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ABSTRACT

This thesis presents a model based approach to the program analysis of
real-time Java systems and the development of Java profiles supporting such
analyses. The goal of this work is to enable the development of safety-
critical embedded systems in high level modern languages; languages which
more elegantly capture the complexities of modern embedded systems. This
work is twofold and concerns both tool development and the design of a
real-time Java profile named Predictable Java. Throughout this project the
schedulability analysis tool SARTS is developed, and then improved.

The thesis is based on six primary papers: The first paper presents the
SARTS tool, a schedulability analysis tool, which among other things con-
sists of a translator from Java bytecode to timed automata. The second
paper presents design and implementations of the Predictable Java profile,
and a constructive criticism on the upcoming Safety Critical Java(SCJ) spec-
ification. In the fourth paper, the complete reconstruction of SCJ and its
predecessor the Real-Time Specification for Java(RTSJ), and the resulting
four simple profiles, is presented. The third paper presents an improvement
of SARTS is developed which includes the analysis of Java finalizers, made
possible by the earlier work on predictable Java. In the fifth paper, a lan-
guage for specifying abstract system specifications is designed, along with a
techniques for checking implementation relations and schedulability for the
full system; a step towards compositional schedulability analysis. The last
paper describes the current state and recent work on real-time Java.






DANSK SAMMENFATNING

Denne afhandling praesenterer en modelbaseret tilgang til programanalyse
af real-tids systemer og udviklingen af Java profiler, der stgtter op om sa-
danne analyser. Malet med dette arbejde er at ggre det muligt at udvikle
sikkerhedskritiske systemer i moderne hgjniveausprog; sprog der mere ele-
gant kan handtere kompleksiteten af moderne indlejrede systemer. Dette
arbejde er todelt og omhandler bade udviklingen af vaerktgjer og et design af
en real-tids Java profil kaldt Predictable Java. Igennem hele projektet bliver
analyseveerktgjet SARTS udviklet og forbedret.

Denne afhandling bestar af 6 primeere artikler: Den fgrste artikel praesen-
terer SARTS wveerktgjet, et skeduleringsveerktaj der blandt andet bestéar af
oversaetter fra Java byte-code til tidsautomater. Den nzeste artikel praesen-
terer design og implementationer af profilen Predictable Java, som er et mod-
spil til den kommende Safety Critical Java(SCJ) specifikation. I en senere
artikel, bliver en komplet rekonstruktion af SCJ og dens forlgber Real-Time
Specification for Java(RTSJ), og fire simple profiler som er resultatet af denne
rekonstruktion, praesenteret. En artikel preesenterer en forbedring af SART'S,
som inkluderer analyse af Java finalizers, muliggjort af det tidligere arbejde
med Predictable Java. I en anden artikel bliver et sprog til abstrakte system-
specifikationer designet, sammen med teknikker til at tjekke implementer-
ingsrelationer og skedulerbarhed af det fulde system; et skridt imod kompo-
sitionel skedulerbarhedsanalyse. En sidste artikel preesenterer nuveerende og
tidligere arbejde med realtids Java.
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Chapter 1

Introduction

Embedded systems play an important role in most of the technology sur-
rounding us today. They are for example the invisible computer systems in
the traction control system of a modern car, the control system of a power
plant, the control systems of the water pumps and the power metres in our
houses. They also play a major role in small devices, such as hearing aids
and pace makers.

Embedded computers and software differ greatly from the personal com-
puter and office software we know and normally perceive as computer sys-
tems. Embedded computer systems are themselves a part of a larger system,
often referred to as an intelligent system or cyber physical system. Cyber
physical systems contain embedded subsystems, and thus depend largely on
their correct behaviour. Correct operation is especially important since most
embedded systems are mass produced, and have little or no possibility for
software updates or other maintenance after being deployed [86].

This puts great emphasis on software dependability because embedded
systems are often mass produced, they often carry out vital tasks inside
heavy machinery, medical equipment etc., and because embedded software
often cannot be updated as bugs are being detected. Therefore, even small
errors can be costly or endanger human lives; there are several historical
examples of how even subtle errors can cause disastrous situations:

Therac 25, 1985-1987 The Therac 25 radiation device, where a race-
condition, a subtle error triggered by people typing too fast, resulted in the
death and severe injuries of several people. A detailed investigation of the
software related errors is presented in [96].

Ariane 5 Flight 501, 1996 The maiden flight of the Ariane 5 rocket,
where the rocket exploded 39 seconds after lunch, delaying the project by
one year, costing approximately $400 million. This explosion was caused
by an error in the system: an exception raised during the conversion from



64bit floating point to a 16bit signed integer; [92] presents an analysis of the
Ariane 5 accident.

Car recalls Car companies are some of the major consumers of embedded
systems technology; it is estimated that up to 20% of the systems produced
are used by the car industry. Therefore it is not surprising that faulty systems
occasionally make it to the market, affecting a great number of people, and
such problems have in fact resulted in both problems and product recalls.
Some examples from the media include [84]:

e Toyota recalls 75,000 Prius hybrid cars in 2005. The engine would shut
down due to a software error [111],

e in 2003 There was an example of a computer crash in a BMW. Unfor-
tunately, the finance minister of Thailand was inside the car when it
happened, and a guard was forced to break a window to let him escape,
since the windows, the doors, and air conditioning did not work [151],

e in 2002, BMW recalls the 745i. The fuel pump would stop working if
the fuel tank was less than one third full,

e in 2001, 52,000 Jeeps were recalled due to software error.

Furthermore, a large recall of up to 6.5 million vehicles and the discontinua-
tion of eight models by Toyota in 2010 due to uncontrolled acceleration prob-
lems are suspected to be related to embedded system failure, although Toyota
is claiming it to be a problem with the door mat catching the pedals|3].

These are of course some of the most published cases of malfunctioning
systems. They are used here to illustrate how subtle bugs can manifest them-
selves in a larger system. More common, however, are noncritical crashes of
network switches, mobile phones, dish washers etc., errors often solved by
restarting the device and most often resulting in only some inconvenience
for users the involved.

However, being able to reduce the amount of errors in embedded systems
will lead to higher quality products and lower recall rates, and will therefore
give a company a competitive advantage and increased revenue.

Real-time embedded systems A subgroup of embedded systems are also
subject to real-time requirements. Real-time systems are systems where not
only functional correctness, i.e. correct computation, is important, but also
the time needed for the computation. In real-time systems, the timeliness
of the computation is just as important; if the result of a computation is not
available within a set amount of time, it may result in a system failure.
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CHAPTER 1. INTRODUCTION

In the example of a modern car, the traction control system has a real-
time requirement in that when measurements of a wheel indicate a loss of
road grip, an action must be performed immediately to prevent the car from
sliding. It is not enough to calculate how to prevent the car from sliding,
variables must be calculated and the result ready for processing, such that
an action can be taken before the car actually slides.

Therefore, with the increased integration of embedded systems in our
society and the demand for increased functionality, the complexity of these
systems increases accordingly. This increase in complexity, and the fear for
the aforementioned failures, calls for new techniques and tools for embed-
ded systems development, as the use of traditional development techniques
and tools for the now very complicated systems are becoming increasingly
challenging.

This is partly caused by the programming languages in use in systems
development today. The languages such as C and assembly, which are often
used for todays systems, do not support the capturing and structuring of the
complexities in modern systems, as well as modern programming languages.

Java is an example of a very popular modern language, taught in todays
computer science classes, and used in a variety of large scale projects. Java
is an object oriented language, giving an advantage over purely imperative
languages like C when programs grow large, and was designed as an im-
provement over the existing popular languages. It is especially inspired by
C/C++ syntax, but differs in in some important aspects; it was designed to
result in sempler programs:

e A large difference is the allocation and handling of memory. In Java,
programs will never run into problems caused by dangling pointers;
pointers to deallocated memory. Allocation and deallocation is au-
tomatically handled, usually by a garbage collector, making dangling
pointers impossible.

e Java is concurrency aware and have the notion of synchronized meth-
ods and regions. This is a large improvement over C/C-+-+, where
concurrency is achieved only through libraries, of which many imple-
mentations with varying semantics across platforms exists, hampering
portability.

e Java is single inheritance, resulting in a simpler inheritance semantics;
However, in Java, classes are allowed to implement multiple interfaces,
mimicing multiple inheritance.

e Another advantage is that, because of these differences along with the
Java standard library, productivity in Java is increased, fewer bugs are
introduced, and it is easier to debug; [117] presents a study comparing
the two languages based on bugs and productivity.

11
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Another reason to consider Java is that this language is becoming popular
in universities, and is to many students their first and primary programming
language. This results in a situation with a shortage of C-programmers and
an abundance of Java programmers, and with the increased interest in em-
bedded systems development, finding qualified programmers in the languages
used today may be prove difficult; in [106], the authors presents a view on
this discussion.

1.1 Java for Embedded Systems

Java is a popular language for large scale systems, however, many of the fea-
tures that make Java a language suitable for large projects are also features
that make it unsuitable for embedded systems development. Embedded sys-
tems are often special purpose devices, and their interfaces are not as well
defined and polished as the devices we use on personal computers. Program-
ming such systems often require direct memory access in order to commu-
nicate with actuators and sensors. This is one of the reasons why low-level
languages like C are used for such systems, as their low-level nature easily
provides access to the underlying hardware.

In Java there is no direct access to the underlying hardware, as Java
is built for a virtual machine, acting as an extra layer between the code
and the hardware executing the program. This requires a virtual machine
implementation to run on small devices, requiring additional memory, space
and processing power.

The abstract layer exposed to the programmer also makes it difficult to
access hardware and memory directly in standard Java, however, techniques
such as hardware objects [133] have been suggested to allow hardware access
in a structured fashion.

This abstract layer also makes reasoning about execution time very diffi-
cult, as multiple actions in multiple layers are required for each Java instruc-
tion. The difficulties in execution time reasoning are further complicated by
the garbage collection based memory management of Java. Garbage collec-
tion makes reasoning about execution time very difficult, since the garbage
collector can, in principle, run at any given time interrupting the program
for an unspecified amount of time, i.e. the time it takes to search for dead
objects and releasing the memory. To the contrary, in low-level languages,
the execution time is more directly visible, as the program is translated into
instructions executed directly by the hardware; another reason why low-level
languages are still used extensively. In recent years, however, much research
has been put into real-time enabling the high-level programming language
Java, starting with Real-Time Specification for Java (RTSJ) [35, 37|, and
later focusing on safety-critical and embedded systems in Safety Critical
Java (SCJ) and related research {137, 130, 76, 91].

12



CHAPTER 1. INTRODUCTION

There are three main areas which needs work for improvement for Java
to become more suitable for safety critical embedded systems:

Language The development of a Java Profile; a tweaking of the Java lan-
guage in a way, such that programs written in this profile will be suit-
able for program analysis,

Tools Analysis tools for validating programs written in the defined profile.
These tools will be used to check overall properties properties such as
system schedulability, but also that programs are within the boundaries
set by the profile.

Platform The development of a predictable execution platform with min-
imal footprint, making it suitable for small devices, and predictable
memory allocation,

This thesis will focus on the two first points, Language and Tools, while
utilizing recent work on the last point, Platform.

13



Chapter 2

Technical Background

This chapter presents the technical background for the papers presented
later in this thesis. The first section gives a short introduction to real-time
systems, followed by the definition of a real-time model as a way of describing
real-time systems. Section 2.3 presents real-time systems development in
Java, first the real-time specification for Java, followed by a summary of the
upcoming safety critical Java specification. Section 2.4 gives an overview of
real-time scheduling techniques, then a section on real-time systems analysis
in section 2.5, followed by a section on real-time model-checking techniques
and tools in section 2.6. This chapter concludes by discussing the present
and future state of real-time systems analysis.

2.1 Real-time Systems

This chapter gives an overview of real-time systems design and defines the
terminology used in the rest of this thesis. First the types of real-time
systems are shortly introduced, then a task model used to reason about such
systems is presented along with real-time scheduling principles.

There are three types of real-time systems, differing in the importance of
timeliness and the consequences of a missed deadline.

Soft real-time systems are systems where the timeliness is least impor-
tant, and where a missed deadline is merely an inconvenience, such as
a user waiting for a response to the action he just performed. This
could be the interface on a mobile phone.

Firm real-time systems is a subclass of soft real-time systems, where
deadline misses are tolerated, and the result of a delayed calculation
provides no value to the system, and is therefore discarded. An exam-
ple of this is a media streaming system. If a frame is delayed a few
seconds, it will be dropped and not displayed.

14
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Hard real-time systems are the strictest of the three, where a deadline
miss is considered an error. In a hard real-time system such an error
may be disastrous, e.g. a missile defence system, missing an incoming
attack.

Often, systems are compositions of subsystems in some of these categories.
It is important the hard real-time system components do not suffer from
interference from none or soft real-time components [45]. Depending on
whether the class of system developed, different techniques apply, especially
in choosing scheduling algorithm and analysis techniques. In this thesis, we
are only concerned with hard real-time systems.

2.2 Real-time Systems Model

This section defines a model used to describe real-time systems. This model
is used in the design phase of the development and is the input for some verifi-
cation techniques. In this model, a real-time system is expressed as a group of
tasks, with task properties, such as deadline, and execution time. Tasks are
released, i.e. their execution is started, according to a release pattern, which
is either periodic or aperiodic. This release pattern continue until system
shutdown or possibly forever. A special case of the aperiodic release pattern
is introduced, as an aperiodic pattern with a minimum inter-arrival time
constraint, known as the sporadic release pattern. This constraint makes
reasoning about aperiodic tasks in a hard real-time environment possible, as
the release rate is bounded by the added constraint. It would otherwise be
hard to include a guarantee that all tasks would meet their deadline, since a
short time burst of aperiodic task releases may delay all the tasks of a lower
priority.
The basic parameters of tasks in this model are:

D, the deadline relative to the task release,

T, period, in case of a periodic task, or the minimum inter-arrival time
in case of sporadic tasks,

C, the execution cost of the task, or Worst Case Execution Time
(WCET) of the task, and

B, the worst case blocking time experienced by a task.

The two first parameters, D and T are part of the specification of the
tasks, and come from the problem domain. For example, in a missile defense
system, there is a hard deadline on the task calculating how to shoot down
an incoming missile, which may be calculated based on assumptions on the

15



2.2. REAL-TIME SYSTEMS MODEL

distance a missile can be detected, and the time before impact. Such assump-
tions will also be the base of the choices of periods or minimal inter-arrival
time.

The execution time C' is the result of a worst case execution time analysis,
a conservative estimate of the maximum time needed to execute the task,
in isolation without any interruption from other tasks; a good overview of
techniques and tools for WCET analysis is provided in [167].

B, the worst case blocking time is a conservative estimate of the max-
imum blocking a task may experience, in there case of shared resources
between tasks. This is an upper bound, and it is not certain this blocking
will be experienced at all. A task is blocked if it, according to the schedul-
ing strategy, is the task with the highest priority, however, its execution is
prevented by a lower priority task holding a resource.

Before presenting scheduling principles and related algorithms, a notation
for presenting the execution of real-time systems in this model is presented
in the next section.

2.2.1 Time Line Notation

To be able to reason about tasks and their execution patterns, we define a
graphical notation of task executions. This graphical representation of task
release and execution patterns will be used throughout this thesis.

This time line notation, inspired by [45], is depicted in Figure 2.1.

D Executing /I Task release
. D Executing using resource I/Task deadline

D Preempted é Deadline met

. Blocked ‘ Deadline missed

Figure 2.1: Time line notation

In this terminology, when a task is:

Executing: the task is exclusively using the processor.

Executing using resource: the task is exclusively using the processor
holding the resource represented by the colour.

Preempted: the task is interrupted by higher priority task.

Blocked: the task is unable to run because a lower task holds a resource
and has elevated priority.

The time points can be of the following types:

16
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Task release: the task is started, meaning that it is either executing,
executing using resource, preempted, or blocked.

Task deadline: the task must have finished execution by this time.

Deadline met: the task finishes its executing before the deadline.

e Deadline missed: the task failed to finish its execution before the dead-
line.

Consider the example in Figure 2.2. In this example there are two peri-
odic tasks, Task 1 and Task 2, with deadlines 4 and 17, and periods 9 and 18
respectively. Task 1 has the highest priority, starts by executing for two time
units with exclusive rights to the resource marked as the yellow resource, and
then executes for one time unit, finishing before reaching its deadline. Task
2, the lower priority task, starts out preempted for three time units, while
Task 1 is executing; then executes for five time units, before entering a crit-
ical section using the yellow resource for three time units, blocking Task 1
for two time units since Task 1 is trying to enter a critical section using the
resource. At 11, Task 2 is preempted by Task 1, which executes as in last
release, but misses its deadline at 13.

Task release

Task priority Executing, using Blocked by lower
'yellow' resource Deadline priority task \
Task1 jﬁ A | ErE {
Executing
j =~ Deadline missed
aske /. [ [ [T TTTTTTTTTTTS N
N 7
T T \I [ T T T T [ T T T T [ T T
Task name -, 5 10 15 Time
Preempted Deadline met

Figure 2.2: Time line example

2.3 Real-time Programming Languages

Embedded systems are today mainly programmed in the C programming
language, or in a variant designed especially for embedded systems. This is
because C, while being more abstract than assembly languages, allows low-
level access to the underlying hardware and it allows the production of fast
programs with low memory overhead. Its semantics are, however, influenced
by the hardware on which it is executed and there is no language support
for concurrency [124]; these are just two of the many reasons why C is not
the best language choice for critical systems.

17
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Java is a modern language suitable for complex systems development,
however, it is not very suitable for real-time embedded systems, especially
due to lack of predictability in execution time. In recent years, however,
Java has received much attention from the real-time community, and is being
suggested as a new alternative to the traditionally used languages.

The Real-Time Specification for Java (RTSJ) was the first standardisa-
tion project working with standardising a real-time version of Java. RTSJ
was proposed in 1998 as JSR-1', and the initial specification was accepted
by Java Community Process (JCP) in 2000. Since then, a number of bugs
and inconsistencies were discovered, and six years after the initial version,
version 1.02 was released June 2006. The requirement for compatibility with
the first version by the JCP, resulted in a new proposal for RT'SJ 1.1 was sug-
gested in 2006, as a new specification under the name JSR-282 [53], allowed
to break compatibility with the original specification. The newest version of
this was released in 2009 [54].

The RTSJ received a great deal of attention in the real-time community,
and it became apparent that the RTSJ was far too dynamic and expressive
for high integrity systems [129, 122, 137, 91].

This lead to the work on smaller real-time profiles based on RTSJ, re-
stricted with a smaller set of available, such that programs written are easier
to analyse using static analysis techniques and thereby more likely to be
certified. The work on such profiles relate to what has been previously done
for Ada to enable the development of certifiable safety-critical systems. This
work has resulted in Ada profiles such as SPARK [48, 18] and the Ada Raven-
scar profile [56].

2.3.1 The Real-time Specification for Java

The real-time specification for Java was proposed to allow real-time program-
ming in Java, as standard Java lacks the properties needed for a real-time
language. Predictability in particular was an issue, however, it is an attrac-
tive language for real-time and embedded systems programming. Java is
an attractive language because it by design offers safety, object orientation,
language level concurrency, and of course the write once, run everywhere
philosophy of Java; features that all are attractive for such systems.

Standard Java, however, is not designed with real-time or critical systems
in mind. In fact, some particularities, for example thread behaviour, are
intentionally specified weakly [36], when designed by James Gosling in 1995.
This was done in order to achieve high portability, which is one of the main
design criteria for Java.

RTSJ strengthens the Java specification through refined semantics and
a number of classes. The design philosophy behind RTSJ is based on cri-

"http://goo.gl/vkRLm (http://jcp.org/aboutJava/communityprocess/mrel/
jsr001/index2.html)
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teria such as backwards compatibility, predictability, standard Java syntax,
etc. However, in some cases these criteria are conflicting; an example is
backwards compatibility which suffers in order to provide predictability, e.g.
standard Java threads have been changed to allow the design of a predictable
extension. The RTSJ extensions are residing in the javax.realtime package,
and provides improvements in six important areas [36, 163]:

1. Real-time threads Real-time threads are introduced in the RTSJ
due to the semantics of standard Java threads [36] being weakly speci-
fied, intentionally, to ease potability to other systems. Two new thread
classes are introduced: RealtimeThread and NoHeapRealtimeThread. These,
and their relationship to standard Java is shown in Figure 2.3. The
latter of the two, NoHeapRealtimeThread, is not allowed to access heap
memory, and can thus be allowed to safely preempt the garbage col-
lector, as the heap state will always be consistent.

java.lang

/\

[\
— I

javax.realtime

RealtimeThread |- - - - - - - - = - - <> Schedulable
________________ '
. . Schedulable defines 26 methods
RealtimeThread has four constructors with zero

to six arguments, two nested classes and adds 1
or overrides 37 methods

INoHeapReaItimeThread]— ——————————————

NoHeapRealtimeThread has three constructors with
two to six arguments, two nested classes and adds
or overrides only one method

Figure 2.3: RealtimeThread classes in RT'SJ

The RealtimeThread extends java.lang.Thread further by adding
ReleaseParameters and MemoryParameters to allow implementation of
periodic threads and other common thread types. The real-time threads
implements the newly introduced javax.realtime.Schedulable inter-
face, and defines 37 new methods and 4 constructors implementing
RTSJ thread related capability, such as a refined thread group concept
in the case of scoped memory, overrun handlers, and asynchronous
interruption.

2. Scheduling RTSJ adds a number of classes in the area of scheduling
in order to provide real-time facilities to Java. An overview of the

19
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classes defined related to scheduling can be seen in Figure 2.4. The
Schedulable interface, extending the java.lang.Runnable interface, is
introduced to generalize the concept of schedulable objects making
RTSJ independent of the thread concept, and making it possible to
support any type of concept other than threads, e.g. tasks. It is worth
noting that this interface is quite elaborate, defining 23 methods to be
implemented.

javax.realtime

i Schedulable IProcessingGroupParametersI
ReleaseParameters ]<}— I SchedulingParameters I IScheduler
A A
AperiodicParametersI IPriorityParametersI IPriorityScheduIer

I PeriodicParameters I

SporadicParametersI IImportanceParametersI

Figure 2.4: Scheduling related classes in RTSJ

Apart from implementing the Schedulable interface, a schedulable en-
tity must have information on release criteria and other scheduling
requirements. This information is contained in the various parameters
class hierarchies of Figure 2.4:

ReleaseParameters which describes the release-pattern of a schedula-
ble object, with the default implementations: AperiodicParameters,
SporadicParameters, and PeriodicParameters, parameters for each
type of real-time thread or task; parameters such as sporadic pa-
rameters hold information about minimal inter-arrival time, and
an exception will be thrown in case of violation of this property;

SchedulingParameters, which contains information used by the sched-
uler; default implementations are PriorityParameters, determin-
ing the priority of a schedulable object and used when execu-
tion order is determined by a single integer, and the subclass
ImportanceParameters, which adds an importance parameter, an
extra priority parameter used in the case when two tasks share
the same priority level.

Scheduling in the RTSJ is intended to be as flexible as possible. There-
fore it should be possible to add new scheduling algorithms; The spec-
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ification [36] even mentions dynamic loading of scheduling policy mod-
ules, in future versions of the specification. It is the intention to al-
low new scheduler implementations through extension of the abstract
Scheduler class, however, RT'SJ does not make this possible as an RT'SJ
user, but this should be part of a specific RT'SJ implementation.

A minimum RTSJ implementation must provide at least one scheduler
implementation, the PriorityScheduler. This is a fixed priority pre-
emptive scheduler with 28 unique priority levels. Of the current RTSJ
implementations from Sun (Java RTS), Aicas (JamaicaVM), Timesys,
and IBM (WebSphere Real-time), the PriorityScheduler is the only
scheduler implementation available.

3. Memory management There are several memory related classes in
RTSJ, and they are purposed to allow different types of memory al-
locations in different parts of a program, with the main types being
immortal memory, heap memory, and scoped memory; an overview of
the memory management classes is shown in Figure 2.5. The classes

javax.realtime

I PhysicaIMemoryManagerI iPhysicalMemoryTypeFilter: I RawMemoryAccess I

SizeEstimator GarbageCollector IRawMemoryFIoatAccessI
IMemoryParametersI

/\
IHeapMemoryI IImmortaIMemoryI IImmortaIPhysicaIMemoryI IScopedMemoryI
[ ]
ILTPhysicaIMemoryI ILTMemoryI IVTMemoryI IVTPhysicaIMemoryI

Figure 2.5: Memory related classes

of the MemoryArea hierarchy provides the functionality to allocate ob-
jects, each with different semantics. The MemoryArea provides methods
for allocating objects inside the area, querying consumed memory in
the particular area, getting the total size of the area, and different
methods used to execute logic using the memory as allocation context.
That is, objects allocated using new in the logic executed in the area,
including libraries used, are allocated inside the memory area and are
deallocated when the area is closed.

ImmortalMemory Objects allocated in this area will never be deal-

located or garbage collected, and hence objects in immortal mem-
ory may be referenced from every thread and schedulable object
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in the program.

ImmortalPhysicalMemory This is a separate class with the same
properties as ImmortalMemory, however, it uses a specified physical
address space.

HeapMemory The HeapMemory class allows logic non-heap allocation
contexts execute and allocate in heap memory, using the method
executeInArea(Runnable logic).

ScopedMemory This is a type of memory area differing most from
ordinary heap memory known from standard Java. This hierarchy
provides an areas with limited life time, freed when no schedulable
object has access to objects inside. The scoped memory areas are
advantageous from a performance and predictability point of view
in the sense that no garbage collection is needed, and no deallo-
cation of objects is performed. The scope is simply torn down as
the data within a stack frame. However, it is a very challenging,
error prone, and unusual programming model for ordinary Java
programmers [119, 78, 118, 38|; techniques and patterns have been
suggested in [118, 38|, to ease the use of scoped memory areas.
The main issue with scoped memory areas is that they introduce
the possibility of dangling references; this is not allowed in Java,
and therefore run-time checks are needed to ensure that no dan-
gling references exist. These runtime checks are performed at
every memory operation and exceptions are thrown at illegal ac-
cess. An overview of memory areas and references between areas
is shown in Figure 2.6; only references to objects of an area with
longer lifetime are allowed.

There are four types of scoped memory areas specified by RTSJ,
these are:

e Linear time scoped memory: LTMemory and its physical mem-
ory variant, LTPhysicalMemory which specify the use of a given
physical address space range. These areas guarantee alloca-
tion in linear time in the size of the allocated object.

e Variable time scoped memory: VIMemory and its physical vari-
ant VTPhysicalMemory; these areas do not specify bounds on
allocation time.

Additional memory classes for raw memory access are provided, giving
direct access to a fixed sequence of bytes in physical memory. Access
set/get methods are provided for most primitive types, including float
types in the specialized RawMemoryFloatAccess class. Objects cannot
be allocated this way, as this would be unsafe [36] because the memory
it is not managed.

Some classes not directly associated with allocation are provided:
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Figure 2.6: Rules for references in the RT'SJ memory hierarchy

e SizeEstimator: provides size estimates of objects.

e GarbageCollecter: provides information about garbage collector
overhead and temporal behaviour, and allows limited capabilities
to alter the garbage collection algorithm.

e PhysicalMemoryManager: responsible for physical memory access,
and should not be implemented by the RTSJ user, but rather
equipment manufacturers or the like. An additional interface
related to this is PhysicalMemoryTypeFilter, describing memory
characteristics of devices, and is to be used only by the physical
memory manager.

4. Time There are five time related classes in RTSJ, depicted in Fig-
ure 2.7. One Clock class used to access time values, and three time
representations generalized in the HighResolutionTime class:

High resolution time The class HighResolutionTime represents time
with nanosecond granularity. This class is used as frequent as pos-
sible throughout the API and its subclasses will be used appropri-
ately according to the time they represent. The direct subclasses
are RelativeTime and AbsoluteTime. These time-representations
has an associated clock-object which determines how the time is
interpreted e.g. in timers.

Rational time The class RationalTime, is represents intervals divided
into subintervals, and is supposed to represent period in periodic
events, but allow for some jitter. The use of this type of time
representation has been subject to much confusion and as of RT'SJ
1.0.1 this class is marked as deprecated.

5. Asynchrony and timers RTSJ provides the ability to bind logic to
internal and external events, and the ability to perform asynchronous
transfer of control. The class AsyncEventHandler contains logic ex-
ecuted when events occurs, and have much the same parameters as
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Figure 2.7: Time related classes

RealtimeThread classes, such as associated memory area, release pa-
rameters etc., and it also implements the Schedulable interface. When
events occur the handler is dynamically bound to a real-time thread,
though a specialized version, BoundAsyncEventHandler has this execu-
tion context preallocated.

Asynchronous event handlers are fired by asynchronous events, rep-
resented by the AsyncEvent. The AsyncEvent class can be used di-
rectly to fire an event handler, or the Timer subclasses, which are the
PeriodicTimer or the OneShotTimer.

RTSJ introduces the concept of asynchronous transfer of control, which
will immediately take control from a running schedulable object. This
is achieved using special exceptions thrown inside a thread, by running
thread.interrupt(), terminating the currently executing method, and
not continue execution, even after handling the event. As this could
cause an inconsistent state, threads will only be interrupted, i.e. accept
the transfer of control, if it is currently executing method declaring that
it throws the AsynchronouslylInterruptedException. There are some
special semantics used in these types of exceptions. After catching
the exception, the program must manually stop the propagation of the
exception using AsynchronouslyInterruptedException.clear().

. Standard Java Backwards compatibility to standard Java programs
is one of the guiding principles behind the design of RT'SJ, however,
some modifications to standard Java classes are required in order to
do a proper implementation. The need for modifications is due to
the introduction of Real-time threads in RTSJ which inherit from the
Java thread class, java.lang.Thread, and override the set/getPriority
methods. The most important difference affecting standard Java is
the requirement that priorities set by Thread.setPriority must not
violate the synchronization protocol in use: priority ceiling or pri-
ority inheritance, controlled by the classes PriorityCeilingEmulation
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and PriorityInheritance. It is interesting to note that in the family
of RealtimeThread descendants, setPriority will throw IllegalArgu-
mentException in case the set priority is out of the currently allowed
range?. Additionally, setPriotiy may throw ClassCastException if
the thread is a real-time thread and its SchedulingParameters object
is not an instance of PriorityParameters. An overview of these changes
can be found in the Standard Java Classes section of the RTSJ 1.0.2
specification|37].

Java thread groups, ThreadGroup, are changed to adhere to the mem-
ory management of RT'SJ. Changes are needed because a root Thread-
Group object resides in heap- or immortal memory, and from that
ThreadGroup objects are created in a tree like manner. From this
follows:

e A thread group cannot be created in scoped memory, since refe-
rences to scoped memory are not allowed from outside the scope.

e No thread created in a scope can be part of a thread-group, and
thus holds a null thread group reference.

e NoHeapRealtimeThread can not be a member of a thread group.

This has some interesting consequences for threads and thread groups;
the interested reader is referred to the Standard Java Classes section of
the RTSJ 1.0.2 specification. It seems such changes may seriously af-
fect the backwards compatibility principle, however, this effect is to be
expected and the changes somewhat justified. One could argue, how-
ever, that such changes are dangerous, as there will be programmers
who are firm in Java, but new to RT'SJ — and after all, an argument
often used in the discussion about Java for real-time systems, is the
large number of Java developers.

Apart from these changes, classes for handling monitor control i.e. either
priority inheritance or priority ceiling, other general system settings, and
tools such as wait-free queues etc. are also part of the RT'SJ. Also, there are
18 new exceptions which have been added to RTSJ.

2.3.2 Ravenscar Java

The real-time specification for Java has been criticised for being too large
and dynamic for high integrity systems, and work in the direction of defining
analysable and safer subsets of the RTSJ have since been done. Inspired by
the Ravenscar profile for Ada [56], which has become the de facto standard
in the high integrity system domain [91|, the Ravenscar Java profile [91] is

2A set of threads in RTSJ may have different schedulers, so the allowed priority-range
may vary for each thread in the system.
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a Java profile designed for high-integrity systems. It alleviates some of the
problems of the RTSJ, and is an attempt to design a Java profile resulting
in more reliable systems, following a set of software guidelines used by the
U.S. Nuclear Regulatory Commission [1], and provides predictability in the
areas of memory utilization, timing, and control/data flow.

Initialization Phase

Main() Invoked

" Mission Phase

i

Initialize all necessary objects
and real-time threads
Create Initializer | o | NewThread
thread
, y New Thread
A Start all
Main() Terminates threads
New Thread
o Sap v
Immortal Scoped |
iH Memory :
eap Memory Memory Memory

Allocatable Memory

Figure 2.8: Execution phases in Ravenscar-Java [91]

The computation model offered by the Ravenscar profile is divided into
two phases: the initialization phase and the mission phase, which are de-
picted in Figure 2.8. The initialization does not have real-time requirements,
and is responsible for performing initialization of data and threads, where
the mission phase, is the critical phase of the program subject to real-time
requirements, where the system will be spending most of the time. In a
mission, there are sporadic or periodic threads subject to fixed priority pre-
emptive scheduling.

To simplify the memory model, the use of garbage collector in Ravenscar
is forbidden, and only the linear time memory and immortal memory is
offered, as defined by RTSJ. Furthermore, memory areas cannot be shared
between tasks and cannot be nested.

To simplify the program structure and flow, the profile:

e Requires that all classes defined in the program must have constructors
performing initialization of all class-fields.

e Forbids the use of asynchronous transfer of control.
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e Puts restrictions to the use of continue and break.
e Disallows the use of the wait and notify methods.

e Requires that all for-loop constraints are statically defined.

Issues The Ravenscar Java profile builds on the body of knowledge gained
in the high-integrity Ada community, and certainly defines a more analysable
subset of RT'SJ, suitable for high-integrity systems. The approach, however,
builds on the RTSJ and through class inheritance inherits some of the com-
plexities instead of hiding these through composition. Moreover, some of
the enhancements may result in more complex programs, as a mixture of
requirements, such as deadlines and periods and parameters for execution
time cost. These are pointed out in [137]. Additionally [144]| points out
inconsistencies and weaknesses in the semantics, and questions the notion
of deadline missed handlers, and furthermore suggests the RAVENSCA Rlet,
which is a concept analogous to the MIDlet of Java Micro Edition (Java

2.3.3 The Safety-Critical Java Specification

This section provides an overview of the Safety Critical Java Specification,
based an early draft from August 20083, as some of the work in this thesis
is based on this version. Later, some differences between this and the latest
draft, version 0.79, May 16 2011, are highlighted.

The Safety Critical Java specification is a Java profile proposal, aimed
at development of safety critical embedded applications certifiable under the
DO-178B/ED-12B[125, 126] specification?, level A.

DO-178B Specification

The DO-178B specification is a specification used in the certification process
in the aviation industry. It contains five levels rating from A to E, where the
levels A, B, C are critical levels, and the levels D, E, are noncritical levels.
The levels are informally described in [103] as:

Level A Errors at this level are catastrophic and will prevent continued safe
flight and landing.

Level B Errors at level B are hazardous potentially causing fatal injuries
to a small number of the aircrafts occupants.

Level C At this level, errors are a major failure condition, resulting in
discomfort and possibly injuries to aircraft occupants.

3Safety Critical Specification for Java, version 0.5, August 2008
4ED-12B is the European version of DO-178B.
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Level D A non-critical level where errors are minor and do not reduce
aircraft safety or functionality.

Level E At this level, errors have no effect on aircraft operational capability.

The three critical levels, A, B, C, are focused upon in SCJ.

SCJ Introduction

SCJ, while being based on RTSJ, puts additional constraints on the Java
language. SCJ inherits functionality from RTSJ, but constrains some of the
RTSJ complexities through the use of annotations, such as the SCJAllowed
annotation, which, for example, specifies the level e.g. a method is allowed.
In SCJ the following areas are changed:

Concurrency and memory Many new restrictions are put on allocation,
heap usage and concurrency to simplify program analysis. These re-
strictions are common in the safety critical community [103, p. 6].
These restrictions are based on RT'SJ (version 1.0.2) and Java version
5. A safety-critical application will be able to execute correctly on an
RTSJ compliant platform with Safety Critical Java libraries.

Classes The new classes provided by SCJ will be implementable using
RTSJ, however, they will be hiding much of the complexities from
RTSJ.

Annotations SCJ comes with annotations, used to restrict memory man-
agement and concurrency to aid analysis. They are used to document
programs with programmer made assumptions.

The levels A,B,C in the DO-178B specification corresponds to three levels
defined by SCJ, but denoted level 0,1,2 respectively.

SCJ Overview

To facilitate certification, SCJ describes a more restrictive programming
model than RTSJ, especially with regards to concurrency and memory us-
age. At its top level, SCJ introduces missions and safelets, both concepts
are new and not part of RTSJ.

Safelets The logic of an SCJ program is implemented in terms of missions,
as a single mission or as a sequence of missions. As the entry point to an
application, SCJ uses safelets, a concept very similar to that of midlets in
J2ME. This is different from RTSJ, which uses an entry method, main, as do
standard Java applications.
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The Safelet interface defines two methods, the getLevel method, which
returns the current level of the application, and the getSequencer method,
which returns an implementation of the abstract MissionSequencer class.

The mission sequencer will start, shutdown and switch between missions,
and is itself a BoundAsyncEventHandler. This, among other things, means the
initial allocation context can be non-heap memory; heap-memory would be
used when executing the main method.

Missions The mission concept is introduced as a balance between flexi-
bility and restrictions in order to provide limited startup, shutdown, and
mission restart. In SCJ, a mission is simply a container for handlers.

During during the life of a mission it enters different modes, as depicted
in Figure 2.9.

Initialization Mission Phase Recovery 9

t |

Figure 2.9: SCJ mission modes [104, p. 30|

Missions start out in an initialisation mode, where object allocation is
allowed in the immortal memory and the mission memory. Objects created
in mission memory will be deallocated when the mission ends, upon exiting
the mission. After initialization mode, missions move to mission mode, this is
the actual system operation mode where they will spend most their time. In
this mode no allocation in immortal memory or mission memory is allowed.
From this mode, mission can be shut down. At this point, it is uncertain if
there is a shutdown mode to do cleanup, however, it is possible to restart
the mission and reinitialise the mission [104, p. 9][103, p. 10].

These complexity levels are nested with concurrent missions allowed SCJ
level 2, the highest most liberal level, and a single thread of execution at
level 0, being the lowest most restrictive level.

Execution during a mission is performed by schedulable objects as de-
fined in the RTSJ, see Section 2.3.1. Schedulable objects have associated
private memories that are not shared with other schedulable objects. The
number of schedulable objects running concurrently and of which type (ape-
riodic, periodic, no heap real-time threads) are allowed, is decided by the
SCJ compliance level. These levels are described as:

SCJ level 0 The most conservative level is SCJ level 0, and it consists of
only one single thread of execution. This results in a cyclic scheduling
model as described in Section 2.4.1; this model is shown in Figure 2.10.
At this level, a mission consists of only periodic event handlers, and
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as there is only one thread of execution, no synchronization will be
necessary. However, developers are encouraged to use such synchro-
nization mechanisms, as this will ensure correctness if a is executed
on a platform complying to level level 1 or higher. The operations
wait and notify are not allowed, and only periodic events are allowed,
i.e. no threads nor aperiodic events; schedulable objects have private
memories used for allocation which are cleared at the end of a run.

Immortal memory

Shared by all Periodic Event Handlers

Mission memory

Shared by all Periodic Event Handlers

private private private PM
memory memory memory PM
PEH PEH PEH PEH
pl p2 p3 p4
A A

Timer Timer Timer

event event event
< Major frame >
Scheduler Time ————p|

Figure 2.10: SCJ level 0 [104, p. 11]

SCJ level 1 At level 1 schedulable objects are executed concurrently us-
ing a fixed priority preemptive scheduling mechanism, as described in
Section 2.4.2; this is shown in Figure 2.11. This level allows both
aperiodic and periodic tasks, however, threads at this level are disal-
lowed. Schedulable objects have private memories, cleared at the end
of their execution, and which cannot be shared; wait and notify are
not allowed.

SCJ level 2 Level 2 is the level allowing the most complexity. It allows
most schedulable objects, aperiodic, periodic, and no-heap real-time
threads, and multiple nested missions. Each mission has its own mis-
sion memory. At this level, the methods wait and notify are available.
The execution model provided at level 2 is shown in Figure 2.12.
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Figure 2.11: SCJ level 1 [104, p. 13]

SCJ does not contain sporadic event handlers, as this would require addi-
tional checks on the arrival of such events and error handling in case they
arrive too often. This is deemed too complex to handle for critical appli-
cations, even at level 2. SCJ also do only provide immortal, mission and
scoped memory; the use of heap is therefore disallowed, and thus there is
only the concept of NoHeapRealtimeThread in the specification. Schedulable
objects such as RealtimeThread, from RTSJ, and java.lang.Thread are there-
fore not allowed in SCJ applications. It is important to notice that many
of the details of RT'SJ are disallowed, such as RealtimeThread and Thread.
This is done by using annotations, and by annotating all allowed classes and
methods with details on at which level they are allowed.

The hierarchy of mission related classes and the schedulable objects al-
lowed in SCJ and their relation to RTSJ is shown in Figure 2.13. The mission
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Figure 2.12: SCJ level 2 [104, p. 15]

concept in SCJ is handled by multiple classes:

MissionDescriptor A mission is simply a grouping of schedulable objects
and a mission memory, contained by the MissionDescriptor class®.
This class defines methods such as initialize and cleanup. The ini-

5The SCJ draft specification additionally mentions a Mission class, either to be ex-
tended by MissionDescriptor, or as a separate class - seems, however, that MissionDe-
scriptor and Mission are at this point the same class
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tialize method will prepare handlers and memory in the mission.

MissionManager The mission manager is responsible for starting and stop-
ping missions, and it defines methods such as start, requestTermination,
and the cleanup method performShutdown.

MissionSequencer The mission sequencer is describing how missions are
executed, and in which order. This class is actually an implementation
of an asynchronous event handler which will perform the actual mis-
sion initializations. The specific implementation of MissionSequencer
is defined in an implementation of the Safelet.getSequencer method.

java.lang

javax.realtime

| RealtimeThread | - ->| Schedulable |

1
| NoHeapRealtimeThread | |AsyncEventHandIer|

—Dl BoundAsyncEventHandIerl

javax.safetycritical
| NoHeapRealtimeThread | | ManagedEventHandler |
|Mission$equencer|—
| PeriodicEventHandIerl |AperiodicEventHandIer

| MissionDescriptor | | MissionManager |

Figure 2.13: The class hierarchy related missions and schedulable objects

SCJ Memory Management

Two new memory classes are introduced in SCJ, however, the memory related
classes and their rules result in a simpler hierarchy and model. These are
PrivateMemory, for use in event handlers and MissionMemory used by missions.
These memory classes are based on RT'SJLTMemory. Each handler is executed
using its own PrivateMemory, which is an instance of ScopedMemory, which
cannot be shared with other handlers. Handlers are allowed to create new
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nested scopes, however, these scopes cannot be shared with other handlers.
The MissionMemory is shared between handlers, however, no allocation in this
memory is allowed during the mission phase; all objects are allocated during
mission initialisation.

2.4 Real-time Scheduling

The concept of a real-time scheduling is to execute the tasks of a real-time
system in an order, such that no task misses its deadline. There are dif-
ferent aspects to consider when choosing a scheduling mechanism. Perhaps
most important, it must be possible to perform a feasibility analysis of the
system to ensure correct behaviour of the system under a given scheduling
approach. This is an important field, discussed in Section 2.5. It is also
important to consider the type of system to be scheduled, as scheduling
approaches differ substantially in terms of overhead and the number of pre-
emptions and scheduling complexity. However, the behaviour of the system
is greatly affected by the choice of scheduling algorithm. Some algorithms
perform predictably under stress, and some do not, and also the computa-
tional overhead must be taken into account.
There are three main categories of real-time scheduling:

e Off-line scheduling
e Fixed-priority scheduling

e Dynamic scheduling

2.4.1 Off-line Scheduling

Off-line scheduling is an approach to scheduling where a static schedule, i.e.
the interleaving of task invocations, of the system is designed such that no
deadline is missed [17, 45|, and a single program, called the cyclic executive,
is constructed.

The full static schedule is actually repeating a finite schedule of the tasks
to be executed, since the full schedule is likely to be infinite. The schedule is
divided into a major cycle which is repeated an infinite number of times. The
major cycle determines the actions to be performed during a fixed period of
time. The length of this major cycle is the least common multiple of the
periods of all tasks in the system, as this is the time from where the past
execution will be repeated forever.

This major cycle is further divided into smaller minor schedules of the
code to perform the actions of the tasks, called the minor cycle. The size
of a minor cycle should be a common divisor for all the periods in order to
accommodate all task releases.

Advantages of the cyclic executive approach include:
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e The proof of schedulability is done by constructing the cyclic executive
and thus no other schedulability tests are needed.

e A low overhead, as there is no need for preemption and no need for
ensuring integrity using for example mutexes, as only one thread is
running the whole program.

Disadvantages include:

e This approach is not very suited for systems containing tasks of ape-
riodic nature, as room in multiple minor cycles must be allocated to
handle these, which may lead to a substantial amount of idle CPU time
in the system.

e The construction of a cyclic executive with larger tasks can be some-
what complicated, as any sizable tasks will have to be split up to fit
into the minor cycles.

2.4.2 Fixed Priority Scheduling

Fixed priority preemptive scheduling is a more flexible approach when com-
pared to that of cyclic executives. In this approach, tasks are assigned an
offline calculated fixed priority, which it keeps throughout the lifetime of the
program.

This approach has an advantage when applied to more dynamic systems
where tasks have very different execution times, as there is no need to split
up tasks to fit into different minor cycles, as in the cyclic executive. The ap-
plication will itself also be more flexible, and minor changes in requirements
will not affect the implementation as much as in the statically defined cycle;
for the interested reader, an in depth comparison of the cyclic executive and
priority scheduling is presented in [102].

Priorities are usually assigned according to task deadlines, where shorter
deadlines equal higher priorities; this is called Deadline Monotonic Schedul-
ing(DMS) [95], which is a successor to the earlier more restrictive approach
of basing priorities on task periods, known as Rate Monotonic Schedul-
ing(RMS) [100].

DMS is optimal among static scheduling approaches given the simple
model presented in Section 2.2. The priority based scheduling approach
will in many cases also prove helpful in debugging errors caused by missed
deadlines, as the task execution patterns are predictable. Deadlines will be
missed by tasks with a lower priority, and thus a higher deadline.

2.4.3 Dynamic Scheduling

In the dynamic scheduling approach, priorities are assigned dynamically to
the running tasks during the execution of the system according to some
importance measure.
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An example of a dynamic scheduling algorithm is the Earliest Deadline
First (EDF) algorithm [100], where the importance is based on the time left
before a task meets its deadline. This algorithm has the advantages of being
able to achieve higher processor utilization than the fixed priority approach,
and being able to handle more dynamic systems than the cyclic executive.
This approach is also optimal among all the scheduling approaches on single
processor systems, meaning that if a set of tasks characterised by execution-
time, deadline and arrival pattern is schedulable by any algorithm, it will be
schedulable by EDF.

EDF holds advantageous properties, however, it is a complex algorithm
to implement, especially in limited systems. It has a high overhead, and in
the case of an overloaded system, it will not behave predictably, as is the
case when priorities are assigned statically.

2.5 Real-time Systems Analysis

The correctness of a real-time system is heavily dependent on the timely
reaction to external events, i.e. it will execute an event handler while the
result of the computation is still useful. This means that the system, at
any given point, must have enough available resources, computing power or
simply time, to handle all occurring events before their respective deadlines.
This property is known as schedulability; a system is schedulable if all events
are handled before their respective deadlines.

Because real-time systems are often critical systems, and are often em-
bedded systems produced in large quantities, the schedulability property
must be proven as a part of the development, before the product is shipped.
This proof is achieved through schedulability analysis, which is discussed in
the rest of this chapter.

2.5.1 Traditional Schedulability Analysis

The established approach to schedulability analysis, known as traditional
schedulability analysis, is based on the work by Liu and Layland in 1973 [100].
In the original work, Liu and Layland present a task model based on cost, pe-
riod, and deadline, in which tasks are scheduled by either the static schedul-
ing algorithm Rate Monotonic Scheduling (RMS), where periods are mapped
to priorities, or the dynamic scheduling algorithm EDF, where the currently
running tasks with earliest deadline will have highest priority. Additionally,
four restrictions are placed on the system limiting expressiveness:

1. A system consists of only periodic tasks.
2. All tasks in the system has a deadline equal to their period.

3. All tasks are independent.
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4. All tasks have a constant computation time.

Additionally, some implicit assumptions are made in the original work,
and clarified in [15]:

e No process may voluntarily suspend itself.
e All processes are released as soon as they arrive.

e All overheads are ignored; they are assumed to be 0.

For this model the authors present a schedulability analysis based on
processor utilisation, the utilisation test. This amounts to calculating the
processor utilisation (eq. 2.1), of a given system, and then this is compared
to an upper bound on processor utilisation (eq. 2.2). If the processor utili-
sation is lower than the upper bound, the system in question is guaranteed
schedulable, a sufficient, but not necessary test [45], meaning systems pass-
ing this test are guaranteed schedulable, and a system failing the test may
still be schedulable.

Utilisation for a set of m tasks is given by the following equation:

=N 2.1
U ; T (2.1)
where C; is the cost and T; is the period of task;.

The upper bound for utilisation is dependent only on the number of tasks,
and it is given by the following equation:

m(2n% -1) (2.2)
where m is the number of tasks.

m | utilisation

1 100%

2 82.8%

3 77.9%

4 75.6%

5 74.3%
10 71.7%

Table 2.1: Processor utilisation bounds

Examples of processor utilisation bounds are given in Table 2.1, and as
the number of tasks in the system goes to infinity, the utilisation bound
settles at 69.3%: .

lim m(2m — 1) = 0.693

m— o0
This means the amount of wasted processing time in most systems will be
around 30%, which is a relatively high number for limited devices.
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2.5.2 Response Time Analysis

A substantial amount of research has been invested in real-time systems anal-
ysis since the utilisation based tests were developed. The major disadvantage
to using utilisation as a schedulability test is the coarseness of the analysis
and the assumptions and restrictions put on the system expressiveness. The
response time analysis [14] is a further development of the technique and
allows analysis of more expressive systems. More specifically, the basic re-
sponse time analysis relaxes some important constraints and allows:

e Sporadic tasks, with minimum inter-arrival times.

e Dependencies between tasks through the notion of blocking time for
each task, i.e. the time a task can be blocked by a lower priority task
through exclusive access to resources.

e Release jitter, the time between release and actual execution of a task.

In the response time analysis, the response time is calculated for each
task, and the system is schedulable if the response time for a task is less
than its deadline. Sporadic tasks are essentially included as periodic tasks
with their period set to the minimum inter-arrival time. The blocking time
is calculated based on priority inversion avoidance protocols, priority inher-
itance or priority ceiling.

We use the following notation:

e T denotes period or minimum inter-arrival time.

e D is the deadline relative to the task release.

B is the time a task is blocked by lower priority tasks.

C is WCET.

e hp(i) is the set of tasks of higher priority than task i.

Synchronisation Protocols

In a system with interdependent tasks, tasks can experience blocking caused
by lower priority tasks holding a shared resource, which is also required by
a higher priority task. This blocking time is affecting the response time of
the task, and must therefore be bounded.

These analyses assume the use of synchronisation protocols to avoid un-
bounded priority inversion. The two protocols considered here are the pri-
ority inheritance protocol and the priority ceiling protocol [140]. The latter
of the two has two slightly different versions, Immediate Priority Ceiling
Protocol (IPCP) and Original Priority Ceiling Protocol (OPCP).
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The priority inheritance protocol only avoids unbounded priority inver-
sion, where the priority ceiling protocol also avoids deadlocks and the worst
case blocking for the two ceiling protocols is at the most one critical section.

Priority Inheritance In priority inheritance, if a lower priority task is
blocking a higher priority task, it will inherit the priority of the blocked
task.

After the priority boosted task finishes executing the critical section caus-
ing the block, it will be reassigned its original priority. This protocol will
prevent unbounded priority inversion, however, it will not prevent deadlock
situations.

Priority Ceiling The Priority Ceiling Protocol (PCP) ensures freedom
from deadlocks, predictably bounds blocking times, and it will result in less
context switches than Priority Inheritance Protocol (PIP). To each resource
in the system, a priority equal to the maximum priority of all the threads
accessing the resource is assigned, and each task has a static priority.

e OPCP then works as follows:

— The priority of a task after locking a resource:

x remains, if no higher priority tasks are blocked because of
acquired resource,

* is raised to the maximum of inherited priority and the static
priority, if it is blocking a higher priority task.

— A resource can only be acquired by a task if it has a priority
higher than any locked resource not locked by the task itself.

e In IPCP, a task priority is immediately raised to the maximum of the
locked resources.

In IPCP, even tasks without critical sections may be blocked, whereas in
OPCP, these tasks will only be indirectly blocked by blocked higher priority
tasks. Additionally, the difference lies in the number of context switches
and hence the number of locking operations, where IPCP will perform less
locking operations and cause less switches than OPCP.

2.5.3 Analysing Response Time

For a set of tasks, indexed i = 1..n, with static priority, P;, the response
time analysis of task;, R; is given by the equation:

R,=C;+B; +1I; (2.3)

where:
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e (; is the execution time of task;.

e B, is the maximum blocking time of task;. This is dependent on the
protocol used for priority inversion avoidance.

— The maximum blocking for task; using PIP is given by the equa-
tion:
B, = Z usage(i,r)Cy (2.4)

reR

— The maximum blocking time for task; using PCP is given by:

B; = maxusage(i,r)WCET, (2.5)
reR
where R is a set of resources, C) is the WCET of the critical sections
involving resource r, and usage(i, r) evaluates to 1 if resource r is used
by a task with lower priority than task; and used by a task with priority
higher than or equal to the priority of task;; or 0 otherwise.

e [; is the maximum interruption time of task; by tasks of higher priority,
given by the equation:

L= ) Hﬂ C; (2.6)

Jj€hp(i)
where hp(i) is the set of tasks of higher priority than task .

This gives the following recursion:

R;“rl — Cz + Bi + Z ’V];l-‘ Cj (27)
jehp() ' Y

for which a fix-point solution, R;L'H = R? with RY = C;, is guaranteed if the
utilisation is less than 1 [14].

2.6 Model Checking

Model checking is another interesting approach to program analysis. Models
can be built as a part of the real-time system specification, and some tools,
such as TIMES [11], provide code synthesis from models, in order to gain
some correspondence between the model and the code. Other tools use
binary code as input and perform analysis on a model generated directly
from this [50], again to ensure tight correspondence between the analysis and
the actual program. Similarly, functional correctness is checked in tools such
as Bandera [49] by generating models from the code. Java pathfinder [40] is
a similar tool which works by symbolically executing the byte-code.
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Model checking is also an interesting method for solving the schedulabil-
ity problem [90, 59, 60|, which is more flexible than traditional approaches,
and it is able to take into account more of the problem specific details, such
as the environment and task interaction. The general approach taken is
to build an abstract specification of the system on which the schedulability
property is verified, it is then implemented after a positive verdict, or, by
building an abstract model of an existing implementation to verify that it is
actually correct with regards to schedulability.

2.6.1 Timed Automata

In this section an overview of Timed Automata is presented, based on [16,
9].A Timed Automaton is a finite directed graph, a set of clocks, and a set
of constraints on these clocks. The nodes of the graph we call locations and
the edges are called switches.

For a set of clocks C, a clock valuation v, is a mapping C' — R, assigning
a nonnegative real value to each clock in C; v[X := 0] denotes the valuation
v where zero is assigned to the clocks in X C C. For d € Ry, v 4+ d denotes
the valuation where each clock ¢ € C' maps to v(c) + d.

Locations and switches each have an associated set of clock constraint,
called invariant for locations and guard for switches.

Definition 1 (Clock constraint). Let x be an integer and ¢ € C be a clock,
then a clock constraint is defined by the grammar:

p:=c<zlc<zlc=zxlc>zxlc>x|]pNP

Time elapses in locations, and only while the invariant holds, while
switches are instantaneous. Any switch can reset a set of clocks.

Definition 2 (Timed Automata). [9]
A timed automaton is a tuple (L, ly, F, X, C, E, I) where:

e [ is a finite set of locations.

lg € L is the initial location.
e ' C L is a set of accept locations.

Y is a finite set of actions.

C' is a finite set of clocks.

E C Lx®(C)xXx2¢ x L is the set of switches, where (I, g,a,r,1') € E
is the switch between locations, from [ to I, guarded by the constraint
g, a is an action, and r is the set of clocks to be reset.

e [: L — ®(C) assigns a set of invariants to each location.
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We use | 225 1 to denote (1, g,a,r,l') € E.

Definition 3 (Semantics of Timed Automata). A state in a timed automata
is a pair (I,v) € L x R® where ®(I) holds for the clock valuation v of C.
The initial state is (lp,v) where Vc € C' : v(c) = 0, and a transition is either
a delay transition or a location transition:

e Delay transition: for a state (I,v) and a delay d, (I,v) 4 (l,v+d), if
Vd' :0<d <d,v+d €I(l).

e Location transition: (I,v) = (I’

g, v =[r:=0],v FI(l")

,v), if there exists | 225 I/ stw €

2.6.2 Timed Automata in Practice

UPPAAL is a tool for modeling and verification of real-time systems using a
variation of timed automata as the underlying formal foundation. A system
is expressed as a network of timed automata along with variable, function,
and other declarations, and requirements are expressed as Timed Computa-
tional Tree Logic (TCTL) formulae [16]. This section gives a short introduc-
tion to the modeling language of UPPAAL, based on [24].

UpPAAL works on an extended definition of timed automata. This ex-
tended definition includes bounded variables along with an imperative C
inspired language for manipulating these variables. Elements are also added
to make the modelling of commonly used concepts easier, such as urgent lo-
cations. Additionally elements from the imperative language can be used in
guards, for example, thus increasing flexibility. Clocks are defined as usual,
however, the action concept varies slightly, as this is used for synchronization.

An automaton in UPPAAL is then defined as in Definition 4 inspired
by [158, 24].

Definition 4 (Uppaal Timed Automata).
A timed automaton in UPPAAL is a tuple (L,lo, X, V, F,C, E, I) where

e [ is a finite set of locations.

e [y € L is the initial location.

Y is a finite set of actions, co-actions, and the internal action 7.

V is a finite set of variables.

F is a finite set of function declarations.

C' is a finite set of clocks.

¢ ECLx®C)xU(V,F)xXx2°x2" x L is the set of switches,
where:
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— (l,g,a,r,u,l") is the switch from location I to location I’ where:
x g is a guard: g = (g% ¢") € ®(C) x ¥(V, F), a conjunction of
clock-constraints, g¢, and variable-constraints, g*.
% @ is an action.
* r 18 the set of clocks to be reset.

x u is the set of variable updates.
o [: L — ®(C) x ¥(V, F) assigns a set of invariants to each location.

Where the set of clock constraints ®(C') is defined as in Definition 1 (except
x is now an expression evaluating to an integer), and ¥ (V') is defined by:

Yi=1@k | AU [ YVY

where @ € {<,<,=,>,>} and i, k both evaluate to integers.

Actions and co-actions are denoted ! and ? respectively. They are now
used for synchronization and are referred to as channels. A state now includes
variables: (I,v,2) € L x R® x Z, with Z C ZV as variables are bounded.

A model, or Network of Timed Automata (NTA), in UPPAAL consists
of a set of timed automata, executed in parallel, communicating through
synchronization and shared variables. The definition of an NTA is a natural
extension to a vector of timed automata: (L;, l?, X, V,F,C, E;, I;) where the
set of locations, initial location, edges, and invariants are vectors, and a state
is now the triple (I,v,2) € (L1 x --- x L;) x R® x Z with Z C ZV .

The initial location is Iy = (19,...,12), and the transition system is de-
fined by the following transition relations:

e Delay transition: for a state (I,v,x) and a delay d, (I, v,z) 4 (l,v+
d,z)ifVd 0 <d <d,(v+d.z) e I().

e The internal (1) transition: (I,v,z) % (I[l}/1;],v',2') is defined if there
exists I; 225 1D st v € g, ) = [r = 0], 2

I(I[E/L)).-

e The synchronous transition: (I,v,z) % (U131, 1 /1], 0", &) is defined

gj,cl,rj,u;

eval(z,u),and v' €

ey us
if there exists a switch [; 22570 10 and 1) l; st. v €

(gi N gj), v/ =[r:=0],2 = eval(x,u),and v' € I(Z[lg/li,lg/lj]).

where eval(u,z) is a mapping to an updated variable environment, after eval-
uating updates in u, on the variables in z. Multiple statements are evaluated
sequentially.

The rest of this section will informally cover additional UPPAAL features,
used later in this thesis.

The bounded variables in UPPAAL are accompanied by a C like language
for manipulating them, including many of the features known from C, such
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as records, custom type definitions, functions, and arithmetic operations.
These operations can be fired during switches from one location to another,
on decorated edges.

Templates In UPPAAL , automata are created from automata templates.
Templates are a parameterized form of automata, analogous to classes and
concrete objects in Java.

Template declarations have the same form as function declarations, which
closely follow C++ syntax, although in UPPAAL the content of a template
is more than just a block of code.

Templates are represented graphically, and are essentially a graphical
representation of the above definitions, along with a code section, containing
local declarations and function definitions to be used in the model. At the
NTA level, there is also declaration section, for globally shared declarations.

System Declaration The language for system declarations is different
from the aforementioned C like declaration language. Templates are instan-
tiated by UPPAAL in the system section, however, parameter binding must
be done separately. Given a template declared as: Template(int i)® A new
name for the template with a parameter binding can then be created:

P1 = Template(1);
system P1;

This will result in the new name: P1, with i bound to 1. However, system
Template(1); is not a legal system declaration, as parameter bindings must
be done in advance.

This may seem strange at first, however, please consider the situation
where the parameter is an ID:

// An instantiation of a template
// with a single integer argument:
// Template(int id) // pseudo code
Processl = Template(1l);

Process2 = Template (2);

system Processl, Process2;

This is a legal, but very rigid and somewhat inflexible way of achieving the
desired result. If later, the id span more than just 1..2, we would have to
add template instantiations for each id. As these ids are used more than
one place, this requires careful modification throughout the model. UPPAAL
allows omitting the binding of some or more formal parameters, which is a
useful feature in such common situations. To leave the formal parameters of
the template unbound, we write:

5In UpPAAL 4.0 this is done graphically
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system Template;

However, UPPAAL will create an instance for every possible combination of
the parameters. In this situation the result is one instance for every value of
the type int. This is solved by defining an ID type, in this example, id_t:

typedef int[1,2] id_t; // the integer type from [1 to 2]

and using this as the type of the parameter to our template. UPPAAL will
in this case create an instance for the two values of id_t;

Binding is actually just a renaming, and partial binding is allowed. This
is very useful in situations where multiple instances are created sharing some
of the same values:

// Template2(int a, int b)
Partial(const int x) = Template2(x, 1);
FullyBound () = Partial(1l);

system FullyBound;

In the system line, priorities can be set for instantiated processes by defining
an order using <. System declarations use the following grammar”:

System ::= ’system’ ID ((’,’ | °<?) ID)* ’°;’
Process ::= ID ’(’ Arguments ’)’
Instantiation ::= ID [ ’>(’ Parameters ’)’ ] ’=’ ID ’(’ Arguments ’)’ ’;°

Locations and Edges Apart from invariants, UPPAAL defines different
types of locations:

e Urgent location: In an urgent location, time in the model is not allowed
to pass. This is basically syntactic sugar for an invariant constraint of
the form ¢ <0, where c is a clock, with statements resetting ¢ on all
incoming edges of this location.

e Committed location: In a committed location:

— time is stopped, as in urgent locations.
— the entire state is committed.
— a transition from the committed state must involve a switch from

a committed location®.

e UpPPAAL supports the stopping of individual clocks. This is done in
locations as a special invariant, setting the rate of the clock. UPPAAL

"Directly copied from the manual of UPPAAL version 1.1.9
8n the case more than one location is committed, enabled switches will be selected
non-deterministically
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however only supports the rates zero and one. Given a clock ¢, the
rate syntax is: ¢/ == for 7 € 0, 1; this expression always evaluates to
true.

In addition to guards, edges in UPPAAL can have:

e Update statements, which allow the update of variables or function
calls; function side effects are allowed.

e Synchronization with other automata using channel expressions of the
form [channel] [!?], where channel is an expression evaluating to
channel; ¢! is initiating synchronization (action), and ¢? is accepting,
or waiting for, synchronization (co-action), on channel ¢;

— a special kind of channel, the broadcast channel, allows multiple
receivers of a single initiating synchronization; this is a one-to-
many synchronization.

— channels can also be declared urgent, preventing delay transitions
in the source location, if the switch is enabled.

e Select statements are a shorthand notation for nondeterministically
selecting the value of a variable from a set of values. As an example,
consider the select statement: i : int[0,3]. Here, the variable 7
nondeterministically is bound to a value in the range of 0 to 3 inclusive.
This variable can then be used in the guard, the synchronization and
the update expressions of this switch only.

Example of an NTA Consider the automata in Figure 2.15 and Fig-
ure 2.14. The first automaton represent a simple model of a coffee machine,
giving the choice of Coffee or Tea upon the insertion of a coin, and the second
a model of a working scientist. The initial location of the coffee machine is

Work CoffeeBreak Choose
w
c<=40
c=0 return_coin?
coffee!
\
deliver?

Figure 2.14: Model of a Scientist
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labeled Ready, and Work for the scientist. In the abstract model, a scientist
can do two things: work, in the Work location, or have a coffee break, by
moving to the CoffeeBreak location.

There are limits on the periods of time the scientist can work, and this
is in the model represented by an invariant on the Work location. The clock
c is introduced, and an invariant, ¢ <= 40, associated with the location Work
states: “While in this location, the clock ¢ must be less than or equal to 40
time units”. Additionally, a guard on the transition to coffee break requires
c to be larger than or equal to 30 time units. This requires the scientist to
work between 30 and 40 time units before having a coffee break.

Ready

return_coin!

time==10

coffee? tea?

§ Prepare_drink

deliver! time>=5" 4ime<e15

Figure 2.15: Model of a Coffee Machine

In the CoffeeBreak location, interaction with the coffee machine is an op-
tion. The only transition from the CoffeeBreak location is a synchronizing
transition, symbolizing a coin input. When taking this transition, both au-
tomata will switch location, from the location pair (Cof fee Break, Ready)
to (Choose, Choice) atomically. Notice the coffee machine has a built in
coin timeout, stating that if no choice is made within ten time units, the
coin will be returned, and the coffee machine will move back to the initial
Ready state. The scientist can now make a choice between tea and coffee,
both synchronising states. When a choice is made nondeterministically, the
coffee machine will move to the Prepare_drink state, where it will stay in
five to 15 time units, before synchronizing on the deliver channel, moving
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back to its initial state. The scientist can now choose to go back to work for
at least 30 time units, or stay indefinitely in the CoffeeBreak location.

2.7 Platform

It is important the platform is both real-time enabled and provides analyz-
able execution of programs.

Many real-time platforms exist, such as the RT'SJ implementations from
Sun (Java RTS), Aicas (JamaicaVM), Timesys, and IBM (WebSphere Real-
time). These platforms, while focusing on predictable performance, are fo-
cusing on RTSJ, and thus they offer little analysability to the extent needed
for safety-critical systems.

Small footprint implementations of virtual machines exist, such as Jela-
tine [4], Keso [155], and the open source JamVM?. However, these virtual
machine implementations focus on size and performance of the virtual ma-
chines, and do not directly have analysability and predictability in focus.

Work has been done in this area in order to provide predictable execution,
the Java Optimized Processor (JOP) [130, 131, 132, 136] and recently the
Hardware near Virtual Machine (HVM) [88, 105, 87| are steps in the direction
of predictable execution platforms.

The JOP is a Java processor implemented directly in Field Programmable
Gate Array (FPGA) hardware. This is intended to make Java execution
time predictable at the instruction level. This processor does not, as most
processors do today, optimise by adding cashes and long pipelines. This
is because, in general, such techniques are improving the average execution
time only, while making the worst case situations very costly. In a real-
time setting the worst case situation has become the interesting situation,
as this is where important deadlines may be missed; this means average
case optimisations are superfluous and may actually make the analysis more
difficult.

The JOP processor, however, does have predictable optimisations such as
an analysable method cache [132]. The JOP is a great step in the direction
of time predictable Java programs; the JOP project includes the WCET
Analyzer (WCA) tool [134], designed for timing analysis of programs running
on JOP.

Another approach to real-time embedded Java is the HVM. The HVM
is a Hardware near Java Virtual Machine implementation, targeting general
purpose hardware, instead of replacing them. It is a very small Virtual
Machine (VM) implementation, targeting tiny devices such as the ATMega
8bit platform with 8KB RAM and 256KB flash [88]|. Here, the focus is the
size of the execution platform and the ability to analyse. However, analyses

http://jamvm.sourceforge.net/
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of programs running on such a platform do need to take into account caches,
branch prediction, and pipelines [50, 105].
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Chapter 3

Summary and Contributions

This section summarises the two main areas of interest, languages and anal-
ysis, and highlights the issues considered in this thesis. A short summary of
the papers comprising this thesis is presented where relevant. The papers

are:

A:

Model-based schedulability analysis of safety critical hard real-time
Java programs

Thomas Bggholm, Henrik Kragh-Hansen, Petur Olsen, Bent Thomsen, and Kim
G. Larsen.  Published and presented at the 6th International Workshop on Java
Technologies for Real-time and Embedded Systems, 2008 (JTRES08) [33].

: A predictable Java profile: rationale and implementations

Thomas Bggholm, René R. Hansen, Anders P. Ravn, Bent Thomsen, and Hans
Spndergaard. Published and presented at the 7th International Workshop on Java
Technologies for Real-time and Embedded Systems, 2009 (JTRES’09) [29].

: Schedulability analysis for Java finalizers

Thomas Bggholm, René R. Hansen, Anders P. Ravn, Bent Thomsen, and Hans
Sondergaard. Published and presented at the 8th International Workshop on Java
Technologies for Real-time and Embedded Systems, 2010 (JTRES’10) [30].

: Refactoring Real-Time Java profiles

Hans Sgndergaard, Bent Thomsen, Anders P. Ravn, René R. Hansen, and
Thomas Bggholm. Published and presented at the 14th IEEE International Sym-
posium on Object/Component/Service-oriented Real-time Distributed Computing

(ISORC’11) [145].

Schedulability Analysis Abstractions for Safety Critical Java

Thomas Bggholm, Bent Thomsen, Alan Mycroft, and Kim G. Larsen. Nominated
for the ’best paper’ award. Published and presented at the 15th IEEE International
Symposium on Object/Component/Service-oriented Real-time Distributed Comput-
ing (ISORC’12)[34].
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F: Towards harnessing theories through tool support for hard real-time
Java programming
Thomas Bggholm, Christian Frost, René R. Hansen, Casper Svenning Jensen,
Kasper Sge Luckow, Anders P. Ravn, Hans Sgndergaard, Bent Thomsen. Pub-

lished in Innovations in Systems and Software Engineering [46].

This section highlights some of the issues in the tools, methods, and
techniques used today, leading to specific improvements proposed in this
thesis.

3.1 Languages

In common application development, the shift from simple imperative lan-
guages like C to modern programming languages has been started, and is
well established in the industry. Modern object oriented languages such
as Java and C+# are being taught at universities, along with modern soft-
ware development techniques such as Object-Oriented Analysis and Design
(OOAD) [108].

The embedded software industry is, however, more conservative in their
choice of languages, and most often uses C, assembly languages, and to
some extent C+-+. As pointed out in Section 2.3, these languages do not
elegantly support the complexities of modern embedded systems. Where C
uses libraries for features such as concurrency, and even common operations
such as memory allocation, languages like Java have built in support for such
features and specify their semantics.

It is well established knowledge that standard Java is not suitable for
many applications outside the domain of enterprise applications and the
like, and this includes embedded systems in general, and certainly safety-
critical systems. This has given rise to specifications for Java in these other
domains, such as Java ME for mobile phones, Java Card for smart cards,
RTSJ and the ongoing specification of SCJ, started in 2006.

After the first specification for real-time systems was released as RTSJ,
it became evident it was too large and dynamic for many applications with
hard deadlines and with safety critical aspects. This lead to a number of pro-
files [91, 137, 122, 29|, and safety critical systems are now officially targeted
in the upcoming specification for safety critical Java, SCJ.

The goals of SCJ are to define a simple but expressive subset of the Java
language and RTSJ, to support the development of safety critical systems
capable of certification under DO-178B/ED-12B. Although most of the SCJ
approach serves its purpose, there are two important language related issues,
where it could be significantly improved.
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3.1.1 Language Issues

Class Hierarchy SCJ is built using RT'SJ by means of inheritance for lim-
itation. This means unwanted functionality from RTSJ pollutes the
SCJ API. This functionality is seemingly available, but disallowed in
the specification; this results in unwanted clutter when using the spec-
ification and it may confuse developers of safety critical systems.

Mission Concept Missions in the specification are designed as mere con-
tainers of schedulable objects. This results in additional infrastructure
for handling missions, adding to the hierarchy and methods, and com-
plicating the specification even further.

3.1.2 Contributions

These language related issues lead to the work of Predictable Java (PJ),
described in Paper B and the refactoring of SCJ and RTSJ presented in
Paper D.

Paper B This paper presents a new profile proposal, Predictable Java (PJ),
which is used as constructive criticism on the upcoming SCJ profile. This
paper presents:

e The ideal profile designed using the principle inheritance for special-
ization, with PJ as a parent to RTSJ, instead of the reverse.

e An implementation directly on an open source JVM using Xenomai
Linux.

e An implementation of PJ compliant with RTSJ, as it is recognized
RTSJ is too important to ignore.

e A redesign of the Mission concept, with missions made first class han-
dlers with initialization, termination and transition semantics.

This paper was presented at JTRES 2009.

Paper D In this paper it is argued there is a need for refactoring of
SCJ and RTSJ. This new simplified structure results in a clean core set of
interfaces and profiles for each SCJ level. The paper presents:

e The definition of a common core subset of the SCJ levels and RTSJ.
This results in a common set of interfaces, named rtcore.

e Four profiles, corresponding to the three SCJ levels and RTSJ, which
can be implemented separately.

This paper was presented at ISORC 2011.
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3.2 Schedulability Analysis

Traditional schedulability analysis operates on very simple abstract models
of real-time systems.

Starting from the pioneering work by Liu and Layland in the early seven-
ties [100], since then, substantial research has been performed in extending
the simple models and utilization based tests, to lesser restricted models
including synchronization, sporadic tasks and release jitter.

The advantage of these methods are the fact they are easy to compute
and easy to understand, and under the right restrictions they do provide
tight results, and sometimes an exact schedulability verdict. However, the
traditional approaches are somewhat limited in what behaviour can be ex-
pressed, while still keeping the computation and precision advantage of using
these methods. For example there seems to be no general way of extending
the traditional approaches with the ability to express interdependence be-
tween tasks; as an example a periodic task firing either sporadic task A or
sporadic task B.

The shortcomings of traditional approaches are addressed in the TIMES
tool [11]. Using TIMES, a developer can design a system specification, using
a graphical user interface, and specify tasks and their relationships. TIMES
allow sporadic, periodic and controlled tasks, dependencies between tasks,
and synchronisation. Using the UPPAAL tool, the specification can be veri-
fied, and code can be generated from the verified model.

3.2.1 Tool Issues

Traditional approaches to schedulability analysis are limited to analysing a
simple schedule, and given a set of tasks and their execution times, it is
relatively easy to compute a verdict. The shortcomings to this approach
and the limited model on which it operates, are addressed by tools, such as
TIMES.

However, in a tool like TIMES, there is a distance between the execution
time of the actual program and the analysed model. When using TIMES,
one must ensure that the system implementing the specification actually has
the same properties as the analysed model. Maintaining, and even ensuring
this correspondence, is not trivial.

3.2.2 Contributions

Paper A This paper presents an approach inspired by the TIMES ap-
proach, in a tool called SARTS. The focus of this tool is schedulability anal-
ysis, however, with additional focus on the correspondence between code and
model. The contributions of this work include:
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e The design and implementation of a prototype tool capable of perform-
ing schedulability analysis of real-time Java programs.

e Schedulability analysis is performed on a timed automata model of the
system, a model generated from compiled Java code to achieve the
closest possible correspondence.

e A case study example successfully verified using this tool is presented.

This paper was presented at JTRES 2008.

Paper C This paper presents improvements to the SARTS tool, utilising
the properties of the profile presented in Paper B, relaxing restrictions and
increasing the reliability of the profile; these results can also be applied to
SCJ. The contributions of this work includes:

e The argument that Java finalizers can be made predictable, and could
in the end result in safer programs.

e An addition to traditional schedulability analysis including considera-
tion of finalizers under certain conditions.

e An extension of the SARTS tool to include finalizers in the schedula-
bility analysis.

This paper was presented at JTRES 2010.

Paper E This paper presents a branch of the SARTS tool, building upon
abstract system specifications to achieve a compositional approach to schedu-
lability analysis, while maintaining correspondence between specification and
implementations. The contributions of this work include:

e The timed specification language, TRSL, for specifying task timing

and synchronization behavior.

e The translation of TRSL to timed automata to verify language inclu-
sion and hence the specification /implementation relation; it is argued
code translates directly into TRSL, and hence the model/code corre-
spondence is maintained.

e The translation of TRSL to timed automata to verify schedulability
and related properties.

This paper was presented at ISORC 20121.

3.2.3 Perspective

Paper F gives an overview of the current state of real-time Java and re-
lated tools, and identifies further work.

!'Nominated for best paper award.
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Chapter 4

Future Work

Traditional methods rely on WCET tools for computing the cost of each task
in the system. WCET analysis is also an area of substantial interest in the
real-time community, with a myriad of mature techniques and tools [167].
Modern WCET analysis techniques include information about the hardware
executing the code, and attempts are made to improve the analysis. This
includes including the behaviour of the platform specific details, such as
caches and pipelines, which are part of most modern hardware today. It
is not obvious, however, how to benefit from the information about caches
and pipelines in the analysis of a priority based preemptive system. Since
the state of the cache and pipeline may be invalidated by every preemption
during execution. Including every possible preemption in the analysis, would
certainly affect the results. To be able to benefit from the state of caches and
pipelines, the preemption task interaction should be considered, and not only
a possible worst case execution time. A future direction would be combine
SARTS with a WCET analysis tool such as TetaJ [65], since the analysis of
TetaJ is based on a detailed model of hardware with more features than the
JOP processor used in SARTS. The first steps in this tool combination have
already been initiated.

In the current approach, code must be annotated with loop bounds in
order to determine the number of loop iterations for a given loop. Such static
bounds provided by the programmer is considered unsafe, and are in other
perspectives problematic, e.g. when considering modularity in development
as it is difficult and often impossible to put static bounds inside program li-
braries. Deductive reasoning is based on logic statements about the program
written as program annotations, which is then proven to be correct using the-
orem proving techniques. Promising work in deductive methods has resulted
in mature tools [22], and work has been done on finding provably correct
loop bounds [82], using the Java modelling language[93]. A future direction
is to add symbolic bounds and deductive techniques to the model to reduce
the uncertainty of the analysis result, and provide a more accurate analysis.
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This would allow verified TRSL-like specifications of real-time libraries.
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Chapter 5

Papers

The papers on which this thesis is based, are presented in their full version
in the following pages. The papers have been subject to reformatting to fit
the layout of this thesis.
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Paper A:

Model-based schedulability analysis of

safety critical hard real-time Java
programs

Thomas Bggholm, Henrik Kragh-Hansen, Petur Olsen,
Bent Thomsen, and Kim G. Larsen

Department of Computer Science
Aalborg University, Denmark

Abstract

In this paper, we present a novel approach to schedulability analysis of Safety Crit-
ical Hard Real-Time Java programs. The approach is based on a translation of pro-
grams, written in the Safety Critical Java profile introduced in [137] for the Java
Optimized Processor [130], to timed automata models verifiable by the UpPPAAL
model checker [25]. Schedulability analysis is reduced to a simple reachability ques-
tion, checking for deadlock freedom. Model-based schedulability analysis has been
developed by Amnell et al. [11], but has so far only been applied to high level spec-
ifications, not actual implementations in a programming language. Experiments
show that model-based schedulability analysis can result in a more accurate analy-
sis than possible with traditional approaches, thus systems deemed non-schedulable
by traditional approaches may in fact be schedulable, as detected by our analysis.

Our approach has been implemented in a tool, named SARTS, successfully used
to verify the schedulability of a real-time sorting machine consisting of two periodic
and two sporadic tasks. SARTS has also been applied on a number of smaller
examples to investigate properties of our approach.
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1. INTRODUCTION

1 Introduction

Traditional schedulability analysis are based on the critical instant and as-
sume maximum interference and blocking; an approach which often results
in a very pessimistic analysis. Due to this pessimistic nature, a new approach
is desirable.

Several modeling tools exist, where the general idea is to model the sys-
tem, and verify that certain properties hold. Some tools also allow the devel-
oper to check whether deadlines are missed, based on a scheduling strategy
and a WCET for each task; other tools must be used to estimate this WCET.
A tight correspondence between the model used in these tools and the actual
implementation is required, in order to rely on the guarantees given. One
such tool is the TIMES tool [11] which builds on timed automata models of
systems and generates C code.

However, in many circumstances a high-level model of a hard real-time
system from which code can be generated does not exist. Instead the code
of the system has to be analyzed to give verifiable guarantees. This paper
focuses on improving and automating the schedulability analysis of such
systems, where the implementation language is Java.

Several real-time profiles for Java exists: the Real-Time Specification
for Java (RTSJ) [35, 37|, the Ravenscar-Java Profile [91|, which is based
on the Ravenscar profile for Ada [56], and the Safety Critical Java (SCJ)
profile [137]. Furthermore, there is currently a huge standardization effort
underway by academia and industry to provide a standard Safety Critical
Java profile under the Java Community Process which has issued the Java
Specification Request 302 (JSR-302).

RTSJ is a general, somewhat complex, real-time framework with many
dynamic features. Often these dynamic features inhibit static analysis and
dynamic checks have to be performed, e.g. checks for budget overruns and
missed deadlines, with associated miss handlers. The Ravenscar-Java profile
and the current direction of the expert group for the JSR-302, both define
extended subsets of RT'SJ, which remove many of the dynamic features of
RTSJ, making them more suitable for static analysis. SCJ also removes
many dynamic features and many parameters from RTSJ to ensure imple-
mentations are verifiable such that they can be deployed in high integrity
systems. SCJ presents a programming model similar to the midlet model
of J2ME MIDP for mobile phones. In SCJ release parameters of schedula-
ble entities (periodic and sporadic threads) are time and not priority. The
implementation uses a priority based preemptive scheduler which maps the
time requirements according to the deadline-monotonic order. This relieves
the programmer of the error prone assignment of priorities.

The approach developed in this paper, is the translation of an existing
implementation of a hard real-time system written in the SCJ profile [137]
for the Java Optimized Processor (JOP) [130], to an abstract time preserving
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model, on which the UPPAAL model-checker [25] can be used to verify that
deadline misses never occur. The schedulability analysis considers blocking,
interference, context switches, and event interactions between tasks. This
improves the accuracy of the analysis, while ensuring a tight correspondence
between the model and the actual implementation.

The contributions of this paper, is the tool SARTS. SARTS performs
a fully automatic translation of real-time Java applications into UPPAAL
models, on which schedulability analysis is performed using the theoretical
foundations of Fersman and Yi [59, 60, 90]. It is shown how this approach can
result in a more accurate result than possible with traditional approaches.

2 Related Work

A traditional approach to schedulability analysis, involves WCET calculation
of tasks, and combining these with formulae, e.g. utilization test or response
time analysis [45]. WCA [134] is a tool developed for JOP [130], supporting
WCET calculation for a single method of a real-time Java program. The
result is intended to be used in conjunction with the afore mentioned formu-
lae.

Several modeling tools for Java already exists, such as Bandera [49] which
translates Java source code to an intermediate representation, on which slic-
ing and abstraction is performed. This intermediate representation is trans-
lated to abstract models, on which safety properties of the implementation
can be verified. However, Bandera has no notion of time, which is critical in
real-time systems, and is therefore not suitable for schedulability analysis.

The TIMES tool [11] already supports a schedulability analysis of a real-
time system, but the focus is on high-level models of systems. However,
TIMES supports generation of source code from the model, and is therefore
an approach, opposite from that of SARTS. Furthermore, TIMES puts sev-
eral restrictions on what computation is actually possible by periodic and
sporadic tasks and TIMES includes no context switch or scheduler cost in
the schedulability analysis, which may be significant in some systems.

Polychrony is another interesting tool, which allows translation of Java to
its input language SIGNAL targeted hard real-time systems [149]. However,
it is unclear how Polychrony handles WCET, and therefore how it can be
utilized as a schedulability tool.

Java PathFinder [40] is a model checker to verify properties of executable
Java bytecode programs. Java PathFinder is a Java Virtual Machine (JVM)
that systematically explore all potential execution paths of a program to
find violations of properties like deadlocks or unhandled exceptions. Java
PathFinder has been used to verify properties of RT'SJ programs, basically by
implementing (a subset of) RT'SJ on top of the Java PathFinder JVM using
discrete event simulation as a basis for modeling time. Real-time threads are
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modeled in Java PathFinder as ordinary Java threads, constrained to run one
at a time, modeling resource contention, such as scheduling, through discrete
event programming [99].

3 SARTS

SARTS automatically translates real-time Java systems into UPPAAL mod-
els. The Java system must be implemented in SCJ; a safety critical hard
real-time profile for Java [137| implemented and documented in [31]. SCJ
supports periodic and sporadic tasks, and uses a fixed priority scheduler.
Furthermore, a priority inversion control mechanism is included. In SCJ pri-
ority ceiling emulation is the only available protocol. Release parameters of
schedulable entities (periodic and sporadic threads) in SCJ are time and not
priority. An implementation that uses a priority based preemptive scheduler
maps the time requirements according to the deadline-monotonic order. As
SCJ does not allow dynamic creation of threads during mission phase this
mapping can be done on the transition from the initialization to the mis-
sion phase. This relieves the programmer of the error prone assignment of
priorities. SCJ does not have budget parameters, as WCET and schedu-
lability analysis is supposed to be performed to guarantee that no budget
overruns or deadline misses will ever happen, thus eliminating the need for
miss handlers.

SARTS translates the Java application to SARTS Intermediate Repre-
sentation (SIR), on which analyses and transformations are performed. SIR
represents an abstraction of the actual Java bytecode via a class graph, where
each class contains a set of methods represented as control flow graphs. SIR
is extracted from a Java class file using the BCEL library [21].

In the current implementation, WCET calculation and simple collapsing
is performed. SIR is translated to a UPPAAL model. For a description of
UPPAAL see [24].

The following sections describe the principles of the translation to Up-
PAAL. The models are created to simulate the execution of the system on
JOP. The scheduler, preemption, and interrupt mechanisms are modeled
directly as the actual implementations on JOP.

3.1 The Scheduler

The purpose of the scheduler is to schedule the thread with the highest pri-
ority, according to a deadline monotonic priority assignment. The scheduler
is depicted in Figure 1.

Initially the broadcast channel GO! is synchronized to ensure all threads
are in their correct state. The scheduler simulates execution, by waiting for
wcet time. If any schedulable thread exists, the highest priority thread is
selected, by setting the corresponding index in the running array to 1. If no
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Running

executionTime <= wcet &&

<\executionTime‘ == running[schedulerID]
N\

exists(i:ThreadlD)sclhedulable[i]
selectThread(),
executionTime =0

executionTime = wcet

~ C
lexists(i:ThreadID)schedulable[i] \)
idle(),

executionTime =0

Figure 1: Scheduler

threads are schedulable all indices in running are set to 0. This is handled
by the two functions selectThread() and idle() respectively. The values
in the array, running, are used in stopwatch expressions to determine which
thread is executing, modeling preemption.

3.2 Periodic Thread

For each periodic and sporadic thread in the Java program, a base model is
added. This model must be supplied with parameters to determine its ID,
period, deadline, and offset corresponding to the actual Java implementation
of the thread. The base model for the periodic thread is depicted in Figure 2.

Initially the thread waits if an offset is specified. If the thread has a
higher priority than the currently executing thread, preemption occurs and
the scheduler is started, by calling runScheduler (). In the actual Java im-
plementation, it is not the thread’s responsibility to notify the scheduler, but
the scheduler’s responsibility to schedule interrupts at the correct time. How-
ever, this implementation is not suitable in UPPAAL, since it would make the
model unnecessarily complicated. The implementation of runScheduler ()
is shown in Listing 1.

If the system is in a synchronized region an interrupt is queued. Once
the synchronized region is left the scheduler is started if scheduled interrupts
exist. Otherwise all threads are stopped and the scheduler is started.
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offset 1= 0 CheckForOffset
GO?

releasedTime <= offset

offset == 0

?
Go7 edTime == offset

schedulable[pID] = true,
releasedTime = 0

threadPriority[pID] < selectedThreadPriority
ReadyToBeScheduled

r ]

threadPriority[pID] >= selectedThreadPriority run[piD]:

runScheduler()
ExecutingThread
releasedTime <= deadline
releasedTime <= deadline
run[pID]?
schedulable[pID] = false,
runScheduler()
releasedTime == period DONE

O releasedTime <= period

Figure 2: PeriodicThread base model

void runScheduler (){
int i;
if (synchronized){
interruptWaiting — true;
} else {
for (i = 0; i <= totalThreads; i++){
running[i] = 0;

running|[schedulerID]| = 1;

Listing 1: Implementation of runScheduler in UPPAAL

To start the run logic for the thread, synchronization is performed on
the correct channel in the run channel array. This synchronizes with the
template containing the run logic for the thread. The template waits in
ExecutingThread for a synchronization on the same channel, indicating the
thread is done with its run logic. An example of a run method is explained
in Section 3.5. It is ensured that the thread has completed before its dead-
line, otherwise a deadlock occurs, and the system is not schedulable. The
scheduler model is invoked to determine which thread to schedule next. The
same procedure continues for each period of the periodic thread.

3.3 Sporadic Thread

The sporadic model is similar to the periodic model, except it must be in-
voked by synchronizing on the correct channel in the fire array. This syn-
chronization occurs when a thread chooses to fire the given thread. The base
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model is depicted in Figure 3. This model must be supplied with parameters
for its ID, minimum inter-arrival time, and deadline. When the run logic is

done,

the template waits in DONE. Once the minimum inter-arrival time has

passed since the last release, the firable array is set to true for the specific
thread, and it is ready to be fired again.

3.4

(@)

GO?
fireable[sID] = true

\ReadyToBeFired ReadyToBeScheduled
C/ fire[sID]? \C

schedulable[sID] = true,
fireable[sID] = false,
releasedTime = 0,
runScheduler()

run[siD]!

ExecutingThread
() releasedTime <= deadline

releasedTime <= deadline
run[sID]?
schedulable[sID] = false,

releasedTime == minlA runScheduler()

releasedTime =0,
fireable[sID] = true

DONE
O releasedTime <= minlA

Figure 3: SporadicThread base model

Basic Blocks

As an abstraction to the actual Java bytecode, the concept of basic blocks is
introduced. A basic block contains a list of the Java bytecode instructions
it represents and the cost of executing these along with extra information,
e.g. loop bound in the case of a loop basic block.

SIR consists of basic blocks, which are translated to a corresponding part
of the UPPAAL model.

SimpleBasicBlock: This is a sequence of bytecode instructions with
exactly one predecessor and exactly one successor.

MethodCallingBasicBlock: This represents a method invocation.
It contains a set of possible methods, which can be invoked.

SporadicInvokeBasicBlock: This is a special case of a method in-
voke, where a sporadic event is fired.

IfBasicBlock: Represents an if branch, and therefore contains two
outgoing edges.

LoopBasicBlock: Represents any kind of a loop. It contains an
estimated upper iteration bound for the actual loop, specified by the
developer of the real-time system.
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e MonitorEnter- and MonitorExitBasicBlock: Represent start and
end of synchronized regions. Synchronized regions are handled by set-
ting the variable synchronized, see Listing 1, to true; disabling inter-
rupts.

¢ EmptyBasicBlock: These blocks do not represent actual instruc-
tions, and are added for convenience reasons, e.g. one is added in the
beginning and the end of a method.

A simple basic block modeled in UPPAAL is depicted in Figure 4. An invari-
ant is added to ensure the model stays in this state for as long as the WCET
of the represented bytecode, denoted by instX. Whether the given thread
is executing is denoted by executionTime’ == running[tID], a stopwatch
expression. Preemption is done by setting running[tID] to 0; stopping the
clock, executionTime. The execution time is reset on the outgoing edge to
reuse the clock in the next basic block.

SimpleX
<> executionTime <= instX &&
executionTime' == running[tID]

executionTime == instX
executionTime =0

Figure 4: Simple basic block

Each basic block, uses the same notation to represent the correct amount
of time spent in a state. The other types of basic blocks are implemented in
a similar way, by adding the control flow, e.g. a branching basic block, and
special variable updates, e.g. a monitor enter or exit.

3.5 Example

As a small example of how Java code is translated to a UPPAAL model, a
simple periodic run method is shown in Listing 2. The translated UPPAAL
model is depicted in Figure 5. This model is slightly modified from the
translated model to reduce the size, and focus on the essential aspects. All
invariants, guards, and updates have been removed, as they all follow the
pattern of the simple basic block depicted in Figure 4, i.e. the model waits in
each state for the correct amount of time, corresponding to the represented
bytecode instructions.
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protected boolean run() {
if (condition){
//then statements

} else {

//else statements

return true;

}

Listing 2: Run method example

WaitingForRelease

run[tiD]?
Ready

run[tiD]!
IfElse

Figure 5: Translated UPPAAL model

Each time the periodic thread is released, the template enters the Ready
state. However, it does not start executing until the thread is selected by
the scheduler. It enters the If state and performs a nondeterministic choice
between the two branches, and returns from the method, by synchronizing
on run[tID]. The corresponding periodic template, Figure 2, enters the DONE
state, and waits for the period to elapse, before the periodic thread is released
again.

3.6 Method Invoke

When a method invocation is performed, it corresponds to switching to an-
other template in UPPAAL. This is modeled as depicted in Figure 6. A
model is created for each method in the system. Each of these has an array
of channels, one for each thread. This is done to enable different threads to
invoke the same method. A method invoke consists of synchronization on the
correct channel, transferring control to the invoked method, and waiting for
a synchronization on the same channel, meaning the method has returned.

In Figure 6, methodNamel to methodNameN denote the uncertainty of
method invokes due to dynamic dispatching.

Using this design UrPPAAL will nondeterministically consider all possible
method candidates for this call.
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MethodCallingX
executionTime <= instX &&
executionTime' == running[tID]

executionTime == instX
methodNameN[tID]!
executionTime =0

executionTime == instX
methodName1l[tID]!
executionTime = 0

running_MethodCallingX
methodName1[tID]?

executionTime = 0,
methodSwitchCost = Y

methodNameN[tID]?
executionTime = 0,
methodSwitchCost = Y

returningFrom_MethodCallingX
executionTime <= methodSwitchCost &&
executionTime' == running[tID]

executionTime == methodSwitchCost
executionTime =0

Figure 6: Invoke of a standard method

JOP has a method cache to improve performance, however, the method
cache complicates WCET analysis and in the current implementation of
SARTS method caches are always assumed to miss, thus making a con-
servative approximation. We expect the rather conservative approximations
that both dynamic dispatch and cache miss assumption introduce, can be
reduced significantly by combining traditional control flow and call graph
analysis within the SARTS model generation module.

4 Case Study

A case study of a real-time system has been implemented in SCJ. It was
originally designed and implemented in [32]. The system is a sorting machine
called RTSM, depicted in Figure 7. The machine is built in LEGO, using
motors and sensors controlled and monitored by JOP!.

RTSM is a prototypical example of a hard real-time system, represen-
tative of many real-life real-time control systems. It includes periodic and
sporadic tasks, blocking regions, and dependencies between tasks. These are
interesting properties of a system, when performing schedulability analysis.

The implementation contains two periodic and two sporadic tasks, where
the sporadic tasks are two instances of the same class. The cyclomatic com-
plexity of each tasks in the system is shown in Table 1, indicating the com-
plexity of the system being verified. The system consists of 17 different
methods, and contains more than 300 lines of code. The generated model
contains 20 templates, one for each method and the three base models. The
instantiated system contains 65 instances of templates, and a total of about

! A video of the machine in action is available at http://sarts.boegholm.dk/
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Figure 7: Real-Time Sorting Machine

Task Cyclomatic Complexity
Periodic 1 9
Periodic 2 17
Sporadic 7

Table 1: Cyclomatic complexity of tasks

700 template locations.

Periodic 1 reads the input from the sensors, to determine whether an
object has passed by, and of which color. Each time an object is detected,
the time of detection is added to a bounded buffer. Periodic 2 reads this
buffer, and fires a sporadic event, when the object must be pushed off the
conveyor belt. The two sporadic tasks push off the objects depending on
their color.

protected boolean run(){
if (state = IDLE){
motor .setMotorPercentage (
Motor . STATE_FORWARD ,
false, 100);
state = FORWARD;
} else if (state FORWARD ) {
motor.setMotorPercentage (
Motor .STATE_BACKWARD ,
false, 100);
state = BACKWARD;
} else if (state — BACKWARD){
motor.setMotorPercentage (
Motor.STATE_BRAKE,
false, 100);
state = IDLE;

}

return true;

}

Listing 3: Code example from RTSM
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The code in Listing 3 contains the run logic for the sporadic thread push-
ing objects off the conveyor belt. This sporadic thread is fired three times
for each object detected on the conveyor belt, keeping an internal state for
each operation, forward, backward and brake. Note that the method invoke,
motor.setMotorPercentage has a cyclomatic complexity of 2. A simple
version of RTSM, called RTSMgyprs, has been developed for performing
experiments. RTSMgypLe has a lower complexity, which allows for faster
verification. The difference between RT'SM and RTSMg;yprr is that the pe-
riodic thread, Periodic 2, can only fire the sporadic threads at two code
points instead of six in RT'SM.

5 Experiments

This section presents experiments conducted to evaluate the implementation
of SARTS. In [31] it is shown that SARTS is comparable to WCA [134] in
terms of WCET analysis accuracy.

The experiments presented here show how the model-based schedulability
analysis is able to exploit the control flow of the analyzed system, in order to
achieve a more accurate analysis result, followed by experiments illustrating
the scaling properties of the generated models.

5.1 Conditional Sporadic Events

For this experiment, the example system consists of one periodic thread and
two sporadic threads. The logic of the run method for the periodic thread is
shown in Listing 4, in which the periodic task Experiment1 fires either event
1 or event 2, but never both in the same period. The period and minimum
inter-arrival times are set to 4 microseconds, and the sporadic tasks have the
same WCET.

public class Experimentl extends PeriodicThread {
public boolean run() {
if(b)
RealtimeSystem.fire(1);
else
RealtimeSystem.fire(2);
return true;

}
}

Listing 4: Conditional sporadic invoke

The WCET for the periodic run method is 161 clock cycles and 64 clock
cycles for the sporadic run method. The period calculated into clock cycles is
240, and the calculation of the processor utilization is performed as follows:

161 64 64
(31) + (510) * (325) =120
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Following traditional schedulability analysis approaches, this system will be
deemed not schedulable since processor utilization is greater than 1 [45].
Running SARTS on this system will correctly show it as being schedulable,
since the model checker can deduct that the two sporadic events will never
be fired at the same time. A time-line for the execution of the system can
be seen in Figure 8.

Thread

[ T T T T T T T 1
0 240 480

T Process release time . Executing

o Process completion time — deadline met D Preempted

Figure 8: Time-line for conditional sporadic invoke

5.2 Scalability

Several experiments have been conducted to illustrate the scalability of
SARTS. The experiments consider only the time used to verify the sys-
tem in UPPAAL, since the translation time is insignificant. The example
system being verified is RT'SMgpprr compiled using two different Java com-
pilers generating slightly different code. This small change in the generated
bytecode is, enough to make a measurable difference in verification time.

The execution of the verification for the two generated systems is shown
in Table 2. These results indicate that even small variation in the generated
bytecode, can lead to huge variations in the verification time of the generated
model.

Compiler Verification time Result
Javac 14m 29s Satisfied
Eclipse 1m 55s Satisfied

Table 2: Verification time of RTSMgvpLe

The cause of the difference in verification time is illustrated in Figure 9
and 10. These two models are semantically equivalent, disregarding execu-
tion time. The Javac version, Figure 9, has a single return statement and a
jump to this statement from the other branch, the Eclipse version has two
return statements.
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Return
WCET =23

Figure 9: Javac compiled model

In the Eclipse version, Figure 10, both branches have the same execution
time. The state of the model, when the template enters the End location,
is therefore independent of the previous branch, since the choice of branch
becomes insignificant and thus no additional traces are considered by the
model checker.

Return
WCET =23

Return
WCET =23

Figure 10: Eclipse compiled model

The result of this experiment, is that small factors in the system and
hence the model generated, have significant impact on verification time.

However, it is possible to reduce the time needed to verify the systems,
using the options available in UPPAAL. Additional tests have therefore been
conducted. Table 3 is the same experiments where a depth first search in-
stead of breath first search is used, and aggressive state space reduction is
enabled.

UPPAAL also supports a convex-hull approximation option, reducing ver-
ification time at the cost of an over approximate answer. If UPPAAL using
convex hull determines a safety property to be satisfied, then it is also sat-
isfied without the approximation. The result of this experiment is shown in
Table 4.

In addition to verifying RTSMgypre, the full version of RT'SM has also
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Compiler Verification time Result
Javac 4m 23s Satisfied
Eclipse 51s Satisfied

Table 3: Verification time of RT'SMgprr using depth first search and ag-
gressive state space reduction

Compiler Verification time Result
Javac 16s Satisfied
Eclipse 9s Satisfied

Table 4: Verification time of RT'SMgypLs using convex-hull approximation

been verified, requiring substantially more verification time than RT'SMgyprs
due to the increased complexity. The verification times using different opti-
mizations can be seen in Table 5. In all cases, the system is deemed schedu-
lable.

Settings Compiler Verification time
Standard Javac 27h 15m 26s
Standard Eclipse 5h 42m 10s
Aggressive Javac 6h 30m 0Ol1s
Aggressive Eclipse 1h 28m 29s
Convex Hull Javac 52s
Convex Hull Eclipse 37s

Table 5: Verification time of Full RTSM

The experiments show that even small changes in the analyzed program,
the compiled code, or the UPPAAL template can significantly increase the
verification time. How the different parameters interact is still an open
research question.

6 Improvements

In the current implementation all branches and loops from the Java code
are present in the UPPAAL model. This is done to maintain the control flow
of the actual application, however, it will be possible to collapse branches
if this change is made to the analyzed system as well, to keep consistency.
Collapsing branches applies to branches where the contained instructions do
not affect the overall system, such as firing a sporadic task. This could be
done by calculating the worst case path through the branch and creating a
single basic block with WCET equal to that worst case. This way the state
space could be significantly reduced, since fever traces are explored by the
model checker. The code being analyzed must be changed correspondingly
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to correctly reflect this change in the model. This is due to interleavings,
where a blocking region can be moved past a point where it would have
prevented a higher priority thread from executing.

In order to illustrate this problem, a small system consisting of two
threads is analyzed. The actual time-line for the execution is depicted in
Figure 11. The thread b includes a blocking region larger than the deadline
of the higher priority thread a, resulting in a deadline miss. Note, this is due
the implementation of synchronized regions on JOP, which implements the
priority ceiling protocol with all locks assigned the highest priority.

Thread

b A

] T T T T T 1
Time ———»

Executing with lock . Blocked

® Deadline missed

Figure 11: Blocking example, actual execution

The actual implementation of the system is therefore not schedulable.
However, a pessimistic WCET in the verified model might postpone the
blocking region, moving it past the release of task a, deeming the system
schedulable, depicted in Figure 12. It is therefore necessary to consider all
paths with different execution time, in order to rely on the result.

Thread

.
: YA

Time ————»

Figure 12: Blocking example, generated model

A way to circumvent this problem is to perform changes in both the
model and the program itself, i.e. the Java class file, by padding the cheapest
branch, adding execution time, a technique well know in secure applications
to prevent timing attacks.

As an example, consider a simple branching if-statement. The cheapest
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in terms of execution time, of the two branches, could be padded with nop
instructions with the execution time of 1 clock cycle, such that the branch is
execution time symmetric. Since selecting either branch is of no significance
to the execution time, this branch can be collapsed into one block.

This technique will add execution time to the system, but the WCET is
preserved and the additional time is therefore not a problem for the overall
system, since average execution time is not important.

7 Conclusion

In this paper we have presented a novel model-based schedulability analysis
of Java based safety critical hard real-time systems. The approach has been
implemented in the SARTS tool, which automatically translates a real-time
system implemented in Java to an abstract time preserving UPPAAL model.

Verification can be performed on this model and schedulability analysis
translates into a simple reachability question checking for deadlock freedom.
The translation is an abstraction of the Java code, including an analysis of
the actual bytecode, in order to determine the WCET. The WCET analysis
is based on published bytecode execution time for the FPGA implementation
of JOP [131].

The automatic translation from Java to UPPAAL ensures direct corre-
spondence between the actual implementation, and the model being veri-
fied. This automatic translation also allows the developer to abstract away
from the actual verification process and no knowledge of model checkers is
required. In the future we invision SARTS integrated into the Eclipse devel-
opment environment. Currently the developer has to annotate loop bounds,
which is a potential source of errors. However, we believe that this source
of errors could be eliminated by integrating into SARTS the loop bounds
analysis presented in [82].

Several experiments have been conducted, in order to compare SARTS to
existing techniques and tools, and the actual execution on JOP. The results
are that SARTS is capable of performing WCET analysis comparable with
tools such as WCA. Furthermore, the model-based approach can lead to
more accurate results than traditional approaches to schedulability analysis.
We believe the more accurate analysis can deem systems runnable on cheaper
hardware.

The improved accuracy comes at the cost of verification time, and scalabi-
lity of the approach is clearly dependent on scalability of the model checking
tool. Currently there is an upper bound on the state space the UPPAAL sys-
tem can handle. Clearly more powerful implementations of UPPAAL, such as
the current effort to implement it on 64bit multi-core systems, can analyze
more complex systems. Furthermore, the translation from Java to timed
automata can perhaps be improved to reduce the complexity of the verified
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model. As our experiments show, even the small difference in semantically
equivalent code generation between javac and the Eclipse compiler, yield a
huge difference in the state space.

Currently only the SCJ profile introduced in [137] is supported and the
only execution platform supported is the JOP [130]. We believe supporting
other Java processors such as the AJ-100 from aJile Systems [6] is straight-
forward, only requiring published execution times for all Java bytecode in-
structions. A somewhat more ambitious goal is to support real-time JVMs
on mainstream real-time Linux platforms on ARM and Intel Processors as
getting time predictable Java bytecode instruction will depend on JVM im-
plementation, operating system, and hardware platforms.

The implementation of the SCJ profile on JOP uses a fixed priority sched-
uler with deadline monotonic priority assignment. We believe that exper-
imenting with other scheduling policies and priority assignments, such as
Earliest Deadline First and Value-Based Scheduling (VBS), should be possi-
ble, only requiring a change to the UPPAAL template modeling the scheduler.

There is currently huge standardization effort underway by academia and
industry to provide a standard Safety Critical Java profile under the Java
Community Process which has issued the JSR-302. The SCJ profile shares
many commonalities with JSR-302 and we believe that in the future we
will be able to analyze JSR-302 compliant Java programs adhering to the
upcoming standard, at least to level 1.

A much more challeging task is to apply our approach to programs writ-
ten in RTSJ with its many dynamic features. However, as our approach
shares some commonalities with the approach used to model RTSJ in Java
PathFinder in [99], such as modeling threads as coroutines running one at
a time, scheduled by resource contention through discrete events, we have
some expectations that this might work with UPPAAL.

A web based version of the SART'S tools has been developed, and is available
at http://sarts.boegholm.dk/.
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Abstract

A Java profile suitable for development of high integrity embedded systems is pre-
sented. It is based on event handlers which are grouped in missions and equipped
with respectively private handler memory and shared mission memory. This is a
result of our previous work on developing a Java profile, and is directly inspired
by interactions with the Open Group on their on-going work on a safety critical
Java profile (JSR-302). The main contribution is an arrangement of the class hier-
archy such that the proposal is a generalization of Real-Time Specification for Java
(RTSJ). A further contribution is to integrate the mission concept as a handler,
such that mission memory becomes a handler private memory and such that mis-
sion initialization and finalization are scheduled activities. Two implementations
are presented: one directly on an open source JVM using Xenomai and another,
based on delegation, on an RTSJ platform.
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1. INTRODUCTION

1 Introduction

The Real-Time Specification for Java (RTSJ) [36] was a major breakthrough
for Java as a language for programming embedded software, but soon after
it had emerged, the discussion began as to whether it was too large or too
dynamic to really support high integrity applications. This led to proposals
for smaller profiles with a rationale presented in [122| and an implementation
in the Ravenscar Java profile [91]; the focus was on embedded systems and
on making programs amiable to analysis with state-of-the-art techniques.
These formed a starting point for our own work with a predictable Java
profile {144, 137] which considered using integrated analysis tools instead
of programmer supplied parameters to provide predictable programs. More
recently the Open Group has formed a committee to develop a profile for
Safety-Critical Java [152, 12|, and they have outlined their approach in a
recent paper [76]. During the work in the committee we have had access to
intermediate drafts which we have commented. This paper is a summary and
consolidation of points where we find that the current draft may improve.

We have found the Open Group’s approach refreshing, because they solve
a major issue by settling for handlers as the schedulable entities in a real-time
system. RTSJ supports both a handler paradigm and a thread paradigm,
but the latter is hampered by inheritance from Java threads, for instance
with unwanted asynchronous interrupts and conditional waits. Threads are
not really suitable as logical processes. The handler concept is much closer
in spirit to a logical process. In this, as in many other details, we agree with
the SCJ draft.

The points where we would see further advances, and thus the contribu-
tions of this paper are:

1. An arrangement of the class hierarchy such that the proposal is a
generalization of RT'SJ, as we believe it should be, because it has far fewer
details and options. The SCJ draft uses specialization.

2. The SCJ draft organizes handlers in missions. We propose to make
missions first-class handlers, such that initialization, termination and tran-
sition between missions may be given a precise semantics. Furthermore it
makes mission memory equal to handler memory.

In Section 2 we elaborate on constructs that make missions first-class
schedulable entities which gives a structured replacement for the Scheduling
Groups of RTSJ and the Thread Groups of Java. These concepts form the
core of our proposal for a Predictable Java (PJ) profile?.

It is evident that for practical reasons any viable profile must be com-
pliant with RTSJ, but we observed that defining a profile by specializing or
subclassing RTSJ leads to much clutter. That this must be so is rather clear

2We have avoided to name the profile SCJ in order to avoid confusion, but if the main
ideas are taken up by SCJ, PJ has served its purpose.
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if one considers which profile really extends the other: RT'SJ is a very flexible
and detailed theory, whereas what we are searching for is an abstraction or
generalization of it. Thus in an ideal world, RT'SJ would be a specialization
or refinement of a smaller profile. Doing it the other way around is like
deriving the class of natural numbers from a class of rational numbers: sign
inversion would need to be disallowed, division would become a partially de-
fined operator, subtraction likewise, etc. Yet, the world is not ideal, so in a
first step, we define a profile by manually abstracting from RTSJ classes and
interfaces for relevant entities. Then a few specific classes are introduced to
deal with handlers and missions. This gives a very compact and orthogo-
nal organization of a package for the profile which is explained in Section 3.
For example, the RTSJ-class AsyncEventHandler has 7 constructors and 32
methods. In PJ, we need of those only 1 constructor and 6 methods in the
superclass ManagedEventHandler - a considerable reduction. Another benefit
compared with the specialization approach is that we avoid annotations like
@SCJAllowed annotations to prohibit unwanted methods.

An application that uses the PJ package may compile and, given that
semantics is preserved, run under RTSJ with an adapter layer that through
delegation disallows some RT'SJ methods and give default values for some pa-
rameters. This is demonstrated in Section 4. Furthermore we outline a more
direct implementation with a modified JamVM [85] on top of Xenomai [68|
and Linux.

Finally, Section 5 investigates what kind of static constraints are needed
to make the profile truly predictable and what tool support would be feasible
for checking the constraints; and in Section 6 we conclude.

2 Key Concepts

In this section we introduce the key concepts in the Predictable Java profile:
handlers and mission and the supporting resource concepts of memory and
schedulers. The interplay between resources, handlers and missions deter-
mine predictability of applications.

2.1 Handlers

An application programmer must have the means to define temporal scopes [45]
(period, deadline, execution time budget) and the specific algorithm for han-
dling a periodic or aperiodic event triggered computation when developing
real-time applications. This is succinctly encoded as a periodic or aperiodic
event handler.

A periodic event handler in an application is a specialization of the
PeriodicEventHandler of the profile, see Section 3.
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class Periodic extends PeriodicEventHandler
{
protected Periodic(PriorityParameters priority,
PeriodicParameters pp,
Scheduler scheduler,
MemoryArea memory)
{ super(priority, pp, scheduler, memory); }

public void handleEvent() {
// the logic to be executed every period

}

It defines the temporal scope in the parameter pp. The priority pa-
rameter is for use by a scheduler and the handler has a memory to be used
during execution of the algorithm. These parameters are concerns of the
system programmer that assembles the application; the programmer of indi-
vidual tasks focuses on giving an algorithm that specializes the handleEvent
method.

The semantics is a periodic execution of the algorithm with the given
period within its deadline which both are specified in the value pp of the
PeriodicParameters object. The semantics is conditional on the algorithm
completing within its execution time budget, included in pp, without declar-
ing more temporary objects than can be accommodated in the memory, and
refraining from declaring non-temporary objects. These semantic conditions
can be checked by conservative approximation using abstract interpretation.

This is discussed further in Section 5.
The aperiodic event handler is very similar:

class Aperiodic extends AperiodicEventHandler
{
protected Aperiodic(PriorityParameters priority,
AperiodicParameters ap,
Scheduler scheduler,
MemoryArea memory)
{ super(priority, ap, scheduler, memory); }

public void handleEvent() {
// the logic to be executed when an event occurs

}

It defines the deadline and cost, in the parameter ap. The remaining
parameters are analogous to the ones for a periodic handler. The logic is
given by specialization of the handleEvent method.

The semantics is an activation and execution of the algorithm within its
deadline when an event is pending on an Event object to which the handler
is attached. As for periodic handlers, the semantics is conditional on the
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algorithm completing within its execution time budget, without declaring
too many temporary objects and refraining from declaring non-temporary
objects.

A further condition is that event occurrences are sufficiently separated.
A safe interpretation is that they are separated at least by the specified
deadline. However, this may be unduly pessimistic, for instance with a shut-
down handler, thus we have considered adding a minimal interarrival time
to the parameters, as in RT'SJ SporadicParameters. The troublesome point
is whether this is statically checkable. For external events, this is clearly
not possible; they must be assured by assumptions about the environment.
However, for internal events, model checking based tools like TIMES [11] are
able to combine analysis of event passing with schedulability analysis, again
assuming some conservative approximation of the actual algorithm.

A bolder interpretation of aperiodic events is that they are just indistin-
guishable ticks, counting them is sufficient, and with a long counter, there
should be space for even the most lively interrupt generators. It is then up
to the application to handle and reset the counter. Such liberal semantics
could be considered.

2.2 Missions

The functionality of an application is made up of handlers; but they have
to be executed according to a feasible schedule implemented by a scheduler.
Handlers use private memories for temporary objects, but they may use more
permanent shared objects protected through mutual exclusion mechanisms
as specified by the Java synchronized method qualifier. These are placed
in the memory of the mission. The embedded software systems program-
mer designs the architecture in terms of missions that encapsulates a set of
handlers.

A mission is essentially a set of tasks that collaborate on providing a
desired functionality. When application functionality changes over time -
mode transitions - there are multiple missions. In very simple cases there is
only one mission, which may need an initialization and termination. In more
complex cases, missions may compose sequentially, conditionally or even in
parallel, from which there is but a small step to having statically nested
missions.

Already initialization and termination indicates that a mission is more
than a simple container for a set of handlers. It is itself a handler for termi-
nation or in some cases an initialization event. Thus we collect the respon-
sibilities of a mission in a handler class that contains handlers.

The alternative, the Mission as a simple container for handlers, we found,
would further complicate the profile: a new class hierarchy is introduced
along with special mission memory, and even new types of handlers for mis-
sion start, stop, initialize etc. might be introduced, to handle missions, and
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possibly more. This does not contribute to the framework since what is
needed to express the mission concept already exists in handlers: private
handler memory, used as mission memory, the handler concept allows func-
tionality to be expressed, such as start, stop etc.

The code below gives the termination handler aspect of the mission in
the handleEvent logic. Initialization is done in the constructor of a mis-
sion, where the container aspect is the vector of eventHandlers. Individual
handlers belonging to the mission are added by the addToMission method.
Note that handlers can be added only, and only during initialization, thus
a mission contains a static and finite set of handlers. One could consider
replacing the dynamic vector with a simple array since the length is known
at initialization time.

public class Mission extends AperiodicEventHandler
{

Vector<ManagedEventHandler> eventHandlers;

protected Mission(PriorityParameters priority,
AperiodicParameters ap,
Scheduler scheduler,
MemoryArea memory)
{
super (priority, ap, scheduler, memory);
eventHandlers = new Vector<ManagedEventHandler>();

}

public void addToMission(ManagedEventHandler eh)
{ eventHandlers.add(eh); }

public void handleEvent() {
// the logic to be executed to terminate a mission
}
}

The elided part denoted by the ellipsis above are methods that interact
with the scheduler.

public Vector<ManagedEventHandler> getEventHandlers() {
return eventHandlers;

}

public boolean add() {
return getScheduler().add(this);
}

public boolean remove() {
return getScheduler () .remove(this);

3
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A mission is submitted to its scheduler by add. The scheduler knows that
the calling handler is a Mission and contains a list of handlers. They can
be accessed through getEventHandlers, and it is then up to the scheduler to
schedule the set if it is feasible. The handlers of a mission are assumed to
be started from a common start time.

Correspondingly, as a step in termination, the set may be removed from
the scheduler through remove. There are several possibilities for a termina-
tion semantics. These are discussed below under schedulers in subsection 2.4.
The method getScheduler is defined in the superclass, ManagedEventHandler.

2.2.1 Mission examples

A basic mission contains periodic handlers without any termination. It uses
a cyclic scheduler declared in main and has a Linear Time LTMemory at its dis-
posal. Since it never terminates and therefore does not need to be scheduled
as a handler, it does not need any priority or release parameters.

public class Basic extends Mission
{
protected Basic(PriorityParameters priority,
AperiodicParameters ap,
Scheduler scheduler,
MemoryArea memoryArea)
{
... // initialization

3

public static void main (Stringl[] args) {
new Basic(null, null, new CyclicScheduler(),
new LTMemory(10%1024));

The interesting part is the initialization of the periodic handlers (the
ellipsis above):

RelativeTime C = new RelativeTime(4,0);
RelativeTime D = new RelativeTime(20,0);
RelativeTime T = new RelativeTime(20,0);

PeriodicParameters pp = new PeriodicParameters(C,D,T);

addToMission(new Periodic(null,pp, getScheduler(),
new LTMemory(1024)));

addToMission(new Periodic(null,pp, getScheduler(),
new LTMemory(1024)));

add(); // mission to its scheduler
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The priority parameters are not needed for a cyclic scheduler and are
therefore left as null; but it sets up the release-parameters for the periodic
handlers. The scheduler is the cyclic scheduler, and both periodic handlers
get a private Linear Time memory. The concrete numbers in the parameters
are arbitrary.

Next, we modify the example to include a termination event that can
be triggered by a periodic handler. Since the mission is an aperiodic event
handler, we use a PriorityScheduler. Furthermore a static event is used
to signal a termination request from the application handlers. This event
is handled by the handleEvent of the mission. Note that the mission as a
handler is included in its handler set.

public class Extended extends Mission
{

static AperiodicEvent event;

protected Extended(PriorityParameters priority,
AperiodicParameters ap,
Scheduler scheduler,
MemoryArea memoryArea)
{ // set up periodic or other aperiodic handlers
// with prioritites etc.

event = new AperiodicEvent(this);
add(); // start mission

3

public void handleEvent() {
remove(); // from scheduler
// clean up etc.

3

public static void main (String[] args) {
new Extended(new PriorityParameters(10),
null,new PriorityScheduler(),
new LTMemory(10%1024));

With missions, it is possible to build sequential and concurrent missions,
assuming that the selected scheduler is able to handle it. An outline of a
sequential composition of three sub-missions is:

public class ThreeSequentialMissions extends Mission
{

private Mission[] mission;

private int active = 0O;

static AperiodicEvent event;
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public ThreeSequentialMissions(...) {
mission = new Mission[3];
// set up the three missions
mission[0] = new Mission(...);
// add handlers for mission 0
// including the mission termination

mission[1] = new Mission();

mission[2] = new Mission();

// start the first mission
mission[active] .add();

event = new AperiodicEvent (this);

}

public void handleEvent() {
mission[active] .remove();
active = (active + 1) % mission.length;
missionl[active] .add();

The outer mission removes and terminates the inner missions one at a
time and starts the next one. Note that the handlers are initialized once.
When the next mission is started, any shared objects will have the state in
which they were left by the previous mission. If a reinitialization has to take
place, the local missions must define a termination handler that takes care
of reinitialization.

Analogously, missions may include sub-missions to be executed concur-
rently. That is, if the scheduler can accept it.

2.3 Memory

When the runtime system starts an application like Basic, an object of this
class and objects for its arguments are created in what is usually called the
heap (but here without GC). The lifetime of those objects is the lifetime of
the application.

Since Basic extends Mission which is an aperiodic event handler this has
as consequences:

e Immortal memory in the sense of RTSJ, which contains objects that
has to live for the duration of the mission, is not needed, because the
scoped memory belonging to the mission, here Basic, takes over this
role.
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e Just one kind of scoped memory is necessary, because there is no se-
mantic difference between mission memory and private memory for a

handler.

e Scoped memories are private for their handlers. In particular, a mis-
sion’s memory contains objects shared by the set of event handlers of
the mission.

This simplifies the memory hierarchy. Yet, in order to be compliant with
RTSJ we have retained the following classes in a hierarchy. The abstract
class

public abstract class MemoryArea

{
// dummy implementations, exceptions not considered
protected MemoryArea(long size) {}
public void enter(Runnable logic) {}
public static MemoryArea getMemoryArea(Object object){return null;}
public Object newArray(Class type, int number) { return null; }
public Object newInstance(Class type) { return null; }

public Object newInstance(Constructor constructor,Object[] args){
return null;
}
}

the intermediate abstraction

public abstract class ScopedMemory extends MemoryArea
{
public ScopedMemory(long size) {
super(size);
}
X

and the concrete

public class LTMemory extends ScopedMemory
{
public LTMemory (long size) {
super(size) ;
b
by

Concrete implementations of MemoryArea are shown in Section 4.

2.4 Schedulers

A scheduler must support the mission. Therefore the constructor to a

Mission has a parameter of type Scheduler, see Section 2.2.
The concrete schedulers specialize an abstract profile class:
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public abstract class Scheduler

{
private static Scheduler sc;
protected abstract boolean add(Mission mission);
protected abstract boolean remove(Mission mission);
public static Scheduler getDefaultScheduler() {
return sc;
}
protected static void
setDefaultScheduler(Scheduler scheduler) {
sc = scheduler;
}
}

We have removed the feasibility checking of RTSJ, because it aims at
systems where handlers are added and removed dynamically. Please note
that even with nested missions, the overall structure is known at compile
time.

New, is the concept of adding and removing missions as a whole. For a
simple scheduler that accepts a single mission at a time, the most interesting
semantics is termination. We would suggest a mode change semantics, where
termination takes place only at points where no handlers are released [143];
but other mode change semantics are certainly possible.

An open point is whether missions are structured counterparts of a RT'SJ
ProcessingGroup. This requires further investigation [165].

Two concrete schedulers are shown in Section 4: a cyclic executive sched-
uler for a mission with solely periodic event handlers and a fixed-priority
preemptive scheduler for missions with both periodic and aperiodic event
handlers. These are the schedulers needed to run the examples of Section 2.2

2.5 Synchronization

Objects, shared between handlers, are placed in the mission’s memory. In
a simple profile, mutual exclusion locking is done by synchronization of the
methods of the shared object. Synchronization at block level is not consid-
ered because of its added complexity, see the discussion in [45].

Priority inversion can be avoided, either by priority inheritance or pri-
ority ceiling emulation. The open source implementation in Section 4 uses
priority inheritance because priority ceiling emulation is not implemented in
Xenomai.

2.6 IO

Interfacing to devices is an important aspect of real-time applications, and
we suggest a solution with Device Objects and Interrupt Handlers; this is
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discussed in detail in [138, 89].

3 Building the hierarchy

The Predictable Java profile we propose organizes the concepts discussed
above in a hierarchy which is a generalization of RTSJ. Here it is useful to
recall what inheritance may be used for. Inheritance is a way of forming new
classes, allowing subclasses to inherit commonly used state and behaviour
from a superclass. This can be interpreted in different ways. Budd [43] lists
seven forms of inheritance, of which the most interesting for our purpose are:

Inheritance for specialization: Here a new class is a specialized class of
the parent class. The new class satisfies the specification of the parent
class. Thus, the new class is a subtype of the parent class. This corre-
sponds to a refinement in a formal semantics setting or a conservative
extension in logics.

Inheritance for limitation: (often called implementation inheritance), here
the new class redefines the behaviour of the parent class. The new class
does not satisfy the specification of the parent class. This means that
in the subclass only some of the behaviour from the parent class is
allowed in the subclass. This can be done in different ways: a) over-
riding the unwanted methods in the subclass and let them throw an
IllegalMethod exception; b) using Java annotations. This does not fit
well with formal semantics or logics.

It is evident that since a predictable Java profile is smaller than RTSJ,
it cannot be derived by specialization, and for semantic reasons, we are not
happy to pursue a limitation approach.

3.1 The ideal profile

The Predictable Java profile is based on RTSJ. It is a restriction of RTSJ
in line with Ravenscar Java [91]| and Safety Critical Java [76], but those two
profiles are both defined from RTSJ by "inheritance for limitation" which
results in much clutter.

To get a clean and compact PJ profile, "inheritance for specialization"
was used. By this, RT'SJ was regarded as a specialization of PJ. This means
that the behaviour of a PJ-class is exactly those methods from the corre-
sponding RTSJ-class that are necessary, and no more. Thus instead of using

RTSJ - class
{all the methods in RTSJ-class}
|

+ -- PJ - class
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{with limitation of methods
inherited from RTSJ, which
are not part of PJ-class}

we have used:

PJ - class
{exactly those methods from RTSJ-
class necessary to define PJ-class}
|
+--RTSJ - class
{all the methods in RTSJ-class}

The resulting classes are shown in Figure 13. A few PJ specific classes
are introduced: the ManagedEventHandler hierarchy, including the Mission
subclass, and two subclasses to AsyncEvent.

Schedulable <>|AsyncEvent IReIeaseParameters
A A

ManagedEventHandler

+handleEvent(): void | I
+getScheduler(): Scheduler - - - -
4 IApenocthventI IApenoethnterruptI

AperiodicEventHandler ”PeriodicEventHandlerI -
I PeriodicParameters I

ScopedMemory
LTMemory

HighResolutionTime Scheduler

+add(mission:Mission): bool
+remove(mission:Mission): bool

A

RelativeTime I IAbsquteTime I I CyclicScheduler I I PriorityScheduler

IAperiodicParametersI

Mission

+addToMission(eh:ManagedEventHandler): void
+getEventHandlers(): Vector

+add(): bool

+remove(): bool

I SchedulingParameters I

IPriorityParametersI

Figure 13: PJ class diagram

For the Scheduler we have been forced to start afresh, because the current
RTSJ does not recognize missions. We could have removed the mission
specific methods and seen them as subclasses of a very abstract scheduler to
be fully consistent with our goal. The Scheduler in the PJ would then be
a specialization with further concrete specializations CyclicScheduler and
PriorityScheduler. They might even be placed outside the profile.
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3.2 RTSJ compliance: delegation

The ideal PJ profile described above requires some work-arounds. Because
RTSJ already exists, it cannot be defined as subclasses to PJ, but an appli-
cation that uses the PJ package has to compile and, given that semantics is
preserved, run under RTSJ with an adapter layer that essentially disallows
some RTSJ methods and gives default values to some parameters. Hereby,
the RT'SJ compliance requirement is satisfied. An implementation of a con-
crete adapter layer is shown in the next sections.

4 Implementations

We present two open source implementations of the profile: one native imple-
mentation and one RTSJ compliant implementation. Source code for both
implementations is available, as explained in Appendix 7.

4.1 Native implementation

In this part we outline how the profile is implemented on an ARM controller
using a modified JamVM on top of Xenomai and Linux. JamVM is both
extremely small (~200K) and optimized, and conforms to the JVM specifi-
cation version 2 [85]. Xenomai is a real-time extension to the Linux operating
system. The Native Xenomai API has different services for real-time tasks
and task scheduling, synchronization support including mutexes etc. [168].

4.1.1 Schedulers and handlers

In a basic implementation with a CyclicScheduler, we have only one pe-
riodic Xenomai RT_TASK that implements the well-known cyclic executive
model [17]. When the single mission that is allowed for a cyclic scheduler
is given the list of handlers, it creates a cyclic executive table. In this table
the logic for the periodic handlers are set up, in line with the model, and the
period of the periodic Xenomai task is calculated as the greatest common
divisor of the periods of the periodic handlers (minor cycle).

Furthermore, the CyclicScheduler maintains a list of pointers to the

private memories of handlers.

When a PriorityScheduler is used, for instance when both periodic and
aperiodic event handlers are in play, each handler is bound to a Xenomai RT
task, has a memory area allocated by the operating system, and a list of locks
belonging to synchronized objects in the memory area. This information is
gathered in a vector for the set of handlers in the mission, where each element
is defined by:

typedef struct handler_info {

MEM_AREA *memArea; // private mem
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RT_MUTEX *rt_locks; // Xenomai mutex
RT_TASK  task; // Xenomai task

} HANDLER_INFO;

A periodic handler uses Xenomai TASK services, for instance rt_task_set_periodic
and rt_task_wait_period . An example is periodic invocation of a handler
that is implemented as:

for (;;) {
JNI-callback-to-PeriodicEventHandler-run
rt_task_wait_period(NULL);

}

Similarly, Xenomai EVENT and INTERRUPT services are used to implement
events or hardware generated interrupts.

The implementation does not support nested missions or, at the moment,
mission termination.

4.1.2 Memory management

The garbage collector in JamVM is switched off so that the heap is used as
immortal memory.

For the implementation of a MemoryArea, the standard C malloc is used
to allocate a MEM_AREA, which is a new struct we have defined in JamVM. It
is similar to the existing heap memory structure in JamVM.

Thus, the essential part of the Java implementation of memory area
becomes:

public abstract class MemoryArea
{

long memSize;
int memID; // a reference to the MEM_AREA

public void enter (Runnable logic) {
Native.enterNativeMemArea (memID);
logic.run();
Native.leaveNativeMemArea (memID);

}

When new objects are created by logic.run, they are placed in the mem-
ory area belonging to the handler. This memory area is reset by Native.leaveNativeMemArea.

4.1.3 Synchronization

Shared objects are represented by classes with synchronized methods. Syn-
chronized blocks are not allowed which means that the Java bytecodes monitorenter
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and monitorexit which implement a Java synchronized block [98], are not
rewritten in JamVM.

In the virtual machine synchronized methods are marked with the flag
ACC_SYNCHRONIZED. This means that in JamVM we only need to replace
the local objectLock/objectUnlock functions with two new functions called
rt_object_lock and rt_object_unlock.

Those two new functions uses Xenomais MUTEX services with methods like
rt_mutex_aquire and rt_mutex_release on elements in the list rt_locks.

Xenomai’s MUTEX services enforce priority inheritance. Priority ceiling
emulation is not enforced yet. It is a weakness with Xenomai.

4.2 The RTSJ adapter layer

This section describes the RT'SJ implementation of the profile on top of the
timesys 1.0.2 RTSJ implementation [159]. The technique used is encapsu-
lation by delegating responsibility to appropriate RTSJ classes.

4.2.1 Schedulers and handlers

The cyclic scheduler schedules a single mission, containing periodic event
handlers only, thus the add method expects a Mission object satisfying this
constraint. From this mission, periodic handlers are retrieved and a cyclic
executive table is built: an array where each entry contains a list of handlers
for the given minor cycle. Execution is performed by a single periodic thread,
with a period of minor cycle, implemented using the NoHeapRealtimeThread
from RTSJ. Each period the handleEvent methods are executed on behalf of
each handler in the current minor cycle, in the context of the private memory
associated with each handler. The periodic thread will loop through the
executive table forever. Thus the remove method has no effect and returns
false.

The priority scheduler is implemented using the RTSJ priority scheduler.
For each event handler an appropriate schedulable entity is created upon
instantiation of the handler. It has a simple logic responsible for executing
the event handler logic in the context of its private memory. For periodic
handlers this is done using a periodic thread, NoHeapRealtimeThread, and for
aperiodic handlers, the RT'SJ AsyncEventHandler is used. When a mission is
added to the priority scheduler, using the add method, priorities of the RT'SJ
schedulables are set using deadline monotonic priority assignment, and all

periodic threads are started.

Periodic event handlers internally contains a simple implementation of
an RTSJ NoHeapRealtimeThread as illustrated in the PeriodicEventHandler
constructor:

protected PeriodicEventHandler(...) {
super (priority, pp, scheduler, memoryArea);
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final PeriodicEventHandler pevh = this;
rtsj_thread = new NoHeapRealtimeThread/(
null, rtsj_releaseParameters, null,
ImmortalMemory.instance(), null,
new Runnable()
{
PeriodicEventHandler _pevh = pevh;
public void run() {
for(;;){
_pevh.memoryArea.enter (_pevh) ;
NoHeapRealtimeThread.waitForNextPeriod() ;
}
}
} // logic
)3
}

The run method of the PeriodicEventHandler class invokes the logic of the
event handler, i.e. the handleEvent method. The rtsj_releaseParameters,
supplied to the thread constructor contains the RTSJ equivalent of the PJ
periodic parameters. The NoHeapRealtimeThread is executed in the context of
immortal memory since it requires no additional memory during execution.

Similarly, the aperiodic event handler is implemented using the RTSJ
AsyncEventHandler:

protected AperiodicEventHandler(...) {
super(priority, ap, scheduler, memoryArea);

final AperiodicEventHandler aevh = this;
rtsj_asyncEventHandler = new AsyncEventHandler (
null, null, null,
ImmortalMemory.instance(), null,
true, // nonheap
new Runnable()
{
AperiodicEventHandler _aevh = aevh;
public void run() {
_aevh.memoryArea.enter(_aevh) ;
}
} // logic
)3

Here, the rtsj_asyncEventHandler is a package visible field of
AperiodicEventHandler, and hence is accessible to the class AperiodicEvent.
The fire method of AperiodicEvent then delegates the responsibility of
fire to an instance of the RTSJ AsyncEvent class associated with rtsj_-

asyncEventHandler.
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The remove method has not yet been implemented. We consider using the
mode change semantics of [143] and implementations as suggested in [123].

4.2.2 Memory management

The memory area classes are implemented by delegation using their cor-
responding RTSJ classes. Event handlers has their own scoped memories
in which their logic can create temporary objects. Since all handlers must
be referenceable by the RTSJ scheduler, the handler objects (Mission, Pe-
riodicEventHandler, and AperiodicEventHandler) are allocated in immortal
memory. This violates the hierarchical memory structure, where the han-
dlers of a mission shares the mission memory. Instead immortal memory
is used, a temporary solution which in the future could be reworked using
techniques inspired by those presented in [7].

5 Profile compliance

The most important tasks in checking that a program is in compliance with
the profile as described above are: ensuring schedulability, verifying that
(temporary) memory consumption is within bounds, and checking that no
non-temporary objects are allocated. For these purposes Worst Case Ex-
ecution Time (WCET) and Worst Case Memory Consumption (WCMC)
analyses are needed and may be combined with model checkers, such as
UPPAAL [25], to perform a full schedulability analysis.

Additionally, a compliance check may also need to enforce syntactic and
structural requirements and constraints demanded by the profile, e.g., that
all loops are explicitly bounded and that the program is not recursive. Stan-
dard analyses, such as control flow, data flow, and information flow analyses
combined with simple syntactic checks are sufficient for this.

The design of our Java profile is intended to facilitate comprehensive tool
support for most or all aspects of the profile. In particular, we believe that
abstract interpretation, and similar static analysis techniques, combined with
model checking can be leveraged to provide automated analysis and verifica-
tion of important properties such as resource usage and profile compliance.
Going beyond resource and compliance checking, static analysis techniques
have also been applied with great success in the area of compile time veri-
fication of safety and security properties, e.g., prevention of race conditions
and deadlocks, guaranteed secure information flow, and bug hunting.

Below we discuss in more detail the relevant analyses and how they may
be applied here.
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5.1 Resource usage

A prime example of an analysis in this category is the WCET analysis [167,
58, 154, 166] mentioned above. A WCET analysis can statically compute
a sound over-approximation of the worst possible execution time behaviour
of a program. This is needed, among other things, to determine if a given
program can safely be scheduled. Dually, a best case execution time [167|
computes a conservative under-approximation of the execution time of a
given program. This may, in certain cases, be used to give a (conservative)
lower bound on the execution time for aperiodic event generators and thus
on the minimal interarrival time between aperiodic events.

In [33] a more direct approach to schedulability analysis is taken: here it
is shown how to automatically extract a timed-automata based model of a
Java bytecode program. The extracted model is then model-checked, using
UPPAAL, to determine directly if it is schedulable.

Other analyses in this category include analyses to determine worst case
memory (WCMC) usage 69, 47| and maximum stack depth, both of which
are instrumental for ensuring that a given program can be executed within
the bounds set by the platform.

5.2 Safety and security

By computing standard control flow, data flow, and information flow analy-
ses a number of safety and security properties can be guaranteed at compile
time. Including the absence of certain bugs, e.g., null pointer exceptions [80],
initialisation failures [81], secure information flow |74, 73, 67, 20|, and avoid-
ing race conditions [2, 61].

Combining a best/worst case execution time analysis with analyses that
extract abstract timing models from a program, e.g., in the form of timed
automata [33|, it may be possible to give a compile time proof that a given
program cannot possibly end in a deadlock state nor a livelock situation.

6 Conclusion

We have presented Predictable Java (PJ), a Java profile suitable for devel-
opment of high integrity real-time systems. PJ shows that it is beneficial
to define a specialized profile as a generalization of RTSJ. This is in con-
trast to other proposals, such as Ravenscar Java [91] and Safety-Critical
Java [152, 12| which are (extended) subsets defined as limitations of RTSJ
using subclassing. PJ uses only the handler paradigm, having periodic and
aperiodic handlers. Those handlers are grouped in missions which are first-
class objects as the Mission class is a subclass of the AperiodicEventHandler
class.
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Each handler has a private memory for allocation of local objects during
execution of its handleEvent method. This private memory is reset every
time this method completes. Because a mission is an event handler there is
no semantic difference between mission memory and handler memory. This
also means that the memory belonging to a mission is reset when a mission
comes to end.

In order to ensure that it is a valid profile, it has two prototype imple-
mentations on different platforms; An RTSJ platform, showing that PJ is
compliant with RTSJ, and a “native” platform.

7 Source code

The implementations mentioned in this paper are open source. The source
code for both implementations, and further instructions, is available at
http://pj.boegholm.dk. Please refer to the individual README files for fur-
ther instructions. The RTSJ layer implementation includes two examples,
CyclicExample and PriorityExample. These examples are using the two
scheduling mechanisms together with a few handlers. The reference imple-
mentation of RT'SJ used is the timesys 1.0.2, available at: http://timesys.com/java.
A Makefile exists for running and compiling the examples, the latter using
an ant build configuration. Instructions are found in the README file. The
implementation using JamVM, Xenomai, and Linux, contains a modified version
of the JamVM virtual machine, JNI functions, and the PJ implementation,
with examples. Instructions on how to compile and run the examples are
found in the README file.
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Abstract

Java finalizers perform clean-up and finalisation of objects at garbage collection
time. In real-time Java profiles the use of finalizers is either discouraged (RTSJ,
Ravenscar Java) or even disallowed (JSR-302), mainly because of the unpredictabil-
ity of finalizers and in particular their impact on the schedulability analysis. In this
paper we show that a controlled scoped memory model results in a structured and
predictable execution of finalizers, more reminiscent of C+-+ destructors than Java
finalizers. Furthermore, we incorporate finalizers into a (conservative) schedulabil-
ity analysis for Predictable Java programs. Finally, we extend the SARTS tool for
automated schedulability analysis of Java bytecode programs to handle finalizers
in a fully automated way.
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1 Introduction

In Java, finalizers provide application programmers with an opportunity to
perform clean-up and finalisation at garbage collection time. Specifically,
just before the garbage collector releases the memory used for an object it
calls the finalize() method on that object. The memory used by the ob-
ject is then released in the next garbage collection pass. While finalizers
superficially look like destructors, as known from C-++, it is important to
stress that finalizers are not destructors. In particular, since Java objects
are not necessarily garbage collected at all, the finalizer may never be called
for a given object. This unpredictability combined with potentially poor
performance has made the use of finalizers in standard Java somewhat con-
troversial and programmers are often advised not to use finalizers. However,
as argued by Boehm in |28]: while finalizers are rarely needed in Java, there
are a number of important cases where they are not merely convenient, but
of critical importance. Examples include legacy libraries that wrap C code
with use of malloc and free, interaction with hardware [139], as well as ro-
bust and reliable cleanup of temporary files and buffers. See [28] for detailed
examples.

One argument against finalizers, often found in the Java literature and
in blogs, is that their effect can be achieved through disciplined use of the
try statement that include a finally block, as in

MyClass x = new MyClass();
try {
... // use x
} finally {
x.destroy () ;
}

However, for objects where x.destroy() may only be called once, this requires
extreme care be taken by the programmer in terms of where the reference to
x goes, especially if x could become shared between tasks. The pattern also
introduces a bit of boiler plate code that could get tangled up when several
objects of this kind are needed. Last, but not least, the use of this pattern
gives a rather unnatural programming style when a Java object structure is
needed to mirror a legacy C++ object structure. In such cases it is much
more natural to include the call to the C++ object’s destructor in the Java
objects finalizer. Furthermore, using a language construct, such as finalizers
(with the semantics discussed in this paper) is much safer, as a language
construct facilitates compiler and analysis tools support.

In real-time Java profiles the opposition to finalizers is even stronger:
the use of finalizers is either actively discouraged, e.g., RT'SJ and Ravenscar
Java, or even disallowed, e.g., JSR-302. This is mainly because of the unpre-
dictability of finalizers but also due to their potential impact on schedulabil-
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ity and, not least, schedulability analysis of the tasks comprising a real-time
system. Yet, since real-time applications written in Java use managed mem-
ory allocation, it is very useful to have a destructor mechanism. Therefore,
we investigate an automated schedulability analysis of programs that use
finalizers in a setting with a disciplined use of scoped memory, for instance
as we propose in Predictable Java [29].

The predictable execution of finalizers makes it possible to incorporate
finalizers into a conservative schedulability analysis for Predictable Java pro-
grams (Section 3). Finally, we extend the SARTS tool for automated schedu-
lability analysis of Java bytecode programs to handle finalizers in Predictable
Java (bytecode) in a fully automated way (Section 4).

2 Predictable Java and Finalizers

The idea underlying the Predictable Java (PJ) profile [29] is to have a profile
that facilitates the use of static analysis tools to provide safety, security,
compliance, and performance guarantees. It is thus related to and inspired
by RTSJ specializations such as the Ravenscar Java profile [91] and the
Safety-Critical Java profile [76].

2.1 Key Concepts

The key concepts in the Predictable Java profile are: handlers , which are ap-
plication tasks, and missions , supported by the resource concepts of memory
and schedulers, shown in Figure 14. A mission basically contains a memory
area along with a set of handlers. A mission is itself a (specialized) han-
dler, which allows for nesting of missions. Each handler is either periodic or
aperiodic, contains some logic to be run at each release, and has a private
memory area used during execution. The Java concept of a thread is not
part of the profile.

The interplay between resources, handlers and missions determine the
predictability of applications. We focus here on memory resources in partic-
ular, because finalizers are linked to objects that occupy memory.

An application programmer defines periodic or aperiodic event handlers.
A periodic event handler is a specialization of the PeriodicEventHandler
class:

class Periodic
extends PeriodicEventHandler {
protected Periodic(
PriorityParameters priority,
PeriodicParameters pp,
Scheduler scheduler ,
MemoryArea memory )

{

super (priority, pp, scheduler, memory);
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}

public void handleEvent () {
// the logic to be executed every period

}

The parameter pp defines the temporal scope. The priority parameter is
for use by a scheduler and the handler has a private memory to be used
during execution of the algorithm. The exact values for these parameters
are the concern of the system programmer that assembles the application;
the programmer of individual tasks focuses on the algorithm that specializes
the handleEvent method.

The underlying semantics imply the periodic execution of this algorithm
within its deadline. The period and deadline of the handler are specified in
the pp parameter. The semantics are conditional on the algorithm completing
within its execution time budget, included in pp, without declaring more
temporary objects than can be accommodated in the memory, and refraining
from declaring non-temporary objects. In order to check these assumptions,
loops must be statically bounded and recursion disallowed.

Aperiodic event handlers are defined in an analogous way and we omit
the details for brevity.

Missions The functionality of an application is made up of handlers; the
handlers must be executed according to a (feasible) schedule implemented by
a scheduler. Handlers are collected into missions that are themselves han-
dlers of termination and, in some cases, initialization events. Thus we collect

Scheduler
Mission
Memory
Handler Handler Mission
Memory Memory Memorj

Figure 14: Predictable Java overview
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the responsibilities of a mission in a handler class that contains handlers.

Handlers use private memories for temporary objects, but they may use
more permanent shared objects protected through mutual exclusion mech-
anisms as specified by the Java synchronized method qualifier. These are
placed in the memory of a mission that encapsulates a set of handlers. This
does not introduce major complexities; the private handler memory is now
the shared mission memory, and the handler concept allows functionality to
be expressed, such as start, stop, etc.

The code below gives the termination handler aspect of the mission in
the handleEvent logic. Initialization is done in the constructor of a mis-
sion, where the container aspect is the vector of eventHandlers. Individual
handlers belonging to the mission are added by the addToMission method.
Note that handlers can be added only, and only during initialization, thus a
mission contains a static and finite set of handlers.

public class Mission
extends AperiodicEventHandler {
Vector<ManagedEventHandler> eventHandlers;
protected Mission(
PriorityParameters priority,
AperiodicParameters ap,
Scheduler scheduler,
MemoryArea memory) {
super (priority, ap, scheduler, memory);

// set up handlers

}

public void addToMission (
ManagedEventHandler eh

)
{
eventHandlers.add(eh);
}
public void handleEvent () {

// logic
}
}

The omitted part above are methods that interact with the scheduler: add (),
remove(), and getEventHandlers(). A mission is submitted to its scheduler
by add. The scheduler knows that the calling handler is a Mission and
contains a list of handlers. They can be accessed through getEventHandlers,
and it is then up to the scheduler to schedule the set of handlers if feasible.
The handlers of a mission are assumed to be scheduled using their release
parameters from a common initial time point. Correspondingly, as a step
in termination, the set may be removed from the scheduler through remove.
The method getScheduler is defined in the superclass, ManagedEventHandler.
We shall not enter into a further discussion of schedulers.
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Memory When the runtime system starts an application, the outermost
mission is initialized with its mission memory. During initialization objects
are allocated in the mission memory, and thus they can be released again,
including finalization, if and when the mission terminates.

Handlers that are allocated in a particular mission get a private memory
that is allocated as an object in the mission memory. Objects declared during
initialization of a handler are placed in its private memory. More interesting
in this context are the objects allocated during a handleEvent invocation.
These are placed in the same private memory, but are released and finalized
when the invocation completes. The important point is that objects are
released and finalized from the handler memories as a sequel to handleEvent
invocations; the basis for our treatment of finalizers in the following.

2.2 Implementation

A restricted version of the Predictable Java profile has been implemented on
an ARM controller using a modified JamVM on top of Xenomai and Linux
[29]. JamVM is both extremely small (~200K) and optimized, and conforms
to the JVM specification version 2 [85]. Xenomai is a real-time extension to
the Linux operating system. The Native Xenomai API has different services
for real-time tasks and task scheduling, synchronization support including
mutexes, etc. [168].

The garbage collector in JamVM is switched off and the heap is used as
immortal memory. When new objects are created, they are placed in the
memory area belonging to the creating handler and added to a list. Just
before the memory area is reset, leaving handleEvent, the list of objects is
visited, and each of their finalizers are executed.

3 Schedulability Analysis with Finalizers

The traditional response time analysis for tasks scheduled using a Fixed
Priority Preemptive Scheduler may easily be extended to take finalizers into
account. In the equation

Ri=Ci+ > [R;/T;IC; (1)
J€hp(3)
all that is needed is to include in the execution time C; for task ¢ the WCET
for each finalizer for objects allocated by that task in its private memory.

C; =WCET; + Z WCET finalizery, (2)
kEW CObj (i)
Here WCET; is the ordinary worst case execution time (WCET), WCObj (i)

is the set of objects allocated in worst case by task ¢ in its private memory,
and WCFET finalizery is the WCET of the finalizer for object k.
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Basically, this formula states that a system is fixed priority pre-emptive
schedulable if there is enough time left before the deadline to execute final-
izers for all objects created by the given task during an invocation of its
logic. This simple extension is made possible by linking the scoped memory
tightly to an invocation of the logic of a specific task. In a more liberal
RTSJ-setting, where scoped memories can be shared by several tasks across
a hierarchy, it is not possible to assign finalization costs to a specific task.
One could consider a solution, where all involved tasks should be prepared
to cover the cost. However, this would give a very pessimistic, although real,
schedulability analysis, which in most cases would make systems unschedu-
lable.

4 Automated Schedulability Analysis with SARTS

SARTS [33] is a tool for schedulability analysis for real-time Java programs.
In this section we show how the schedulability analysis performed by SARTS
can be extended to include finalizers in the PJ profile: A short introduction
to SARTS is given, essentially a summary of [33], followed by the finalizer
extension.

SARTS works by analysing bytecode of compiled Java programs, and
assume predictable execution time for byte-code instructions, as is e.g. the
case for code executed by the predictable Java processor JOP[130]. From
the Java bytecode and meta-data such as loop-bounds information, a net-
work of timed automata corresponding to the components of the Java pro-
gram, is generated; each method in the Java program corresponds to one
parametrised template for a timed automaton. This results in a timed au-
tomata model of the full system, which can then be verified using the model
checker UPPAAL [25].

Three additional predefined components are added to the final model.

e An automaton corresponding to the scheduler strategy for the under-
lying platform.

e Two types of templates representing periodic and aperiodic tasks, es-
sentially transferring control to the correct logic.

The small controller automata for each task glue the application specific
logics in the task to the scheduling machinery. Task identifiers are used to
synchronize with individual automata embodying the logics.

4.1 Model generation

From the bytecode, a control-flow graph is generated in the form of a timed
automaton, where each bytecode represents a pattern, reflecting the timing
semantics.
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Each method and task in the analysed system results in a timed automa-
ton, and through synchronization, control is transferred between automata,
used to model method invocation. Waiting for syncronization on channel
chan is written as chan? and initiating synchronization on channel chan is
written as chan!. A very general pattern for generated automata is shown
in Figure 15. In this figure, Figure 15(a) exemplifies a run method, and
Figure 15(b) an arbitrary method:

e Initially, 15(a) waits for synchronization on channel label run?; a signal
on channel run will move P1 to the location Body. Body represents a
sequence of bytecode patterns.

e In body, the individual patterns forces time to elapse, simulating exe-
cution time.

e From body, a synchronous step in both automata transfers P1 to lo-
cation ControlTransfer, and P2 to Body, simulating control-transfer,
since P1 is waiting for synchronization.

e Similarly, time elapses while P2 is in location Body, before synchroniz-
ing with P1.

e P1 is now in Body, time elapses, before P1 synchronizes on channel
label run!

Init P1

Init P2

P2Channel! P2Channel?

ControlTransfer

(a) Automaton P1 (b) Automaton P2

Figure 15: General method pattern

This is the general principle in the models generated by SARTS. In the
task automaton initializing the run synchronization, a guard will cause the
entire model to deadlock if too much time elapses before re-synchronization.
This means that if no deadlock state exists in the generated model, no dead-
line miss exists in the original program [59, 33].

In Figure 15, the Body location represents sequences of smaller patterns; a
pattern for each bytecode instruction. Two example patterns are illustrated
in Figure 16.
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The simple basic block represents an instruction with one entry point
and one exit point, illustrated in Figure 16(a). The circle represents a lo-
cation, modelling one or in some cases a sequence, of bytecode instructions,
labelled Simple, in which time may pass. Associated to the location Simple,
is a two-line expression, placed to the right of the location: The first line
represents a simple invariant stating that the clock, time, must be less than
or equal to the required execution time for this bytecode instruction; rep-
resented by the constant inst35. The second line is a stopwatch expression
stating that time may pass in this automaton iff the value of running[tID],
where tID is the task identifier, is 1; a technique for modelling pre-emption.
The outgoing transition is associated with one guard expression, time ==
inst35, which must be true for the transition to be enabled, i.e. the time
elapsed in the location Simple must be exactly the execution time of the
corresponding instruction, represented by inst35. Additionally, taking the
outgoing transition will set the clock-variable time to zero. Note, that in
general, any outgoing transition sets the clock-variable to zero.

Figure 16(b) illustrates the pattern for a branching instruction, an in-
struction with multiple exit points. Following the principle from Figure 16(a),
allowing for preemption and forcing time to elapse in the location. This
pattern has two exit transitions, with the same guard and update, chosen
non-deterministically.

Figure 17 illustrates the pattern for a method invoke instruction. The
channel synchronization, in this case is symbolised by MethodNamel and MethodNameN
illustrating the case where more than one method may be considered. In the
case of pure virtual method invoke, all possible method candidates will be
considered by branching and non-deterministic synchronization, transferring
control as illustrated in Figure 15.

On return, the invoked method automaton will have a transition with
the same synchronizing label, waiting for synchronization. This means, that
the automaton initializing the synchronization will wait until the receiver
re-synchronizes.

Memory is considered since the size of the method may cause difference in
execution time. This is modelled by the methodSwitchCost = CX on the tran-
sition between running_MethodCallingX and returningFrom_MethodCallingX.
This will cause the model to delay for the correct, method dependent, amount
of time.

More advanced, patterns exists for other bytecode instructions in the case
of loops, synchronization, etc. though these will not be discussed further.

4.2 Finalizers

SARTS has been extended in order to handle finalizers in the schedualbil-
ity analysis. The extension of SARTS to perform schedulability analysis of
PJ programs implementing finalizers requires: Computing the set of classes
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Branch

Simple35

time <=inst35 && time <= inst27 &&
time' == running[tiD] time' == running[tiD]
time nst35 time nst27
time =0 time =0
(a) Basic (b) Branching

Figure 16: Simple bytecode automata-patterns

MethodCallingX
executionTime <= instX &&
executionTime' == running[tID]

executionTime == instX
methodName1[tID]!
executionTime = 0

executionTime == instX
methodNameN[tID]!
executionTime =0

running_MethodCallingX

methodName1[tID]?
executionTime = 0,
methodSwitchCost =C1

methodNameN([tID]?
executionTime = 0,
methodSwitchCost =CN

returningFrom_MethodCallingX

executionTime <= methodSwitchCost &&
executionTime' == running[t|D]

executionTime == methodSwitchCost
executionTime =0

Figure 17: Method invoke

possibly instantiated during execution and identifying finalizers, additional
handling of the new bytecode instruction, and modelling the execution of
finalizers associated with objects created in the scope of an event handler.
Computing the set of classes possibly instantiated during execution is
done by analysing the new instructions in the program bytecode, counting
each class instantiation; the concrete type is statically known. Using this
information, a table for registering object creations is added to the gen-
erated model. This table maps, for each state, task identifier and class
to the number of instances created, TASKID x CLASSID — N, and
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thus the number of finalizers to be considered for each class in the end of
an event handler. In UPPAAL this is expressed as an integer array: int
finalizeCount [ThreadID] [ClassID];, where ThreadID and ClassID are inte-
ger types ranging from zero to the number of tasks and classes respectively.
The block pattern introduced for new instructions is illustrated in Fig-
ure 18. The difference from the basic block pattern in Figure 16(a) is an
additional update, incrementing the number of finalizers for this particu-
lar object, the statement: finalizeCount[tID] [0]++. Here, finalizeCount
is the table containing the number of finalizers to be executed for each
(TASKID,CLASSID) pair, the tID constant refers to the task execut-
ing the new bytecode instruction, and [0] is the index of the concrete class
being instantiated; a statically known value.
Newl6 time < nstle && .
time’ == running[tiD]
time nstle

time =0,
finalizeCount[tID][0] ++

Figure 18: New instruction

This counts, on all from new outgoing transitions, the instance count of
each class, for each task in the system. In the end of a run method, a small
pattern is added such that required finalizers will be considered before the
task is completed.

As an example we show a simple example of a periodic event handler,
followed by a very simple class containing a finalizer:

class Periodic
extends PeriodicEventHandler{
protected Periodic(
PriorityParameters priority,
PeriodicParameters pp,
Scheduler scheduler,
MemoryArea memory)

{

super (priority, pp, scheduler, memory);

public void handleEvent () {
//logic to be executed every period
new 0bj();
return ;
}
}

class 0bj{
public void finalize(){
// clean—up code
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The handleEvent method of the event handler creates an object of type Obj
and then returns. Obj contains a finalize method, and need to be finalized
at the end of the period. The generated automaton for the handleEvent
method is illustrated in Figure 19.

e Waiting in the initial state, following the example automaton from
Figure 15(a), synchronization is performed on the run? transition; the
task template performs this synchronisation.

e A pattern for the new instruction is inserted, similar to that of Fig-

Initial

r @)

run[tiD]?
time =0

time <= inst8 &&
( time' == running[tiD]
time == inst8
time =0,
finalizeCount[tID][0] ++

New8

Specnallnvokeg( time <= inst9 &&

time' == running[tiD]
time == inst9
chan_0004[tID]!
time =0

running_Speciallnvoke 10()

D1?

chan_0004[tID]?
time = 0,
methodSwitchCost = 3

returnlngFrom_SpechInvokellC time <= methodSwitchCost &&

time' == running|tiD]

time == methodSwitchCost
time =0

run[tiD]!

finalized(tiD) Simplel4< time <= instl4d &&

time =0 time' == running|tiD]
time == instl4
time =0
considerAllFinalizers31

(" time==methodSwitchCost C)
time=0

returnFrom_finalizer30

( time <=methodSwitchCost &&
time'==running[tiD] P
Ifinalized(tID)

chan_0005[tID]?
time=0,
methodSwitchCost=10,
finalizeCount[tID][0]--

FinalizeCalling28
A time <= 10 &&
time'==running[tiD]

running_finalizer29

O

time==10 &&
finalizeCount[tID][0]>0
chan_0005[tID]!
time=0

Figure 19: handleEvent automaton
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ure 18. This would be followed by a basic block pattern, Figure 16(a),
in case of reference assignment to a variable, omitted in the example
for sake of clarity.

e Then control is transferred to another automaton, modelling the con-
structor method, using the pattern for method invoke, similar to that
of Figure 17.

e The locations considerAllFinalizers, returnFrom_finalizer,
FinalizeCalling, and running_finalizer model the finalization of ob-
jects instantiated during execution of the entire event handler. Here,
the finalized(TaskID) function is an auxiliary function, returning true
only when all finalizers have been considered.

— If finalizers exists, the automaton transitions to FinalizeCalling,
where time elapses.

— Non-deterministically, a finalizer which has a count larger than
zero is chosen, and control is transferred as in the method invoke
pattern.

— When control is returned, invoke-count for the invoked finalizer
is decremented.

— Method invoke is performed as normally, and afterwards the lo-
cation considerAllFinalizers is re-entered.

— These four steps are cycled until no more finalize invokes are pend-
ing.

e The last transition returns control to the task control automaton.

The resulting analysis is fully automatic and in terms of accuracy is
similar what is presented in [33], where it is claimed that tighter results are
achieved, by being able to consider e.g. branching and blocking.

5 Conclusion

In real-time applications that are pure Java, we would not expect to see
finalizers used in objects allocated during execution of the handler logic of
ordinary periodic and aperiodic tasks. However, when such a task is a stub
for a call to a legacy C or C++ handler, a finalizer may be useful, because
it is needed for freeing allocations done by the legacy code, and clean-up of
temporary files and buffers. For missions finalizers may be directly useful,
for instance to empty buffer objects or ensure that logs are complete before
the mission terminates. The use of finalizers is acceptable in Predictable
Java, for real-time Java programs, since finalizers are more like destructors,
as known from C-++. We have shown how classic response time analysis can
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be extended with finalizers, in a conservative manner, and we have presented
the tool SARTS, a tool for fully automatic schedulability analysis, and shown
how SARTS is extended to handle finalizers in Predictable Java.

The results in this paper apply to programs written in the Predictable
Java Profile as the profile ensures unique “ownership” and lifetime to objects
through the handlers which created them in their private scoped memory.
In RTSJ this is not possible in general as code may enter and leave scoped
memories at arbitrary points, thus no single handler assumes ownership.
However, one could employ a PJ programming style when using RT'SJ and
thus the results in this paper would be generally useful. In some circum-
stances, it would be possible to automatically check that the PJ style of
programming has been applied. One hypothesis is that our PJ compliance
checker could be extended to become a PJ programming style checker that
could work on RT'SJ — an idea we will pursue in the near future. We also
think that our results are applicable to the upcoming SCJ standard, as SCJ
features a private memory area for each handler.
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Abstract

We present a compositional approach to schedulability analysis of safety-critical
Java programs. We introduce a specification language in order to write abstract be-
havioural specifications regarding task execution-time and use of resources. Schedu-
labilty is checked on a model composed of the abstract specifications, possibly before
any implementation, and as the specifications are implemented, these implementa-
tions can be checked individually. This means that library routines potentially can
be separately checked and reused, and individual tasks can be verified according to
their specifications without performing the full-system-analysis.
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1 Introduction

In recent years Java has been put forward as a programming language for
development of embedded real-time systems. Java in its original form has
several characteristics which make development of real-time systems very
difficult and Java also lack the notion of a deadline and high-resolution real-
time clocks. Several profiles such as The Real-time Specification for Java [36],
Ravenscar-Java [91], Predictable Java [29], and Safety Critical Java [76], all
put forward restrictions and extensions to Java that combined make them
suitable for development of real-time systems. Especially the latter three
are also intended to make programs easier to analyse and thus make the
process of certifying systems easier. An important part of any real-time
system development is WCET and schedulability analysis to ensure that
a system upholds its deadlines and in fact can run on a given hardware
platform. WCET and schedulability analysis can be a time consuming part
of the development process, however, in the past few years model based
WCET [50, 109, 135, 65] and schedulability [11, 33] analysis has established
itself as a viable approach that can automate the process.

However, model based WCET and schedulability analysis is still only
capable of handling relatively small systems, typically consisting of a few
handlers with relatively simple logic, due to a phenomenon called state-space
explosion. The more complex a system is the more states are generated
by the model, and although model checking has undergone a tremendous
development with lots of improvements, there are still limits to the number
of states that can be handled. Furthermore, current model based approaches
all make a full program analysis, i.e. include all code paths, even library code
in the model. Thus model based analysis currently is not compositional.

In this paper we investigate compositional schedulability analysis. The
basic idea is to incorporate abstract descriptions of methods underlying tem-
poral and locking behaviour in method interfaces, allowing (library) routines
to be checked separately and independently of the systems they will be used
in. The interface behavioural descriptions are usually simple and thus gener-
ates models that have far fewer states than the models generated from their
byte-code. The system can also be used to reverse engineer a specification
from legacy code, i.e. a specification, albeit a very concrete one, can be
generated from the Java byte-code and may then later be used as basis for
a more abstract description suitable as a component in larger system being
specified and analysed.

2 Related work

Traditional schedulability analysis works on a relatively simple model of the
system which places many restrictions on the system being analysed e.g.
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tasks in the system cannot be dependent on other tasks. These analyses are
based on the worst case scenario, and have a somewhat narrow view of the
system, based on what is known as the critical instant. This makes these
methods very pessimistic due to a limited amount of detail considered in the
analysis. The standard approach to schedulability analysis is response time
analysis |14], which is later used for comparison of the proposed approach.

There has been several proposal for hierarchical and compositional schedu-
lability analysis of real-time systems, a good overview can be found in [57].
Some studies have developed interface theory for incremental analysis of
component based real-time systems [77]. Both directions build upon and
extending traditional schedulability analysis.

Our work builds upon and extends SARTS [33], a system for automatic
schedulability analysis of Java programs written in the SCJ profile [76] for
the Java Optimized Processor (JOP) [107]. Thus the component model we
use is the one defined by the class mechanism of the Java language, which is
a traditional object oriented component model.

SARTS uses the UPPAAL real-time model checker [26] for schedulability
analysis based on ideas from TIMES [11] where a model of the scheduler is
run alongside models of the real-time tasks of a system under analysis.

We are inspired by the ECDAR system [51], a tool implementing the
timed interface theory [52]. The ECDAR tool is designed to check incre-
mentally refinement between specifications using UPPAAL Tiga [23], as we
do.

Our approach is also inspired by early work on annotating types in func-
tional concurrent programs with behaviors [113, 156, 114], an approach in-
spired by type and effect systems [150] , which recently has been put into
object oriented context [27] and also inspired work session types [66, 160].

We present a simple specification language, Time and Resource Speci-
fication Language (TRSL). The main purpose of TRSL is to be expressive
enough for our purpose, but not too expressive to exclude automatic analy-
sis. A further goal with TRSL is to have a syntactic representation, which
can be included as an annotation or comment in the source of the Java pro-
gram for the system being specified and analysed. One could clearly have
disposed of TRSL and just used a timed automata directly. However, these
are difficult to include directly in the source and a general timed automata
may be too rich and thus hamper or exclude automatic analysis. Alter-
natively one could used specifications coming from the Object Management
Group (OMG) Unified Modeling Language (UML) Modeling and Analysis
of Real-Time and Embedded Systems (MARTE)? specifications or specifi-
cations written in the ACSR timed process algebra [41] or extracted from
TADL Architecture Description Language [110] specifications. In all cases
the specification formalisms would be too rich and analysis of the speci-

3http://www.omgmarte.org/
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fication to ensure that only analysable systems were described, would be
necessary.

3 Compositional analysis

In this analysis, we introduce a task-model with resources rather than worst
case blocking time. A correspondence-check between implementations and
their specifications is also presented. The idea is to annotate tasks in the
system with specifications, and then perform schedulability analysis by com-
bining these. If the system is schedulable, implementations of each task are
created, maybe using libraries already having specifications.

This divides the analysis into three major parts:

e A specification language in which we can express execution time and
locks,

e Correspondence analysis between program specification and implemen-
tation, and

e Schedulability analysis on abstractions written in this language, of
tasks in the system.

Specifications are concerned with execution time, and critical sections
guarded by locks, and are expressed in TRSL. In this language we are able
to express the timed behaviour of a piece of code with different levels of
precision in the form of intervals, critical sections, branching, and repetition
of sequences. The grammar of this language is presented in Section 3.1.

The schedulability analysis works on the task behavioural specifications,
translated into timed automata, based on a modified approach of the method
used in SARTS [33|. Each task specification is separately translated into a
timed automaton and composed into a network of timed automata, together
with a model of a strategy for scheduling, e.g. FPS. Using UPPAAL the
model can be queried about schedulability, worst case response time and
utilization. If a system is deemed not schedulable, an error trace is generated
from UpPAAL. This error trace can be used to construct time line diagrams
similar to Figure 21; this should aid in identifying and solving the problem.

3.1 Specification language

In this section we introduce the language for specifying task behaviours. Be-
haviours are expressed as abstract traces, in which we are concerned only
with task execution time, in the form of intervals, branches, the acquirement
and release of locks, etc. This differs from traditional approaches described
earlier, where tasks are specified by worst case execution time, and worst
case blocking time determined by the locking protocol used. This way of
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describing tasks allows a more detailed description of the actual task be-
haviour, with regards to execution time and resource usage, but this also
requires a more complex schedulability analysis. It also allows many lev-
els of abstractions, from exact execution times, requiring more verification
time, and interval execution times, which may result in faster verification,
at the cost of precision. We later use a time line notation inspired by [45] to
graphically present task behaviors, depicted in Figure 20.

|:| Executing /] Task release
. |:| Executing using resource I/Task deadline

|:| Preempted 6 Deadline met

- Blocked ‘ Deadline missed

Figure 20: Time line notation

The specification language is given by the following grammar:

Trace = [Blockx]
Block ::= skip
tonte

\
\
Trace |
using(ri, ..., ) Block |

\

repeat(Nmin. . Nmaz ) Block
select{ Blocky, ..., Block, }

A Trace is a sequence of blocks, and a block can be:
e a skip block, the empty instruction taking no time,

e an interval, ts..te, describing the interval between t; and t., we use t
as shorthand notation to denote constant times, i.e. the interval where
t =15 =te,

e a trace, the sequence of blocks [Block;; ...; Blocky],

e a usage block, using(r1, ..., ) Block, describing a critical section, Block,
protected by the locks 71, ..., 7,

e a repeat block, repeat(Npin. Nmaz ) Block, describing the repetition of a
block minimum 7,;, and maximum 7., times, or

e a select block, which describes the non-deterministic choice between a
set of traces.

We use Block? as shorthand to describe an optional block. This is the same
as select{Block, skip}.
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3.2 Example

Consider a simple system of:
e two tasks, T'ask; and Tasks,

e task priorities inversely proportional to task deadline, i.e. lower dead-
line equals higher priority (deadline monotonic priority assignment),

e locking scheme following the original priority ceiling protocol.*

Consider two tasks, T'ask; with highest priority, with the real-time require-
ments:

e Tasky: Period: 9, Deadline: 4,
o Tasky: Period: 18, Deadline: 17,
and with the following implementation presented in Java code.

class Taskl extends PeriodicEventHandler{
Buffer buf; // shared buffer
//@ TRSL = [1]
private int calculate(){..}

//@ TRSL = [1 ; using(x)[2] ]
public void handleEvent (){
value = calculate(); // wcet: 1
buf .write(value); // wcet: 2
)

class Task2 extends PeriodicEventHandler{
Buffer buf; // shared buffer
//@ TRSL = [5]
private int calculate(){..}
//@ TRSL = [2]
private void prepare(..){..}
//@ TRSL = [1]
private void register(..){..}
//@ TRSL = [1 ; 7?7 ; using(z)[2] ; 1 1]
public void handleEvent () {

if ('ready)q{ // wcet: 1
value = calculate(); // wcet: 5
prepare(value) ; // wcet: 2

}

input = buf.remove(); // wcet: 2

register (input); // wcet: 1

T}

4though the immediate priority ceiling protocol is used in real systems, we show how
to analyse the original protocol since this gives slightly more interesting behaviour
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WCET analysis for these tasks results in 3 and 11 for the two tasks
respectively, both with critical sections of 2 time units. Using the response
time analysis described in [45], we get a worst case blocking time of 1 time
units for T'ask; and zero for T'asks, and the calculated response times are 5
for T'asky and 17 for Tasks, so using the response time analysis, the system
is mot schedulable.

This is illustrated graphically in Figure 21. The figure depicts time line

Blocked Executin
Taskl /] /]

Interrupted Executing

Task2 | (lb /]

Figure 21: Time line: Response time interpretation of T'ask; and Tasks

from the critical instant, from a classical response time analysis perspective.
Tasky is blocked for 2 units and then needs to execute for 3 units, miss-
ing its deadline. Tasks is pre-empted for 6 time units, and then needs 11
time units of execution time, before it meets its deadline. In this case, the
approximation of blocking time causes the response time analysis to falsely
reject the system.

The TRSL specification for T'ask; and T'asks expressed using a resource
r could look like this:

Specification of task;

[ 1 ; using(x)[2] ]

Specification of tasks
[1; 77 ; using(x)[2] ; 1]
The specification of the tasks allow the following behaviour, in Figure 22.

T1 : execute for one time unit, then execute for two time units using
resource r,

T5 : execute for one time unit, then maybe execute for 7 time units,
execute for two time units using resource r and execute for one time
unit. Task2a shows the case where we do not execute for optional 7
time units, and Task2b the alternative.

This is exactly the behaviour of the implementations of T'ask; and Tasks>.

5 Alternatively, one could use the less precise, but more general specification of Tasks
: Ty = [1..8; using(r)[2]; 1] also capturing the implementation.
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Task2a

1
1

skl [T T4 | (N
|
|

L[|
Task2b] [ | | [T TTTTla

Figure 22: Time line: actual behaviour of T'ask; and Tasks

These specifications are then translated into Timed Automata. The pur-
pose of this translation is to verify schedulability of the abstract system,
allowing schedulability analysis early in the development cycle. This trans-
lation and the schedulability analysis is described in Section 4.3. A prototype
compiler from TRSL-specifications to UPPAAL models for verifying schedu-
lability is available on sarts.dk.

Another translation from TRSL to Timed Automata is made in order
to verify a simulation relation between specifications and implementations.
Since this language is able to express the exact timing behaviour of a task,
with regards to execution time and synchronization, we are able to provide
a translation directly from Java byte-code to TRSL. Note that in the case of
variable time byte-code execution times, we can just use intervals or a select
over possible traces. This allows us, for two TRSL-texts, implementation
and speci fication, to verify the language inclusion property.

4 Verification

The verification is performed in two steps. After writing abstract task spec-
ifications, the schedulability analysis can be performed, ensuring that the
system will be schedulable if all task implementations follow their respective
specification. The relation between implementation and specification is ver-
ified separately for each task, by verifying the language inclusion property
L(implementation) C L(specification).

4.1 Implementation verification

The translation is split into a number of patterns, one for each syntactic
element in the TRSL language. This section describes the translation from
TRSL to timed automata and the verification of language inclusion.

Interval pattern The interval pattern, ¢;..t., consists of only one location,
and is depicted in Figure 23. Location [y allows time to pass for the selected
interval. The invariant ¢ < t. on [y ensures that we leave this location at the
end of the interval. The guard ¢ > ¢, ensures that we stay in the location
for minimum ¢4 time.
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Figure 23: Interval pattern

Trace pattern The trace pattern is a sequence of patterns, i.e. blocks,
trivially linked together by clock-resetting transitions.

Critical section pattern The critical section pattern,

using(ry, ..., ) Block is a pattern for modelling critical sections, using a
resource. This is modeled by surrounding a block-pattern with a pattern
simulating the locking operation. In this case, we do not need to specially
consider the locking protocol, since all we do is to verify that a task, in
isolation, has the behaviour allowed by its specification. This pattern is
shown in Figure 24. In this figure, the mutex actions are lock and unlock.

c=0,lock! = 0, unlock!

N

Figure 24: Critical section pattern

Repeat pattern The pattern for repeat,

repeat(Nmin..Nmagz ) Block, is shown in Figure 25. The entrance location is
lgp, where time cannot pass, i.e. an urgent location, simulating the looping-
condition. From this location, two outgoing locations goes to either the
body-block of the repeat-pattern, illustrated by the cloud in the figure, or
to the next pattern, illustrated by the arrow without destination location.
These transitions are guarded by expressions on a private counter-variable,
used to make sure that the body-block is iterated for the correct, number of
iterations, as stated in the TRSL-text. The transition to the body-pattern
makes sure that the body has been reached strictly less than the maximum
number of times, N4z, by the guard counter < nm,q., and has an update
statement incrementing the counter, as well as resetting the clock, ¢. The
transition leaving the repeat pattern is guarded by the lower bound on the
number of iterations, counter > nn, ensuring at least the required number
of iterations of the body are taken before exiting the repeat-pattern.
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counter < Nymaz
c=0
counter = counter + 1

Block

counter > Nyin
c =0, counter =0

Figure 25: Repeat pattern

Select pattern The pattern for select, select{ Blocky, ..., Blocky,}, is shown
in Figure 26. This very simple pattern will non-deterministically select one
of the sub-patterns. The initial location is an urgent location from where
unguarded transitions goes to each sub-pattern, and from the sub-pattern
to the end location. These urgent locations simplify the model as guards,
updates, etc. are placed on only one transition going to the initial location.

Figure 26: Select pattern

4.2 Verifying implementations

To verify that the implementations satisfy their specifications, their corre-
sponding timed automata are constructed and the language inclusion prop-
erty is verified, i.e. constructing the complement automata and verifying
that the intersection is empty:

L(TAzmpl) ﬂm = @
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This is possible because the generated automata are actually a simple in-
stance of the Ewvent-Clock Automata, which are determinisable, and thus
closed under all boolean operations, where timed automata in general are
not closed under complement [10]. We use the subclass, event-recording au-
tomata. The definition of event-recording automata is similar to that of
timed automata, with the restriction that:

e for every symbol a € ¥ there is a clock z,; there are no other clocks in
the model,

e when a symbol, a € ¥ is encountered, clock z, is reset.

Since in this translation from specifications and implementations the result-
ing automaton consist of only one clock, ¢, which is reset on every transition,
we immediately have 7 on all transitions and z, as the only clock, hence,
the generated automaton is an event-recording automaton. This allows us to
verify the language inclusion property.

4.3 Schedulability analysis

As in SARTS [33], schedulability analysis is reduced to checking the model
for deadlock freedom, following the work by Fersman and Yi [59, 60, 90|,
but by using abstract specifications, schedulability model containing greater
detail on the use of resources, and less on the individual instructions.

Specifications are translated into timed automata, parallelly composed
with a model of a scheduling strategy, used by the system, and other glue
automata for linking together the generated automata. In our case we use
fixed priority preemptive scheduling with the task priorities set according
to dead-line monotonic priority assignment, and the original priority ceiling
protocol.

While most of the patterns used in the implementation verification from
Section 4.1 are directly applicable in the schedulability model, some patterns
need extra locations and transitions. For example, patterns modeling execu-
tion time must have locations and transitions allowing task pre-emption. We
omit details on the scheduler and task control-templates due to their com-
plexity, much of which is similar to the approach taken in [33], with some
minor changes. Intuitively the cycle of the scheduler, without considering
locking protocol, is as follows:

1. wait for: a task release or a finished task.
2. if a task is running, preempt the running task

3. if an eligible task exists, schedule task with highest priority; if no
eligible tasks exist, idle.
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A task controller automaton keeps track of parameters such as release-time,
deadline, and response time, and signals the scheduler when a task is to be
scheduled. The task controller thus acts as a link between the task automa-
ton and the scheduler automaton. This is done through synchronizations in
UPPAAL.

Task template For each task in the system, a task template is generated,
which is linked to the scheduler model via synchronization. This is illustrated
in Figure 27, where the cloud represents the trace of the generated code. In
the initial location, Ready, the task waits for the task controller to initiate a
run-signal. From this initial location, the task moves to a pre-empted state,
ready to be scheduled. In this preempted state, the clock used to track
execution time, ¢, stopped using the stopwatch-expression ¢ == 0. This
stops the clock tracking task execution-time, since the task is not running.
The task will then be scheduled when it has the highest priority, and yield
when it has finished executing, where after the controller template, and hence
the scheduler, will be signalled using the run channel used to start the task.
This run-channel is used only to communicate with this particular task (it
is actually an array of channels using the task-id as index). Such a channel
exist for each task in the system.

Preempted

Figure 27: Task template

Interval pattern The interval pattern, t;..t., consists mainly of a location
as earlier described. Additionally, transitions for task pre-emption and task
resumption are needed in order to model pre-emption of the task. The modi-
fied pattern is depicted in Figure 28. In this figure, the location Preempted is
added, in which the execution-time clock is stopped; it is important to note
that the response time clock for this task is still running. Transition to this
location is enabled when another task is released which means the scheduler
must recalculate which task is to be executing, this transition is synchronized
with the scheduler using the preempt-channel. The guard ¢ < t, will prevent
preemption of a finished instruction; either the task is done, or preempted
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Preempted l

preempt[t] D
c < e
\/ c>t,
sched[tID]? finish_inst!
c=0

Figure 28: Interval pattern

immediately in the next instruction. The task is resumed when it has highest
priority, using channel sched.

Critical section pattern To express the blocking of a task we add the
location Blocked along with the functions:

e request, release, to handle lock-requests and -releases,

e and the boolean function acq, which determines if the request suc-
ceeded and the locks were acquired.

If we request a lock which has already been acquired by another task,
acq evaluate to False, enabling the transition to the location Blocked, in
sync with the scheduler, which will then resume the appropriate task. The
scheduler will, when resuming this task using the sched channel, reevaluate
whether the task can acquire the requested locks. If acq evaluates to True,
the task has successfully acquired the lock, and will resume to the critical
section.

yield!

Blocked —notacq(t1D) request(LID,tID)
Requested

acq(tld)

sched[tID]? sched _request!

critical
sec-
tion

release(LID, tID)
Figure 29: Critical section pattern
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Schedulability is verified in the resulting model by verifying the absence
of deadlock in the model. Performing schedulability is done on the specifi-
cations, which ideally results in a smaller model and generated state-space,
which decrease the verification time. The schedulability analysis can also be
performed before any implementation is done, and each of the implemented
tasks can be verified separately and efficiently according to their specifica-
tions. Because of the nature of the models, which pay special attention to
resources, the schedulability result is potentially tighter than results from
traditional schedulability tests.

5 Conclusion

In this paper we have presented an approach to compositional schedula-
bility analysis of safety-critical Java programs based on annotating tasks
with specifications incorporating abstract descriptions of methods underly-
ing temporal and locking behaviour as annotations to method interfaces. We
have illustrated the approach on a simple example and tested it on a small
prototype system consisting of a few handlers®. However, future work clearly
include analysis of larger systems and an interesting starting point would be
the Canteen library 75| containing Collection classes for Real-time Java.

The approach described in this paper is currently only applicable for
SCJ applications running on top of a single core JOP system. JOP has a
simple cashing regime, making it relatively easy to model. There is already
work in progress on developing multi-core versions of the JOP [136] and
more generally it would be interesting to extend our work to software based
real-time enabled JVM’s running on top of more mainstream (multi-core)
processors. For multi-core scheduling we envision exploiting recent results
in model based schedulability analysis for multi-core [141] and addressing
more mainstream multi-core architectures we envision merging SARTS with
ideas from the TetaJ tools, which exploits hardware models made for the
Metamoc tool and models of a software implemented JVM, e.g. HVM [87].

The interface behavioural descriptions are usually simple and thus gener-
ates models that have far fewer states than the models generated from their
Java code. This approach therefore enables analysis of more complex sys-
tems and allow library routines to be checked separately and independently
of the systems they will be used in. The current specification language for
describing temporal and locking behaviour is rather simple in nature and is
intended to be simple and close to the descriptions that programmers would
write anyway. However, we envision that the specification language could
be made richer and in the future be based on modal transition systems and
modal I/O automata.

5The code for a small sorting machine, modified for the purpose to contain only two
periodic tasks. Available on sarts.dk
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In our approach, as well as other model based approaches to WCET and
schedulability analysis, all loops must be bounded by a fixed number and the
analysis rely on potentially unsafe program annotations provided by the pro-
grammer. This is a rather conservative approach, especially for nested loops
where the bounds for inner loops may depend on the outer loop variable.
Extending the interface behavioural descriptions to capture such dependen-
cies would be interesting and it would be possible to use UPPAALs variables
to generate models reflecting such dependencies. This approach could fur-
thermore be combined with another approach suggested by Hunt et al. [82]
annotating loop bounds using the Java Modelling Language (JML) [94], and
using the KeY tool [22] to determine the loop bounds symbolically. Some
work has already been done on extending JML for WCET analysis [71, 72]
and combining deductive methods with our model based approach could po-
tentially eliminate unsafe programmer annotations and provide automated
checking with much tighter bounds and thus deem some systems schedulable
which today are rejected due to rather conservative loop bounds.
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Abstract

Just like other software, Java profiles benefits from refactoring when they have
been used and have evolved for some time. This paper presents a refactoring of the
Real-Time Specification for Java (RTSJ) and the Safety Critical Java (SCJ) profile
(JSR-302). It highlights core concepts and makes it a suitable foundation for the
proposed levels of SCJ. The ongoing work of specifying the SCJ profile builds on
subclassing of RTSJ. This spurred our interest in a refactoring approach. It starts
by extracting the common kernel of the specifications in a core package, which
defines interfaces only. It is then possible to refactor SCJ with its three levels and
RTSJ in such a way that each profile is in a separate package. This refactoring
results in cleaner class hierarchies with no superfluous methods, well defined SCJ
levels, elimination of SCJ annotations like @CJA1lowed, thus making the profiles
easier to comprehend and use for application developers and students.
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1. INTRODUCTION

1 Introduction

Java profiles declare classes and interfaces that embody concepts common for
an application area. An application programmer uses the profile to ensure
that a concrete implementation conforms to generally accepted construction
principles and to get an application that will run on one of several profile im-
plementations. Thus a profile contributes to efficient software development.
However, as time passes some features of a profile turn out to be less useful
(deprecated) and new features have to be added to cover new technology or
there is a desire to specialize the profile to particular areas.

In our work on real-time Java profiles [144, 137, 29|, we have observed
these phenomena with the Real-Time Specification for Java (RTSJ) which
was a first important step in specifying real-time systems in Java [36].

RTSJ was designed to meet the requirements to a Java profile for real-
time applications. It extends Java in eight areas: scheduling, memory man-
agement, synchronization, asynchronous event handling, asynchronous trans-
fer of control, asynchronous thread termination, physical memory access, and
exceptions. However, this profile which in many ways included the "state of
the art" as to real-time system development, was (and is) complex to use.
Furthermore, RTSJ applications are difficult to analyse, and features like
asynchronous transfer of control are hard to use [55].

This has subsequently resulted in different proposals specifying simpler
real-time Java profiles, of which Ravenscar-Java [122, 91| and Safety Critical
Java (SCJ) [152] are the most prominent.

The SCJ profile is aimed at safety-critical systems which require a safety-
critical certification (like DO-178B [125] or ED-12B [126]). Different certi-
fication levels in e.g. DO-178B are reflected in SCJ which has three levels:
Level 0, 1, and 2, of which Level 0 is the most restrictive. The SCJ profile
is based on RTSJ, but with some constraints compared with RTSJ, e.g. the
usage of dynamic memory allocation. The programming model is centered
on missions, where a mission consists of a set of schedulable objects. At
Level 0 only periodic event handlers are permitted; at Level 1, periodic and
aperiodic event handlers are permitted; and at Level 2, no-heap real-time
threads are permitted too.

Common to those proposals is that they build on RT'SJ using subclassing.
Generally the advantage of using a subclassing approach is first and foremost
code and implementation platform reuse. However, as we show in this paper,
RTSJ and SCJ with its three levels do not share implementation code.

The disadvantages of using a subclassing approach are among others:

e the class hierarchies become complicated

e the SCJ classes themselves should be simpler and thus have fewer
methods, but because they are subclasses of RTSJ classes, they will
automatically inherit the public methods from the RTSJ classes
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e annotations are therefore introduced and used extensively to tell at
which SCJ level a class or a method is allowed

e for application programmers who start real-time programming in Java,
the transition to e.g. SCJ becomes unnecessarily complicated

e the same is the case when teaching I'T-students real-time programming
using the real-time Java profiles.

Therefore, in [29], we concluded that subclassing was not a good way to ex-
tend a specification profile, and we suggested that the implementation reuse
was ensured by delegation. However, this still left the definitions of the pro-
files unrelated. Essentially, a class defines an is-a relation to superclasses,
and subclassing should be a specialization; - in algebraic terms, a conser-
vative extension that preserves all properties including implementations in-
troduced in the superclass. A concept of ’super-classing’ or generalization
as suggested in [157] could be used to create smaller profiles. However, a
super-class or generalization construct does not exist in Java. Furthermore,
such a construct is primarily useful for creating a parent class with common
or shared behaviour, and as mentioned, RTSJ and SCJ with its three levels
do not share implementation code. What RTSJ and SCJ have in common
is better described through a can-do relation which is implementation inde-
pendent through the interface concept in Java. The purpose of an interface
is exactly to abstract from implementations, which also explains why they
support multiple inheritance.

The difference is well illustrated by RTSJ, where for instance the concept
of time is implemented by abstract and concrete classes. Presumably, here
the RTSJ designers have thought in terms of common implementations of the
various methods that manipulate time objects. On the other hand, objects
that are scheduled are characterized by an interface, because very different
objects (handlers, threads) have to do the same operations with different
implementations.

In the latest SCJ Draft from July 2010 [153], interfaces are used to some
extent, e.g. p.117, Figure 7.2, but without getting a simpler structure, be-
cause they are added to the class hierarchy of RT'SJ. The same tendency is
found in Figure 4 in [164], due to inconsistences in the SCJ Draft. The result
is even more complicated interface and class hierarchies than the RTSJ hi-
erarchies, making it more difficult to grasp and use SCJ correctly, especially
for newcomers. We return to this example in our refactoring.

With this observation we have been able to find a suitable refactoring of
RTSJ such that it supports a clean SCJ definition. The refactoring princi-
ple is simple: We start specifying the methods common to SCJ and RTSJ,
putting these in a separate real-time core package called rtcore. This spec-
ification is done entirely by means of Java interfaces. The details of this
process are elaborated in Section 2.
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This common behaviour in rtcore, together with specific methods for
SCJ Level0, Levell, Level2, and RTSJ, are next implemented in separate
packages which are described in Section 3.

The contributions of this paper are thus: A refactoring of RT'SJ and the
SCJ levels according to the guidelines above, showing

1. a cleaner structure with clear and well defined levels
2. no changes of the semantics of SCJ and RTSJ
3. no use of @SCJAllowed annotations.

Existing applications can thus be compiled with the proposed profiles
without any changes, and the resulting code can be run on existing compliant
platforms. In the conclusion in Section 4 we give a more detailed assessment
of the result.

2 Refactoring

Guidelines for refactoring are found in Fowler’s book [64], which also states
the constraints on a refactoring: "When refactoring a software system, it has
to be done in such a way that it does not alter the external behavior, yet
improves its internal structure’. This is followed in the following refactoring
of the SCJ and RTSJ profiles. We observe that SCJ is based on RTSJ
and is specified as an extended subset of RT'SJ. Furthermore SCJ has three
compliance levels, LevelO, Levell, and Level2, with the requirements, that
any application implemented for a specific level must be able to run correctly
on an implementation supporting a higher level.

2.1 Structuring the operations

To get an overview of the operations (methods of classes and interfaces) of
all four profiles, SCJ Level0 (SCJ0), SCJ Levell (SCJ1), SCJ Level2 (SCJ2),
and RTSJ, let us look at all the operations of the four profiles. This universe
is illustrated by a Venn diagram in Figure 30.

The universe has 2% — 1 = 15 subsets, where

rtcore = scj0 M scjl N scj2 Nrtsj

This implies that rtcore specifies all the operations which SCJ0, SCJ1, SCJ2,
and RTSJ have in common.
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Figure 30: Venn diagram of all the operations of SCJ0O, SCJ1, SCJ2, and
RTSJ.

More details of the subsets are given in Table 6. The numbers 1-15
correspond to the 15 subsets in Figure 30. As an example,

subsetl = scjO N scjl Nsci2 Nrtsj

and the crosses (x) in all the four profiles mean that they have at least one
method in common; e.g. MemoryArea.enter is visible in all four profiles and
therefore belongs to subset 1. Likewise,

subset3 = (scj0 N scjl Nrtsj) — scj2

with zeros (0), showing that this subset is empty.

As Table 6 shows, seven of the subsets in Figure 30 are empty, resulting
in eight nonempty subsets which are illustrated in Figure 31.

From this analysis follows:

e SCJ1, {1,2)9,10}, is a proper subset of SCJ2, {1,2,9,10,13,14}, but
SCJ0, {1,2,8}, is not a subset of SCJ1

e RTSJ, {1,9,13,15}, has operations common to all three SCJ-levels, {1}

e RTSJ has operations common with both SCJ1 and SCJ2, {9}, and also
operations common with SCJ2 only, {13}.

This is the basis for the refactoring.
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Table 6: Overview of the 15 subsets of operations, including examples

2.2 Refactoring principles

Set | Visibility of methods | Example
scjO | scjl | scj2 | rtsj

1 X X X X | MemoryArea.enter

2 X X X ManagedEventHandler.
cleanup

3 0 0 0 | - empty

4 0 0 - empty

) 0 0 0 | - empty

6 0 0 - empty

7 0 0 | - empty

8 X LevelOMission.
getSchedule

9 X X X | AsyncEvent.fire

10 X X AperiodicEventHandler.
constructor

11 0 0 | - empty

12 0 - empty

13 X X | NoHeapRealtimeThread.
getMemoryArea

14 X ManagedThread.start

15 X | SporadicParameters.
setMinimumInterarrival

When refactoring RT'SJ and SCJ the following principles have been followed:

Operations common to RT'SJ and SCJ0-SCJ2 are specified in a separate

package called rtcore

rtcore is specified entirely as Java interfaces

The four profiles (SCJ0, SCJ1, SCJ2, and RTSJ) have their separate

packages

The four profiles share operations in line with the illustration in Fig-

ure 31

None of the four profiles need to share implementation code.

This means that e.g. the SCJO profile will consist of (compare to Fig-
ure 31)

e the operations specified in rtcore, {1}
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Figure 31: The eight not-empty subsets of operations in SCJ0-SCJ2 and
RTSJ.

e some SCJ operations common to SCJ1 and SCJ2, {2}

e some SCJO specific operations, {8}.
The same is the case for the other SCJ levels, so that RT'SJ consists of

e the operations specified in rtcore, {1}

e some operations common to SCJ1 and SCJ2, {9}

e some operations common to SCJ2 only, {13}

e some RTSJ specific operations, {15}.

2.3 Example

The hierarchy in Figure 32 illustrates the ideas in the refactoring through
an abstract example.

The common method m is specified in the interface rtcore.IA. SCJ1 and
SCJ2 have one more method in common, called m12, and RT'SJ has a method
called mrtsj. All the A classes implement the methods specified in the inter-
face IA which is the interface rtcore.IA or an extension of this interface.

The following test program can be executed, no matter which of the four
packages is imported:

import scjO.*; // or scjl, or scj2, or rtsj
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public class TestA
{
public static void main (String[] args) {
A a = new AQ;
a.m(Q);
}
}

And the following test example works only using package scj1 or scj2:

import scjl.*; // or scj2

public class TestAl2
{
public static void main (String[] args) {
A a =new AQ);
a.mQ);
a.m12Q0);
}
3

<<interface=> K]

rtcore.lA
Ey i AP, |
+m() : void |I
N :
<<interface=>
scj1.IA
UL :
+m() : void !
+m12(): void :
AN '
<<interface=>
scj2.lA
+mi) : void
+m12() : void
scj0.A scj1.A scj2.A rtsj.A
+m(): void +m(): void +m() : void +m() : void
+m12(): void +m12(): void + mrtsji) - void

Figure 32: Example showing the refactoring principle.
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3 The refactoring outcome

The refactored specification of SCJ0-SCJ2 and RTSJ consists of the five
packages shown in Figure 33.

[ 1

javax.rtcore

1 1 1 @ [

javax.scjo javax.scj1 javax.scj2 javax.rtsj

Figure 33: The rtcore, SCJ0-SCJ2, and RTSJ packages.

The content of those packages are described in the subsections below.

3.1 Package javax.rtcore

The rtcore package plays a central role. Here is the specification of the
common operations of the four profiles. The package consists of 12 interfaces
with a total of 39 methods. The names from the corresponding RT'SJ classes
are left unchanged. We have only prefixed an I (the capital letter I) for
the interfaces in rtcore, - except interface Schedulable which already is an
interface in RT'SJ (as the only interface).

The 12 interfaces are:

® IScheduler, Schedulable, IReleaseParameters,

IPriorityParameters, IPeriodicParameters
® TAsyncEventHandler
® TMemoryArea, IPortal
e THighResolutionTime, IAbsoluteTime, IRelativeTime

e IClock.

The specification of the methods in the interfaces are unchanged com-
pared to RTSJ and SCJ.

As an example, the ReleaseParameters class occurs in both RTSJ and
SCJ. In RTSJ, the class has ten methods; in SCJ LevelO: no methods; in SCJ
Levell and Level2: three methods. Therefore the interface IReleaseParameters
will be an empty interface in rtcore:

135



3. THE REFACTORING OUTCOME

public interface IReleaseParameters
{

// empty
X

Similarly, the AsyncEventHandler class has two methods in common with
both RTSJ and SCJ, resulting in the following interface in rtcore:

public interface IAsyncEventHandler
extends Schedulable

{
public void handleAsyncEvent();
public void run ();

}

3.2 The four profiles
Now, let us look at the implementation of the four profiles.
As mentioned in Subsection 2.2:

- the four profiles have their separate packages,

- they share operations through interfaces,
- but do not share implementation code.

This implies that the class hierarchies for the four profiles are completely
separated, each having their separate package, cf. Figure 33. In that way,
only the necessary methods and classes are included in a specific profile.

Let us, as an example, look at the implementation of the IReleaseParameters

interface described above. A class diagram is shown in Figure 34.
First, the implementation of IReleaseParameters in SCJO:

package javax.scjoO;
import javax.rtcore.IReleaseParameters;

public abstract class ReleaseParameters
implements IReleaseParameters, Cloneable

{

protected ReleaseParameters() {..}

public Object clone() {..}
}

Next, let us look at SCJ1 with two new methods specified:

package javax.scjl;

import javax.rtcore.IRelativeTime;
import javax.rtcore.IAsyncEventHandler;
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<<interface>>
ricore.IReleaseParameters K} ------ 1

<<interface>>
s¢j1.IReleaseParameters K} ------ B

scj0.ReleaseParameters <<interface>>
scj2.IReleaseParameters K- ------ |

scj1.ReleaseParameters <<interface>=
rtsj.IReleaseParameters

s¢j2.ReleaseParameters

rtsj.ReleaseParameters

Figure 34: class ReleaseParameters in SCJ0-SCJ2 and RTSJ.

public interface IReleaseParameters extends
javax.rtcore.IReleaseParameters
{
public IRelativeTime getDeadline();
public IAsyncEventHandler
getDeadlineMissHandler () ;

package javax.scjl;

import javax.rtcore.IRelativeTime;
import javax.rtcore.IAsyncEventHandler;

public abstract class ReleaseParameters
implements IReleaseParameters
{
protected ReleaseParameters(
IRelativeTime deadline,
IAsyncEventHandler missHandler) {..}

public Object clone() {..}
public IRelativeTime getDeadline() {..}

public IAsyncEventHandler
getDeadlineMissHandler() {..}
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SCJ2 is like SCJ1 with no new methods. But RTSJ has seven more
methods:

package javax.rtsj;
import javax.rtcore.IAsyncEventHandler;

public interface IReleaseParameters
extends javax.scj2.IReleaseParameters

{
public IAsyncEventHandler
getCostOverrunHandler();
//six more methods are specified in RTSJ

package javax.rtsj;

import javax.rtcore.IAsyncEventHandler;
import javax.rtcore.IRelativeTime;

public abstract class ReleaseParameters
implements IReleaseParameters,Cloneable

{

// two constructors

// a total of 10 methods:
public IAsyncEventHandler
getCostOverrunHandler() {..}

The implementation of the AsyncEventHandler looks similarly, see class

diagram Figure 35.

Here, the AsyncEventHandler has the same methods in SCJ0-SCJ2, which
are all specified in rtcore.IAsyncEventHandler, but in RTSJ another 21
methods are specified in the rtsj.Schedulable interface, so that all together
the
rtsj.AsyncEventHandler class has 32 methods and 7 constructors:

package javax.rtsj;
import javax.rtcore.IAsyncEventHandler;
public class AsyncEventHandler

implements IAsyncEventHandler, Schedulable
{

// seven constructors

public void handleAsyncEvent () {..}
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public void run () {..}

// thirty more methods:

The remaining classes in the profiles are implemented in the same way,
see link in footnote 7 for the complete source code.

3.3 Example

With a much simplified structure of SCJ and with the specification of the
common behaviour of the SCJ and RTSJ profiles in the package rtcore using
interfaces, it is now possible to simplify some of the class hierarchies in SCJ.
As an example of this simplification, let us look at the event handling hierar-
chy from the SCJ Draft [153], and the revised SCJ event handling hierarchy

"http://www.it-engineering.dk/HS0/index.html

<<interface=>
rtcore.Schedulable

<<interface=> rtsj.Schedulable
ricore.lAsyncEventHandler

+ 21 operations() : DifferentTypes
AN yAN

scj0.AsyncEventHandler

scj1.AsyncEventHandler

scj2.AsyncEventHandler

rtsj.AsyncEventHandler

Figure 35: class AsyncEventHandler in SCJ0-SCJ2 and RTSJ.
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winterfaces
Runnable

run(): void

sinterfaces
javax_realtime::Schedulable
[y

ainterfaces
| ManagedSchedulable
javax reaftime:-AsyncEventHandler register(}
+handleAsyncEvent() cleanup(}
)
|
|
javaxreaftime::BoundAsyncEventHandler |
|
S _
r
1
Jjavax.safefycrifical::ManagedEventHandler
+register
+cleanup()
+getName() : String
aconstructors
#anagedEventHandlen|
priority:PriorityPar . rel ‘R arameters
scp: StorageParameters, memasize: long, name:String)
Javax_safefyeniical. PeriodicEventHandler Javax_safefyeniical AperiodicEventHandler MissionSequencer
sconstructarss sconstructorss getMextMission():Mission
+PercdicEventHandlen] +ApenodicEventHandler(

priority: PriorityParameters,

parameters: PeriodicParameters,

scp: StorageParameters, memSize:long)
+PericdicEventHandler|

pricrity: PriorityParameters,

parameters: PeriodicParameters,

scp: StorageParameters,

memSize:long, name:String)

release-AperiodicParameters,
pricrity: PriorityParameters,
meminfo: StorageParameters
memSize:long)
+AperiodicEventHandiler(
release-AperiodicParameters,
pricrity: PriorityParameters,
meminfo: StorageParameters,

mem3Size:long,name:String)

Figure 36: SCJ Handler Hierarchy, from [153].

from [164], both mentioned in the Introduction and shown in Figure 36 and
Figure 37.

This event handling hierarchy is a consequence of using implementation
inheritance. By this, the AsyncEventHandler class with 32 methods is inher-
ited through the BoundAsyncEventHandler class to the event handler classes
in SCJ , see Figure 36. This results in some inconsistences in SCJ because
a bound asynchronous event handler is permanently bound to a dedicated
real-time thread which is self-suspending, and in SCJ Level0 and Levell the
handlers cannot self-suspend. Wellings [164] has solved this inconsistency at
the price of an even more complicated class hierarchy, see Figure 37.

Instead of retaining the event handling class hierarchy described above,
simpler and more comprehensible hierarchies can be constructed by following

140



CHAPTER 5. PAPERS

<<interface>>
Runnable

+un() : void

Fay

<<interface>>
Jjavax.realtime.Schedulable

,,,,,,,,,,,,,,,,,,,,,,,,,,,
T <<interface>>
_Jjavax.safetycritical ManagedSchedulable
javax.realtime.AsyncEventHandler

+register() - void
+ handleAsyncEvent() : void +cleanup() : void

i

javax.realtime.BoundAsyncEventHandler I
1

L

Javax. tyeritic Javax.

+ getName() : String +getName() : String

Jjavax.safetycritical. MissionSequencer

Javax.
I I + getNextMission() : Mission

| Javax. tycritical. B dAperiodic |
I 1
L 1

Javax.. tycritical. Periodi Handler | Ijavax.
I
L

Figure 37: Revised SCJ Handler Hierarchy, from [164].

the ideas of "inheritance for specialization". This is the idea illustrated by
the class diagram in Figure 38.

The problems in SCJ with self-suspending / not self-suspending event
handlers, observed and solved by Wellings in [164], are solved in a much
cleaner manner as follows:

e SCJ LevelO: The periodic eventhandler is implemented according to
its specification which tells that the handler is not self-suspending

e SCJ Levell: Similarly at this level for both periodic and aperiodic
event handlers

e SCJ Level2: The handlers can self-suspend and are implemented in
accordance with this specification.

This emerges clearly from Figure 38, in contrast to the class diagram in
Figure 37.

The following example illustrates how a simple SCJ Level() mission could
be written. As described in the Introduction, one of the extensions in SCJ
compared to RTSJ is the mission concept, where a SCJ application con-
sists of one or more missions, and a mission consists of a bounded set of
ManagedEventHandler objects. In SCJ Level(, only periodic event handlers
are allowed, cf. Figure 38.

141



3. THE REFACTORING OUTCOME

<<interface>>
Runnable

+run() : void

Fay

<<interface>>
rtcore.Schedulable

<<interface>>
rtcore.lAsyncEventHandler

+handleAsyncEvent() : void

.?

<<interface=>
rtsj.Schedulable

|

s¢j0.ManagedEventHandler

s¢j1.ManagedEventHandler

+cleanUp() : void
+register() : void
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Figure 38: Refactored Event Handler Hierarchy for SCJ and RTSJ.

import javax.scjO.*; // or scjl, or scj2

class AMission extends Mission

{

ManagedEventHandler[] eventHandlers;

public AMission () {
eventHandlers = new ManagedEventHandler[1];

}

public void initialize () {
eventHandlers[0] = new Periodic (
new RelativeTime (0,0), new RelativeTime (500,0)

)
eventHandlers[0] .register();
}
//
}
class Periodic extends PeriodicEventHandler
{
static final int priority = 13;
static final int nativeStackSize = 1000, javaStackSize = 1000;
static final long storeSize = 10000, memSize = 10000;
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Periodic (RelativeTime start,
RelativeTime period) {
super (

new PriorityParameters(priority),

new PeriodicParameters(start, period),

new StorageParameters (storeSize,
nativeStackSize, javaStackSize),
memSize) ;

3

public void handleAsyncEvent() {
// the logic to be executed every period
}
}

This example is implemented to the SCJ Level(, but can be executed at
Levell or Level2, only by changing the import statement. Notice, that no
@SCJAllowed annotations are necessary.

In a similar way, a mission for Levell can be implemented containing both
periodic and aperiodic event handlers. Such a mission can also be executed
at Level2, but not at LevelO.

4 Conclusion

The presented refactoring of the Real-Time Specification for Java (RTSJ)

highlights core concepts and is a suitable foundation for the proposed levels

of the Safety Critical Java (SCJ) profile (JSR-302). The specification of the

common behaviour of the SCJ and RTSJ profiles in the package rtcore using

interfaces, and the subsequent implementation of the profiles, show that it

is possible to refactor the profiles without changing the semantics of them.
This separation in packages has some direct consequences:

e cach profile has only the necessary methods and classes

e the extensive use of @SCJAllowed annotations in SCJ becomes unnec-
essary

e the individual profile is easier to comprehend.

Another consequence of the refactoring process is that it shows that it is now
possible to simplify some of the class hierarchies in SCJ, e.g. the event han-
dling hierarchy from the SCJ Draft [153] and the revised SCJ event handling
hierarchy from [164], is even cleaner in our approach.

This simplification is in line with our earlier work [29] where we advo-
cated for using "inheritance for specialization" instead of using "inheritance
for limitation" (also called implementation inheritance). Furthermore, the
advantages of clearer and well defined levels should not be underestimated
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when using the profiles. Especially for beginners and in teaching real-time
programming using SCJ, this is of great importance.

Further work includes a full refactoring of implementations. Our plan
is here to work with the implementation of Timesys [159] with which we
have previous experience as basis for a delegation based implementation of
a specialized profile [29]. This will furthermore give us some idea about
the potential for sharing of implementations. Although we have renounced
on code sharing in favour of clear structure by using interfaces instead of
abstract classes as specifications, we are definitely not against implementing
common elements through inheritance in a concrete implementation.
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Abstract

We present a rationale for a selection of tools that assist developers of hard real-
time applications to verify that programs conform to a Java real-time profile and
that platform-specific resource constraints are satisfied. These tools are specialized
instances of more generic static analysis and model checking frameworks. The
concepts are illustrated by a case study, and the strengths and the limitations of
the tools are discussed.
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1 Introduction

For systems that have to meet strict timing or safety requirements it is often
argued [39] that code should be automatically synthesised from high level
models that facilitate formal verification of critical timing and safety prop-
erties. By systematic and careful code synthesis, it is possible to retain all
or most of the important properties of the high-level model in the generated
code. In this way formally verified, highly robust and reliable software can
be obtained at a much lower cost than similar software developed in a more
traditional way. However, it is likely to still take a while before the goal of
fully automated code synthesis is reached. That raises the question of what
researchers can do in the meantime to improve quality and efficiency of the
development process? In [101] it was hypothesised that the incremental move
away, in the embedded systems community, from the C programming lan-
guage and real-time kernels, towards more structured languages with good
tool support at all levels, would improve the development process.

In this article we report on recent work, enhancing the suitability of Java
for developing embedded real-time systems. We have chosen to work with
Java because it comes with several defined and documented profiles for real-
time programming and because the profiles are supported by platforms that
have been demonstrated to work. The profiles and platforms are discussed
in Section 2. However, the profiles cannot in themselves ensure that ap-
plications perform predictably. There are many issues, some examples are:
ensuring that only allowed features and constructs are used, checking that
platform resources (memory and processor time) meet the demands of the
executing program, and providing interfaces to special purpose hardware.
Therefore we have engaged in harnessing theories as well as implementing
and adapting tools to assist in verifying properties dictated by the chosen
profile and conformance to platform limitations. The tools and their spe-
cialisation(s) are introduced in Section 3. In Section 4 we look at two case
studies. The first case study looks at tool use. It is the mine pump example
well known from the literature. As explained in connection with the case
study, the experiments have been encouraging. Then a larger industrial case
study is discussed.

We will then, in Section 5, discuss related work, and finally in Section 6,
comment on limitations of current tools and the need for tool integration and
specialization. This outlines what kind of theories and tools we expect to see
harnessed in a truly supportive Real-Time Java development environment.

2 Java and Real-Time Systems

Since its appearance in 1995, Java has spread tremendously as a software
development language; it is used to program all kinds of software from servers

146



CHAPTER 5. PAPERS

to smart cards, and it is now the first (and often the only) language for young
programmers joining the industry. Especially the Internet propelled Java
into mainstream computing, because there was a need for a language that was
portable and truly object-oriented, eliminating the error-prone programming
of memory allocation and pointer manipulation.

Java features a clean object-oriented model-based on single inheritance
with the notion of interfaces to facilitate a safe, albeit limited, form of mul-
tiple inheritance. Java presents a relatively clean type system based on a
limited set of primitive types and an unlimited set of constructed types,
called reference types, all belonging to a type hierarchy with the type Object
at the top. Java achieves portability via the Java Virtual Machine (JVM)
which implements a managed heap, where all objects are allocated and where
objects are subjected to garbage collection when they are no longer in use by
the program. Java has a wide variety of control features such as sequencing,
selection statements and loops. Java also features a clean exception model
and the notion checked exceptions, i.e. exceptions are part of the interface of
methods and will be checked by the type checker, except for a small number
of unchecked exceptions.

Java was one of the first mainstream programming languages to have
a platform independent concurrency model-based on a thread model. A
thread object has a designated run method that is executed when the thread’s
start method is called. Threads can collaborate based on a shared memory
model, and Java features lock based concurrency control built into every
object created by a Java program. Locks are not acquired explicitly, only
implicitly via synchronized methods and synchronization blocks. Threads
can be suspended waiting on a lock and may be woken up by notify signals
issued by another thread holding the given lock. Java has a soft real-time
sleep method that suspends a thread for a designated duration.

Originally Java was developed as a programming language for embedded
systems, although several of its features make it less suited for predictable,
real-time embedded systems: The virtual machine, that gave portability,
was considered inefficient both in terms of time and space. Furthermore, the
automatic garbage collection and dynamic class loading made it impossible to
analyse and predict execution time and memory consumption. Thus several
variants, so called profiles, have been proposed to eliminate the features
deemed unsuitable for hard-real time embedded system programming. We
review three of the profiles in the following subsections.

2.1 RTSJ Profile

The Real-Time Specification for Java (RTSJ) [127] has been specified in
order to rectify a number of issues preventing the adoption of the Java pro-
gramming language for real-time systems development. The RTSJ 1.0 spec-
ification is formally defined in the JSR 1 [147] and is currently being revised
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to RTSJ 1.1 in JSR 282 [116].

RTSJ considers both soft and hard real-time systems. The specification
introduces a number of concepts related to real-time systems for the use of
programmers; it changes parts of the Java semantics which are problematic
for real-time systems; and it provides facilities allowing the programmer to
avoid certain elements of Java. These additions and changes can be divided
into eight categories: schedulable objects, memory management, real-time
threads, asynchronous event handing and timers, asynchronous transfer of
control (ATC), physical and raw memory access, time values and clocks, and
resource sharing and synchronisation.

Most notably, the concept of schedulable objects has been introduced.
Schedulable objects are supported by a number of classes allowing the pro-
grammer to express real-time concepts such as temporal-scopes, deadlines,
release patterns, priorities, and cost. The existing Java thread model is
extended with schedulable real-time threads. Furthermore, asynchronous
event handlers are schedulable objects, allowing them to express the same
computations as real-time threads.

Another notable addition is a new memory model, containing two new
types of memory in addition to the existing heap memory. The purpose of
the new memory types is to avoid allocation in the heap memory, and thus
avoid having a garbage collector to deallocate memory from the heap. The
reason for this change is the difficulty in implementing a time predictable
garbage collector. The two new memory types are immortal memory and
scoped memory.

Immortal memory allows memory to be allocated only and is meant for
persistent objects needed throughout the lifetime of the program.

Scoped memory allows both allocation and deallocation, similar to heap
memory, but it only supports deallocation of its entire memory area. That
is, the memory area is deallocated as soon as no schedulable objects of the
system use it. This results in a memory area supporting time predictable
allocation and deallocation.

The RT'SJ maintains support for garbage collection and heap memory for
applications where incremental soft real-time garbage collection is considered
a reasonable solution. However, after the first version of RT'SJ appeared in
2000, the focus on real-time garbage collectors have grown. Now different
real-time garbage collection algorithms exist [42], and several RT'SJ imple-
mentations using these algorithms are available today, such as Java RTS
from Oracle/Sun Microsystems [146], WebSphere Real Time from IBM [83],
and JamaicaVM from Aicas [5].
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2.2 SCJ Profile

Since the purpose of the RTSJ is to allow a large range of real-time appli-
cations to be developed, it is broad and imposes few limitations on how to
structure the application. As an example, both a thread and event han-
dler paradigm is supported. RTSJ is too liberal to effectively support pro-
gramming of high-integrity applications, therefore effort has been put into
defining a profile targeted at safety-critical systems development. The first
such profile was the Ravenscar-Java profile [91] which inspired work on the
Predictable Java (PJ) profile [29] and the Safety Critical Java (SCJ) profile,
developed under JSR-302 [115]. The SCJ standardisation is still ongoing,
and the specification is therefore only available as a draft as of now.

Safety-critical applications are often subject to a rigorous certification
process, e.g. dictated by a legal statute. Therefore, the SCJ profile is specif-
ically designed to be amenable to such processes.

The SCJ takes into account the presence of the RT'SJ. Specifically, the
SCJ is a specialisation of the RT'SJ where unwanted functionality is avoided
using explicit annotations.

Two major improvements of the SCJ with respect to the RTSJ are the
introduction of missions and compliance levels which both contribute to a
simpler programming model. The two improvements are described in the
following.

Missions

An SCJ compliant application consists of one or more missions, which in turn
consist of periodic and aperiodic event handlers and NoHeapRealtimeThread
objects. Missions go through three different phases during their life-time,
see Figure 39.

Initialisation: Objects, real-time threads, and memory areas needed through-
out the mission’s lifetime are created and initialised. The phase is not con-
sidered time-critical, meaning that no real-time constraints are guaranteed.

Execution: When the mission is in this phase, the operations are time-
critical. Objects created as part of the initialisation phase can optionally be
used and modified if they are mutable.

Termination: When all handlers and threads have completed, the mission
enters its termination state. Here, a clean-up can be made, and afterwards
the mission can either terminate entirely or it can re-initialise by returning
to the initialisation phase.
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Current mission

Initialisation Teardown

Next mission

Figure 39: The phases involved in a real-time application’s lifetime.

Compliance Levels

The application area for safety-critical systems is wide. That is, applica-
tions range from complex multi-threaded to simple single-thread applica-
tions. Therefore, since the cost of a certification process is highly dependent
on the application’s complexity, it is desirable to restrict the complexity,
thereby easing the certification process. To accommodate this, the SCJ pro-
file defines three compliance levels:

Level 0 applications consist a sequence of missions, where each mission
must follow the programming model needed for a Cyclic Executive Scheduled
(CES) application. Each mission can therefore be thought of as a set of
periodic tasks placed in a fixed schedule on a time-line. The schedule must
either be constructed offline or by an initialization tool.

Level 1 applications consist of a sequence of missions. However, each mis-
sion at this level uses Fixed-Priority Preemptive Scheduling (FPS), where
handlers are scheduled for execution based on a predefined priority. Han-
dlers are either periodic event handlers or aperiodic event handlers. Due to
preemption, access to shared objects must be synchronized using a ceiling
protocol.

Level 2 allows applications to use multiple concurrently executing mis-
sions. Besides allowing sequential transition between missions, level 2 sup-
ports nested missions. Also this level allows the use of NoHeapRealtimeThread
objects in missions, which are real-time threads that do not access the heap
memory, and do not use the Java methods notify() and wait().

2.3 PJ Profile

Due to the still ongoing effort of standardising the SCJ profile, we have devel-
oped a Predictable Java (PJ) profile [29] suggesting potential simplifications.
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The primary contributions of the PJ profile are to redefine the inheritance
relationship to the RT'SJ and to redefine the programming model of missions.
As previously mentioned, the SCJ profile assumes the presence of the
RTSJ from which it inherits. The PJ profile recognises that the notion of
inheritance has different interpretations depending on its application. The
SCJ profile is an instance of the interpretation when inheritance is used
for limitation, that is, the SCJ, being a relatively concrete and simple Java
profile, inherits from the broader, more flexible RT'SJ specification. Effec-
tively, this means that the specifications of subclasses do not comply with
the specifications of their respective parent classes. In this interpretation,
unwanted functionality from a parent class is in SCJ excluded by annota-
tions. Specifically, the @SCJAllowed annotation is used for specifying allowed
functionality from parent RTSJ classes. This has the undesirable property
of relying on external tool support which examines the source code files to
determine whether or not the application conforms to the profile.

PJ uses inheritance for specialisation, that is, the specifications of the
subclasses satisfy the specifications of the parent classes. Specifically, the
PJ profile has simpler class hierarchies than SCJ which is extended from the
much broader and flexible RTSJ specification through inheritance.

SCJ organises schedulable objects into one or more missions depending
on whether the system undergoes mode transitions during its life-time. The
SCJ regards a mission as a simple container of schedulable objects. The PJ
profile recognises that missions may in fact be more than simple containers
and PJ proposes that missions are handlers. This implies that missions may
be nested and sequenced. It also implies that the initialisation and termina-
tion phases are part of a mission and thus needs to adhere to strict timing
constraints. Besides being a more precise representation of the mission con-
cept, missions as first-class handlers also introduce a variety of simplifications
to the PJ. Initially, since missions are handlers like the schedulable objects
comprising the system, a new class hierarchy is not necessary.

3 Tool Support for Real-Time Profiles

While the profiles and platforms discussed in the previous section are impor-
tant for developing real-time applications in Java, they do not by themselves
provide any guarantees that the application under development will actu-
ally perform predictably, e.g., not exceed the time bounds specified and not
consume more memory than available on the platform.

In this section we review the kinds of tools that can provide a program-
mer with such guarantees about an application under development: ensuring
that the application is compliant with the chosen profile and that it does not
(attempt to) consume more resources than specified and available on the
platform. Today such tools are stand-alone or only partly integrated. How-
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Figure 40: Envisioned tool support: A workbench for analysing Real-Time
Java programs.

ever, we believe that such tools will only become truly useful when integrated
in the software development environment use by mainstream programmers.
The kind of tool we envision is shown in Figure 40. For each tool kind we
discuss a few available tools and/or tools currently under development.

3.1 Conformance Checking

For an application programmer working with the different real-time profiles
for Java, one of the most fundamental tools is a conformance checker that
verifies that an application is indeed conforming to the specified profile.
This includes checking that only allowed language constructs, classes, and
libraries are used in the application. Also, it may enforce specific coding
styles, absence of particularly problematic or dangerous code patterns, as
well as ensuring that the profile’s real-time facilities are used consistently.

We have implemented a prototype tool, the RT-Java tool, that can verify
that only white-listed, i.e., specifically allowed, library classes and methods
are used in a given application. The checker works at the bytecode level and
is implemented using the WALA framework [162].

Furthermore, inspired by Ravenscar ADA [44], both SCJ and PJ forbid
the use of recursively defined methods. The absence of recursion is easily
checked by ensuring that the call graph of an application is acyclic. If this
turns out to be too imprecise, i.e., results in too many false positives, the call
graph can quite easily be made more precise, e.g., by making the analysis
flow- or context-sensitive, at the cost of making it more expensive in terms
of both time and memory consumption.
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3.2 Exception Analysis

An uncaught exception is highly undesirable in most applications. In an
embedded real-time system it may have catastrophic consequences. This
is especially so in Java due to the Java semantics of terminating threads
with uncaught exceptions without any notification. By performing exception
analysis, a tool can automatically verify that an application will not give rise
to any uncaught exceptions.

We are not aware of any stand-alone tools that perform exception analysis
as described above. However, exception analysis is an integrated part of
many of the analyses included in the WALA framework [162].

Correct exception handling is of course only one of many properties to be
analysed to ensure correct functional behaviour of a real-time Java applica-
tion. There are many tools that will help a developer ensuring correct func-
tional behaviour of a (real-time) Java application, many of which are based
on deductive reasoning such as ESC/Java [62] and the KeY system [22]. A
comprehensive overview is beyond the scope of this paper as our main con-
cern is harnessing theories through tools in support of establishing correct
behaviour with respect to non-functional requirements such as memory and
time.

3.3 Memory Analysis

The scoped memory model, employed by several of the real-time profiles dis-
cussed in the previous section, gives programmers a high degree of flexibility
and control over memory allocation and, in particular, release of memory that
is no longer needed. This control and flexibility is achieved by organising
the physical memory into scoped memories that are dynamically allocated
and deallocated in a structured way, according to the lifetime of the scopes.
Thus, in the simplest case, scoped memories are allocated following a stack
discipline and, indeed, this is the only allocation ordering allowed by the PJ
and SCJ profiles. Furthermore, the PJ profile does not allow dynamic cre-
ation of new memory scopes while the SCJ profile does. In contrast to both
the SCJ and PJ profiles, the RTSJ profile permits more complex allocation
hierarchies for scoped memories.

With control of memory allocation and deallocation left in the hands of
the programmer also comes a risk that is not present in garbage collected
systems: namely the possibility of creating dangling references when deallo-
cating a scoped memory containing an object that is referenced in another
scoped memory that has not yet been deallocated. To avoid dangling referen-
ces, the underlying structure of the scoped memories is used: it is expressly
forbidden for a reference in a memory scope with a longer lifetime (as de-
termined by its place on the scope stack) to point to an object in a memory
scope with a shorter lifetime. Thus, in the SCJ profile and PJ profiles, re-

153



3. TOOL SUPPORT FOR REAL-TIME PROFILES

ferences may not point to objects in scoped memories that are closer to the
top, i.e., scopes that are younger. In the RTSJ profile the situation is more
complicated since the scoped memories do not follow a strict stack discipline
but allows for the more general structure of a cactus stack. Thereby the
RTSJ potentially makes it even harder for programmers to understand the
runtime memory structure of a program, and they must therefore be even
more careful to avoid creating references from a memory scope with a longer
lifetime to an object in a memory scope of a shorter lifetime.

RTSJ checks this dynamically at run-time, raising an exception in case of
violation of the safety property. However, this solution is first of all expensive
as the safety property has to be checked for each assignment and secondly it
only removes the danger of dangling pointers at the cost of introducing an
exception, which is difficult to handle for the programmer.

To help programmers ensure that all references are pointing in the “right
direction”, tool support is essential. By performing memory analysis a tool
can track the memory scope hierarchy at various program points and verify
that no references violate the rules and thus potentially result in a dan-
gling reference. Using standard techniques from static analysis, e.g., adding
flow- and/or context-sensitivity, it is possible to make the memory analysis
more precise on a case by case basis and thereby find an acceptable tradeoff
between speed and precision of the analysis for a given project.

Using the WALA framework [162], we have implemented a prototype tool
that uses a context-dependent points-to analysis, using scoped memories as
calling contexts, to determine if a PJ application can potentially violate
the rules for scoped memory (as defined by the PJ profile). Due to the
straightforward and relatively simple definition and use of scoped memories
in the PJ profile, there is no need for programmer annotations or interaction.

In addition to ensuring that scoped memory is used correctly, it is nec-
essary to ensure that the application does not exceed available memory by
undertaking a Worst Case Memory Consumption analysis. Such analyses
have not received the much attention yet, but one approach is described in
[121].

3.4 Worst-Case Execution Time Analysis

In order to analyse the schedulability of the set of tasks comprised by an ap-
plication, it is necessary to determine the worst-case execution time of each
of the tasks. This can be done either by static analysis, called WCET anal-
ysis, or by comprehensive simulation. While simulation has the advantage
of being relatively easy to set up and perform, it may give rise to unsound
results, i.e., results that are overly optimistic and underestimate the true
WCET of a task. In non-safety critical and/or soft real-time applications
this may be sufficient, but for systems with hard real-time deadlines, poten-
tially performing safety critical tasks, it is essential to have sound WCET
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estimates for every task in the system.

For analysis based WCET estimates, the inherent difficulty of perform-
ing precise program analysis is often evidenced by imprecise and overly pes-
simistic WCET analysis results. The lack of precision in WCET analysis
is often exacerbated by some of the advanced features present in modern
hardware architectures, especially caching and pipelining, that have major
impact on the actual running time of any given task. One way of overcom-
ing the challenge presented by modern hardware, is for the WCET analysis
to make explicit (abstract) models of the underlying hardware and take the
relevant features into account.

WCET Analyzer

WCET Analyzer (WCA) [135, 79] is a static code analysis tool for conducting
WCET analysis of Java bytecode executed on the Java Optimized Processor
(JOP). JOP [128] is a hardware implementation of the Java Virtual Ma-
chine which emphasises real-time properties. Among others, JOP facilitates
known execution times of each Java bytecode. The relative simplicity and
predictability of the JOP architecture [132] and, in particular, the use of a
method cache instead of more general cache disciplines, makes it significantly
easier to perform precise WCET analysis. In the following we describe the
WCET Analyzer tool for JOP.

WCA employs two distinct strategies for WCET analysis; one is the
Implicit Path Enumeration Technique (IPET) [97] and the other models
the real-time application using timed automata in the verification tool Up-
paal [25]. The rationale behind supporting two different strategies is that the
two represent a trade off between estimation time and precision. In WCA,
the IPET strategy yields WCET estimates relatively fast, while the model-
based strategy results in more precise estimates at the cost of a relatively
long verification time. The precise WCET estimate is a consequence of the
model representing the detailed behaviour of the system, especially the cache
model.

Common to both WCET estimation strategies is the control-flow graph
(CFG) of the application which is constructed by consulting the Java class
files using the Byte Code Engineering Library [21]. For the IPET strat-
egy, WCA transforms the CFG into an integer linear programming problem
which is solved using the linear programming solver lp solve [70] resulting
in a WCET estimate. In the model-based strategy, the CFG is directly
transformed into timed automata models for Uppaal. Currently, WCET es-
timates using the model-based strategy are computed by making an initial
guess of WCET (which can be based on the estimate derived using IPET).
Afterwards, Uppaal verifies whether the timed automata are verifiable within
the guessed time and, afterwards, the estimate is gradually refined using a
binary search tactic.
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For unbounded loops, WCA introduces comment-based annotations of
source code which make explicit the iteration count of the particular loop.
Alternatively, WCA provides the option of using data-flow analysis for ex-
tracting these. Obviously not all bounds can be extracted as part of static
code analysis and in such cases the programmer needs to insert annotations.
Furthermore, WCA performs receiver-type analysis to increase the precision
of the WCETs in case of dynamic method dispatch.

Besides printing the resulting WCET estimate to standard output, WCA
conveniently generates a detailed HTML report containing a visual represen-
tation of the CFG and timings of individual methods including their cache
misses.

3.5 Schedulability Analysis

In order to ensure the correct functioning of an embedded real-time system,
it is essential that all the tasks in the system meet their deadlines. In other
words, the system must be schedulable. The schedulability of a system can
be verified using techniques such as utilisation test, response time analysis,
and model checking.

Below we describe the TIMES and SARTS tools tool for schedulability
analysis.

TIMES is a model-based schedulability analysis tool [11]. That is, all
provided information is transformed into timed automata on which the model
checker Uppaal [25] is used. Schedulability is verified by checking if a location
where a task misses its deadline is reachable in the model. The advantage
of using TIMES, is that it allows a wide range of details of the system to
be taken into account in the schedulability analysis. Among others, TIMES
allow the programmer to specify if shared resources are used, and when they
are locked and unlocked.

Tasks can be of one of three types, namely: sporadic, periodic, or con-
trolled, where the releases of the sporadic and periodic are handled by
TIMES, according to their release parameters. The release of the controlled
tasks are controlled by release patterns modelled as timed automata. This
is another detail that potentially increases the accuracy of the schedulabil-
ity analysis, since it provides the means of describing the release of a task
more precisely. To illustrate how release patterns can be modelled consider
Figure 41. As shown, the pattern models a periodic release of task with a
period of 60 time units.

TIMES models tasks in a real-time system by specifying the following
three constraints:

Timing Constraints consist of a task’s relative deadline and its WCET.
Furthermore, it is possible to specify the type of the task to be one of
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Figure 41: TIMES release pattern, illustrating how the release of a periodic
task can be modelled.

the three supported. If the task is periodic or sporadic, its period or
minimal inter-arrival time must be specified, respectively.

Precedence Constraints are used if the releases of tasks are dependent
on each other, TIMES allows a precedence graph to be specified.

Resource Constraints take into account shared resources: These can be
specified in terms of when they are locked and unlocked. The syntax for
the constraint is S;(F;, V;) where S; denotes the name of the resource,
P; denotes the accumulated execution time needed for the task to reach
the critical section, and V; denotes the accumulated execution time
needed to exit the critical section.

When all the tasks of a system have been modelled, schedulability can be
analysed. Basically, the result of this analysis is a verdict indicating whether
deadlines are missed or not. However, if wanted more detailed information is
available such as the Worst Case Response Times (WCRTS) for each of the
tasks. Furthermore, TIMES allows the programmer to graphically follow the
scheduling as a Gannt chart, as depicted in Figure 42. This representation is
especially convenient for debugging since it shows precisely what goes wrong
and where.

SARTS combines model-based WCET analysis with schedulability anal-
ysis [33]. Given a real-time system written in Java, SARTS translates each
task in the system into a timed automaton, based on the Java bytecode.
Each timed automaton represents the control-flow of a task at the byte-
code level, with timings for each instruction in the bytecode retrieved using
information about the platform on which the code is executed, e.g. JOP.
The model takes into account instructions that vary in time, for example,
the overhead associated with a method call, based on the size of the method,
is added to the model. For methods this overhead is known at compile-time,
but other variations are modelled as a non-deterministic choice in the model.
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WaterLevelProcess GoProcess PERIGDIC TASKS SCHEDULER
Idle Idle START IDLE
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[START]  [ARRIWED_PeriodicWaterLevelDetection

[RUN_PeriodicMethaneDetection |
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PeriodicWaterLevelDetection ‘[ i H

Figure 42: Example of a simulation run in TIMES.

For example, virtual method calls result in a non-deterministic choice among
methods.

Task specific information, such as period, offset, and deadline, is also
retrieved and used as parameters to a model of the scheduling strategy, i.e.
fixed priority pre-emptive scheduling with priority assignments according to
deadlines. For the schedulability analysis, the task models, along with a
model of the scheduler, are composed in parallel. Using Uppaal the schedu-
lability is verified by checking for deadlock freedom.

This approach is interesting because it considers interactions between
tasks at a finer grained level than traditional analyses using plain WCET
and worst case blocking. This is possible because the model includes enough
information to possibly rule out interference between tasks, due to syn-
chronized methods, where traditional approaches pessimistically include the
worst case execution time of the critical section of any other task performing
this synchronization. Another advantage of this approach is the tight corre-
spondence between code and abstract model: it is certain that the system is
actually an implementation of the abstract model being checked, and it does
not rely on the developer having knowledge of timed automata.
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4 Case Studies

This section introduces two case studies. The first case study is a smallish
case study, based on the text-book example of a mine pump, structured for
ease of analysis to test and evaluate profiles and tools. The second case
study is a larger industrial case study based on a re-implementation of a
C++ based control system for the FTIR infrared analysis technology for
analysis of liquid samples developed by FOSS [63].

4.1 The Mine Pump

The first case study of a hard real-time system implemented in Java is based
on the text-book example of a mine pump [45]. The purpose of the mine
pump is to monitor a number of environmental properties in a mine to safely
remove excess water using a water pump.

To focus on the essential functionality, a reduced version has been im-
plemented. The reduced version centralises the various types of real-time
tasks while omitting functionality that would only add to the size of the
system. It consists of two environmental properties being monitored: the
water level in the mine and the methane level. When the water level rises
to a predetermined level, the water pump is started, and when the water
level drops to another predetermined level, the water pump is stopped. The
water pump must not run if the methane levels exceed safe levels. These
functionalities have temporal requirements stating the reaction times of the
system required for safe operation such as timely stopping the water pump
whenever a critical level of methane is reached.

The actual prototype consists of two parts: the physical plant and the
control software. Lego is used to construct the physical plant together with
Lego NXT sensors and actuators connected to a JOP board. The control
software comprises two periodic and two sporadic real-time tasks written in
Java. The periodic tasks are responsible for monitoring the methane and
water levels. The sporadic tasks are released whenever either the low or the
high level has been reached.

An objective of this case study is to compare the SCJ and PJ real-
time Java profiles. Objective evaluation criteria for ranking the profiles is a
difficult undertaking and, hence, the following will solely present the different
approaches for expressing fundamental concepts. Specifically, the following
will show how the periodic task for monitoring the methane level is created.

Listing 5 shows the periodic event handler adhering to the SCJ profile.

PeriodicMethaneDetection methaneDetection =
new PeriodicMethaneDetection(
new PriorityParameters (METHANE_DETECTION_PRIORITY),
new PeriodicParameters(
new RelativeTime (0, 0),
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new RelativeTime (PERIODIC_GAS_PERIOD, 0)),
new StorageParameters (
SCOPED_MEMORY_BACKING_STORE_SIZE,
NATIVE_STACK_SIZE,
JAVA_STACK_SIZE),
methaneSensor ,
waterpumpActuator);

methaneDetection.register ();

Listing 5: An SCJ handler for methane level.

An SCJ periodic event handler has a number of parameters: since the SCJ
profile level 1 uses an FPS scheduler, evidently a priority must be specified.
Furthermore, a release parameter specifies the start time, the relative initial
time for the first release of the handler, and a further relative time gives the
period. An instance of StorageParameters expresses memory-related con-
straints for the handler. The objects methaneSensor and waterpumpActuator
are interfaces to a sensor and an actuator. The sensor observes the current
methane level and the actuator starts and stops the water pump. When a
handler instance has been created, it is set for being scheduled when the
register ) method is invoked.

addToMission(new PeriodicMethaneDetection(
new PriorityParameters(GAS_PRIORITY),
new PeriodicParameters(new RelativeTime (0,0),
new RelativeTime (GAS_PERIOD, 0)),
Scheduler.getDefaultScheduler (),
new LTMemory (MEMORY_SIZE),
methaneSensor ,
waterPumpActuator));

Listing 6: The methane handler in the PJ profile.

The instantiation of a periodic handler in the PJ profile is similar to that of
SCJ, and is shown in Listing 6. The only noticeable difference is the absence
of StorageParameters, where PJ only requires a memory area with a given
size. Further, the handler must be given the used scheduler as argument.

public void handleEvent () {
waterpumpActuator.emergencyStop (
methaneSensor.isCriticalMethaneLevelReached ()
)
}

Listing 7: Detecting the methane level.

Listing 7 shows the event handling method of the periodic event handler
PeriodicMethaneDetection, implemented in the PJ profile. It is similar to
the one in the SCJ profile.

To ensure that the control software adheres to its temporal requirements,
schedulability has been analyzed with TIMES. Evidently, this analysis relies
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on the provision of WCET estimates for which WCA has been used.

WCA allows for a wide variety of configuration options including the
Java processor used and architectural properties. It is of course of utmost
importance that these configuration options are correctly set to reflect the
actual system used. TIMES, on the other hand, is platform-agnostic and only
relies on the scheduling algorithm used, temporal properties of the real-time
tasks, and their release-patterns. To make the schedulability analysis more
precise, the release patterns of the real-time threads have been modelled. Of
particular interest is that the sporadic threads have been modelled to reflect
that their release in this system cannot occur concurrently.

Since a shared resource is present in the control software, namely the
water pump, TIMES requires WCET estimates before, after, and during the
acquisition of the resource. WCA allows for easily conducting this process
due to the provision of command-line options that lets the user specify the
method of interest. Subsequently, the HTML reports generated by WCA
can be consulted for extracting the needed information for addressing the
presence of a shared resource.

By using WCA and TIMES together, the control software has success-
fully been verified to satisfy the temporal requirements, thus the system is
schedulable on the JOP.

4.2 The FTIR Wine Scan Analyser

The FTIR (Fourier Transform Infrared) is an infrared analysis technology
used by FOSS [63] for analysis of liquid samples such as milk and wine.
Figure 43 shows the newest wine scan analysis instrument.

Figure 43: Wine Scan from FOSS.

The embedded FTIR system is normally implemented in C++, but FOSS
was interested in finding out if a Real-Time Java solution was able to meet
the timing constraints of the thirteen tasks defined in the FTIR specification,
Table 7.

The most interesting is the Acquirement task. It makes the scanning of
the sample. A complete measurement of a sample is composed of 32 scans
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Table 7: Tasks in FTIR. T is the period, D the deadline.
Task T (ms) | D (ms)
Acquirement 0.333 0.2
Temperature regulation (x4) | 1000 100
Temperature reading (x4) 200 200
Monitoring 333 333
Output communication 333 333
Input Communication 500 500
Watchdog 8000 8000

where each scan has 3200 measurements. The results are kept in a 32 x
3200 matrix of type short. The period T of the task is 0.333 millisecs with
a deadline D = 0.2 millisecs.

The implementation of the FTIR system is composed of two main parts:

1. The temperature controller module, which monitors and regulates a
thermobox, - an isolated box in which the interferometer is placed.
The temperatures are observed at four places in the thermobox and
are regulated to remain within defined bounds.

2. The interferometer module makes measurements on the sample and
creates an interferogram when the measurements have finished.

An overview of the acquirement states is shown in Figure 44, cf. Figure 3.2
in [19]. A Real-Time Java solution implemented in the Ravenscar-Java pro-
file [91] running on an aJ-100 Java processor [144, 6] was described in details
in [19] and concludes that the implementation meets the temporal correct-
ness criteria.

In the Ravenscar-Java profile implementation, the two phases in the pro-
file, the initialization phase and the mission phase, are utilized to implement
the two main parts of the FTIR system.

A later re-implementation of the FTIR system to Safety Critical Java
(SCJ) follows the same structure, but here the mission concept is utilized and
the two phases described above are implemented as two missions: InitMission
and AcquireMission. Because InitMission only monitors and regulates the
thermobox, it includes temperature tasks only, whereas the AcquireMission
includes all the thirteen tasks.

Furthermore, the ScopedMemory concept in SCJ is utilized to create
objects which are local to a mission. An example is the large matrix for the
measurement results. This matrix is used only in the AcquireMission by two
tasks and is therefore created in the scoped memory of AcquireMission. In
the Ravenscar-Java solution it had to be created in immortal memory. On the
other hand, the temperature buffers which store the actual temperatures of
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Figure 44: FTIR System States.

the thermobox, are in the SCJ solution created in immortal memory because
the values in those buffers are used and updated in both missions, i.e. no
change compared to the Ravenscar-Java solution.

Both the Ravenscar and the SCJ profiles are suitable for a Real-Time
Java implementation of the logic of the FTIR specification. However, the
SCJ profile gives some local options through the mission and the scoped
memory concepts which are not present in the Ravenscar-Java profile.

A check of the FTIR code using the RT-Java tool (Section 3.1) shows
e.g. that the Ravenscar-Java version uses block synchronization twice, but
no cycles are found in the call graph.

A full scale industrial FTIR implementation would include connections
to devices like temperature feelers, thermostates, and interferometer. The
Ravenscar-Java solution, implemented on the aJ-100 Java processor, could be
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extended to a full FTIR solution using the JStik board from Systronix [148].
The SCJ implementation has been tested on an implementation running on
top of Sun’s Java RTS Linux version where these interfaces are left out. A
port is underway to the HVM (Hardware near Virtual Machine) [87| which
is a software virtual machine targeted at a variety of embedded platforms.

5 Related Work

Our tools should be seen in a larger context of other tools that can support
the development of real-time Java programs. The following focuses on tools
from a recent larger European project and commercially available tools.

The HIDOORS [161] project proposed an integrated development envi-
ronment for Java embedded real-time systems. Its ground principle is that
the environment must cover the full life-cycle of real-time systems devel-
opment, meaning that it provides functionality ranging from a timing pre-
dictable JVM to a WCET tool. The environment uses the JamaicaVM from
aicas, which is a JVM updated to provide time predictable behaviour. That
is, JamaicaVM is extended with real-time garbage collection and supports
the RTSJ specification. For the WCET analysis, HIDOORS suggests that
the underlying hardware is modelled, such that caching and pipelining can
be accounted for in the analysis. As part of this, the PAG [8] tool is used
for data flow analyses.

The company aicas [5] has commerical tools for real-time Java systems de-
velopment. Their JamaicaVM is supported by: The Jamaica Builder which
is capable of building a single executable containing the Java application and
determines the memory necessary to execute it, the VeriFlux tool which con-
ducts static analysis in order to detect various errors and possible deadlocks
in the application, and finally the Thread Monitor tool which allows simu-
lation of the behaviour of the application in order to fine-tune applications.

Atego [13] provides a wide variety of tools and development environments
for supporting safety-critical systems development targeting engineering sec-
tors such as aerospace, defense, and the automotive industry. Among others,
Atego offers different flavours of Aonix Perc which is a package containing
virtual machine technology and accompanying tool chain for a variety of tar-
gets. One of these flavours is the Aonix Perc Raven package that focuses on
a small and fast SCJ-compatible JVM that is amenable to cerification under
stringent standards such as DO-178B Level A. Other flavours include Aonix
Perc Ultra which is a Java Standard Edition (JSE) compatible JVM with
toolchain.

Besides focusing on virtual machine technology, the offered products of
Atego also comprise Artisan Studio which is Atego’s modelling tool suite.
The entire suite contains support for OMG: UPDM, SysML, and UML in a
single toolset. The aim of Artisan Studio is to support development by offer-
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ing different features such as visualisation to provide overviews of complex
areas of embedded real-time software. When a model has been established,
Artisan Studio provides functionality for automatically generating documen-
tation and for testing the model for correctness and completeness with re-
spect to defined requirements. Finally, an interesting feature is automated
synchronisation of the design with the application code such that traceability
is maintained. These industrial tools offer a much smoother integration than
our experimental tools. However, as far as we can see, they do not use static
analysis to the full extent which can be supported by WALA, and they do
not use model checking for detailed analyses. Thus there is a potential for
improving them based on our work.

6 Discussion and Further Work

The key hypothesis underlying our work is that Java is a promising candidate
for a structured language which is well suited to develop hard real-time safety
critical embedded software.

Java is by itself far too general to assist programmers in developing such
applications, therefore specialized profiles have been developed as outlined
above. Essentially the profiles define constructs that control utilization of
platform resources like execution time and memory space. Furthermore they
support development of programs that implement total functions without
uncaught exceptions.

Development of truly predictable software cannot rely solely on trust-
ing programmer specified resource constraints and believing that the imple-
mented programs take care of all exceptional cases. The development process
must include verification and validation. It is here that we have explored the
potential for harnessing theories from a wide range of subject fields, such as
static analysis and model checking, in tools that support validation.

Some of the tools are stand-alone tools, whereas other tools integrate
more than one analysis, and yet other tools are already available as plug-ins
for the Eclipse integrated development environment. Integration is extremely
important, because to be really useful to ordinary programmers it is impor-
tant that the tools are integrated well in the workbench that the programmer
needs for developing, testing and managing code.

The case studies reported here gives some indication that the individual
tools are by now so mature that they are useful. Yet, most tools for WCET
analysis rely on programmer annotations for loop bounds. This is clearly not
safe, and tools for checking correspondence between code and annotations
are needed. In [120] the idea of dividing such annotation into two categories:
trusted respectively verified annotations, is presented. Some tools like WCA
offer (a bit of) automation that can implement the idea of verified annota-
tions, but in general the only known safe approach is by theorem proving e.g.
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using the Java Modeling Language and semiautomatic theorem provers like
the KeY system [22|. This may also provide a bridge between tools for en-
suring correct timing behaviour of embedded systems and the more general
properties of ensuring functional correctness of the code.

In further work, especially in the Certifiable Java for Embedded Systems
(cjdes) project®, we intend to focus more specifically on the SCJ-profile and
ensure that the tools cooperate with an Eclipse development environment as
envisioned in Figure 40. The motto is specialization of the general theories
to achieve thorough and yet efficient analyses of real applications.

A further significant challenge is to document the verdicts of the tools so
they can feed into a certification of application systems. Extensive verifica-
tion and validation of the tools themselves is probably out of the question,
because they are too complex and under constant development.

A possible solution may be to develop simpler validators which take the
verdicts and supporting information, for instance traces or reduced CFGs
and checks validity of the verdicts, much in the spirit of proof carrying code
[112]. For many of the complex tools a validator will be significantly simpler,
recalling that although NP indicates complex searches for solutions using
involved heuristics, it also means that solutions can be checked in polynomial
time.
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Model-based Analysis of Embedded Java
Programs

Thomas Bggholm, Anders P. Ravn, and Bent Thomsen
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Aalborg University, Denmark

Abstract

The research topic presented here is model based analysis of Java programs for em-
bedded applications. The aim is to combine model-checking and program analysis
techniques, such that model checking takes care of dynamic features e.g. caching
and program analysis provide suitable abstractions of program blocks and control
flow. In this paper we present initial results, a case, study and future directions.
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7.1. INTRODUCTION

7.1 Introduction

In the area of embedded systems, Java can be considered a suitable replace-
ment for traditional programming languages, such as C and assembler, since
the complexity of such systems continue to increase. Java provides abstrac-
tions, relieving the programmer from worries about the low-level and error
prone details, such as memory management e.g. (de)allocation, pointers,
etc., and hardware specific details.

The use of Java, however, complicates program analyses, such as the
required schedulability analysis and analysis of memory usage. This is partly
due to the layered architecture: Java Virtual Machine (JVM), operating
system and underlying hardware, and partly the use of garbage collection
for memory management. Additionally, applying such analyses on systems
for multi-core architectures still is an open research area [142].

The use of Java for embedded systems thus calls for development in two
interdependent areas:

Programming Language Profiles: Since standard Java is unsuitable for
dependable systems development because of the dynamic nature and unpre-
dictable execution times, caused by e.g. garbage collection, dynamic class-
loading, and unspecified scheduling scheme, a safe subset of the language
should be provided. Though much work has been done in this area, room
for improvement still exist. Part of this research is focused on developing a
predictable Java-profile, which smoothly interacts with analysis tools.

Platform Dependent Analyses: As with programming languages, much
work has been done in the development of program analysis techniques, some
especially suited for real-time applications. Standard schedulability tech-
niques require the computation of WCET for each task in the system, and
provide pessimistic, but safe, answers [45]. Abstract interpretation, static
analysis and model-checking techniques provide general approaches to pro-
gram analyses for ensuring program correctness with regards to certain prop-
erties, such as null-pointers, array index errors etc. The goal in this project
is to develop new techniques combining these approaches in developing a
single tool aimed at the aforementioned Java-profile, using model-checking,
aided by suitable analysis techniques.

7.2 Initial Experiment

In an initial effort in this project [33], a tool named SARTS, Schedulability
Analyzer for Real-Time Systems, was developed.

The SARTS tool analyzes Java programs and constructs control flow
graphs decorated with timing information in the form of timed automata for
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the model checker UPPAAL. UPPAAL can then be used to perform schedula-
bility analysis, by verifying the absence of deadlocks in the timed automata
model.

For Java programs to be analyzed using SARTS, these programs must
be written in the Java profile, SCJ [137], a profile providing a simple ana-
lyzable framework for safety-critical embedded Java systems, intended to be
executed on the time-predictable Java processor JOP [130]. In this frame-
work, a real-time system is a three phase system, initialization, mission, and
shutdown, with appertaining sporadic and periodic tasks. The initialization
phase is a non-critical phase setting up the system before execution, a phase
not considered in the schedulability analysis. The mission phase is the safety-
critical execution phase where periodic and sporadic tasks are released. The
shutdown phase performs a controlled shutdown of a running system.

The two task classes, periodic and sporadic task, each contains task spe-
cific parameters used in the analysis: for periodic tasks, these are offset,
period, deadline, and for sporadic tasks: minimum inter-arrival time and
deadline. A task implementation contains implementation of a Java method,
run, invoked when the task is released.

This framework structure is reflected in the generated UPPAAL model, in
which standard templates are created for periodic and sporadic tasks, and a
template for the scheduler; a deadline monotonic scheduling strategy using
a priority ceiling protocol.

For each method in the Java program, including the task run-methods,
a template is generated, representing control flow at the byte-code level,
decorated with execution time for each byte-code instruction, information
about blocking, preemption and method invocation. These templates act as
building blocks in the final UPPAAL model and linked together using syn-
chronization channels. The resulting model follows this predefined pattern:

e One scheduler instance

e Task controllers corresponding each task in the Java program, linked
with their corresponding run methods

e N method models for each Java method, where N is the total number
of tasks in the Java program; this is to allow concurrent execution of
each method from different tasks

This results in a single model with 1 + 7 + (7" % M) timed automata
run in parallel, where T is the number of tasks and M is the number of
methods in the Java program. Method invocation is performed through
channel synchronization, blocking time is modeled by preventing preemp-
tion in the scheduler, preemption is performed using stopwatches, and the
execution time for each task is tracked using clocks. In the case of a task
deadline overrun, the failing task will cause a deadlock in the model; hence,
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the schedulability property of the Java program is verified in UPPAAL by
verifying the absence of deadlocks.

SARTS has been applied successfully on a case study, a sorting machine
built in lego, controlled by the JOP processor and a Java control program
consisting of two periodic and two sporadic tasks, amounting to an approx-
imate 300 lines of code. Using convex hull approximation, a safe over ap-
proximation, this system has been verified in approximately 37 seconds using
UPPAAL on standard hardware.

An outline of future work includes further development of the approach
using static analysis to improve analysis result and performance, the devel-
opment of further analyses such as memory consumption, cache behavior,
multi-core scheduling and finally the integration of these techniques in a sin-
gle tool and possibly integration in an IDE, e.g. Eclipse, in order to make
the techniques available to developers.

Using static analysis techniques to reduce the non-determinism in the
model applies not only to the schedulability analysis technique, but could
also further improve analyses such as memory consumption. More precise
modeling of the platform should include e.g. caching behavior, such that the
analysis result become more accurate.

The approach taken in SARTS, i.e. the translation of Java programs to
UPPAAL models is believed to be applicable to memory consumption analy-
sis, by modeling the memory allocation scheme of the Java profile. Tracking
object creation in the model is deemed a promising approach in being able
to answer questions about worst case memory consumption. This technique
applied to the analysis of schedulability in a multi-core setting is also con-
sidered an interesting future development.

Further development of Java profiles includes defining annotations to aid
the analyses. As of now, loop bounds must be specified by the developer
in the form of simple comments containing a constant iteration count for
a each loop. Since supplying correct loop bounds is the responsibility of
the developer, this is a potential source of errors. Improvements in this
area includes automatic loop bound verification inspired by the techniques
presented in [82]. Additionally, more expressive loop bound notations could
be introduced, since cases exists where an upper bound cannot be determined
accurately local to the loop e.g. a list sort function contain loop bounds
which cannot be determined locally, since they depend on the size of the list
in question.

Finally, in integrating these techniques in an IDE, it may be possible
to visualize the analysis results. In the case schedulability, code locations
with heavy execution times may be highlighted, or in the case of loop bound
detection, complicated loop expressions may be identified.
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7.3. ACKNOWLEDGEMENTS

While embedded systems development is becoming increasingly complex
due to demands for greater functionality and a shorter time to market, it is
still using low-level, close to hardware, implementation languages. Modern
languages like Java handle such complexities more elegantly, but issues with
predictability hinder their adaptation in the embedded systems world. We
have developed Predictable Java, a Java-based framework for safety-critical
embedded systems, along with analysis tools based on formal modelling.

Embedded systems are everywhere, and are increasingly affecting our ev-
eryday life. Demands for shorter time to market, greater functionality and
lower costs makes it difficult to develop these systems using traditional pro-
gramming languages. Years ago, the traditional software industry shifted
from low-level languages to modern languages with great success, increasing
productivity significantly. Standard Java, however, is difficult to deploy and
analyse in a real-time system setting. Java is based on a rather complex
virtual machine, making analysis hard, and being object oriented, it has a
very dynamic behaviour with almost unpredictable memory and time con-
sumption. Additionally, Java is based on garbage collected memory, causing
unforeseen interruptions which further complicates analyses.

We suggest that modern software engineering practices and languages be
used in embedded systems software development by providing the required
technology. The framework based on our Predictable Java profile provides
the ability to express very complex systems in a simple, understandable
and clear language which is recognizable and easily adaptable by most Java
programmers.

Our tool SARTS (schedulability analsyser for real-time systems) is a
schedulability analysis tool based on a formal model of timed automata, for
proving schedulability of systems developed using our framework. This work
is funded by DaNES (Danish Network for Intelligent Embedded Systems)
and CISS (Center for Embedded Software Systems) at Aalborg University,
and is publicly available.

In an attempt to reach the closest correspondence between actual running
code and the properties being verified, SARTS works directly on the actual
executed bytecode. This allows for a very close correspondence between
the running system and the verified properties. For our prototype, we use
the time-predictable Java processor, JOP, developed by Martin Schoberl at
the Vienna University of Technology. This is an open and well-documented
processor designed with predictability in mind.

The bytecode from the Java compiler is converted into a formal model,
representing the real system, which is analysed in UPPAAL: a tool for mod-
elling and verification of real-time systems.This approach provides a fully
automatic process from code to verdict; developers need no training in for-
mal verification, timed automata or UPPAAL.

Our technique provides a tight analysis by taking into consideration the
control flow in the program code. This allows for analysing blocking, pre-
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private void handleBrick() {
Sensors. synchronizedReadSensors() ;
int input = (Sensors.getBufferedSensor(0) + Sensors
.getBufferedsensor(1)) >> 1 ;

if (awaitingBrick) {
if (input > lastRead) {
lastRead = input;
} else if ((lastRead - input) >= TRESHOLD) {
awaitingBrick = false;
if (lastRead > BRICK_DETECTED) {
brickFound(lastRead) ;
¥
}
} else {
if (input < lastRead) {
lastRead = input;
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Figure 7.1: (left) A small snippet of a Java code verified using SARTS; (right)
a simplified UPPAAL model of the highlighted code.

emption and many of the dynamic features available in Java, which are
considered hard to analyse, such as finalizers and dynamic method dispatch.

The Predictable Java framework provides a target for developing other
analyses. We are designing the language profile as well as the analyses for the
language profile. This enables us to fine-tune the developer framework in or-
der to reach a reasonable compromise between restrictions and analyzability,
making Java suited for safety-critical embedded systems.

Inspired by the techniques applied in SARTS, we are also developing
memory consumption analysis, along with Eclipse IDE plugins that will as-
sist programmers using the profile and profile conformance checker.

Links:

SARTS and Predictable Java: http://pj.cs.aau.dk
DaNES: http://danes.aau.dk

CISS: http://www.ciss.dk

UPPAAL tool: http://uppaal.com

Please contact:

Bent Thomsen

Aalborg University / DANAIM, Denmark
Tel: +45 9940 8897

E-mail: btQ@Qcs.aau.dk
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