rates. It
is seen that lowering the sample rate also lowers the accuracy of the training process
and causes the training to require more iterations. However, it should be noted that
the decreased accuracy is not so much due to the lower sample rate itself, but rather
due to the lower number of samples available to the CNN. In Fig. A.6, down-sampling
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is continued until 0.0016 Hz in order to obtain a lower bound on the sampling rate;
however, with the few data points remaining, it becomes impossible to train the CNN
at this sample rate.

Fig. A.9 indicates that if the sample rate is kept constant, the accuracy is decreased
when the data is shortened (see the experiment in blue, orange, red and brown). It is
remarked that the experiments in orange and green (respectively red and purple) have
the same data length, but the green (respectively purple) with a lower sample rate has
faster convergence. Note that for each of the data lengths, the figure shows the lowest
sampling rates for which training was successful.
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Fig. A.9: Resampling evaluation when the number of samples are constant.

Fig. A.10 presents zoomed-in data with 1 and 0.16 Hz sample rates. It appears
that using short mini-batches with relatively high sample rates causes the oscillations
observed in the faulty data to disappear (the data is near-constant over these periods),
and that oscillations are important features of the faulty data. Thus, the reason that
the green (purple) result is better than the orange (red) one in Fig. A.9 is that the low-
resolution faulty mini-batches are easier to classify than high-resolution mini-batches.

5.2 Noisy data result
In Subsection 4.2, the method of generating validation data with specified noise is
explained. The result of 100 stochastic tests over the CNN model is introduced in
Fig. A.11. This figure shows how accurately 100 faulty data-sets and 100 non-faulty
data-sets are classified. The value at the top of each column shows the distribution of
corresponding accuracy values when running 100 stochastic tests. Non-faulty data is
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Fig. A.10: Two zoomed data logs with different sample rates.

classified with higher than 99% accuracy with 100% reliability. Faulty data is classified
with better than 97% accuracy in 95 out of the 100 runs.
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Fig. A.11: Distribution of classification accuracy achieved when running the CNN algorithm 100 times
using noisy validation data.

5.3 Result of operating point change
As explained in Subsection 4.3, due to different SRS configurations and loads in the cold
room, the data can be varied while the correlation among parameters is preserved. The
result of 100 runs is represented in Fig. A.12. Note that perturbation of the parameters
is limited as explained in Subsection 4.3. The model has good classification capabilities;
for the faulty data, 99% accuracy is achieved in all of the 100 runs. On the other hand,
non-faulty data are detected correctly with 99% accuracy in 92 out of the 100 runs,
while in 8% of the runs non-faulty data was classified with less than 91% accuracy.
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Fig. A.12: Distribution of classification accuracy when running the CNN algorithm 100 times using
perturbed validation data.

5.4 False positive analysis
A model is said to give a false positive classification when it incorrectly indicates that
a system is faulty while it is, in fact, healthy. False positives must occur as rarely as
possible, because it results in unnecessary costs for supermarket owners for changing
components or doing inspection. As shown in Fig. A.11, 1% false positives were classified
in 60 out of the 100 runs using noisy data, while there were no false positives in the
remaining 40 runs. Moreover, stochastic perturbation of the data yielded 1% false
positives for 92 out of 100 runs, see Fig. A.12. This experiment shows more than 9%
false positives in 8 out of the 100 runs.

6 Conclusion
In industrial applications, diagnosis of a defective evaporator fan is not always timely,
because the inspection is only done when the cooling room temperature exceeds its
allowable range. In this paper, a CNN model is applied to detect an evaporator fan
fault while the room temperature is actively controlled. Only data from the condensing
unit was used because data of the evaporation side is not always available. An evaporator
fan fault was emulated on a laboratory SRS, and the data was used to train and analyze
the sensitivity of the CNN model to the data quality.

Fast sampling is expensive and monitoring is tedious, therefore one cannot normally
expect data of the high quality shown in Fig 6 to be available during normal operation.
It was therefore necessary to examine lower sampling rates and shorter data log lengths
in order to assess practical classification scenarios.

It was found that using short mini-batches with relatively high sample rates causes
the oscillations observed in the faulty data to disappear (the data is near-constant over
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these periods), and that oscillations are important features of the faulty data.
Moreover, the sensitivity of the model against noisy validation data was studied as

well. The noisy and faulty data were classified with better than 98% accuracy for 90
runs out of 100. Maximum 1% false positive classification was achieved when using
noisy data.

Validation data acquired at different operating points were classified as well. In these
cases, faulty data were classified with 99% accuracy for all 100 runs. For 92 runs out
of 100, only 1% false positive classification was observed, which is a satisfactory result
from a practical point of view. It is believed that the higher false positive classification
(8% of the runs) can be improved if other random perturbed data is used during the
training process. This method can be further developed to classify a number of different
faults in SRS systems, allowing automatic early detection of costly faults, which human
operators are unlikely to spot during day-to-day operation. Detecting potential faults
prevent unnecessary fatigue, leading to lower economic losses to the operator/owner of
the system.
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Abstract
Supermarket refrigeration systems represent an important type of energy demanding
appliances, which is in such widespread use that any development in the associated tech-
nology can have a huge impact on general health and global warming. Using automatic
fault detection and diagnosis may for instance improve energy efficiency and reduce
food waste as well as reduce expenses for the supermarket owners. In this paper, three
model-free classification algorithms are tested on faulty/non-faulty data obtained from
an actual refrigeration system. It is found that support vector machines (SVM) are able
to classify fan faults in a real refrigeration system with near-100% classification accu-
racy, independent of the number of input variables. The classification performance and
robustness against an unseen operation mode, low-resolution data, noisy data, and data
of different operating points is tested for three different classifier configurations. The
results show Principle Component Analysis (PCA)-SVM is highly robust to different
operating points, disturbances, and gives the best computational efficiency, as it is able
to reduce the feature space to only two dimensions. It is concluded that while all of the
examined methods are insensitive to noise, and effective in terms of detecting faults from
relatively small amounts of data, overall, PCA-SVM is slightly more computationally
efficient.

1 Introduction
Recently, data acquisition and data monitoring have become a part of business compet-
itiveness in many industries, and the availability of data enables manufacturers to have
more efficient and reliable systems. Automatic fault detection and diagnosis is one of
the ways that ensure more efficient and reliable systems. In refrigeration systems (RS),
for food storage, it is crucial to stay within a narrow temperature band; and therefore,
it is important to detect faults before they turn into a system breakdown. If the airflow
over the evaporator is reduced due to a faulty fan, it will normally not be noticed until
the room temperature cannot be kept at its set-point. Traditional fault detection in
supermarket refrigeration systems requires many expensive sensors and provide only
limited identification of the root cause. Therefore, data-driven Automatic Fault Detec-
tion and Diagnosis (AFDD) of such systems is desired. One of the main challenges in
designing automatic fault detection systems is that RS controllers, like the ones made
by Bitzer Electronics, are used on many different refrigeration systems that exhibit
different dynamical behaviour.

Different algorithms have been applied for fault detection and diagnosis (FDD) of
refrigeration systems such as [1–5]. In [3], the rule-based fault classifier achieved higher
effectiveness than data-driven models when the FDD performance index is a controlled
variable. The components characteristics and operations anomalies for different types
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of SRS are studied in [2]. In this study, three sources of the industry including ex-
pert surveys, advisory messages such as alarms, and service calls are considered. This
information can be used for expanded development of fault detection models. A Convo-
lutional Neural Network was applied for fault detection of refrigeration systems in [4].
This algorithm achieved more than 99 % accuracy in fault classification. The results
show that the model can be trained better using low-resolution data. However, as
CNN is a deep learning model, it requires high amount of data and computation capac-
ity. A Gaussian mixture model is used in [5], and data dimensions are reduced using
Principal Component Analysis (PCA). This model classified four types of faults in Air-
conditioning systems with about 99% accuracy, and the running time is reduced more
than ten times. One of the binary classifiers that can classify the data based on a low
number of samples is SVM. Compared to many types of ANN algorithms SVM has both
fast computation and good accuracy. SVM is used in many fields for data classification
see [6–8], condition forecasting [9], and fault detection [10]. SVM is also used in [11] for
fault detection in vapor compression refrigeration systems.

In this work, SVM is used to distinguish between a system with evaporator fan fault
and a functional system in different operation points while data from evaporation side
is not available. It is infeasible to design a bespoke fault detection algorithm for use in
every supermarket or to have the technician set it up correctly for each new system and
therefore, an automated adaptive fault detection method is required. The topology of
the refrigeration systems controlled by the Bitzer condensing unit is generally the same,
but they may vary in size and operational set-point. In other words, the challenge
addressed in this paper is to design a fault detection algorithm that works effectively
for ‘generic’ cooling systems, where the availability of particular combinations of signals
cannot be guaranteed. In this paper, we present a method that is robust against the
aforementioned types of variations. We show that, through careful selection of the inputs
to the classifier, the amount of computation required can be reduced and that PCA can
be used as a form of normalization of faulty data acquired at different set-points.

The remainder of this paper is structured as follows. Section 2 introduces SRS
background and fault detection methodology used in this study. SVM classifier and
PCA are explained in section 3. The models structure and training sensitivity are
studied in Section 4. Afterwards, robustness analysis, and comparison of the classifiers
are introduced in section 5. In Section 10, the results of the work are concluded.

2 Supermarket refrigeration systems
Supermarket refrigeration systems normally use the vapor-compression refrigeration cy-
cle in which heat is moved from a low temperature space to higher temperature ambient
air. The heat transferring in the cycle leads to phase change from liquid to vapor and
vice versa. Fig. B.1 represents an example of SRS which is later used in this paper.
Nomenclature related to the figure is described in Table B.1. SRS might require several
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controllers for evaporation units and condensing units depending on the supermarket
requirements and conditions. In Fig. B.1, the system has two controllers that control
condensing and evaporation side separately. In SRS, an evaporation unit controller
(Ctrlevap) controls superheat temperature (Tsh) or suction temperature (Tsuc) to regu-
late the evaporator performance. A condensing unit controller (Ctrlcond) controls cold
room temperature by adjusting compressor work.

The evaporator fan plays a key role in transferring heat from the goods to the evap-
orator surface and consequently the refrigerant. Moreover, it circulates the air in the
cold room to ensure an even temperature. An evaporator fan anomaly leads to uneven
room temperature, wrong temperature readings by the sensors, higher power consump-
tion, and finally food spoilage. Therefor, early fault detection algorithm is demanded
to prevent those consequences. For an AFDD algorithm, data from a condensing unit
is required.

Fig. B.1: Schematic of the laboratories’ SRS [4].

In this study, data of the normal condition is called non-faulty, and data when the
fan is defective is called faulty data. Variations in the data are necessary to ensure
that the developed fault detection model is robust against variations in refrigeration
system dynamics. Such variations include evaporators size, air temperature set-points
and suction super-heat. In this work, cooling load varied from 6 to 17 kW, the set-point
is changed from 1 to 12 °C, and as a consequence, the compressor speed varied from 33
to 80 Hz. As seen in Fig B.1, the laboratory set up has two evaporator fans. Fan fault
is emulated in the laboratory set up so as one out of two evaporator fans is defective.
In all data sets 14 measurements are logged from Ctrlcond which are relevant to show
the system characteristics. The collected data is fed into the AFDD algorithm, which
is described below.
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Table B.1: Symbols used in the Fig. B.1 [4].

Symbols description SI unit
Troom cooling room temperature (sensor) [°C]
Tamb ambient temperature (sensor) [°C]

Tsuc1,2 suction temperature (sensor) [°C]
T0 saturation evaporation (sensor) [°C]

Psuc suction pressure (sensor) [Pa]
Tdis discharge temperature (sensor) [°C]
Pdis discharge pressure (sensor) [Pa]

Tc saturated condensing temperature [°C]
Tret returned air temperature (Sensor) [°C]
Tsup supplied air temperature ( Sensor) [°C]
IF C converter current [A]
FC frequency converter [-]
Kṁ proportional mass flow rate [kg/m3s]

CtrlEvap evaporator controller [-]
CtrlCond condenser controller [-]

2.1 Fault detection methodology
In this paper, three different fault classifiers are presented: SVM classifier using all
available signals of relevance to the system characteristics, SVM classification using
signals selected by experts based on system knowledge, and PCA-SVM classification in
which PCA is used for feature extraction. Making a single fault detection algorithm
that is capable of handling system variations requires that the features that are most
important for detecting the fault are extracted from the data and normalized before
being passed to the classifier. In this paper, the feature extraction or signal selection
are tested both manually and automatically.

As for the second methodology, the most relevant signals are selected manually
by experts. Reducing the number of inputs can be effective both for recording the
data and also for classification computation. However, it is of course detrimental if
any information-rich signals are removed. In this work, the most relevant signals that
represent the system characteristics during fan fault detection are: Psuc, Tsh, compressor
speed (Vcpr), and proportional mass flow rate (Kṁ). Even though this methodology is
computationally more efficient than the one that used all signals, it is vastly dependent
on experts knowledge.

The last methodology is feeding all available signals to the PCA algorithm which
extracts the most important information of the data and reduces its dimensions. Af-
terward, the reduced-order data is classified by SVM. This methodology should enable
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a simpler classifier to distinguish between faulty and non-faulty data from a range of
systems with varying characteristics.

3 Methods

3.1 SVM classifier
Support Vector Machines is a type of supervised learning method used for classification
purposes. Let a set of data be given as D = {(xi, yi)|xi ∈ Rk, yi ∈ {−1, 1}}n

i=1 where k
is the dimension of the samples xi, yi is the corresponding class and n is the number of
the samples. If D is linearly separable, it is possible to select two parallel hyperplanes
that separate the two classes of data, such that the distance between them is as large
as possible. The region bounded by these two hyperplanes is called the margin, and
the maximum-margin hyperplane is the hyperplane that lies halfway between them, as
illustrated in Fig B.2. A hyperplane h is the set of points x ∈ Rk satisfying an equation
of the form

w · x + b = 0 (B.1)

where · is the standard vector dot product, w ∈ Rk (a.k.a. weights) is orthogonal to h,
and b ∈ Rk is an offset (a.k.a. bias). Notice that the two classes are separated by two
parallel hyperplanes h1 and h2 defined by

h1 : w · x + b = 1,

h2 : w · x + b = −1.

Since h1 and h2 are parallel, they share the same w, and the distance between them
is 2/∥w∥. The distance between h1 and h2 is thus maximized by solving the following
constrained optimization problem [12]:

min f(w) = ∥w∥
s.t.{

w · xi + b ≥ 1 if yi = 1
w · xi + b ≤ −1 if yi = −1

(B.2)

In SVM, the hyperplanes are typically represented via perceptrons parameterized by
the weight and bias vectors w as

H(xi) = sign(w · xi + b). (B.3)

The parameters are adjusted using an update rule in order to find the correct classifica-
tion for each sample. Here, the technique of Lagrange multipliers is used, allowing the
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Fig. B.2: Maximum margin (m) and optimal hyperplane.

minimization problem (B.2) to be rewritten as:

min W (α) = Σn
i=1 αi − 1

2

n∑
i

n∑
j

αiαjyiyjK(xi, xj)

s.t.
0 ≤ αi ≤ C∑

αiyi = 0

(B.4)

where αi ≥ 0, i = 1, . . . , n, are Lagrange multipliers, the constant C is a bound on the
multipliers determining how SVM deals with classification errors, and K : Rk ×Rk → R
is a so-called Kernel function. The parameter C is a trade-off between narrow and wide
margins. Selecting a too small value for C (corresponding to a wide margin) might
result in hyperplanes that can not classify a validation data set, whereas hyperplanes
resulting from too large C (narrow margin) might not handle noisy outliers well.

In some cases, the data set might not be linearly separable in its original represen-
tation. Then, it is often possible to transform the data by a kernel function such that
the classes become separable in the transformed representation. Several types of kernel
functions, such as polynomials, Radial Basis Functions (RBF), etc. may be used. A
popular choice is the RBF kernel function, described by

K(xi, xj) = e−γ∥xi−xj∥2
(B.5)

where the bandwidth parameter γ is inverse of the variance of standardized samples
which scales the distance between two samples. There are a number of heuristics to
determine C and γ as hyperparameters of the optimization, which can be found in [12].

3.2 PCA
It is often the case in practice that some of the features are correlated with the others,
thus providing less useful information for the classification. Principal Component Anal-
ysis (PCA) is a method that analyzes high dimensional data and identifies correlations
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among the data entries (features). PCA then projects the data down to a lower dimen-
sional representation in which important relations between features, and other relevant
information of the data set are preserved, but, unimportant information is discarded.
The basis of this new representation, called principal components, is orthogonal by con-
struction, as it is the span of eigenvectors of the covariance matrix of D. The main
advantage of PCA in this particular application is that it removes correlated features
that do not make any contribution to the classification.

Correlation among the parameters can be identified by computing the covariance
matrix Rxx(D) ∈ Rk × Rk. From Rxx(D), we compute the k eigenvectors ν needed
for projecting the k-dimensional samples onto the subspace spanned by the principal
components. The eigenvectors are sorted by descending eigenvalues, and only the eigen-
vectors corresponding to the largest m < k eigenvalues are used for the projection.
Finally, a new data set Dpca can be obtained from the original data by computing

x̃i = V (V T V )−1V T xsi , i = 1, . . . , n (B.6)

with V = [ν1 · · · νm] ∈ Rk×m, yielding x̃i ∈ span{ν1, . . . , νm} for all i = 1, . . . , n.

4 Model training
As outlined above, first, an SVM classifier is designed for 14D and 4D input data.
Then, the PCA-SVM algorithm is presented and compared with the two other proposed
classifiers. The sensitivity of the classifiers during training phase is investigated against
different sample rates and different data lengths (number of samples).

4.1 Training and Validation
In this work, data is classified into two categories of faulty and non-faulty. Fourteen
measurements are logged from the condensing unit controller and fed into SVM when all
information of the system is used. In this data set, neither human nor an algorithm se-
lects the relevant signals. The SVM classifier used RBF kernel function with optimized
hyperparameters of C = 10 and γ = 1. The result of SVM using 14D data represents
98% accuracy for training data and 100% accuracy for validation data classification.
Afterwards, four of the aforementioned measurements are selected and supplied into a
SVM algorithm. 98% classification accuracy in the training phase, and 100% classifica-
tion accuracy in the validation phase is obtained. In this case, RBF kernel function is
used with optimized hyperparameters, C = 100 and γ = 1.

As for the third algorithm, PCA is used to obtain the most correlated features. The
scree plot in Fig. B.3 illustrates the variation that each principal component accounts
for in percentage. Therefore, the first two principal components, which has the most
variance, is selected. Fig. B.4, represents the training data classification using PCA-
SVM classifier. The contour maps shows the choice of the decision boundary between
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the two classes of data using Radial basis kernel function (RBF), γ = 1, and C = 100.
Fig. B.4, represents the training data classification using PCA-SVM classifier. The

Fig. B.3: The percentage of variation that each Principal component accounts for

contour maps shows the choice of the decision boundary between the two classes of
data using RBF kernel function, γ = 1, and C = 100. The faulty data is bounded

Fig. B.4: The top plot, training result of PCA-SVM model. The bottom plot, the validation result of
PCA-SVM.

by yellow surface and the boundary become loser until a surface that belongs to the
non-faulty data indicated by purple. Here, the data could have been classified with
looser boundaries or more hyperplanes. However, the more restricted margin is selected
due to two reasons. First, as seen in Fig. B.4, in the top, the non-faulty data is more
varied and distributed differently. Therefore, misclassification of unseen non-faulty data
is avoided by more restriction for faulty data. Secondly, the smallest false positive
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rate is ensured, which is desired in the industry. In the bottom plot of Fig. B.4, the
validation data set is transformed into the principal components of the training data,
which causes the different positions of the validation data compared to the training
data. The classifier detects the training non-faulty data with 98% accuracy and faulty
data with 97% accuracy. The validation data is classified with 100% accuracy for both
faulty and non-faulty data. The validation result was more accurate than the training
due to the distribution and overlap of the training data, which are less prominent in the
validation data. The distribution of the training data is due to using data of different
operation conditions while the validation set is taken only from one operating condition.

4.2 Training data sensitivity
In SVM, the number of samples to be used depends on the number of input mea-
surements, meaning that if higher dimensional data is selected, the data set should be
increased as well to achieve better performance. However, as the computation efficiency
is important in this work, further tests with longer data set is ignored. Instead, 4D data
with different lengths are tested for the SVM training.

In each test, training data with different sample rates are proposed. Training data is
down-sampled from 1 Hz to 0.3, 0.1, 0.03, and 0.01 Hz. Here, it is not possible to analyze
lower sample rates than 0.01 Hz, due to the limited data length. Table B.2 represents
the accuracy of the SVM classification to the various training data. In this analysis a
specific validation data set is used which has different operating condition than training
data. Remark, in this table, the length of the data is the number of samples of each
class.

Table B.2: Training data length and resolution analysis

Length Sample rate [Hz] Training time (s) Accuracy [%]
1 0.57 93

1800 0.1 0.65 93
0.01 0.63 93

1 0.09 99
900 0.1 0.09 99

0.01 0.1 99
1 0.07 94

300 0.1 0.08 94
0.01 0.07 94

From Table B.2, it can be recognized that different sample rates do not have effect
neither on accuracy nor running time whereas data length has a considerable effect on
both the accuracy and running time. It is found that the best training data length is
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about 900 samples for each class of data. The number of samples need to be sufficient
enough to cover all information of the data. Therefore, an insufficient number of data
leads to misclassification. Moreover, the classifier needs to handle too many outliers if
it receives too large number of samples. In addition, by doubling the number of samples
the training time increased about 60%.

5 Robustness analysis
As mentioned in Section I, it is necessary to have an algorithm that is robust to different
system configurations and operating conditions. Therefore, robustness tests for SVM
and PCA-SVM classifiers are done. Note that in this section, data length is 900 samples
and sample rate is 1 Hz for the training set.

5.1 Validation data resolution
In this test the training and validation data have different sample rates. Validation data
with 1 Hz sample rate for all three classifiers obtained the same accuracy about 100%.
Then, the validation data is down-sampled from 1 Hz to 0.1 and 0.01 Hz. However,
the classification accuracy remains the same as using original data. The results shows
that SVM is a robust classifier against data resolution as the same results are obtained
after down-sampling of the original validation data. This test illustrates the validation
data is accurately classifiable independent of the data resolution. A classifier trained in
a specific sample rate can be used to classify the fault in a variety of RS with different
sample rates.

5.2 System variations
To investigate robustness towards RS variations, the validation data was changed by
adding noise, static perturbations (offset), and an operational disturbance as seen as
On/Off operation of the compressor in RS. Every type of test is done 20 times to
ensure the results. Table B.3, illustrates the classification results of system variations
tests. The changes to the data was exacerbated compared to data from the field to
ensure that the classifiers can handle a wide range of refrigeration systems. The noise
is random with normal distribution N (0, 2) and values ranged [-4, 4] °C. As shown on
Fig. B.5, when adding noise to the data, non-faulty and faulty data overlap in some of
the measurements and become harder to separate. Different system configurations and
operating conditions in SRS can be considered as perturbations of the data assuming
all or some of correlations between the measurements are preserved. On Fig. B.6, the
classifier’s results for perturbed data is shown. Here, random offset of the superheat
temperature in the range [-5 to -2]°C, and [2 to 12]°C is applied. In fact, perturbation
might not make a huge impact on the result when using PCA as long as correlation
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Fig. B.5: The top plot , noisy data example (fault occurs at sample no. 6300); at the bottom, Noisy
data classification using PCA-SVM.

of the data does not change. Comparing the classifiers results in Table B.3, the PCA-
SVM classifier is more robust against perturbed data or different operation conditions.
In SRS, when the temperature of the goods are on set-point, low cooling capacity is
required to keep the goods at the same temperature. Thus, the SRS operation mode
may alternate between stopped and running modes. A slow and periodic disturbance
has been added to the data to simulate On/Off mode of operation for the compressor
seen on Fig. B.7. Table B.3 represents better classification using PCA-SVM than two
other classifiers in the on/ off mode.
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Fig. B.6: Validation of perturbation test using PCA-SVM classifier.
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Fig. B.7: The top plot, an example of data when disturbance is added; the bottom plot, validation of
disturbance test using PCA-SVM.

6 Conclusion
In this study, it was shown that a SVM classifier can identify a fault in evaporation side
using data from condensing unit with high accuracy, in both training and validation
process, independent of the data resolution. It was shown that it is possible to do fault
detection on refrigeration systems using Machine learning with lower amount of expert
effort which is expensive and time consuming. Three models are proposed to classify
the data using SVM classifiers. The difference among these classifiers are their inputs
which were raw data from the controller for the first (14D) model, the most relevant
measurements for the second (4D) model, and PCA transformed data for the third
model. The classifiers are highly robust to different data sample rates as long as the
dynamics of the system is preserved. PCA-SVM can overcome the significant difficulties
that unseen data introduces for the classifiers such as noise, perturbation, disturbance
and different running modes. PCA-SVM is more robust against system variations and
about 25% more computationally efficient than SVM without dimension reduction.

Another advantage of the PCA-SVM algorithm is that it can be separated into two
parts; a PCA algorithm, and an SVM algorithm. PCA can be processed in the controller
hardware, and the transformed data with low dimensions can be sent to the third party
for the fault classification. Therefore, PCA-SVM can be considered as the most accurate
and cost-effective classifier among those three proposed classifiers.
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Table B.3: The classifiers robustness tests.

Algorithm Non faulty[%] Faulty[%] Run time[s]
N

oi
sy 14D SVM

4D SVM
PCA-SVM

98.5 -99.6
98 -100
98 -100

98 -99.4
98 -99.4
98 -99.6

0.31
0.24
0.25

Pe
rt

ur
be

d

14D SVM
4D SVM

PCA-SVM

89-100
99.2-100

100

97-100
99-100

100

0.32
0.24
0.23

O
n/

O
ff 14D SVM

4D SVM
PCA-SVM

50-60
55-60
85-86

53-60.5
54-61

95.5-96.4

0.33
0.25
0.25
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Abstract
The functionality of industrial refrigeration systems is important for environment-friendly
companies and organizations, since faulty systems can impact human health by lower-
ing food quality, cause pollution, and even lead to increased global warming. Therefore,
in this industry, there is a high demand among manufacturers for early and automatic
fault diagnosis. In this paper, different machine learning classifiers are tested to find
the best solution for diagnosing twenty faults possibly encountered in such systems. All
sensor faults and some relevant component faults are simulated in a high fidelity Mat-
lab/Simscape model of the system, which has previously been used for controller devel-
opment and verification. In this work, Convolutional Neural Networks, Support Vector
Machines (SVM), Principal Components Analysis-SVM, Linear Discriminant Analysis-
SVM, and Linear Discriminant Analysis classifiers are compared. The results indicate
that the fault detection reliability of the algorithms highly depends on how well the train-
ing data covers the operation regime. Furthermore, it is found that a well-trained SVM
can simultaneously classify twenty types of fault with 95% accuracy when the verification
data is taken from different system configurations.

1 Introduction
Machine Learning (ML) is a common term for many processing methods used for data-
driven tasks. The main intention of ML is to enable computers to learn, predict, or
decide on an unseen data without human assistance [1]. In the 2010s, rapid development
of processors, IoT, and an increasing amount of generated data paved the way for large
improvements in ML capabilities. Thus, the popularity of ML increased exponentially
in many industries. Machine learning is used in various contexts, such as computer
vision, text classification, fault detection, language processing, image recognition, and
so forth.

The idea of using ML for fault detection and diagnosis dates back to the 1980s where
the existing ML methods were not as efficient as specialized experts. However, the tech-
nologies have been improved, and as of today, the availability of powerful programming
tools and algorithms for self-learning allow computers to make strategic decisions and
even diagnose new events [2].

In particular, ML-based methods have been studied for fault detection and diagnosis
(FDD) in different fields with promising results. For instance, ML is used for fault
detection in brushless synchronous generators in [3], in water distribution network [4], in
age intelligence systems [5], and in high-temperature super conducting DC power cables
[6]. In [7], several supervised ML algorithms are compared for FDD in photovoltaic
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systems. In [7], data from non-faulty condition and five different faulty conditions
are used both for training and test; and the results confirm that supervised learning
algorithms can be used for fault detection and ease the FDD procedure. Moreover,
machine learning models are compared for sensor fault detection in [8], in which five
types of sensor faults are emulated, namely, drift, bias, precision degradation, spike, and
stuck faults.

For fault detection in office building systems, various data mining methods, in par-
ticular, Principal Component Analysis (PCA), Linear Discriminant Analysis (LDA),
Kernelized Discriminant Analysis (KDA), semi-supervised LDA, and semi-supervised
KDA have been compared in [9]. In [10], different component faults in a rotating ma-
chine are classified using a Convolutional Neural Network (CNN) algorithm. According
to [11], in many industrial applications, good system models are difficult or even im-
possible to obtain due to the system’s complexity or large numbers of configurations
involved in the production process. The refrigeration industry is not an exception, as
the system configuration varies based on different owners’ demands. Hence, model based
FDD is often sensitive to model parameters in such a way that small changes in the
system may lead to a poor fault detection response. In such cases, ML can be a viable
approach to handling unseen situations when well trained.

In [12], a CNN model is used for evaporator fan fault detection in supermarket
refrigeration systems. The same system configuration and information are used in [13]
to classify the same fault and investigate the robustness of the fault detection model.
However, instead of CNN, shallow learning Support Vector Machines SVM and PCA-
SVM classifiers are used. In [14], SVM and PCA-SVM are studied for the detection of
8 type of faults in a simulated vapour-compression refrigeration system in which PCA-
SVM achieved a better result compared to SVM and back-propagation neural network.

In the refrigeration industry, good performance of a fault detection algorithm can be
defined as high classification accuracy, low computation time, and low false positive rate.
High classification accuracy ensures an accurate fault description for the technicians for
quick troubleshooting, while low computation time is important because it lowers the
detection time and the hardware cost. A low false positive rate increases the reliability
of the fault detection model and results in lower expenses regarding service call rate.
Therefore, it is essential to evaluate the FDD algorithms based on these factors.

Because of increasing usage of digitalization in refrigeration systems (RS), many
companies aim for improving existing FDD performance by utilising various data. As
mentioned above, FDD algorithms perform satisfactorily in many other applications;
thus, data driven FDD algorithms are selected and evaluated in this work. That is,
we evaluate and optimize various FDD algorithms for the purpose of selecting the best
classifier for use in RS industry applications.

The main contributions of this study is summarized below:

• A deep learning and several shallow learning classifiers are proposed for detecting
and diagnosing twenty types of faults in RS.
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• Importance of training data qualification regarding data variation and features
selection is illustrated.

• All of the proposed classifiers are compared regarding classification accuracy, com-
putation time and false positive rate.

• The best approach from an industrial perspective is proposed to detect a faulty
system and localize the fault.

In this study, all sensor faults and some component faults are simulated using a
high fidelity RS model. The model is already in use at Bitzer Electronics to develop
and verify control algorithms. Notice that we will restrict our attention to steady state
operating conditions, which are commonly encountered in industrial application such
as reefer containers, cold storage houses and so on. It is acknowledged that transient
operation is important in many applications as well, e.g., in supermarket refrigeration
systems. However, transient behavior presents its own set of unique challenges, and is
considered out of scope of this work.

The faults include positive and negative offsets in sensors as well as specific compo-
nent faults; the faults are detailed in section 2. Three classifiers, namely CNN, SVM,
and LDA, are compared to diagnose every selected fault. For pre-processing of the input
data LDA and PCA are compared.

The results indicate that the SVM classifier is the superior method, being able to
diagnose all classes with 100% classification accuracy except non-faulty and malfunction-
ing of expansion valve conditions which are diagnosed with 98% and 96% classification
accuracy, respectively. The LDA and LDA-SVM classifiers are capable of detecting
the faulty condition with 100% classification accuracy. However, these models have
poor performance regarding robustness as a significant drop in classification accuracy is
observed. Finally, CNN and PCA-SVM show a general lack in performance.

The remainder of this paper are structured as follows. First, refrigeration systems
background and specification, as well as data acquisition and its specification, are in-
troduced in section 2. Then, in section 3, the mathematical approaches of the classifiers
mentioned above are explained. Afterwards, the specification of each model and the
result of the classification is presented in section 4. Finally, the work is concluded in
section 10.

2 Background
In general, RS are used to cool down the goods inside of an insulated room, which is
called a cold room, by transferring the heat to the environment. Fig. C.1 illustrates a
RS in which the refrigerant runs through the pipes. In each refrigeration cycle, heat
is absorbed and dissipated. The compressor receives low pressure, low temperature
refrigerant gas and releases high pressure, high temperature gas to the inlet of the
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condenser. The condenser is responsible for dissipating the refrigerant heat to the
ambient environment, and finally gives out liquid refrigerant at high pressure while the
temperature decreases. Afterwards, an expansion valve decreases the pressure of the
refrigerant. Low pressure, low temperature refrigerant enters the evaporator pipes in
order to absorb the heat from the cold room environment. Thus, the refrigerant changes
phase from liquid to gas before reaching the compressor.

Defective components or sensors in RS lead to high power consumption, air pollu-
tion, wear and tear of the components, and/or food waste. RS have the best efficiency
when everything is nominal. Thus, when faults occur, the system might deviate from
the peak efficiency point. By some of the fault, the system runs outside of its permitted
envelope, some of the faults lead to wear and tear of the components due to high tem-
perature, too little lubrication, and too high pressure on the components. Late fault
detection may cause the temperature of the refrigerated goods to exceed the permitted
limits. Therefore, early fault detection in RS ensures maintaining the required qual-
ity of refrigerated goods such as food products or medicine, and preventing excessive
maintenance and spoilage cost.

The high fidelity model used by Bitzer Electronics is presented in Fig. C.2. In this
model, a two-stage semi-hermetic reciprocating compressor is simulated with operating
speed in the range 25-87 Hz. Here, compressor cooling capacity (Vcpr) is defined as
compressor operating speed in percentage. Therefore, compressor speed under 25 Hz
and full speed operation of 87 Hz are defined as 0% and 100% compressor cooling ca-
pacity, respectively. The refrigerant type is R134a, and an electrical expansion valve
is simulated. Maximum cooling capacity of the cold room is 17 kW at 10 °C ambient
temperature (Tamb) and 5 °C cold room temperature (Troom). The controller is designed
so as it controls over opening degree of expansion valve (vexp) using superheat tem-
perature (Tsh) measurements as an input. Tsh is the difference between the refrigerant
evaporation temperature (T0) and suction gas temperature (Tsuc). In addition, Vcpr,
evaporator fan speed (Vevap), condenser fan speed (Vcond), are controlled using the men-
tioned controller inputs in Fig. C.2. In this paper the supply temperature (Tsup) is the
same as cold room temperature (Troom) and used as set point in the simulation model.
Thus, set point is the temperature of the air after transferring heat to the refrigerant.

In Fig. C.2, the main components of the model are presented with grey blocks.
The red blocks indicate some of the fault inputs which are added to the corresponding
parameters. Twenty types of faults are simulated, including positive and negative offsets
in sensors as well as a number of component faults; the faults are described in Table
C.1. When collecting a data set, the model is first run with no effect of the red blocks,
thus producing non-faulty data. After logging sufficient non-faulty samples, one fault
is applied to the model and data collection continues. Simulation of some of the faults
such as pressure sensors offset and Tdis sensor offset, are not visible in Fig. C.2, since
they are simulated inside of the relevant block diagrams.
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Fig. C.1: Schematic of a refrigeration system

2.1 Data acquisition
Machine learning models learn based on input information. Thus, the quality of training
data is an essential factor. The training data should contain sufficient information to
have a generic algorithm to make a correct decision when receiving a new observation.
Using simulated data for training phase can, in fact, improve the verification result since
it firstly allows data collection in different operating conditions, and secondly, data of
specific faults can be correctly labeled, and finally, we ensure that the training data is
not taken from an already faulty system with unwanted or unknown fault.

To prevent overfitting the model, the input data needs to be taken from various
operating conditions in an acceptable range and under the same operation conditions
for each fault. That is, the model has to be able to deal with operational variations.
Generally, in RS, operations vary based on several factors, such as required temperature
set point, compressor cooling capacity or heat load, compressor type, ambient tempera-
ture, etc. In this work, various data sets from different operating conditions are taken as
training data. As shown in Fig. C.3, the set point is changed in the range 0 to 15 °C, and
the heat load in the cooling room varies in the range 3 to 20 kW to obtain compressor
speeds variation. Another data set is taken in which, besides set point and heat load,
the Tamb is varied; therefore, the data is referred to as having large operation condition
range. In this data set, Tamb is varied in the range 10 to 30 °C to investigate how
the classification accuracy differs if training data includes more variations. Then, the
verification data set is collected using different operating conditions from the training
conditions to investigate how the model performs classification in an unseen operation
condition, see the blue block in Fig. C.3.

Each fault in the system is considered a class. As introduced in Table C.1, twenty
faults are taken into account in this work which are all observed in the real systems.
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Table C.1: fault types and descriptions

Label Component Fault limits
1 Tsuc sensors positive offset 2°C more than expected value
2 Tsup sensors positive offset 2°C more than expected value
3 Tret sensors positive offset 2°C more than expected value
4 Tdis sensors positive offset 2°C more than expected value
5 Pdis sensor positive offset 100000 Pa more than expected value
6 Psuc sensor positive offset 20000 Pa more than expected value
7 compressor low less than 80% of the

performance expected mass flow
8 loose more than 120% of the

expansion valve commanded opening degree
9 evaporator fan less than 80% of the

low performance commanded fan speed
10 condenser fan less than 80% of the

low performance commanded fan speed
11 Tsuc sensors negative offset 2°C less than expected value
12 Tsup sensors negative offset 2°C less than expected value
13 Tret sensors negative offset 2°C less than expected value
14 Tdis sensors negative offset 2°C less than expected value
15 Pdis sensor negative offset 100000 Pa less than expected value
16 Psuc sensor negative offset 20000 Pa less than expected value
17 broken less than 20% of the

compressor expected mass flow
18 blocked less than 80% of the

expansion valve commanded opening degree
19 broken less than 20% of the

evaporator fan commanded fan speed
20 blocked less than 20% of the

condenser fan commanded fan speed
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Fig. C.2: The grey blocks indicate the main components of the RS. The red blocks are the faults or
offsets that can be applied to each variable.

Therefore, twenty-one classes are studied, including non-faulty condition. In particu-
lar, the expansion valve faults are modeled as wrong valve positions compared to the
command signal. In fault 8, the actual valve position is 120 % of the command signal,
while in fault 18, the valve opens 80% of the command signal. Fig. C.4 represents four
examples of data sets taken from the same model and under the same conditions. These
examples represent a non-faulty condition, a suction pressure sensor fault with 0.2 bar
positive offset indicating fault 6, a loose expansion valve fault where it reacts 20% more
than the commanded value from the controller indicating fault 8, and a blocked expan-
sion valve that reacts 20% less than the commanded value. During data acquisition, the
model is run in non-faulty condition until sample 6000. Then, each fault is introduced
from sample 6001 to 12000 as seen in Fig. C.4. It is observed that in some cases, such
as fault 8, the data looks very similar to some of the other faulty or non-faulty data.
Changes in condensing temperature (TC) is compensated by condenser fan work, be-
cause there is a feedback control on condenser fan to keep constant pressure relative to
Tamb and the controller controls Vcpr based on Tsup. Thus, it is hard to observe any vi-
sual changes in the data characteristics during steady state response. However, in some
other cases, the fault affects the controller response immediately, and the changes can
be observed in the data easily. For example, fault 6, which is shown in Fig. C.4, clearly
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Fig. C.3: An overview of data collection and ML setup. The red section indicates the training phase
where data is collected and used for training of the ML model. The blue section shows verification data
specification and classification.

gives rise to variations in Tdis, and Vcpr. The compressor works based on the controller
command. In the case of fault 6, ρ and/or Psuc which are fed into the controller are
measurements of the faulty sensor. Therefore, the compressor behavior is based on the
faulty sensor measurement. However, as the real Psuc is less than required, it causes
drop in mass flow rate. In Fig. C.2, the Psuc offset is applied only to the sensor reading.
The controller controls both expansion valve opening degree and compressor speed to
reach a desired pressure, and when the reading is positively offset the controller must
lower the actual suction pressure to reach the desired reading.

2.2 Data specification and dimensionality reduction
The idea behind dimensionality reduction techniques is to remove dependent and re-
dundant features from original data by projecting data to a lower-dimensional space,
which holds only essential information. These approaches deal with noisy data and
reduce the computation load for classification purposes [13]. In this work, the input
data has 14 feature vectors or dimensions, including sensor signals, and some of the
variables from RS controller, including superheat temperature, saturated evaporation
temperature, compressor cooling capacity/speed, condenser fan speed, and vapour den-
sity. Statistical approaches such as PCA and LDA are used to reduce the input data
dimensions before passing them through the classifiers. In this paper, all transient part
of the data is removed, both for training and validation data. The 14-dimensional data
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Fig. C.4: Four examples of data set from different classes which have the same system configuration.
The set point to Tsup = Troom is set to 7 °C, heat load in the cooling room is 13 kW at the ambient
temperature of 25 °C.

is reduced to 2-dimensional data using PCA as the input to the SVM. LDA is also used
for dimensionality reduction and transfers the data into a 6-dimensional data set before
sending the data into the SVM classifier. Moreover, CNN and SVM are also applied
to the 14-dimensional data set. For SVM and LDA classification, each class of data
contains 1200 samples, and for the CNN classifier, 18000 samples with a sample rate of
1 Hz. Remark that LDA and SVM are shallow learning neural networks which, as an
advantage, do not require as many samples as CNN. Too many samples result in too
high computation load and low classification accuracy. As described in 2.1, the training
data of each class contains various RS operating conditions. These varieties prevent
overfitting and increase the model’s capability for the classification of unseen operating
conditions.

3 Methods
SVM, LDA, and CNN are all supervised learning methods which are sub-fields of the
linear classifiers [1]. Supervised ML classifiers categorize a new data set using a pre-
trained model. Thus, the model is first trained using input data and defined labels.
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CNN is a deep learning classifier commonly used for image processing purposes. A
CNN is comprised of two phases of feature extraction and classification. The input
data consists of feature vectors χϕ ∈ Rn×1, ϕ = 1, . . . , c which are gathered in data
matrices Xκ ∈ Rn×c, one for each class κ, κ = 1, . . . , ν. The numbers n = nκ and c
quantify the number of samples in each class and the number of features, respectively.
For convenience, it is assumed that all the data matrices have the same dimensions,
although this is not a strict requirement.

In the feature extraction phase, the CNN makes use of so-called neurons which take
data matrices Xκ as input and return (neuron) output yk

κ ∈ Rn′×c′
, k = 1, . . . , S, where

S is the number of neurons (see Fig. C.5). Each neuron has a weight matrix W k ∈ Rn̄×c̄

and a bias matrix bk ∈ Rn̄×c̄ associated with it. For each κ, Xκ is partitioned into n′c′

(possibly overlapping) submatrices (xκ)ij ∈ Rn̄×c̄, i = 1, . . . , n′, j = 1, . . . , c′. Then the
neuron output yk

κ is a matrix whose entries are defined as:

(yk
κ)ij = f(1T (W k ⊙ (xκ)ij − bk)1) (C.1)

where ⊙ denote element-wise multiplication of matrices, 1 denotes a vector of ones,
and f : R → R is an activation function.

It is noted that the size n̄× c̄ and number S of W k’s are hyper-parameters, which can
be tuned during the design of the CNN model to optimally filter different information
of the input.

 ..
.

Fig. C.5: A feature extraction layer of CNN, a sub-matrix (xκ)ij is convolved with each weight matrix
W k, resulting in a number of matrices as the output of the layer.

As illustrated in Fig. C.6, the output of the feature extraction phase contains the
essential information of the input data. This output is then vectorized as Y 0 = col[yk

κ] ∈
Rn′c′Sν×1 before being used as input to the classification phase, which is a fully con-
nected Multi-layer Perceptron, see [15], and [16] with NMLP fully connected layers. The
output vector of each MLP layer Y l ∈ Rnl×1 is computed recursively as

Y l = f̂(Wl Y l−1 + bl), l = 1, . . . , NMLP (C.2)
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where Wl ∈ Rnl×nl−1 is a layer weight matrix, bl ∈ Rnl×1 is a bias vector, f̂ : Rnl → Rnl

is the l’th layer’s neuron activation function, and nNMLP
= ν.

The output ŷ ∈ Rν of the CNN is generated by the so-called Softmax activation
function where the κth coordinate of ŷ is given by:

ŷκ =
exp
(
Y NMLP

κ

)∑ν
j=1 exp

(
Y NMLP

j

) (C.3)

with Y NMLP
κ being the κth coordinate of Y NMLP .

Here, it is noted that since the CNN output is normalized (
∑ν

κ=1 ŷκ = 1), ŷκ may
be considered as the probability of a new input X belonging to class κ.
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Fig. C.6: General CNN structure for ν classes.

During the training process, the estimation of the classes are compared with the true
labels yκ using a loss function. The loss function is also a hyper parameter that needs
to be determined for the model; a common loss function is cross entropy:

L = −
ν∑

κ=1
yκ ln(ŷκ). (C.4)

The training process aims at adjusting the weights in such a way that better predic-
tion of the correct class is achieved. In other words, the minimum loss is obtained.

Minimization of the loss function can be done using different optimization techniques;
the most common being Backpropagation [16], which is a variant of gradient descent.
Once the weights have been adjusted to yield the optimal output for a validation data
set, this model can be used to classify unlabeled, new data.



140 Paper C.

3.1 LDA classifier
Linear discriminant analysis (LDA) can be used both for dimensionality reduction and
classification purposes. In LDA, as it is depicted in Fig. C.7, linear separation of classes
is done after projecting data onto another space. LDA seeks a large separation between
transformed classes compared to the original one after the dimension of the transformed
data is reduced. A transformation matrix is obtained by use of the between-classes
variance and the variance within each class [16].

V1

Fig. C.7: LDA visualisation for dimensionality reduction from two to one-dimensional space.

The variance between classes SB ∈ Rc×c is calculated as follows:

SB =
ν∑

κ=1
(µκ − µ)T (µκ − µ) (C.5)

where µκ ∈ R1×c is the mean value of class κ, and µ ∈ R1×c is mean of all µκ. After-
wards, the within-class variance Ss ∈ Rc×c is calculated by

Ss =
ν∑

κ=1

n∑
j=1

((Xκ)j − µκ)T ((Xκ)j − µκ) (C.6)

where (Xκ)j is the jth row (or sample) in Xκ.
Ss and SB are used to find the transformation matrix Ω ∈ Rc×c defined as

Ω = S−1
s SB (C.7)

Afterwards, this transformation matrix is used to generate data in another space in
which the classes are linearly separable. In order to reduce the dimensions of the data
in the new space, eigenvectors and eigenvalues of Ω are obtained. The eigenvectors
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with higher eigenvalues carry more information of the data distribution [17]. Order
the eigenvalues of Ω in decreasing order λ1 ≥ λ2 ≥ · · · ≥ λc, choose the first α ≤ c
corresponding eigenvectors and organize them in a new matrix V = [v1 v2 · · · vα] ∈ Rc×α.
The lower-dimensional samples rj ∈ R1×α, j = 1, . . . , n in class κ are then the rows of
the matrix product XκV .

3.2 SVM classifier
Support vector machine (SVM) is a supervised machine learning method and linear
classifier which classifies data into two or more classes. In the sequel we focus on the
case of two classes.

Consider the two classes Xκ, κ = 1, 2 containing the samples as rows and set yj = −1
or yj = 1 if xj ∈ R1×c is a row in X1 or a row in X2, respectively. Assume that the two
classes are linearly separable, that is, the samples of each class can be separated by a
(linear) hyper plane. Then there exists a hyper plane

H = {x ∈ Rc | xwT + b = 0}

with weight w ∈ R1×c and bias b ∈ R such that 1/||w|| is the distance from H to
the nearest sample in class 1 and class 2. These nearest samples are usually called
support vectors (see Fig. C.8). Moreover, w and b may be found as the solution to the
optimisation problem

min
w,b

1
2∥w∥2 (C.8a)

s.t.
yj(xjwT + b) ≥ 1, j = 1, . . . , n (C.8b)

H

Support vectors
     in class 1,    = -1
     in class 2,    = 1

outlier

Fig. C.8: Finding a classification hyperplane.

The optimal (or hard) margin (that is, 1/||w|| with w the solution to (C.8)) may
not always lead to the best result when feeding unseen data to the model. The optimal
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margin might result in overfitting or margin violations. In particular, outliers can fall
into the wrong class and be misclassified [18]. In practice, the classifier is allowed to
do small misclassifications during the training, which is called soft margin (shown in
Fig. C.8). To do so, a slack variable ζ is added to the optimization problems:

min
w,b,ζ

1
2∥w∥2 + C

n∑
j=1

ζj (C.9a)

s.t.
yj(xjwT + b) ≥ 1 − ζj (C.9b)
ζj ≥ 0, j = 1, . . . , n (C.9c)

where C is a hyper parameter that determines the size of the allowed misclassification.
The size of the parameter C is tuned by software such that the classification accuracy
of unseen data is high.

In many classification problems a linear classification is not possible. The kernel
trick is a method for dealing with this case. It yields a transformation of the input
space, that is the space which the samples belong to, into another higher dimensional
space, in which the samples are linearly separable [18]. This new space is typically called
the feature space. The kernel trick relies on the use of kernel function. In this work we
consider a special class of kernel function, called the Gaussian Radial Basis Functions
(GRBF) given by

Φ(x, x′) = exp
(
−γ ∥ x − x′ ∥2) (C.10)

The hyper parameter γ > 0 determines the influence of each sample on selecting the
hyper plane during training. It should be noted that choosing γ too big results in
overfitting and choosing γ too small leads to under-fitting of the model [16].

3.3 Multi-class classification
In the case of more than two classes, the problem can be solved using two approaches.
The first one is to consider each class against the rest of the classes and is called One
Versus the Rest (OVR). For the model training using OVR, one binary classifier is used
for each class against all the other classes as the second category. Therefore, for a data
set including ν classes, ν binary classifiers are created. For unseen data classification,
each classifier is tested to determine to which class the new sample belongs. However,
in many cases, the result of OVR is inconsistent as the sample can belong to either
more than one class or none of them, illustrated as the gray stars in Fig. C.9. Since,
OVR picks one class against all other classes together, the number of samples in the
corresponding class is typically a lot fewer than the rest of the classes. Therefore, the
big difference between the number of samples often impacts the decision boundary [16].
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OVO OVR

Fig. C.9: multi-class data classification using OVR at the left and OVO at the right.

The second multi-class classification approach takes each class versus another and
is called the One Versus One (OVO) approach. Thus, for each pair of classes, one
classifier is trained. Finally, ν(ν−1)

2 classifiers determine each class boundaries as shown
in Fig. C.9.

The OVO approach is not as computationally effective as OVR due to using more
classifiers. Moreover, the OVO approach has a tendency to overfit [19]. However, in the
end, a certain amount of trial and error is unavoidable in selecting a multi-class SVM
classifier, as it depends on the input data and feature space.

4 Experiments
In this work, PCA and LDA are built in Python for dimensionality reduction purposes.
It is advantageous to use lower-dimensional input data if it reduces the computation
time of the classification and/or increases accuracy by removing redundant information
in the data set such as noise, etc. This work tests and compares PCA-SVM and LDA-
SVM models to the SVM classifier with full-dimensional data. The algorithms are built
using the scikit-learn library in python which provides many efficient algorithms
in ML, dimensionality reduction and classification. In [20], the ways of implementing
aforementioned ML techniques in the scikit-learn library are described. In this work,
the label -1 is assigned to non-faulty data, while other labels are specified in Table C.1.
Moreover, the classifiers are fed with two sets of training data which are described in
section 2, in order to evaluate the qualification of the training data.

4.1 Full-dimensional classifiers
The input data used for the SVM model includes n = 1200 samples of 14 feature
vectors for each class. In addition, the input data contains samples from different
system configurations. Each sample is labelled with one of the labels in Table C.1. The
SVM classifier performs OVO classification using C = 1000, and γ = 0.01 (see section
3.2); the hyperparameters were found by trial-and-error. The result of classification is
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Fig. C.10: LDA and SVM response for classification of 21 classes.

represented in Fig. C.10. True labels are the labels assigned to each class during the
training phase, while Predicted labels refers to the prediction of the classifier during the
training process. Thus, the diagonal values represent correct classifications. In this test,
250 samples with 1 Hz sample rate are selected for prediction. The SVM result shows
high classification accuracy for most of the classes, and there are no false positives. At
93% accuracy, the broken compressor with label 17 in Table C.1 is the only fault that
is misclassified.

As mentioned in section 3, LDA can be used both for dimensionality reduction and
classification purposes. Here, LDA is used to classify all 21 classes of data while reducing
the dimensions of the input data from 14 to 5. As shown in Fig. C.10, the response of
the LDA classifier is very similar to SVM classification, exhibiting 100% classification
accuracy for most of the classes and no false positives. The only misclassification of
about 3% is the broken compressor, which is mistaken for either Psuc sensor negative
offset or broken evaporator fan.

CNN is a deep learning model and needs more samples compared to LDA or SVM. In
the CNN model experiment, the data set for each class contains 12000 samples of all 14
feature vectors. The classification response of the training is represented in Fig. C.11.
The CNN classifier obtained a total accuracy of 94% and could classify most of the
faults with 100% accuracy. The noticeable drawback is the false positive rate of 58%.
The non-faulty condition was misclassified as classes with labels 8 and 18, which are
both expansion valve malfunctions.

4.2 Reduced-dimension classifiers
In this part, PCA and LDA are used to reduce the input dimensionality. These ap-
proaches are investigated to see whether PCA or LDA can improve classification results.
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Fig. C.11: Training response of the CNN classifier.
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Fig. C.12: The first two principle components contain the most variation among all 14 principle
components.

In addition, it is vital to study whether low dimensional inputs can reduce training com-
putation time in the case of PCA and LDA.

After feeding data into PCA and transforming to the new space, it appears that the
first two dimensions of the transformed data contain more than 80% of the variations
in the new space, as seen in Fig. C.12. Therefore, the first two principal components
are used as the inputs to the SVM instead of 14-dimensional data. Fig. C.13 shows
the response of the PCA-SVM classifier with C = 1000, γ = 0.01, and OVO decision
function.

The result of PCA-SVM shows misclassification of most of the classes. PCA causes
classes to overlap as the most uncorrelated information is squeezed into the first two
principal components. The result of PCA-SVM classification is not satisfactory for
the multi-class classification even though it represents satisfactory results for binary
classification in [13].
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LDA is already used for classification, as shown in Fig. C.13. However, it can also be
used only for dimensionality reduction; then, the transformed lower dimensional data is
used in a classification algorithm such as SVM. The first five eigenvectors corresponding
to the first highest eigenvalues indicate that LDA reduces the input dimensions from
eleven to five. A LDA-SVM classifier is built using C = 1000, γ = 0.01, and OVO
decision function for the SVM part. The LDA-SVM classifier performs satisfactorily for
many of the classes shown in Fig. C.13. However, the model cannot easily distinguish the
Non-faulty, loose expansion valve fault, and blocked expansion valve fault. Therefore,
these three classes have low accuracy and a false positive rate of 18%, which is not a
satisfactory result.

PCA-SVM classification LDA-SVM classification
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Fig. C.13: PCA-SVM and LDA-SVM response for classifying 21 classes.

4.3 Model comparison
In this part, all five models described above are compared regarding input dimensions,
total accuracy, false positive rate, training time, and prediction time. Training time is
the computation time a model requires to be trained, including the time for dimension-
ality reduction in the cases where the input dimension is reduced. The prediction time
is the computation time that a trained model uses to classify a test data set. Here, test
data and training data are collected from the same system configuration and operation.
The results in Table C.2 represents the performance of the training process.

As seen in Table C.2, SVM and LDA achieved the best results, with high accuracy
and no false positives. However, the prediction time is relatively low for the LDA
classifier compared to SVM, PCA-SVM, and LDA-SVM. On the other hand, the CNN
classifier has the lowest prediction time, but the false positive rate is unacceptable.
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Table C.2: Comparison of different classifiers
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SVM 14 99.6% 0% 1.1 s 1 s
LDA 14 to 5 99.8% 0% 3.2 s 0.3 s
CNN 14 94% 68% 112.5 s 0.1 s

PCA-SVM 14 to 2 55.4% 24% 7.2 s 5.6 s
LDA-SVM 14 to 5 96.6% 18% 1 s 1.1 s

Table C.3: Robustness of classifiers against different operating conditions

model accuracy false positive prediction time
SVM 76% 92% 3.1 s
LDA 52% 100% 0.2 s

LDA-SVM 57% 100% 2.1 s

Therefore, LDA is found as the best model for multi-fault classification. Afterwards,
more investigation is done on SVM, LDA and LDA-SVM, which perform better during
the training phase.

4.4 The classifiers verification
In this part, the validation data is specified with a set point, heat load and ambient
temperature which is different from what are used for the training set. In this data set,
Tset is 4 °C, heat load is 13 kW and ambient temperature is 17 °C. Fig. C.14 shows the
response of SVM, LDA, and LDA-SVM classifier trained with the first training data
set, with variations in set point and heat load. The overview of the results in Table
C.3 indicates that even though the classifiers did a good job during the training and
test, they can not deal with the new data which are taken from a system in a new
operating condition. Therefore, the classification results are not satisfactory, especially
when looking at the false positive rate.

4.5 Effect of data variation
To deal with the challenge of misclassification of unseen data, a new training data set is
fed into the same model, which contains more excitation by varying the RS operation
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Fig. C.14: Three classification responses of validation data with different system operating condition.
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Fig. C.15: Higher classification accuracy after training with new training data for all three classifiers
comparing to Fig. C.14 .

around ambient temperature from 10 to 30 °C, set point from 0 to 12 °C, and heat load
from 3 to 18 kW. In addition, to obtain better results, all 14 feature vectors are tested to
see if one can affect misclassification. Thus, three features of input data, namely, Psuc,
compressor power consumption and density that were already used, are removed from
the training and validation data set as they adversely affect the classification accuracy.
The results are depicted in Fig. C.15. The overview of the results in Table C.4 shows
that the SVM classifier obtains more accurate results after training with more excited
training data and removing the three mentioned feature vectors. However, for the LDA-
SVM and LDA classifiers, the most accurate results are obtained when just the power
consumption of the compressor and density are removed. Using this adjustment, the
false positive percentage is improved a lot and SVM stands alone regarding the diagnosis
of all faults simultaneously with high accuracy.
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Table C.4: Robustness of classifiers after using qualified training data

model accuracy false positive prediction time
SVM 95% 4% 8.2 s
LDA 66% 0 0.2 s

LDA-SVM 69% 0% 9.1 s

5 Conclusion
In this work, different classifiers are compared to diagnose twenty types of faults simul-
taneously and non-faulty condition in the industrial RS. The training data is taken from
a simulation model which has been used in the development of system control in Bitzer.
First, five classifiers, namely CNN, SVM, LDA, LDA-SVM, and PCA-SVM are com-
pared. The training data contains information about the different systems operating
through variation of set point and heat load of the cooling room. The test results show
that CNN and PCA-SVM do not satisfactorily diagnose the faults. In addition, SVM,
LDA, and LDA-SVM can not properly deal with the verification data set taken from
different system operations than training data. On the other hand, training data with
more excitation can help the classification results when the new training data contains
the variations in ambient temperature, set point, and heat load. LDA and LDA-SVM
are improved regarding false positive rate to 0%, but these classifiers do not provide the
satisfactory classification results of the other classes.

It is seen that SVM has the highest classification accuracy of 95% with a 4% false
positive rate. The only class which SVM does not diagnose is the blocked expansion
valve, which is misclassified with the loose expansion valve. Therefore, even though
this fault is misclassified, we can still trust that the malfunctioning valve needs to be
checked by the technicians.

From an industrial point of view, it is very beneficial to have one classifier that can
diagnose twenty one classes. Moreover, the classifiers considered in this work can be
trained off-line. Off-line training may have two advantages. First, It is possible to train
the classifier with simulation data and use the trained classifier for classification of real
data to ensure that we do not train the classifier with the real data which are wrongly
labeled. Second, the trained classifier would be computationally lighter compared if the
training process were to be executed on embedded software as well. This is an advantage
when the capacity of the processor of typical refrigeration systems is considered. The
SVM model obtained the best classification accuracy at the algorithms tested. If a lower
false positive percentage is considered, LDA can be used with a 0% false positive rate
only for distinguishing the non-faulty class from the other faulty classes. Therefore,
the system could benefit from having two classifiers, to make the diagnosis result more
reliable. Before implementation of the classifier on real refrigeration systems, verification
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of the trained classifier by using real data from the field will be done in the future work.
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1 Corrections in Paper C
This appendix is referenced to Paper C. Here, some sections of Paper C are represented,
including the important corrections which are distinguished after the publication. The
corrections are included in Subsections 2.2, 4.5 and consequently, in Abstract, Introduc-
tion and Conclusion. Fig. C.15 and Table. C.4 are replaced with Fig. 16 and Table. 5
in this appendix. These corrections are notified to the publisher for further edits in the
article.

Data collection is conducted to record data for each class, including 20 classes of
faulty systems and one non-faulty system. After the publication of this work, we ob-
served that in the non-faulty data set, two feature vectors of ambient temperature and
setpoint temperature in Subsection 4.5 are swapped unintentionally compared to the
data sets for the other 20 classes. This mistake leads to recording non-faulty data in a
different space than the other classes and makes the non-faulty data have unique char-
acteristics compared to all faulty data sets. Therefore, it affects the results. Therefore,
the data is manipulated in the right order and the experiments of Paper C, Section 4.5.
are repeated. The corrections in Paper C are replaced by red marks as follows.

1.1 Corrections "Abstract"
The functionality of industrial refrigeration systems is important for environment-friendly
companies and organizations since faulty systems can impact human health by lowering
food quality, causing pollution, and even leading to increased global warming. Therefore,
in this industry, there is a high demand among manufacturers for early and automatic
fault diagnosis. In this paper, different machine learning classifiers are tested to find
the best solution for diagnosing twenty faults possibly encountered in such systems.
All sensor faults and some relevant component faults are simulated in a high-fidelity
Matlab/Simscape model of the system, which has previously been used for controller
development and verification. In this work, Convolutional Neural Networks, Support
Vector Machines (SVM), Principal Components Analysis SVM, Linear Discriminant
Analysis-SVM, and Linear Discriminant Analysis classifiers are compared. The results
indicate that the fault detection reliability of the algorithms highly depends on how
well the training data covers the operation regime. Furthermore, it is found that a well-
trained LDA-SVM can simultaneously classify 18 types of faults out of 20 with 100%
accuracy when the verification data is taken from different system configurations. The
overall accuracy of this classifier for 21 classes is 86%.

1.2 Corrections "Introduction"
Machine Learning (ML) is a common term for many processing methods used for data-
driven tasks. The main intention of ML is to enable computers to learn, predict, or
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decide on an unseen data without human assistance [1]. In the 2010s, rapid development
of processors, IoT, and an increasing amount of generated data paved the way for large
improvements in ML capabilities. Thus, the popularity of ML increased exponentially
in many industries. Machine learning is used in various contexts, such as computer
vision, text classification, fault detection, language processing, image recognition, and
so forth.

The idea of using ML for fault detection and diagnosis dates back to the 1980s where
the existing ML methods were not as efficient as specialized experts. However, the tech-
nologies have been improved, and as of today, the availability of powerful programming
tools and algorithms for self-learning allow computers to make strategic decisions and
even diagnose new events [2].

In particular, ML-based methods have been studied for fault detection and diagnosis
(FDD) in different fields with promising results. For instance, ML is used for fault
detection in brushless synchronous generators in [3], in water distribution network [4], in
age intelligence systems [5], and in high-temperature super conducting DC power cables
[6]. In [7], several supervised ML algorithms are compared for FDD in photovoltaic
systems. In [7], data from non-faulty condition and five different faulty conditions
are used both for training and test; and the results confirm that supervised learning
algorithms can be used for fault detection and ease the FDD procedure. Moreover,
machine learning models are compared for sensor fault detection in [8], in which five
types of sensor faults are emulated, namely, drift, bias, precision degradation, spike, and
stuck faults.

For fault detection in office building systems, various data mining methods, in par-
ticular, Principal Component Analysis (PCA), Linear Discriminant Analysis (LDA),
Kernelized Discriminant Analysis (KDA), semi-supervised LDA, and semi-supervised
KDA have been compared in [9]. In [10], different component faults in a rotating ma-
chine are classified using a Convolutional Neural Network (CNN) algorithm. According
to [11], in many industrial applications, good system models are difficult or even im-
possible to obtain due to the system’s complexity or large numbers of configurations
involved in the production process. The refrigeration industry is not an exception, as
the system configuration varies based on different owners’ demands. Hence, model based
FDD is often sensitive to model parameters in such a way that small changes in the
system may lead to a poor fault detection response. In such cases, ML can be a viable
approach to handling unseen situations when well trained.

In [12], a CNN model is used for evaporator fan fault detection in supermarket
refrigeration systems. The same system configuration and information are used in [13]
to classify the same fault and investigate the robustness of the fault detection model.
However, instead of CNN, shallow learning Support Vector Machines SVM and PCA-
SVM classifiers are used. In [14], SVM and PCA-SVM are studied for the detection of
8 type of faults in a simulated vapour-compression refrigeration system in which PCA-
SVM achieved a better result compared to SVM and back-propagation neural network.
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In the refrigeration industry, good performance of a fault detection algorithm can be
defined as high classification accuracy, low computation time, and low false positive rate.
High classification accuracy ensures an accurate fault description for the technicians for
quick troubleshooting, while low computation time is important because it lowers the
detection time and the hardware cost. A low false positive rate increases the reliability
of the fault detection model and results in lower expenses regarding service call rate.
Therefore, it is essential to evaluate the FDD algorithms based on these factors.

Because of increasing usage of digitalization in refrigeration systems (RS), many
companies aim for improving existing FDD performance by utilising various data. As
mentioned above, FDD algorithms perform satisfactorily in many other applications;
thus, data driven FDD algorithms are selected and evaluated in this work. That is,
we evaluate and optimize various FDD algorithms for the purpose of selecting the best
classifier for use in RS industry applications.

The main contributions of this study is summarized below:

• A deep learning and several shallow learning classifiers are proposed for detecting
and diagnosing twenty types of faults in RS.

• Importance of training data qualification regarding data variation and features
selection is illustrated.

• All of the proposed classifiers are compared regarding classification accuracy, com-
putation time and false positive rate.

• The best approach from an industrial perspective is proposed to detect a faulty
system and localize the fault.

In this study, all sensor faults and some component faults are simulated using a high-
fidelity RS model. The model is already in use at Bitzer Electronics to develop and verify
control algorithms. Notice that we will restrict our attention to steady state operating
conditions, which are commonly encountered in industrial application such as reefer
containers, cold storage houses and so on. It is acknowledged that transient operation
is important in many applications as well, e.g., in supermarket refrigeration systems.
However, transient behavior presents its own set of unique challenges, and is considered
out of scope of this work. The faults include positive and negative offsets in sensors as
well as specific component faults; the faults are detailed in section 2. Three classifiers,
namely CNN, SVM, and LDA, are compared to diagnose every selected fault. For pre-
processing of the input data LDA and PCA are compared. The results indicate that the
SVM classifier is the superior method considering the total classification accuracy of the
models, being able to diagnose 18 classes out of 21 with 100% classification accuracy,
while the non-faulty class is one of the classes that is misclassified with 70% false positive
rate. LDA-SVM can also classify 18 classes out of 21 with 100% accuracy, while the
non-faulty class is classified with 0% false positive rate, and all three misclassified classes
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are from faulty classes. Comparing the LDA classifier with the LDA-SVM and SVM, a
general lack in performance is observed when it is used for both dimensionality reduction
and classification.

The remainder of this paper are structured as follows. First, refrigeration systems
background and specification, as well as data acquisition and its specification, are in-
troduced in section 2. Then, in section 3, the mathematical approaches of the classifiers
mentioned above are explained. Afterwards, the specification of each model and the
result of the classification is presented in section 4. Finally, the work is concluded in
section 10.

1.3 Corrections "Data specification and dimensionality reduc-
tion"

The idea behind dimensionality reduction techniques is to remove dependent and redun-
dant features from original data by projecting data to a lower dimensional space, which
holds only essential information. These approaches deal with noisy data and reduce
the computation load for classification purposes [13]. In this work, two data sets are
used. The first input data set has 12 feature vectors or dimensions, including sensor
signals and some of the variables from RS controller, including superheat temperature,
saturated evaporation temperature, condenser fan speed, compressor power and vapour
density. Sections 4.1 to 4.4 covers several experiments using this data. Then in Section
4.5, another dataset with 14 feature vectors is used in which ambient temperature and
setpoint are added as 2 new feature vectors. Statistical approaches such as PCA and
LDA are used to reduce the input data dimensions before passing them through the
classifiers. In this paper, all transient part of the data is removed, both for training
and validation data. The original data dimensions are reduced to 2-dimensional data
using PCA as the input to the SVM. LDA is also used for dimensionality reduction
and transfers the data into a 6-dimensional data set before sending the data into the
SVM classifier. Moreover, CNN and SVM are also applied to the 12-dimensional data
set. For SVM and LDA classification, each class of data contains 1200 samples, and
for the CNN classifier, 18000 samples with a sample rate of 1 Hz. Remark that LDA
and SVM are shallow learning neural networks which, as an advantage, do not require
as many samples as CNN. Too many samples result in too high computation load and
low classification accuracy. As described in 2.1, the training data of each class contains
various RS operating conditions. These varieties prevent overfitting and increase the
model’s capability for the classification of unseen operating conditions.

1.4 Corrections "Effect of data variation"
To deal with the challenge of misclassification of unseen data, a new training data set is
fed into the same model, which contains more excitation by varying the RS operation
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Fig. 16: Higher classification accuracies using validation data for all three classifiers after training
with new training data comparing to Fig. C.14 .

around ambient temperature from 10 to 30 °C, set point from 0 to 12 °C, and heat
load from 3 to 18 kW. In addition, two new feature vectors, Tamb and Tset, are added
to the input data. To obtain better results, the effect of every feature vector is tested
to investigate if one can affect misclassification. Thus, three features of input data,
namely Tamb, density, and power consumption of the compressor, are removed from
the training and validation data sets as input to the three algorithms as they adversely
affect the classification accuracy. Finally, the hyperparameters are tuned to optimize
model performance. The results are depicted in Fig. C.15, and the optimized models
are specified below:

• SVM classifier is specified by OVO function, RBF kernel function, C = 1000 and
γ = 0.01. The input to this SVM is 11-dimensional, where Tamb, density and power
consumption of the compressor are removed from the original 14-dimensional data.

• LDA classifier uses six linear discriminants meaning that the data dimensions are
reduced from 11 to 6.

• LDA-SVM classifier is specified by OVO function, RBF kernel function, C = 1000
and γ = 0.01. The input to the LDA-SVM is 11-dimensional, the same as the
SVM classifier.

The overview of the results in Table 5 shows that the LDA-SVM classifier obtains more
accurate results after training with more excited training data using specified feature
vectors mentioned above. LDA-SVM model obtained a 0% false positive rate while SVM
classify the non-faulty data with 70% false positive rate, and LDA can classify the non-
faulty data with a 20% false positive rate. However, regardless of the non-faulty class,
the SVM model can diagnose 18 faults out of 20 with 100% accuracy simultaneously.
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Table 5: Comparison of classifiers after training the algorithm using more excited data

model accuracy false positive prediction time
SVM 87% 70% 0.4 s
LDA 81% 100% 0.3 s

LDA-SVM 86% 0% 1.5 s

1.5 Corrections "Conclusion"
In this work, different classifiers are compared to diagnose twenty types of faults si-
multaneously and non-faulty condition in the industrial RS. The training data is taken
from a simulation model which has been used in the development of system control in
Bitzer. First, five classifiers, namely CNN, SVM, LDA, LDA-SVM, and PCA-SVM are
compared. The training data contains information about the different systems operat-
ing through variation of set point and heat load of the cooling room. The test results
show that CNN and PCA-SVM do not satisfactorily diagnose the faults. In addition,
SVM, LDA, and LDA-SVM cannot properly deal with the verification data set taken
from different system operations than training data. On the other hand, training data
with more excitations can help the classification results when the new training data
contains the variations in ambient temperature, set point, and heat load. In general,
the performance of all classifiers is improved using the more excited data. Meanwhile,
LDA-SVM is significantly improved regarding false positive rate to 0% and diagnosing
17 types of faults out of 20 with 100% accuracy. It is seen that SVM has the highest
classification accuracy of 87% but with a high false positive rate. Regardless of the non-
faulty class, only two faulty classes, namely, blocked expansion valve fault and negative
offset of return temperature sensor, are misclassified with loose expansion valve fault
and evaporator fan low performance, respectively. From an industrial point of view, it
is very beneficial to have one classifier that can localize 18 different faults out of 20 in
RS. Moreover, the classifiers considered in this work can be trained off-line. Off-line
training may have two advantages. First, it is possible to train the classifier with sim-
ulation data and use the trained classifier for classification of real data to ensure that
we do not train the classifier with the real data which are wrongly labeled. Second, the
trained classifier would be computationally lighter compared if the training process were
to be executed on embedded software as well. This is an advantage when the capacity of
the processor of typical refrigeration systems is considered. The SVM model obtained
the most classification accuracy at the algorithms tested. If a lower false positive per-
centage is considered, LDA-SVM can be used with a 0% false positive rate only for
distinguishing the non-faulty class from the other faulty classes. Therefore, the system
could benefit from having two classifiers, to make the diagnosis result more reliable.
Before implementation of the classifier on real refrigeration systems, verification of the
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trained classifier by using real data from the field will be done in the future work.
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